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Abstract
Motivation: During the past decade, genome-wide association studies (GWAS) have 

been used to map quantitative trait loci (QTLs) underlying complex traits. However, most 

GWAS focus on additive genetic effects while ignoring non-additive effects, on the 

assumption that most QTL act additively. Consequently, QTLs driven by dominance and 

other non-additive effects could be overlooked.

Results: We developed ADDO, a highly-efficient tool to detect, classify and visualise 

quantitative trait loci (QTLs) with additive and non-additive effects. ADDO implements a 

mixed-model transformation to control for population structure and unequal relatedness 

that accounts for both additive and dominant genetic covariance among individuals, and 

decomposes single nucleotide polymorphism (SNP) effects as either additive, partial 

dominant, dominant and over-dominant. A matrix multiplication approach is used to 

accelerate the computation: a genome scan on 13 million markers from 900 individuals 

takes about 5 hours with 10 CPUs. Analysis of simulated data confirms ADDO’s 

performance on traits with different additive and dominance genetic variance components. 

We showed two real examples in outbred rat where ADDO identified significant dominant 

QTL that were not detectable by an additive model. ADDO provides a systematic pipeline 
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to characterize additive and non-additive QTL in whole genome sequence data, which 

complements current mainstream GWAS software for additive genetic effects.

Availability and implementation: ADDO is customizable and convenient to install and 

provides extensive analytics and visualizations. The package is freely available online at 

https://github.com/LeileiCui/ADDO.

Contact: r.mott@ucl.ac.uk and lushenghuang@hotmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Non-additive genetic effects model the 

interactions between alleles at a locus 

(Visscher et al., 2008), and are distinct from 

additive genetic effects, where a 

heterozygote’s effect on a phenotype lies 

midway between those of the two 

homozygotes. They are classified into partial 

dominance (heterozygote deviates from the 

average of the homozygotes but does not 

exceed either value), complete dominance 

(heterozygote similar to one homozygote) and 

overdominance (substantially outside the 

range of two homozygotes) (Ungerer, 2004). 

Dominance and overdominance are likely 

causes of the important phenomenon of 

heterosis (Bruce, 1910; Jones, 1917; Shull, 

1908). A careful characterization of genetic 

effects is important in human genetics as well, 

in order to understand the complex 

mechanism of many human quantitative traits 

and diseases. It is also essential in order to 

understand how natural selection and sexually 

antagonistic selection operate in wild species 

(Barson et al., 2015), and for genomic 

selection in livestock (Akanno, et al., 2018; 

Wellmann and Bennewitz, 2012), e.g. to guide 

mate allocation in animal crossbreeding 

(Wellmann and Bennewitz, 2012). 

Most GWAS software employ mixed linear 

models (Kang et al., 2010; Yu, et al., 2006; 

Kang, et al., 2008; Ning, et al., 2018; Zhou 

and Matthew, 2012), which utilise a genetic 

relationship matrix (or kinship matrix) to 

model the varying degrees of relationships 

among individuals. While these mixed models 

- often in combination with principle 

components as fixed effects - control 

population stratification, produce well 

calibrated P-values, they usually ignore 

dominance and other non-additive effects. The 

motivations behind the assumption of 

additivity are probably that (i) most causal 

variants are thought to act additively, so the 

extra degrees of freedom required to test for 

non-additive effects would be expected to 

reduce power slightly, and (ii) allele 

frequencies are often too low to estimate the 

phenotypic effect of the rarer of the two 

homozygotes reliably, unless sample sizes are 

large, so there is insufficient information to 

test for non-additivity. 

Nonetheless GWAS based on additivity 

miss the opportunity to identify non-additive 

QTL, and which are of particular importance 

in animal and crop genetics. Moreover, if 

one’s interest is in genetic architecture and 

mechanism rather than discovery, it is 

necessary to understand each QTL’s mode of 

action. Although, studies in humans showed 
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that dominance genetic variation has limited 

contribution to the missing heritability for 

complex traits (Zhu et al., 2015), such studies 

are still rare, and investigations on wider 

range of phenotypes and species is needed to 

clarify non-additive genetic architecture of 

complex traits. Moreover, as far as we know, 

there is very few program explicitly examined 

a QTL’s mode of action in term of additive 

and dominant effects. 

Here, we describe an R package, ADDO, 

for the efficient detection and classification of 

non-additive QTL, ADDO implements a 

linear mixed model to control population 

structure that explicitly models non-additive 

effects (Kang et al., 2008), and which utilizes 

large matrix operations to speed up 

computation (Shabalin, 2012). ADDO also 

provides versatile functions to classify and 

visualize non-linear association results.

2 Algorithm
2.1 Linear mixed model for non-additive 

genetic effects

ADDO uses well-established theory for 

modeling non-additive effects. A general 

linear mixed model to investigate the 

association between a single SNP with a given 

trait can be expressed as:

𝒚 = 𝑴𝜷 + 𝒖 + 𝒆

where is a vector of phenotypic residuals  𝒚 

that have been corrected for environmental 

fixed effects and other covariates. is the  𝑴 

matrix encoding the genotype effects of a 

given SNP, is a vector of genotype effects  𝜷 

depending on the coding of . and are  𝑴  𝒖  𝒆 

vectors of random genetic background and 

residual random effects, with covariance 

matrices being and , respectively,  𝜎2
𝑔𝑲  𝜎2

𝑒𝑰

where is the kinship matrix and is the 𝑲  𝐼 

identity matrix. For additive effects, the three  

genotypes of an SNP (AA, AB and BB), are 

encoded by a vector (0, 1, 2). To estimate and 

classify the dominance effects of one locus, 

we use two essentially equivalent codings:

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 ― 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑀𝑎𝑡𝑟𝑖𝑥, 𝑴𝑨𝑫:  

  
𝐴𝐴
𝐴𝐵
𝐵𝐵

 (0 0
1 1
2 0)

𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑀𝑎𝑡𝑟𝑖𝑥, 𝑴𝑰: 

   
𝐴𝐴
𝐴𝐵
𝐵𝐵

 (1 0 0
0 1 0
0 0 1)

Thus,  augments the one-column 𝑴𝑨𝑫

matrix representing an additive effect with a 

second column that models the deviation of 

the heterozygote from its expected value 

under the additive model.  models each  𝑴𝑰

genotype with a separate effect. When  𝑴𝑨𝑫

is augmented with an intercept term (i.e. a 

column of 1’s), it is an invertible 

transformation of . We use these 𝑴𝑰

equivalent models to explore different aspects 

of non-additivity, as described below.

We model the phenotypic covariance matrix 

of as , where ,  𝒚  𝑽 = 𝜎2
𝑎𝑲𝒂 + 𝜎2

𝑑𝑲𝒅 + 𝜎2
𝑒𝑰  𝜎2

𝑎

 and  are the additive, dominance and 𝜎2
𝑑 𝜎2

𝑒

residual variance components, as estimated by 

GREML, e.g. GCTA (Yang et al., 2011). The 

inclusion of dominance variance is logically 

consistent with our objective of modeling 

non-additive effects and moreover improves 

the calibration of GWAS non-additive 

P-values.  and  are the additive and 𝑲𝒂 𝑲𝒅

dominance kinship matrices among 

individuals, calculated using the standard 
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definition in GCTA, and  is the identity 𝑰

matrix,

𝐾𝑎(𝑖𝑗) =
1
𝑚∑

𝑘

(𝑥𝑎(𝑖𝑘) ― 2𝑝𝑘)(𝑥𝑎(𝑗𝑘) ― 2𝑝𝑘)
2𝑝𝑘(1 ― 𝑝𝑘)

𝐾𝑑(𝑖𝑗) =
1
𝑚∑

𝑘

(𝑥𝑑(𝑖𝑘) ― 2𝑝2
𝑘)(𝑥𝑑(𝑗𝑘) ― 2𝑝2

𝑘)
4𝑝2

𝑘(1 ― 𝑝𝑘)2

where and are the elements of 𝐾𝑎(𝑖𝑗)  𝐾𝑑(𝑖𝑗)  𝑲𝒂 

and between individuals and ; and 𝑲𝒅  𝑖  𝑗 𝑥𝑎(𝑖𝑘)  

are the additive and dominant genotype 𝑥𝑑(𝑖𝑘) 

coding of individual in SNP , which 𝑖  𝑘  𝑥𝑎(𝑖𝑘)

and for = 0, 1 𝑜𝑟 2  𝑥𝑑(𝑖𝑘) = 0, 2𝑝 𝑜𝑟 (4𝑝 ― 2) 

three genotypic classes AA, AB and BB; is  𝑚 

the total number of SNPs and is the  𝑝𝑘 

frequency of allele B in SNP . 𝑘

 is factorized into its matrix square root  𝑽 𝑨

through eigenvalue decomposition using the R 

function eigen() (R Development Core Team, 

2013):

𝑽 = 𝑼𝑫𝑼 ―𝟏 = (𝑼𝑨𝟏/𝟐𝑼 ―𝟏)𝟐 = 𝑨𝟐 

where is the matrix of eigenvectors and is  𝑼  𝑫 

the diagonal matrix with the eigenvalues. We 

next transform the mixed model by 

multiplying both side of the equation with 

inverse matrix of : 𝑨

𝑨 ―𝟏𝒚 = (𝑨 ―𝟏𝑴)𝜷 + 𝑨 ―𝟏(𝒖 + 𝒆)

Where M is either MAD or MI, after the 

transformation, the variance matrix of the 

model residual term,  is the 𝑨 ―𝟏(𝒖 + 𝒆)

identity matrix , and the vector of SNP 𝑰

effects could be estimated with an ordinary  𝜷 

linear model using the R function lm() and the 

statistical significance (-log10 P-value) were 

calculated by the analysis of variance 

(ANOVA) comparing the fit of the 

transformed mixed model to that of the 

transformed null model.

2.2 Fast detection for significant loci 

through matrix operations

In order to accelerate the ADDO package, we 

apply a matrix operation strategy to speed up 

the genome wide testing for variants set that 

are significant associated with the target trait. 

This is achieved through replacing the 

standard linear regression procedure by a large 

matrix multiplication with standardized and 

orthogonalized variables as in (Shabalin, 

2012). The statistic (the fitting sum of  𝑹𝟐 

square) is estimated as follows:

(1) Transform the residual vector and two  𝒚 

genotype vectors and , which are the  𝑴𝑨  𝑴𝑫

first and second columns of , to correct  𝑴𝑨𝑫

the population stratification effect

, , 𝒚𝑻 = 𝑨 ―𝟏𝒚 𝑴𝑨𝑻 = 𝑨 ―𝟏𝑴𝑨

𝑴𝑫𝑻 = 𝑨 ―𝟏𝑴𝑫

(2) Orthogonalize with respect to 𝑴𝑫𝑻  𝑴𝑨𝑻 

for each locus, in what follows, denotes  ⟨𝒖,𝒗⟩ 

the inner product between vectors . 𝒖,𝒗

𝑴𝑫𝑻 = 𝑴𝑫𝑻 ― ⟨𝑴𝑫𝑻,𝑴𝑨𝑻⟩𝑴𝑨𝑻

(3) Standardize , and 𝒚𝑻  𝑴𝑨𝑻  𝑴𝑫𝑻

(4) Estimate the test statistic through  𝑹𝟐 

large matrix operations

𝑹𝟐 = ⟨𝒚𝑻,𝑴𝑨𝑻⟩𝟐 + ⟨𝒚𝑻,𝑴𝑫𝑻 ⟩𝟐

(5) Calculate the F-test from the test 

statistics and the statistical significance  𝑹𝟐 

(-log10 P-value) using R function pf (Team, 

2013).

𝑭 =
(𝒏 ― 𝟑)𝑹𝟐

𝟐(𝟏 ― 𝑹𝟐)

2.3 Classification of QTLs by ratio of 

dominance and additive effects
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Next, we identify suggestive and 

genome-wide significant QTLs using 

Bonferroni correction for M SNPs, with ―

and  as the default 𝑙𝑜𝑔10( 1
𝑀)  ― 𝑙𝑜𝑔10(0.05

𝑀 )
significance thresholds, respectively (the 

former corresponding to one expected false 

positive per genome scan, and the latter to 5% 

genome-wide significance). To characterize 

the contribution of additive and dominance 

effects of significant QTLs, we refit the same 

model but using different parameterisations. 

We extract additive ( ) and dominance 𝛽𝐴𝑑𝑑

( ) effects and respective standard errors 𝛽𝐷𝑜𝑚

 using the Additive – 𝑠𝑒(𝛽𝐴𝑑𝑑) 𝑎𝑛𝑑 𝑠𝑒(𝛽𝐷𝑜𝑚)
Dominance effect incidence matrix, MAD :

 𝑨 ―𝟏𝒚 = (𝑨 ―𝟏𝑴𝑨𝑫)𝜷 + 𝑨 ―𝟏(𝒖 + 𝒆)

(Add-Dom Model)

Then, we calculate two t-statistics  and 𝑡𝐴𝑑𝑑

, corresponding to the standardized QTL 𝑡𝐷𝑜𝑚

additive and dominance effects, respectively:

𝑡𝐴𝑑𝑑 =  
𝛽𝐴𝑑𝑑

𝑠𝑒(𝛽𝐴𝑑𝑑)       𝑡𝐷𝑜𝑚 =  
𝛽𝐷𝑜𝑚

𝑠𝑒(𝛽𝐷𝑜𝑚)

We categorize QTL using the ratio of the  

two t statistics: QTL with , |𝑡𝐷𝑜𝑚/𝑡𝐴𝑑𝑑| < 0.2

, 0.2 < |𝑡𝐷𝑜𝑚/𝑡𝐴𝑑𝑑| < 0.8 0.8 < |𝑡𝐷𝑜𝑚/𝑡𝐴𝑑𝑑|
, and  are classified < 1.2 1.2 < |𝑡𝐷𝑜𝑚/𝑡𝐴𝑑𝑑|

as additive, partial dominance, dominance and 

overdominance QTL, respectively 

(Supplementary Figure S1).

2.4 Verification of over-dominant QTLs

To further determine and verify 

overdominant/heterotic QTL, we refit the 

QTL using the indicative coding matrix to  𝑴𝑰 

estimate the genetic effect of each genotype:

 𝑨 ―𝟏𝒚 = (𝑨 ―𝟏𝑴𝑰)𝜷 + 𝑨 ―𝟏(𝒁𝒖 + 𝒆)

(Heterotic Model)

For each locus, we extract the effects of 

three genotypes ,  and , and 𝛽𝐴𝐴 𝛽𝐴𝐵 𝛽𝐵𝐵

calculate two T-statistics to measure the 

deviation between the effect of heterozygote 

(AB) and that of two homozygotes (AA and 

BB),

𝑡1 = 𝑡(𝐴𝐵 ― 𝐴𝐴) =  
𝛽𝐴𝐵 ― 𝛽𝐴𝐴

𝑠𝑒(𝛽𝐴𝐵 ― 𝛽𝐴𝐴)

𝑡2 = 𝑡(𝐴𝐵 ― 𝐵𝐵) =  
𝛽𝐴𝐵 ― 𝛽𝐵𝐵

𝑠𝑒(𝛽𝐴𝐵 ― 𝛽𝐵𝐵)

In order to classify a given QTL and to 

determine its statistical significance, we 

combine all T-statistics to generate two 

vectors and , and chose the minimum of 𝒕𝟏  𝒕𝟐

the absolute value of those two T-statistics as 

 to estimate the statistical significance 𝒕𝑴

based on the multivariate normal (MVN) 

distribution function pmvnorm from R 

package mvtnorm (Genz and Bretz, 2010),

𝑃(𝒕𝟏,𝒕𝟐) =
𝑎1 + 𝑎2

𝐴1 + 𝐴2

=  
∫∞

𝒕𝑴
∫∞

𝒕𝑴
𝐷(𝜇1,𝜇2,𝜌)𝑑𝒕𝟏𝑑𝒕𝟐 +  ∫ ― 𝒕𝑴

―∞ ∫ ―𝒕𝑴
―∞ 𝐷(𝜇1,𝜇2,𝜌)𝑑𝒕𝟏𝑑𝒕𝟐

∫∞
0 ∫∞

0 𝐷(𝜇1,𝜇2,𝜌)𝑑𝒕𝟏𝑑𝒕𝟐 +  ∫0
―∞∫0

―∞𝐷(𝜇1,𝜇2,𝜌)𝑑𝒕𝟏𝑑𝒕𝟐

where  is the area from MVN distribution 𝑎1

function defined by ,  is the area 𝒕𝟏,𝒕𝟐 > 𝒕𝑴 𝑎2

where ,  is the area where 𝒕𝟏,𝒕𝟐 < ―𝒕𝑴 𝐴1 𝒕𝟏,

,  is the area where , 𝒕𝟐 > 0 𝐴2 𝒕𝟏,𝒕𝟐 < 0 𝜇1 

and are the mean values of and , and𝜇2  𝒕𝟏  𝒕𝟐  𝜌

is the correlation coefficient of and  𝒕𝟏  𝒕𝟐 

(Supplementary Figure S2).

3 Results
3.1 Comparison of ADDO with GenABEL, 

EMMAX, GEMMA and GCTA

To verify the reliability of the algorithm 

implemented in ADDO, we compared the 
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SNP-trait association P-values calculated by 

ADDO with four other GWAS software, 

GenABEL (Aulchenko et al., 2007), EMMAX 

(Kang, et al., 2010), GEMMA (Zhou and 

Matthew, 2012), which all implemented the 

additive genotypic model. The example 

dataset we used is from a Rat Heterogeneous 

Stock (HS rats) with 160 traits and 244,876 

SNP genotypes of 1,407 individuals (Baud et 

al., 2013). For all SNPs tested, the P-values 

from ADDO were highly correlated with those 

obtained the other programs (Fig 1), 

suggesting statistics obtained from ADDO are 

reliable. The inflation factor (calculated by 

dividing the observed mediation chi-square 

statistics with expected median chi-square 

statistics) was 1.007, suggesting the 

population structure can be properly 

controlled by ADDO.

3.2 Simulation study

We performed a simulation study to test the 

power of our model on phenotypes controlled 

by QTLs with different proportions of additive 

and dominant variances components. The 

phenotypes were simulated based on the 

observed genotypes of 1,407 individuals from 

the rat heterogeneous stock (Baud, et al., 

2013). Firstly, we randomly selected 1,000 

SNPs across the genome that are in weak 

linkage disequilibrium among each other 

(r2<0.1) and with high minor allele frequency 

(MAF: 0.4-0.5) using Plink (Purcell, et al., 

2007). Then 50 SNPs were randomly selected 

from these 1000 SNPs to become QTLs, and 

at which we simulated five classes of 

phenotypes, namely (1) solely additive genetic 

variance, i.e. ; (2) greater additive 𝑉𝑎 = 1%

and smaller dominance genetic variance, 𝑉𝑎

and , respectively; (3) equal = 1% 𝑉𝑑 = 0.1%

additive and dominance genetic variance, 𝑉𝑎

and , respectively; (4) = 0.5% 𝑉𝑑 = 0.5%

Fig 1. Comparison of P-values of ADDO with those 

obtained by GenABEL, EMMAX, GEMMA and 

GCTA based on an anxiety related behavioural trait 

and 244,876 SNPs of 1,340 individuals from a rat 

heterogeneous stock.

Fig 2. Evaluation and comparison of GEMMA and 

different models implemented in ADDO on 

simulated phenotype using ROC curves. Five set of 

simulated phenotypes with different proportions of 

additive and dominance genetic components were 

represented in five columns. (A) Models that consider 

only additive polygenic effects, (B) Models that  𝑲𝒂 

correct for both additive and dominance polygenic 

effects, and . Each column stands for one type  𝑲𝒂  𝑲𝒅

of variance combination to simulate phenotype. The 

colors of lines stand for different genotypic coding 

matrix used by ADDO.

smaller additive and greater dominance 

genetic variance, and , 𝑉𝑎 = 0.5% 𝑉𝑑 = 1%
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respectively; (5) only dominance genetic 

variance, . Note that the numbers 𝑉𝑑 = 1%

refer to the % target phenotypic variance 

explained by each simulated QTL, not to the 

total genetic variance, which will be close to 

the sum of the individual QTL effects. Next, 

the corresponding additive effect and  𝑎 

dominance effect of each QTL were  𝑑 

calculated based on  𝑉𝑎 = 2𝑝(1 ― 𝑝)

 and , [𝑎 + (1 ― 2𝑝)𝑑]2 𝑉𝑑 = [2𝑝(1 ― 𝑝)𝑑]2

where is the minor allele frequency of the  𝑝 

specified QTL. Environmental effects were 

simulated to follow the standard normal 

distribution with variance adjusted to ensure 

the total genetic variance was around 33.3%, a 

typical value for this population. We 

generated the simulated phenotypes by 

summing up additive and/or dominance 

effects of all 50 QTLs, and the environmental 

effects.

Then we evaluated the performance of 

GEMMA and the genotype coding matrices 

implemented in ADDO through 1000 

simulations using receiver operating 

characteristic (ROC) curves (Fig 2 and Table 

1). We compared the three different 

Table 1. Comparison of performance of GEMMA and 

different models implemented in ADDO on simulated 

QTL with different proportion of additive and 

dominance variance components according to the 

AUC of the ROC curve.

Variance components of simulated QTL
Kinship 

matrix
Model Va=1

%

Va=1%

Vd=0.1%

Va=0.5%

Vd=0.5%

Va=0.5%

Vd=0.1%

Vd=1

%

Add 0.900 0.882 0.745 0.703 0.502

Dom 0.493 0.619 0.854 0.933 0.947
ADD + 

DOM
Add-Dom 0.864 0.880 0.896 0.939 0.925

Add 0.900 0.888 0.740 0.677 0.502

Dom 0.504 0.630 0.866 0.930 0.933ADD

Add-Dom 0.861 0.880 0.903 0.937 0.902

GEMMA 0.902 0.886 0.736 0.697 0.498

genotype coding matrices ( , or ) to 𝑀𝐴 𝑀𝐷  𝑀𝐴𝐷

fit SNP effects and two different strategies to 

control polygenic effects (using either just the 

additive kinship matrix or the additive + 

dominance kinship matrix) in ADDO in term 

of areas under the ROC curve (AUC) (Table 

1). To draw the ROC curve, we set a series of 

thresholds of -log10 P-value, from 0 to 10 

incremented by 0.1 to call significant QTLs. 

The true positive rate (TPR) and false positive 

rate (FPR) corresponding to these thresholds 

were calculated as:

𝑇𝑃𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑄𝑇𝐿𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑄𝑇𝐿𝑠 

𝐹𝑃𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑄𝑇𝐿𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑄𝑇𝐿𝑠 

The analysis shows that performance of 

additive model implemented in ADDO is 

approximately equivalent to GEMMA, which 

implements exact mixed model to test the 

trait-marker association (Zhou et al., 2012). 

Model that simultaneously account for 

additive and dominance effects (Add-Dom 

model) out-performed the additive model 

when the QTLs contain dominance variance. 

When the simulated QTLs have equal additive 

and dominance variance component (i.e. 𝑉𝑎 =

), the Add-Dom model AUC = 𝑉𝑑 = 0.5%

0.896, considerably between than AUC = 

0.745 for the additive model. Moreover, the 

Add-Dom model increased AUC from 0.502 

to 0.925 when the QTLs with only dominance 

variance were simulated (i.e. and 𝑉𝑎 = 0  𝑉𝑑

). Moreover, the performance of = 1%

Add-Dom model was robust even when the 
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QTLs are simulated with only additive 

variance (i.e. and ), the AUC  𝑉𝑎 = 1%  𝑉𝑑 = 0

only dropped from 0.900 to 0.864. Taken 

together, these results demonstrated that 

modelling both additive and dominance 

effects simultaneously has great potential to 

map additional QTL that may be missed in 

GWAS when considering only additive 

effects. We also observed a slight 

improvement in the model performance when 

using both the additive and dominance 

covariance matrices to control for the 

polygenic genetic effects, when the QTL are 

simulated with both additive and dominance 

effects. For instance, for traits simulated with 

only dominant QTL, the false positive rate 

(1%) of Add-Dom model accounting for 

additive and dominance covariance matrices, 

is substantially lower than that (8.9%) 

obtained by Add-Dom model considering only 

additive covariance matrix at a nominal P 

value threshold of 0.01 (Table S1). 

3.3 Results using the real phenotypes

In addition to the simulated phenotypes, we 

also applied ADDO on real genotype and 

phenotype data from the rat heterogeneous 

stock (Baud, et al., 2013), in which around 

160 phenotypes relevant to type 2 diabetes, 

hypertension, multiple sclerosis and anxiety 

were measured in up to 1,407 individuals. We 

show results on mean corpuscular hemoglobin 

(Fig 3) and absolute CD8+ T cell levels (Fig 

4) based on the Add-Dom Model implemented 

in ADDO. For mean corpuscular hemoglobin, 

Fig 3. Comparison of GWAS results on mean 

corpuscular hemoglobin in a rat heterogeneous 

stock using GEMMA and ADDO. (A) Manhattan 

plot of GWAS by an additive model using GEMMA. 

(B) Manhattan plot of GWAS implemented by 

Add-Dom model in ADDO (C) Regional association 

plot of the significant locus on chromosome 19 

identified by ADDO. (D) Boxplot of phenotypic 

values by the three genotypes of the lead SNP at the 

significant locus detected by ADDO on chromosome 

19.

Fig 4. Comparison of GWAS results on absolute 

CD8+ T cells in a rat heterogeneous stock using 
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GEMMA and ADDO. (A) Manhattan plot of GWAS 

by an additive model using GEMMA. (B) Manhattan 

plot of GWAS implemented by heterotic model in 

ADDO. (C) Regional association plot of the 

significant locus on chromosome 9 identified by 

ADDO. (D) Boxplot of phenotypic values by the three 

genotypes of the lead SNP at the significant locus 

detected by ADDO on chromosome 9.

we identified a highly significant locus on rat 

chromosome 19 with - P-value being 𝑙𝑜𝑔10 

13.56, which is much greater than the additive 

- P-value of 5.74 implemented in 𝑙𝑜𝑔10 

Gemma (Fig 3). For absolute CD8+ T cells, 

notably, we identified a novel QTL on 

chromosome 9 (-log10 P value = 8.2) that was 

also missed by the additive model (Fig 4). The 

statistics for the two QTLs were |𝑡𝐷𝑜𝑚/𝑡𝐴𝑑𝑑| 
1.43 and 2.08, thus both QTL were 

categorized as overdominance QTLs. These 

two examples support the superior 

performance of ADDO to detect and classify 

QTLs with dominance effects over regular 

additive GWAS software.

4 Discussion
In this study, we have shown by analyses of 

simulated and real data of hematological and 

immune traits in rat suggested that it is 

worthwhile to explore non-additive effects in 

GWAS data from non-human species. The 

computational time of ADDO depends on the 

time spend on 1) data loading, 2) inversion of 

variance-covariance matrix (V) of the 

phenotype, 3) and genomic scan. In current 

version of ADDO, a genome scan of ADDO 

on 10 million markers in 2000 individuals 

takes 23 hours, which is two-fold of the time 

program lies in the time spending on inversion 

of V, as the computation time will cubically 

increase with the number of observations used 

in analysis. Currently, we tested as many as 

8000 individuals, and find that the inversion 

of V takes about 10 minutes using solve() 

function in R, and less than 5 minutes with 

spdinv() function from Rfast package 

(https://rdrr.io/cran/Rfast/) (Supplementary 

Figure S3). In terms of this analysis, we 

consider that the ADDO program is able to 

scale up to analyze data set of 10000-20000 

individuals with whole genome sequence 

marker data. There are several other fast and 

flexible linear model implementations such as 

Grid-LMM (Raniel and Lorin, 2019), 

however, this approach is more powerful 

when fitting more than two random effects. 

Overall, the R package ADDO developed 

here not only provides a tool to detect additive 

and dominance QTL, which helps to better 

understand the genetic effects genomic 

variants on complex traits. By implementing a 

matrix multiplication strategy to speed up the 

computations, the ADDO is also potentially 

applicable to intermediate molecular data such 

as transcriptome and proteome measurements 

of thousands of traits. 
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