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Abstract

Neural stem cells (NSC) act as a versatile tool for neuronal cell replacement
strategies to treat neurodegenerative disorders in which functional
neurorestorative mechanisms are limited. While the beneficial effects of such cell-
based therapy have already been documented in terms of neurodegeneration of
various origins, a neurophysiological basis for improvement in the recovery of
neurological function is still not completely understood. This overview briefly
describes the cumulative evidence from electrophysiological studies of NSC-
derived neurons, aimed at establishing the maturation of differentiated neurons
within a host microenvironment, and their integration into the host circuits, with
a particular focus on the neurogenesis of NSC grafts within the post-ischemic
milieu. Overwhelming evidence demonstrates that the host microenvironment
largely regulates the lineage of NSC grafts. This regulatory role, as yet
underestimated, raises possibilities for the favoured maturation of a subset of
neural phenotypes in order to gain timely remodelling of the impaired brain
tissue and amplify the therapeutic effects of NSC-based therapy for recovery of
neurological function.

Key words: Neural stem cells; Embryonic progenitors; Neurogenesis; Maturation of
neurophysiological properties; Integration into network; Neural stem cell therapy;

Neurodegeneration; Ischemic injury

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Electrophysiology combined with post-hoc immunohistochemistry was utilized
for monitoring the maturation of neural stem cell (NSC)-derived hippocampal neurons
within a host tissue, aimed at establishing the neurogenesis of NSC grafts between
physiological and post-ischemic endogenous milieus. Understanding the timing
maturation of the neurophysiological properties of differentiated neurons within the
microenvironment of a host brain tissue will provide an assessment of the effects of cell-
based therapy with regard to neurodegenerative disorders of varied aetiology.
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INTRODUCTION

Stem cell therapy has emerged to become a universal “rescue” tool for a broad range
of neurological disorders which are as yet incurable with canonical treatment
approaches. Since the discovery of stem cells, this avenue of research has become
mainstream, not least due to the enigmatic nature of stem cells, but mostly because of
the immense therapeutic potential of stem cells, unveiled either by experimental
studies or clinical trials. Undoubtedly, the prominent therapeutic effects produced by
neural stem cell (NSC) use in different types of neuropathology give credit to NSC as
a multipurpose tool for curing neurodegeneration in a variety of diseases of the
central nervous system!*). Among all the advanced features of this cell type, the
multi-lineage potential of NSC is probably the most attractive in terms of a cell-based
therapy for the treatment of neurodegenerative disorders which are accompanied by
extensive neuronal cell death that require a replacement of the pool of non-
recoverable cells. These include such disorders as stroke, epilepsy, different forms of
dementia, including Alzheimer’s and Parkinson’s diseases, among others?*. The high
capacity of NSC - either of fetal or adult brain origin - to differentiate between the
lineages of neuronal or glial cell types, provides the damaged brain with a newly
developed pool of cells consisting of a mixture of the entirely different phenotypes:
e.g., cholinergic, serotonergic, GABAergic, other neuronal subtypes, mixed with
oligodendrocytes, astrocytes, reparative microglial subtypes, etc. This innate
peculiarity of NSC to differentiate into diverse phenotypes, confirmed by several lines
of evidence as a result of monitoring cell grafts in the post-stroke brain-''l, can
underlie the versatile beneficial effects when employed as cell-based therapy!.
Consequently, such a therapy could lead to the “self-repair” of the damaged tissue by
amplifying the remodelling of the injured brain through the rebuilding of damaged
neuronal ensembles, neurite remodelling and the rewiring of the whole circuitry
using one therapeutic approach. Together, this offers a potential advantage of NSC
use in terms of boosting neurorestorative effects and amplifying the recovery of
neurological function. In addition, employing NSC as a therapeutic approach has
proved to be safe, owing to the restricted proliferation of neural precursors - unlike
stem cells - that implies a lower risk of malignant transformation that could
subsequently develop in the brain”'""’l. The latter is an essential requirement that cell-
based therapies should meet.

NEURAL STEM CELL FOR MULTI-LINEAGE
DIFFERENTIATION WITHIN A HOST TISSUE

Among two stem cell therapy approaches applicable at present - the transplantation
of already differentiated cell phenotypes from induced pluripotent stem cells (iPSC)
and the engraftment of neural progenitors into the injured brain - the use of NSC has
emerged as one that opens a door for “self-repair” of the damaged tissue. The
rationale for this lies with the multi-lineage differentiation of NSC regulated by a host
(endogenous) microenvironment. This implies that after engraftment into the injured
tissue, NSC differentiation occurs in a way that is pertinent to impairments taking
place within the damaged area. In the light of the microenvironment characteristics
featuring the post-ischemic brain tissue, a high level of excitotoxicity which originates
from overwhelming glutamate, necrotic, pro-apoptotic factors being released
following massive ischemic cell death, is a critical determinant that dramatically
lowers the cell viability of already differentiated iPSC-derived neurons after
transplantation. Similarly, the overactivation of pro-inflammatory signalling
pathways pertinent to the post-ischemic impairments would suppress the survival of
vulnerable neurons transplanted into the post-stroke brain. In support of this, there
has been a routine low survival rate of iPSC-derived neurons after transplantation
into the post-ischemic brain - the process greatly exacerbated by the proximity of cell
grafts to the stroke lesion!'*""l. Furthermore, the lowered viability of engineered iPSC-
derived cell grafts following transplantation has been a general problem for gene
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therapy applications in clinical trials for Alzheimer’s and Parkinson’s diseases!'**"\.
Establishing how the transplanted neurons can be protected over time within a
pathological milieu is a key prerequisite for achieving the optimal outcome of cell-
based therapy. This is where the advantage of the high intrinsic plasticity of NSC over
the differentiated neuronal phenotypes in terms of gaining cell viability while within
a detrimental host microenvironment, has appeared.

Emerging data from functional studies of the NSC-derived neurons indicate that
neuronal differentiation and maturation occur at a much faster rate within a host
brain tissue than in in vitro cell cultures. For instance, the maturation of
electrophysiological properties of the NSC-derived neurons in organotypic
hippocampal tissue has been completed for up to 3 weeks after engraftment?”’*?. By
contrast, the maturation of biophysical properties of stem cell-derived neurons in
dissociated cell cultures normally requires months to achieve a similar result.
Electrophysiological studies collectively suggest that it is often necessary to use
enriched media (a “cocktail”) composed of a mixture of transcriptional factors and
master regulators to force the maturation of neurophysiological properties of iPSC-
derived neurons?”>*l. In this context, the accelerated neuronal maturation of NSC
grafts within an endogenous microenvironment is highly advantageous, since only
mature neurons will contribute to neurological function and lead to tissue
remodelling for functional recovery. Although the precise mechanisms that underlie
the accelerated neuronal maturation of NSC within a host brain tissue remain largely
unknown, the potential of NSC for achieving fast therapeutic outcomes argues the
case for pursuing further research to explore this in detail.

Among the benefits of NSC use as a promising therapeutic approach, one may
assume engaging other mechanism(s), which remain as yet enigmatic. It can include,
in particular, triggering the pool of resident NSC to cause it to become activated. The
resident NSC - the population of adult stem cells available across the mature brain at
the subventricular and subgranular dentate gyrus zones of the hippocampus,
cerebellum, forebrain, olfactory bulbs - revealed the innate therapeutic potential with
regard to the regeneration of the impaired brain tissuel**’l. Growing interest within
this newly exploring research area piles up further arguments for the high intrinsic
plasticity of NSC and the control of the NSC fate by a host endogenous environment.

MONITORING NEURONAL MATURATION - CHALLENGES
AND IMPORTANCE

Despite the lengthy period of time since the therapeutic effects of stem cell
applications in brain injuries were first documented, to date neurophysiological
mechanisms mediating these effects are still beyond our comprehensive
understanding. For decades, in innumerable attempts to assess how far competent
NSC-derived cells become over time within the adult brain, most data across the field
have generally illustrated many antigens/markers that differentiated cells can
express. While a combination of immunocytochemical (histochemical) profiles firmly
documents the cell lineage!**l, along with an ample expression of various receptors,
proteins, etc., across the pool of differentiated cells, it provides, however, no rigorous
evidence for the functional properties of these cells. Cells displaying a clear
immunoreactivity might yet possess neither functional receptors nor signalling
pathways constituted to ensure appropriate neurophysiological activity. Given that
the appropriate level of neurophysiological activity - of individual cells and
integrated neuronal network activity - determines the function, the anticipated
beneficial effects of cell-based therapy would ultimately rely on the timing maturation
of the neurophysiological properties of differentiated neurons, followed by their
functional integration into the host circuits. Eventually, this dictates the overall
outcome of the therapy being applied.

Notwithstanding their importance, the functional studies investigating how far the
stem cell-derived neurons are physiologically credible following neurogenesis, have
been scarce. There have only been a few studies, with some exceptional examples as
follows!”'*>*% 'which have performed meticulous investigations of the biophysical
properties and the neurophysiological activity of stem cell-derived neurons. The
depth to which the majority of works tested the maturation of stem cell-derived
neurons consisted of basic patterns of firing and synaptic activity recorded from
differentiated neurons, typically at the very late time-points after transplantation (a
few months in the post-stroke brain). Certainly, major challenges lay in selecting the
difficult electrophysiological technique. Among technical difficulties, the
methodology of conventional whole-cell recordings carrying on in vivo demands the
termination of an acute experiment; therefore, the assessment of neurological function
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through behavioural testing commonly precedes studies at the neuronal level.
Consequently, a huge leap exists for the time window between cell engraftment to
when the neurophysiological properties of stem cell-differentiated neurons have been
tested. Therefore, a number of important questions remain to be answered. First of all,
the time window that stem cell-derived neurons require to set up their
neurophysiological properties to match the level of functional activity displayed by
endogenous neurons. Second, what is the time scale for differentiated neurons to
become functionally integrated into the host circuits? Third, is there a difference in the
timing of neuronal maturation between different milieus (i.e., varied pathological
microenvironments)? This knowledge is essential when it comes to making decisions
with regard to a scheme for stem cell transplantation (timely initiation of the
treatment) and the assessment of anticipated benefits, along with the potential risks
associated with the therapy application, depending on the severity of the tissue
damagel™l.

Evidence-based advances of the ex vivo brain tissue preparations have attracted
attention to this experimental approach as an alternative to in vivo studies. Brain slices
fulfil expectations for functional studies at the sub-cellular, cellular and neuronal
network levels due to the preserved tissue layer architecture consisting of innate cell
assemblies. Over time, organotypic brain slices have been effectively used to discover
important insights into the cellular and molecular mechanisms of neurodegeneration -
first of all, because of feasibility for the long-term maintenance of viable tissue, with
much fewer costs as compared to animal model use, and because varied combinations
of advanced techniques and analytical tools become applicable to brain tissue at either
immature or mature developmental stages!™*l. One of the other problems in studies
of neurodegenerative disorders is that the generated animal models do not replicate
the neuropathological changes obtained from post-mortem studies of the brain
neurodegeneration, for instance, in stroke (cerebral ischemia), Alzheimer’s and
Parkinson’s diseases, other forms of demential®®l. Whilst the use of animal models
remains in a constant debate in terms of whether or not they are relevant to human
neurodegenerative disorders associated with the clear clinicopathological profile of
memory loss and cognitive decline (debatable in animal species), mechanistic studies
require model systems for exploring the mechanisms of neurodegeneration and
treatment strategies. In this context, once again organotypic brain slices perfectly fit
these aims.

Taking all the above into account, monitoring the time-dependent maturation of
NSC grafts within a host hippocampal tissue has recently been employed. Functional
studies have been carried out in organotypic hippocampal slices, aimed at answering
the questions as highlighted earlier. The experimental data from electrophysiological
recordings, combined with electron microscopy and immunohistological approaches,
have revealed that NSC-derived hippocampal neurons have matured
electrophysiological properties, and have functionally integrated into the host circuits
within 3 weeks of engraftment”l. Moreover, the neurophysiological maturation of
NSC-derived neurons achieved a similar level of activity as that exhibited by
endogenous CA1l pyramidal neurons (varied electrophysiological parameters were
quantitatively compared between the groups). Next, a morphological comparison has
been performed with regard to the synapses which NSC-derived neurons constituted
with endogenous cells. The visualised structures, either presynaptic terminals
containing numerous vesicles or postsynaptic structures, revealed the typical
morphology, confirmed by synaptic function (i.e., recordings of the postsynaptic
currents) detected as early as the first two weeks after engraftment?!l. Extrapolating
from the experimental data from this and other studies?”?, the maturation of neuronal
excitability and synaptogenesis within a host tissue can be envisaged to last up to a
few weeks - a time scale much faster than established in dissociated cell cultures
across a vast literature (NSC-derived vs iPSC-derived neurons!™l). Consequently, the
therapeutic outcome from NSC-based therapy could, therefore, be anticipated to
emerge shortly after initiating the treatment - within only a few weeks. In the light of
such a time range, accelerated NSC maturation can provide a mechanistic basis of the
speedy therapeutic effects in a recovery of neurological function observed one week
after stem cell transplantation into the stroke-damaged brain!''*’\. Collectively, the
outlined in vivo and in vitro data suggest that NSC-based therapy is advantageous in
promoting the remodeling of brain tissue to amplify a recovery of neurological
function, given that no effective therapy currently exists.

GLIAL LINEAGE AT WORK

A substantial bias in the neurogenesis of NSC grafts to glial lineage has been found
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while monitoring NSC neurogenesis within the ischemic-injured brain tissuel”’. In the
post-ischemic environment (organotypic hippocampal slices subjected to ischemic
conditions - oxygen-glucose deprivation!*’), NSC grafts have been largely
differentiating into glia, with a prompt rise in NSC-derived oligodendrocytes,
followed by astrocytes. Notably, NSC-derived oligodendrocytes have already been
identified at week 1, and astrocytes - by two weeks. In the meantime, NSC-derived
neurons matured in terms of their electrophysiological properties with a dramatically
slower rate within the post-ischemic milieu than in a physiological environment*!l.
Based on the experimental data from a direct comparison between electro-
physiological parameters, the promoted glial lineage has been a hallmark of NSC
neurogenesis within the post-ischemic tissue (approximately 70% of grafted NSC
differentiated into glia), opposing the reduced neuronal lineage (a drop from
approximately 70% to approximately 30% in the proportion of NSC-derived neurons;
Figure 1). Similar effects with regard to both the differentiation and the maturation of
fetal NSC grafts in the post-stroke brain were observed in vivol). The rationale for such
a strong influence of the post-ischemic environment on NSC neurogenesis rests in
how far the post-ischemic milieu is overburdened with extracellular glutamate!l*'],
potassium, mediators of inflammation!*’, pro-apoptotic factors, enzymes, and other
compoundst**! that produce long-lasting excitotoxic actions, resulting in delayed
neuronal cell death*,

Oligodendrocytes and astrocytes are thought to have diverse roles in brain
physiology and neuropathology, and both can actively communicate with neurons
and other cell typest*l. Therefore, the peculiarity of NSC neurogenesis within post-
ischemic tissue may mirror the numerous roles that these glial cell types would play
there. Promoted glial lineage implies the glia-mediated neuroprotective and
neurotrophic supports of the oxygen-glucose-deprived endogenous neurons as the
first steps of defence against the ischemic impairments. Owing to the neuroprotective
role of oligodendrocytes, protecting, in particular, the survival of CA1 hippocampal
neurons, the NSC-derived oligodendrocytes may constitute endogenously-driven
neuroprotection by providing a metabolic supply (paracrine signaling action), for
instance, via the production of lactate, oligodendrocyte-derived trophic factors,
GDNF!#1. In addition to this mechanism, the revealed impact of oligodendrocytes on
astroglial development**] may explain that NSC-derived oligodendrocytes precede
the derivation of astrocytic phenotypel®l. As the most abundant cell type in the
mammalian brain!*, astrocytes are highly secretory cells, able to produce large
amounts of proteins in order to provide trophic support. The astrocytic-mediated
surveillance of neurotoxic inflammation™”, together with a high capability of taking
up glutamate and potassiuml'! are essential to lower excitotoxicity within the post-
ischemic tissue. The stem cell-derived astrocytes have been shown to replicate the
functional properties of astroglia, including the uptake of glutamate and promoting
synaptogenesis**>2. All the aforementioned lines of evidence support the possibility
that NSC-derived oligodendrocytes and astrocytes provide the post-ischemic tissue
clearance off debris, lower down the high level of excitotoxicity, and eventually
improve the survival of oxygen-glucose-deprived endogenous neurons in post-
ischemic conditions. These together favor the maturation of NSC-derived neurons
within the endogenous post-ischemic environment as the subsequent step of NSC-
based therapy to advance the remodelling of the ischemic-injured tissue and to
facilitate its functional recovery.

SUMMARY AND SOME REMARKS

The great ability of NSC grafts to differentiate into neurons, astrocytes or
oligodendrocytes within damaged brain tissue marks these cells as a versatile tool for
neural replacement strategies in neurodegenerative disorders of various origins. The
potential of NSC-based therapy with regard to brain neurodegeneration treatment is,
therefore, mediated by multiple mechanisms to effectively amplify the therapeutic
outcomel” >, While ethics restrict the use of embryonic NSC, the reprogramming of
somatic cells can offer an alternative source for generating the progeny-restricted
neural progenitors applicable for cell-based therapies. Given that iPSC feature a
patient-specific phenotype, this will ultimately meet any safety concerns effectively.
The phenotypic specificity appears particularly useful in generating in vitro human
models of neurological disorders linked to genetic mutations, and iPSC have become
widely exploited in this avenue of research. The iPSC capability of recapitulating both
genetic and phenotypic profiles over the developmental stages in vitro as in the adult
human brain has enabled functional studies in human cells directly for exploring the
pathogenesis of genetically-triggered neurodegenerative disorders. Many protocols
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Figure 1 Schematic illustration for neurogenesis of neural stem cell (NSC) grafts within a host hippocampal
tissue, showing the difference in relative proportions for neuronal (yellow) vs glial (purple) NSC lineage
between physiological environment (a) and the post-ischemic milieu (tissue subjected to oxygen-glucose
deprivation) (b) at an earlier time-window - first 2 weeks after engraftment into organotypic hippocampal
tissue. NSC are fetal progenitors isolated from mouse hippocampus grafted into organotypic hippocampal slices for
monitoring the time-dependent NSC neurogenesis within a host tissue.

for the manufacture of nerve cell phenotypes are being actively developed and made
available, and the most recent advances in the technology of genome editing,
including the CRISPR/Cas9-based correction of gene mutations, constantly refine
stem cell clones to facilitate functional studies of brain neurodegeneration. This
research direction has marked a new milestone in up-to-date strategies and
therapeutic approaches tailored to amplify the remodeling of the injured brain tissue
and boost the recovery of neurological function.
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