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ABSTRACT. These notes were written to be distributed to the audience of the first author’s
Takagi lectures delivered June 23, 2018. These are based on a work-in-progress that is part
of a collaborative project that also involves Akshay Venkatesh.

In this work-in-progress we give a new construction of some Eisenstein classes for
GLN (Z) that were first considered by Nori [41] and Sczech [44]. The starting point of this
construction is a theorem of Sullivan on the vanishing of the Euler class of SLN (Z) vector
bundles and the explicit transgression of this Euler class by Bismut and Cheeger. Their
proof indeed produces a universal form that can be thought of as a kernel for a regularized
theta lift for the reductive dual pair (GLN ,GL1). This suggests looking to reductive dual
pairs (GLN ,GLk) with k ≥ 1 for possible generalizations of the Eisenstein cocycle.
This leads to fascinating lifts that relate the geometry/topology world of real arithmetic
locally symmetric spaces to the arithmetic world of modular forms.

In these notes we don’t deal with the most general cases and put a lot of emphasis on
various examples that are often classical.
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1. INTRODUCTION

These notes are based on the Takagi lectures that were delivered June 23, 2018, by the
first author. The aim of these lectures was to tell a story that starts with the topology of
SLN (Z) vector bundles and abuts to a natural mechanism for constructing mappings from
the homology of congruence subgroups of GLN (Z) to the arithmetic world of modular
forms. This mechanism is a certain ‘regularized θ-lift.’
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The full story is still a work-in-progress that is part of a collaborative project that also
involves Akshay Venkatesh. The current notes put emphasis on the most classical aspects
of the story. These reflect the lectures quite faithfully, in particular we have tried to main-
tain the spirit of ‘story telling.’ There are only few complete formulations of new results.
Complete statements and detailed proofs will appear in forthcoming paper(s). Our primary
hope is that the present notes will serve to show that the ‘regularized θ-lift’ we consider is
interesting in itself.

In the following of this introduction, we outline the whole story in order to help the
reader going through the whole notes.

1.1. Topology. In a short note [49] in 1975, Sullivan proved:

Theorem 1. Let M be a connected oriented manifold. The Euler class of an oriented
SLN (Z) vector bundle on M vanishes rationally.

This answered a question of Milnor. Sullivan’s proof is beautiful and amazingly short:
an oriented SLN (Z) vector bundle on M yields a group bundle T → M whose fibers are
N -dimensional tori RN/ZN . Denote by {0} ⊂ T the image of the zero section. Given
a fixed positive integer m, Sullivan introduces the submanifold T [m] ⊂ T that consists
of m-torsion points. The key observation of the proof is then that a nonzero multiple
of T [m] − mN{0} is a boundary in T . In other words, the rational homology class of
T [m] −mN{0} is zero. We give a detailed cohomological proof of this in Section 2 and
explain why this implies Theorem 1.

This does not mean that the homology class [T [m] −mN{0}] is uninteresting. Quite
the contrary in fact: with respect to the torsion linking form it is dual to an interesting
cohomology class inHN−1(T−T [m],Q/Z). In Section 3 we refine Sullivan’s observation
and prove:

Theorem 2. Let m be a positive integer. There exists a distinguished preimage

(1.1) zm ∈ HN−1(T − T [m],Q)

of [T [m]−mN{0}].

Moreover: the class zm is in fact ‘almost integral,’ see Definition 10 and the Remark
following it.

The construction is similar to Faltings’s construction [23] of the Eisenstein symbol on
Siegel spaces.

1.2. Geometry. Bismut and Cheeger [8] have refined Theorem 1 by constructing an ex-
plicit primitive of the Chern–Weil differential form representing the Euler class. Building
on their work, we construct a smooth differential form Eψ of degree N − 1 on T − {0}
such that the following theorem holds.

Theorem 3. Let m be a positive integer. The expression

E
(m)
ψ := m∗Eψ −mNEψ

defines a closed differential form of degree N − 1 on T − T [m] whose cohomology class
in HN−1(T − T [m],R) is equal to the class zm of Theorem 2.

Here the notation Eψ refers to the fact that this differential form is constructed as an
Eisenstein series, and m : T → T denotes the map ‘multiplication by m’ in the fibers.

In these notes we only deal with the particular situation where T is the total space of
a universal family of metrized real tori over a locally symmetric space M = Γ\X , where
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X = XN is the symmetric space associated to SLN (R) and Γ is a congruence subgroup
of GLN (Z).

The construction of the Eisenstein series Eψ relies on the work of Mathai and Quillen
[39] that we discuss in Sections 4 and 5. It consists in the construction of a canoni-
cal (Gaussian) differential form representing the Thom class of a metrized oriented vec-
tor bundle, and in the construction of a canonical primitive — or transgression — of
its pullback to the sphere bundle. This part is purely local (Archimedean). Working
GLN (R)-equivariantly the Gaussian Thom form can be represented by a cocycle in the
(glN (R),SON )-complex of the representation of GLN (R) in the space of Schwartz func-
tions on RN . This cocycle behaves in several ways like the cocycle constructed by Kudla
and Millson in [38], and the construction of the transgression form produces a (N − 1)-
form that behaves like their form ψ; that both cocycles should be regarded as analogous
follows from previous work of the third author [25], which contains an approach to Kudla
and Millson’s results using Mathai and Quillen’s ideas. We provide explicit formulas for
all these forms in Sections 6 and 7.

In Section 8 we apply the theta machinery to these special Schwartz forms. The result
is precisely the Eisenstein transgression form Eψ .

Let v ∈ RN/ZN be a nonzero torsion point that is fixed by Γ. To v corresponds a
section M → T −{0}. Pulling back Eψ by this section gives a closed (N − 1)-form Eψ,v
on M that represents an Eisenstein class in HN−1(Γ,Q).1 Similar classes were first, and
almost simultaneously, considered by Nori [41] and Sczech [43, 44] in the beginning of
the 90’s. We will clarify the exact relations between these classes in our forthcoming joint
paper.

Pulling back Eψ by the zero section gives the Bismut–Cheeger transgression of the
Euler form. It plays a key role in their proof of the Hirzebruch conjecture on the signa-
ture of the Hilbert modular varieties (first proved by Atiyah, Donnelly and Singer [1] and
Müller [40]).

Here we insist to consider the Eisenstein transgression form Eψ on the total bundle. In
Section 9 we compute Eψ in the N = 2 case; it is the real part of an ‘almost holomorphic’
1-form on the universal elliptic curve. In fact this 1-form decomposes as a sum of two
forms (see (9.6)): the first is the pull-back to the universal elliptic curve of

(1.2) E2(τ, z)dτ,

where E2 is the standard weight two Eisenstein series, and the restriction of the second to
a fiber is given by

(1.3) E1(τ, z)dz,

where E1 is the standard weight one Eisenstein series.
We sketch a proof of Theorem 3 in Section 10. In Section 11 we come back to the case

N = 2 and relate the forms E(m)
ψ and Eψ,v to classical modular functions.

1.3. First applications to number theory. At the end of Section 11 we give a ‘topologi-
cal’ proof of a classical theorem of Damerell [20] on the algebraicity of the evaluation of
weight one Eisenstein series at CM points. To do so we restrict the form E

(m)
ψ to a fixed

CM elliptic curve in the fiber and use that it has rational periods by Theorem 3.

1Pulling back Eψ by the zero section gives the Bismut–Cheeger transgression of the Euler form.
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Damerell’s theorem is related to the algebraicity of some special values of Hecke L-
functions associated to imaginary quadratic fields. Long before that, in 1735, Euler com-
puted the values of the Riemann zeta function at even positive integers:

ζ(2k) =

+∞∑
n=1

1

n2k
= (−1)k+1 (2π)2k

2(2k)!
B2k

where Bm is the m-th Bernoulli number — a rational number. Using the functional equa-
tion, Euler’s formula can be rephrased as the evaluation of the Riemann zeta function at
non-positive integers:

ζ(−k) = (−1)k
Bk+1

k + 1
for all k ≥ 0.

In 1924 Hecke observed that zeta functions of real quadratic fields take rational values at
non-positive integers, and he suggested a method of proof based on the Fourier expansion
of Hilbert modular forms. Siegel [46] gave the first full proof for arbitrary totally real
number fields in 1937, using the theory of quadratic forms instead. In 1962 Klingen [36]
completed and extended Hecke’s program to arbitrary totally real number fields, and later
Shintani [45] and many others published different proofs or extensions of this theorem that
is now usually referred to as the ‘Klingen-Siegel Theorem.’ In the survey [33], Ishii and
Oda give a beautiful account of this rich story.2

The signature conjecture of Hirzebruch was the first hint that certain zeta values have
a topological interpretation. In the 1990’s Nori and Sczech have introduced their above-
mentioned cocycles in order to investigate topologically all special values of zeta and L-
functions of totally real number fields. As a direct consequence of the rationality of their
Eisenstein classes they recover the Klingen-Siegel Theorem.

In Section 12 we show how our methods yield to another natural proof of Hecke’s con-
jecture. Working adelically, it is indeed pretty straightforward to compute the integral of
the closed (N − 1)-form Eψ,v along the (N − 1)-dimensional submanifold of M associ-
ated to the group of units of a degree N totally real number field F , see Theorem 25. It is
essentially equal to the value at s = 0 of the zeta function of F .

Now Theorem 3 implies that this value is rational, and even ‘almost integral.’ The ratio-
nality theorem of Klingen and Siegel therefore immediately follows. In fact we recover the
following integrality theorem for zeta values of totally real number fields at non-positive
integers: let f and b be two relatively prime ideals in the ring of integers OF . The partial
zeta function associated to the ray class b mod f is defined by

ζ(b, f, s) :=
∑

a≡b mod f

1

N(a)s
, Re(s) > 1,

where a runs over all integral ideals inOF such that the fractional ideal ab−1 is a principal
ideal generated by a totally positive number in the coset 1 + fb−1.

Theorem 4 (Deligne-Ribet, Cassou-Noguès [22, 14]). Let c be an integral ideal coprime
to fb−1. Then we have:

n(c)ζ(b, f, 0)− ζ(bc, f, 0) ∈ Z

[
1

n(c)

]
.

Here n denotes the norm.

2As Serre pointed out to us, an interested reader should also take a look at [48, p. 101].
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We only deal with the value at s = 0 in these notes, but considering Eisenstein coho-
mology classes with local coefficients allows one to deal with all negative integers.

In [15, 16] Charollois, Dasgupta and Greenberg have defined an integral versions of
Sczech’s cocycle, and recently, considering as above the cohomology of T−T [m] but using
the so called ‘logarithm sheaf’ rather that Q as coefficients, Beilinson, Kings and Levin [2]
have developed a ‘topological polylogarithm’ that provides an integral version of Nori’s
Eisenstein classes. As a consequence both these works give new proofs of Theorem 4.
Beside giving an interpretation of the numbers occurring in Theorem 4 as linking numbers,
one novel aspect of our viewpoint is that we produce canonical closed invariant differential
forms. These naturally lead to consider invariant cohomology and give rise to arithmetic
θ-lifts that will be explored in detail in our forthcoming joint work with Venkatesh. We
only briefly allude to them in the next paragraph.

Finally, since our methods allow to deal with both Damerell’s Theorem — on Hecke L-
functions of imaginary quadratic fields — and the Klingen-Siegel Theorem — on HeckeL-
functions of totally real number fields — it is natural to wonder if these shed some light on
L-functions associated to general characters. For these L-functions the vast conjectures of
Deligne [21] have been verified in many cases — see in particular Blasius [9] and Colmez
[19] — and have been announced by Harder [29]. In turns out that our viewpoint yields to
a direct proof of this theorem and furthermore allows to deal with integrality features. We
briefly allude to it at the end of Section 13 and will provide details in a forthcoming paper.

1.4. An Eisenstein θ-lift. The (left) linear action of GLN on column vectors and the
(right) action of GL1 by scalar multiplication turn (GLN ,GL1) into a ‘dual pair’ in the
sense of Howe [32]. To be more precise, it is a particular example of an irreducible re-
ductive dual pair of type II. In general such a pair is a couple of linear groups (GLa,GLb)
embedded in GLab seen as the linear group of the space of a× b matrices. Then GLa and
GLb commute in GLab and one can prove that there is a natural correspondence — the
θ-correspondence — between automorphic forms of GLa and GLb.

It turns out that one can think of the closed differential form Eψ as a regularized theta
lift of the trivial character, for the dual pair (GLN ,GL1). This suggests looking more
generally at dual pairs (GLa,GLb). In these notes we focus on the case a = N , b = 2.

The topological picture is the following: consider a modular curve Y (maybe with level
structure) and let E → Y be the corresponding universal family of elliptic curves over Y .
Let Γ be a congruence subgroup in GLN (Z). The group Γ acts in the natural way on the
N -fold fiber product EN over Y . The latter is a subfamily of metrized 2N -dimensional
real tori and, fixing a positive integer m, the restriction of the (2N − 1)-class zm to this
family can be realised as a Γ-equivariant class

(1.4) Θm ∈ H2N−1
Γ (EN − EN [m]).

A de Rham representative is indeed obtained by restricting the closed (2N−1)-formE
(m)
ψ

to

(1.5) Γ\(X × (EN − EN [m])).

In our forthcoming work we associate to the class (1.4) a group cohomology class in
HN−1(Γ,M), where M is a Γ-space of degree N meromorphic forms on EN that are
holomorphic on a complement of finitely many elliptic hyperplanes. Evaluating the ele-
ments ofM on Γ-invariant torsion sections of EN , we get:
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Theorem 5. Let m be a positive integer. To any Γ-invariant nowhere zero torsion section
x : Y → EN of order prime to m corresponds a class

x∗(Θm) ∈ HN−1(Γ,MN (Y )),

whereMN (Y ) denotes the space of weightN modular forms on Y endowed with the trivial
Γ-action.

One outcome of this theorem is the existence of fascinating and explicit homomor-
phisms

(1.6) HN−1(Γ,Z)→MN (Y )

that relate the geometry/topology world of real arithmetic quotient ofXN to the arithmetic
world of modular forms. The existence of such maps was first discovered by one of us
(P.C.) by quite different methods, see [17].

Example. Consider the case N = 2 with Y = Y1(`) and ` > 1. It was already observed by
Borisov and Gunnells [10, 11] that products

E
(1)
a/`E

(1)
b/`, a, b = 1, . . . , `− 1,

of weight one modular forms
E

(1)
a/` := E1(τ, a/`),

satisfy, modulo Eisenstein series, the same relations as Manin symbols in the homology of

Γ = Γ1(`) :=
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 ∗

0 1 ) (mod `)
}
.

This is in fact related to the existence of a homomorphism H1(Γ1(`),Z)→M2(Y1(`)) as
discussed above in greater generality.

In these notes we restrict our discussion to a de Rham realisation of the lifts (1.6). The
restriction of E(m)

ψ to (1.5) defines a kernel. In Section 13 we explain how this kernel is
a particular instance of a regularized theta lift and gives rise to mappings (1.6). We will
relate these to the classes of Theorem 5 in our forthcoming work. Here we explain how the
theta lift construction allows us to evaluate the morphisms (1.6) along tori: let U ⊂ Γ be a
subgroup of maximal rank N − 1 of positive integral units in a totally real number field F
of degree N over Q (and embedded in Γ via a regular representation). In the terminology
of Kudla [37] we have a seesaw of dual pairs in GL2N (Q):

(1.7) GLN (Q) GL2(F )

F× GL2(Q)

and it yields the following:

Theorem 6. The evaluation of a map (1.6) on the image in HN−1(Γ,Z) of the funda-
mental class in HN−1(U,Z) is a modular form of weight N obtained as the restriction
to the diagonal H ⊂ HN of a Hecke-Eisenstein modular form of weight (1, . . . , 1) for a
congruence subgroup of PGL2(OF ).

The morphisms (1.6) govern surprising relations between some modular forms. But
this is only the shadow of a richer story that also involves relations between modular units
considered by Beilinson and Kato [5, 35]. We conclude these notes by addressing this
question after composition by regulators.
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Consider for instance the ringO(Y1(`)) of holomorphic functions on the modular curve
Y1(`) for some integer ` > 1. The map

log | · | : O(Y1(`))× → A0(Y1(`))

is an example of a regulator in degree 1. A more interesting example, in degree 2, is
induced by the map

reg : ∧2O(Y1(`))× → A1(Y1(`))

u ∧ u′ 7→ i log |u′|d arg u− i log |u|d arg u′.
(1.8)

In the last paragraph of Section 13 we briefly explain how our regularized theta lift for
the dual pair (GL2,GL2) can be interpreted as defining a 1-form on Y (`) for every pair
of cusps in P1(Q); moreover, these 1-forms are obtained as the regulator of a product of
two modular units. This fits with the work of Brunault [13] on the explicit Beilinson–Kato
relations.

1.5. Acknowledgments. N.B. would like to thank the Mathematical Society of Japan, the
local organisers, and especially Professor Kobayashi, for their invitation and their kind hos-
pitality in Kyoto. We all thank our collaborator Akshay Venkatesh as well as Javier Fresan
for their comments and corrections on these notes. L.G. wishes to thank IHES for provid-
ing excellent conditions for research while this work was done. L.G. also acknowledges
financial support from the ERC AAMOT Advanced Grant.

2. THOM AND EULER CLASSES AND TORUS BUNDLES

In this section we first define the Thom and Euler classes of an oriented vector bundle.
Then we explain Sullivan’s proof of Theorem 1 in terms that set the stage for the Eisenstein
class that we will introduce in the next section.

2.1. Thom and Euler classes of oriented vector bundles. Let M be a closed connected
oriented d-manifold and let E be an oriented, real vector bundle of rank N ≥ 2 over M .
We shall denote by E0 the image of the zero section σ0 : M → E that embeds M into E.

The Thom isomorphism identifies the cohomology of E with compact support in the
vertical direction3

H•(E,E − E0)

with H•−N (M), the cohomology of the base shifted by N .

Definition 7. Under the isomorphism

H•(M)
∼→ H•+N (E,E − E0)

the image of 1 in H0(M) determines a cohomology class in HN (E,E − E0), called the
Thom class of the oriented vector bundle E.

Remark. It will be important for us that, since M is oriented, the Thom class of E and the
Poincaré dual of the zero section of E can be represented in de Rham cohomology by the
same differential form (see [12, Proposition 6.24]).

3Unless otherwise explicitly specified all (co-)homology groups are with integral coefficients.
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Definition 8. The pullback of the Thom class to M by the zero section σ0 : M → E
determines a cohomology class

e(E) ∈ HN (M),

called the Euler class.

Remark. If M is smooth, the Euler class measures the obstruction to the existence of a
nowhere vanishing section: let s : M → E be a generic smooth section and let Z ⊂ M
be its zero locus. Then Z represents a homology class [Z] ∈ Hd−N (M), and e(E) is the
Poincaré dual of [Z].

2.2. An observation of Sullivan. We now furthermore assume that the structure group Γ
of E can be reduced to SLN (Z), or equivalently that the vector bundle E contains a sub-
bundle EZ whose fibers are lattices isomorphic to ZN . Denote by T the quotient bundle
E/EZ; this is a group bundle of base M , whose fibers are N -dimensional tori RN/ZN .

The zero section of E projects onto a section 0 : M → T whose image we denote
by {0}. Now let m be a positive integer. We denote by T [m] the submanifold of T that
consists of m torsion points.

The following lemma is due to Sullivan [49]:

Lemma 9. We have:

[T [m]−mN{0}] = 0 in HN (T,Q).

Proof. Let us denote by m the finite cover T → T given by multiplication by m in each
fiber. To m correspond two maps, the direct and inverse image maps, in cohomology:

m∗ : H•(T )→ H•(T ) and m∗ : H•(T )→ H•(T ).

Since m is a covering map of degree mN , we have

(2.1) m∗m
∗ = mN on H•(T ).

Now m∗[{0}] = [T [m]] in HN (T ) and m∗[{0}] = [{0}]. It follows that

(2.2) m∗([T [m]−mN{0}]) vanishes in HN (T ).

By (2.1) the map m∗ is injective over the rationals, and the lemma follows. �

Remark. It follows from the proof that for any integer ` coprime tom the cohomology class
[T [m]−mN{0}] vanishes in HN (T,Z`), or equivalently that [T [m]−mN{0}] vanishes
in HN (T,Z[1/m]).

2.3. Vanishing of the rational Euler class. Let us now explain why Lemma 9 implies
that the rational Euler class of the normal bundle of {0} in T vanishes.

First observe that under the map

HN (T, T − {0})→ HN (T )

the Thom class is mapped onto the class [{0}] dual to the zero section in T .
Now, since m · 0 = 0, we have 0∗m∗ = 0∗ and therefore

(2.3) 0∗(T [m]) = 0∗([{0}]) ∈ HN (M).

We finally conclude from (2.2) and (2.3) that

(1−mN )0∗([{0}]) = 0∗(T [m]−mN{0}) vanishes in HN (M,Q).
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In particular the rational Euler class 0∗([{0}]) ∈ HN (M,Q) of the normal bundle of {0}
in T vanishes.

The normal bundle of {0} in T being isomorphic to E this finally forces e(E) to be a
torsion class and Theorem 1 is proved.

Remark. The proof shows that the order of e(E) in HN (M,Z) is a divisor of the g.c.d. of
the integers mN (mN − 1) as m varies. This g.c.d. is the denominator of 1

2BN where BN
is the N -th Bernoulli number, see [31, Theorem 118].

3. THE EISENSTEIN CLASS

Sullivan’s observation — Lemma 9 above — does not imply that the homology class
[T [m] −mN{0}] is uninteresting. Quite the contrary in fact: computing linking number
with T [m] −mN{0} indeed produces interesting cohomology classes. In this section we
explain how to extract a canonical class from this. Let first fix a positive integer m > 1.

3.1. Linking with T [m] − mN{0}. Consider the long exact sequence in cohomology
associated to the pair (T, T [m]):

(3.1) · · · → HN−1(T )→ HN−1(T − T [m])→ HN (T, T − T [m])→ HN (T )→ · · ·
The Thom isomorphism induces

HN (T, T − T [m])
∼−→ H0(T [m]).

The class in HN (T, T − T [m]) corresponding to [T [m] − mN{0}] ∈ H0(T [m]) has
a trivial image in HN (T,Q) by Lemma 9. It follows that it can be lifted as a class in
HN−1(T − T [m],Q), but such a lift is only defined up to HN−1(T,Q).

In the next paragraph we explain how to pick a canonical lift. To do so we follow a
refinement, due to Faltings [23], of Sullivan’s observation.

Remarks. 1. We may think of H0(T [m]) as Γ-invariant ‘divisors’ — or rather formal
linear combinations — of m-torsion points in the N -torus RN/ZN . The covering map
m : T → T induces a (direct image) map HN (T, T − T [m]) → HN (T, T − {0}) such
that the following diagram

HN (T, T − T [m])

��

// HN (T )

m∗

��
HN (T, T − {0}) // HN (T )

is commutative. The corresponding map

H0(T [m])→ Z

is induced by the summation map

Σ : Z[T [m]]→ Z; (at)t∈T [m] 7→
∑

t∈T [m]

at.

The class [T [m]−mN{0}] ∈ H0(T [m]) corresponds to an element in Z[T [m]]0 = ker(Σ),
and to any point x ∈ (Z[T [m]]0)Γ it corresponds a class inHN (T, T−T [m]) whose image
in HN (T ) belongs to the kernel of m∗. Recall that, by (2.1), the latter is injective over the
rationals. By Sullivan’s observation, this class in HN (T, T − T [m],Q) may therefore be
lifted to a class inHN−1(T−T [m],Q). Here again, at this stage, such a lift is only defined
up to HN−1(T,Q).
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2. Beilinson, Kings and Levin [2] propose to not use Q coefficients but the so called
logarithm sheafLog on T . The point of introducing the latter is to make the lift of the Thom
class canonical. Indeed, the cohomology of T with coefficients in Log is concentrated in
degree N so that HN−1(T,Log) = 0. This gives nice integrality statements at the cost of
losing some topological intuition.

3.2. A canonical lift. To pick a canonical lift zm ∈ HN−1(T −T [m],Q) of the image of
[T [m]−mN{0}] ∈ H0(T [m]) inHN (T, T−T [m]) we will again consider a multiplication
map in the fibers. Let a be an integer coprime to m. Then multiplication by a induces a
map of pairs of spaces

(T, T [am])→ (T, T [m]).

The inclusion map i also induces a map of pairs of spaces

(T, T [am])→ (T, T [m])

and, by a slight abuse of notations, we denote by a∗ the self-maps in cohomology obtained
by pre-composing the direct image maps a∗ with i∗, so that in what follows a∗ = a∗ ◦ i∗.
We then obtain the following commutative diagram:

· · · // HN−1(T )

a∗

��

// HN−1(T − T [m])

a∗

��

// HN (T, T − T [m])

a∗

��

// HN (T )

a∗

��

// · · ·

· · · // HN−1(T ) // HN−1(T − T [m]) // HN (T, T − T [m]) // HN (T ) // · · ·

Now consider the Leray spectral sequence associated to the fibration π : T →M :

Ei,j2 = Hi(M,Rjπ∗Z)⇒ Hi+j(T )

over the rationals. Since a acts by multiplication on the fibers, it acts on Ei,j2 by aj . From
that one deduces that all the differentials (on the second and any latter page) vanish, i.e.
the spectral sequence degenerates on the second page. Moreover the aj-eigenspace of the
action of a∗ on Hi+j(T,Q) is naturally identified with Hi(M,Rjπ∗Q).4

It follows from (2.1) that a∗ acts by aN−j on the subspaceHi(M,Rjπ∗Q) ⊂ Hi+j(A,Q).
In particular the operator

P (a∗) =

N−1∏
j=0

(a∗ − aN−j)

acting on H•(T,Q) annihilates

⊕j≤N−1H
•(M,Rjπ∗Q).

It thus acts trivially on HN−1(T,Q). We therefore obtain the following commutative
diagram:

HN−1(T )

P (a∗)

��

// HN−1(T − T [m])

P (a∗)

��

// HN (T, T − T [m])

P (a∗)

��

// HN (T )

P (a∗)

��
0 // HN−1(T − T [m]) // HN (T, T − T [m]) // HN (T )

Now, since a is coprime to m, we have a∗([T [m]−mN{0}) = [T [m]−mN{0}] and

P (a∗)([T [m]−mN{0}) =

N−1∏
j=0

(1− aN−j)

 [T [m]−mN{0}]

4This argument is sometimes referred to as ‘Lieberman’s trick.’



TRANSGRESSIONS OF THE EULER CLASS AND EISENSTEIN COHOMOLOGY OF GLN (Z) 11

is a nonzero multiple of [T [m] −mN{0}]. If z ∈ HN−1(T − T [m],Q) is any lift of the
image of [T [m]−mN{0}] ∈ H0(T [m]) in HN (T, T − T [m]) then also is

1∏N−1
j=0 (1− aN−j)

P (a∗)(z) ∈ HN−1(T − T [m],Q).

The latter is independent on the choice of a since the operators P (a∗) commute for differ-
ent a’s.

Definition 10. Let
zm ∈ HN−1(T − T [m],Q)

be the resulting canonical class.

Remark. As in the case of Sullivan’s observation, for any integer ` coprime to m, we have:

zm ∈ HN−1(T − T [m],Z`).

This follows from the proof by taking a = ` and noticing that
∏N−1
j=0 (1−`N−j) is coprime

to `.

3.3. A canonical degree N − 1 class on M . The class zm of Definition 10 depends on
the choice of m. However if m1 and m2 are two integers, in H0(T [m1m2]) we have

m∗1[T [m2]] = [T [m1m2]] and m∗2[T [m1]] = [T [m1m2]],

and Equation (2.1) implies:

[T [m1m2]− (m1m2)N{0}] = m∗1[T [m2]−mN
2 {0}+mN

2 [T [m1]−mN
1 {0}]

= m∗2[T [m1]−mN
1 {0}+mN

1 [T [m2]−mN
2 {0}].

Since zm1m2
∈ HN−1(T − T [m1m2],Q) is determined by [T [m1m2] − (m1m2)N{0}]

in H0(T [m1m2]) we conclude that

(3.2) m∗1(zm2)+mN
2 zm1 = m∗2(zm1)+mN

1 zm2
= zm1m2

∈ HN−1(T−T [m1m2],Q).

Now if x : M → T is a torsion section such that m1x = x and m2x = x the inverse maps
on cohomology x∗, m∗1 and m∗2 satisfy:

x∗ = x∗m∗1 = x∗m∗2,

and it follows from Equation (3.2) that

(1−mN
1 )x∗(zm1

) = (1−mN
2 )x∗(zm2

).

This motivates the following:

Definition 11. Let x : M → T be a torsion section of order coprime to m. We set

zm(x) = x∗(zm) ∈ HN−1(M,Q).

For any m such that mx = x, let

z(x) =
1

mN − 1
zm(x) ∈ HN−1(M,Q).

Remark. Here again, for any integer ` coprime to m, we have:

zm(x) ∈ HN−1(M,Z`).
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4. THE UNIVERSAL SPACE OF ORIENTED QUADRATIC SPACES

We shall consider the Eisenstein class on a particular torus bundle — the universal torus
over a congruence quotient of the symmetric space associated to SLN (R). In this section,
we first define the universal space of oriented quadratic spaces and give some of its basic
properties that will be relevant to us.

4.1. The space of oriented quadratic spaces. Let N ≥ 2 be a positive integer and let
V = QN (column vectors). Fix an orientation o of V (R) and denote by Q the standard
positive quadratic form on V (R) defined by

(4.1) Q(x) = tx · x = x2
1 + · · ·+ x2

N .

We will often abuse notations and denote by V the real vector space V (R). Denote respec-
tively by g = End(V ) and k = so(V ) = ∧2V the Lie algebras of GL(V ) = GLN (R) and
SO(V ) = SON , and let m = S2V ⊂ End(V ) be the subspace of symmetric matrices. We
have

g = k⊕m

and the decomposition is orthogonal with respect to the Killing form of g.
Given a matrix A ∈ GLN (R), define a positive definite quadratic form QA on V

by QA(x) = Q(A−1x); in the standard basis of V this quadratic form is given by the
symmetric matrix (A>)−1A−1. We define also an orientation oA = sgn(detA) · o of V .
The assignment A 7→ (QA, oA) defines a bijection
(4.2)

S := GLN (R)/SON '
{

(Q′, o′)

∣∣∣∣ Q′ a positive definite quadratic form on V
o′ an orientation of V (R)

}
.

4.2. The universal space of oriented quadratic spaces. The standard representation of
GLN (R) on V makes the real vector bundle

(4.3) E = S × V π−→ GLN (R)/SON

GLN (R)-equivariant (the isomorphism E
∼−→ g∗E for g ∈ GLN (R) is given on each

fiber by multiplication by g).
The bundle E carries:
• a natural orientation oE = (oEx)x, and
• a metric hE = (hEx)x.

Indeed: if x ∈ S is represented by A ∈ GLN (R), then oEx := oA and hEx := QA. Both
oE and hE are GLN (R)-equivariant.

We shall refer to the total space of E as the universal family of oriented quadratic N -
spaces.

4.3. The Maurer-Cartan connection on the linear group. On the linear group GLN (R)
(as on any Lie group) we have a distinguished differential 1-form — the Maurer-Cartan
form — that takes its values in the Lie algebra g and carries the basic infinitesimal informa-
tion about the structure of GLN (R). The Lie algebra g is identified with the tangent space
of GLN (R) at the identity, and the Maurer-Cartan 1-form, which is a linear mapping

TgGLN (R)→ TeGLN (R) = g,

is given by the push forward along the left-translation in the group:

X 7→ (Lg−1)∗X, (X ∈ TgGLN (R)) .
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One can write this form explicitly as

(4.4) g−1dg;

it is a GLN (R)-invariant differential 1-form defined globally on the linear group and which
takes values in g.

4.4. The linear group as a SON -principal bundle. The quotient map GLN (R) → S
induces the structure of an SON -principal bundle over S. We denote this bundle by P .

The Maurer-Cartan form canonically identifies the space

A1(P )GLN (R)

of GLN (R)-invariant differential 1-forms on P with g∗ through the map:

g∗ → A1(P )GLN (R); L 7→ L(g−1dg).

It more generally identifies A•(P )GLN (R) with ∧•g∗.
A SON -connection on P is a k-valued 1-form θ ∈ A1(P )⊗ k satisfying

Ad(k)(k∗θ) = θ, k ∈ K,
ιXθ = X, X ∈ k.

(4.5)

Here k denotes the Lie algebra of SON . Note that GLN (R) acts on P and S by left
multiplication and the map P → S is GLN (R)-equivariant. We fix a GLN (R)-invariant
SON -connection θ on P as follows: under the isomorphisms

(A1(P )⊗ k)GLN (R)×SON ' (g∗ ⊗ k)SON ' HomSON (g, k),

the GLN (R)-invariant SON -connections correspond to the SON -equivariant sections of
the inclusion map k ↪→ g. We define θ to be the connection corresponding to the projection
p : g→ k with kernel p, or more explicitly

θ = p(g−1dg) =
1

2
(g−1dg − d(tg)tg−1).

Its curvature
Ω = (Ωij)1≤i,j≤N = dθ + θ2 ∈ A2(P )⊗ k

is a GLN (R)-invariant, k-valued 2-form on P .

4.5. A natural metric connection on E. For any linear representation W of SON there
is an associated vector bundle P ×SON W over S, and a principal SON -connection on
P induces a connection on any such vector bundle. It can be defined using the fact that
the space of sections of P ×SON W over S is isomorphic to the space of SON -equivariant
W -valued functions on P . More generally, the space of k-forms with values in P ×SONW
is identified with the space of GLN (R)-equivariant and horizontal W -valued k-forms on
P .

This applies in particular to the standard representation of SON on V . The correspond-
ing bundle is

P ×SON V = (GLN (R)× V )/SON ,

where the (right) SON -action on GLN (R)× V is given by

(g, v)
k7→ (gk−1, kv).

We shall equip the bundle P ×SON V with the connection induced from that of P .
The linear group acts on P ×SON V by

[g, v]
h7→ [hg, v]
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and turns P ×SON V into a GLN (R)-equivariant bundle over S.
The bundle E is GLN (R)-equivariantly isomorphic to P ×SON V via the map:

(4.6) Φ : E → P ×SON V ; ([g], v) 7→ [g, g−1v].

We endow E with the induced connection∇; it preserves the metric and the orientation of
E.

5. MATHAI-QUILLEN THOM FORM ON THE UNIVERSAL SPACE OF ORIENTED
QUADRATIC SPACES

5.1. The Mathai-Quillen universal Thom form. Mathai and Quillen [39, Theorem 6.4]
have constructed an equivariant form in ANSON

(V ) that is closed and is universal in the
sense that for any oriented real rank N vector bundle E equipped with compatible metric
and connection, the Chern-Weil homomorphism

A•SON (V )→ A•(E)

maps the Mathai-Quillen form to a differential form representing the Thom class of E .
We shall apply this to the bundle P ×SON V . First note that

A•(P ×SON V ) = A•(P × V )SON .

Using the invariant connection on P we identify the space A•(P × V ) with

(5.1) C∞(GLN (R)× V,∧•(g⊕ V )∗).

The group SON acts on g by the adjoint representation and acts linearly on V . These
actions yield a natural action of SON on ∧•(g⊕V )∗ that we denote by ρ. The SON -action
on (5.1) is then given by

f
k7→
(
(g, v) 7→ ρ(k)(f(gk, k−1v))

)
.

The space A•(P ×SON V ) is therefore identified with{
f : GLN (R)× V C∞→ ∧•(g⊕ V )∗

∣∣∣∣ f(gk, k−1v) = ρ(k−1)(f(g, v)),
(g ∈ GLN (R), v ∈ V, k ∈ SON )

}
.

The GLN (R)-action on the bundle P ×SON V yields an action on A•(P ×SON V ), and
the space A•(P ×SON V )GLN (R) of invariant forms is identified with

(5.2)
{
f : V

C∞→ ∧•(g⊕ V )∗ ⊗N V

∣∣∣∣ f(k−1v) = ρ(k−1)(f(v)),
(v ∈ V, k ∈ SON )

}
.

The Chern-Weil homomorphism

A•SON (V )→ A•(P ×SON V )

maps the Mathai-Quillen form to an element

(5.3) U ∈
[
S(V )⊗ ∧N (g⊕ V )∗

]SON ⊂ AN (P ×SON V )GLN (R)

that is rapidly decreasing as a function of V .
Mathai and Quillen compute explicitly their equivariant Thom form — see [39, Eq.

(6.1)] (see also [26, 3]). In the rest of this section we shall essentially follow their lines to
give an explicit formula for U .
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5.2. Some notation. First fix some notations: denote by 〈·, ·〉 the canonical scalar product
on V , and let | · | be the associated norm. Let (e1, . . . , eN ) be an oriented orthonormal basis
of V . We adopt the following convenient convention: given I ⊂ {1, . . . , N} of cardinal
|I| = k, we denote by eI the monomials

ei1 ∧ . . . ∧ eik , I = {i1, . . . , ik}, i1 < . . . < ik

in the exterior algebra ∧•V . We denote by I ′ the complement of the subset I and define
the sign ε(I, I ′) = ±1 by

eI ∧ eI′ = ε(I, I ′)e1 ∧ . . . ∧ eN .
We finally denote by eI the dual basis of ∧•V ∗ and let

dxI ∈ Hom(∧|I|V,R)

be the corresponding form.
Consider the space

(5.4) Ai,j :=
[
C∞(V )⊗ ∧i(g⊕ V )∗ ⊗ ∧jV

]SON

of GLN (R)-invariant forms on P ×SON V , with values in the bundle ∧•V .

5.3. Some natural forms in A•,•. First write v for the identity map

(5.5) v ∈ A0,1 = C∞(V, V )SON .

Multiplying v by the connection form θ ∈ (g∗ ⊗ k)SON gives a element in C∞(V, g∗) ⊗
V )SON . Write

dv =

N∑
i=1

dxi ⊗ ei ∈ C∞(V, V ∗ ⊗ V )SON .

The covariant derivative of v with respect to our canonical invariant connection gives the
following element in A1,1:

(5.6) ∇v = dv + θ · v ∈ A1,1 = [C∞(V, g∗ ⊕ V ∗)⊗ V ]
SON .

Finally, the curvature form Ω defines an element in HomSON (∧2g, k). Identifying k with
∧2V we shall see Ω as a constant map

(5.7) Ω ∈ A2,2 = C∞(V,∧2(g)∗ ⊗ ∧2V )SON .

Now define an operator
ι(v) : Ai,j → Ai,j−1

by the following properties:
(1) ι(v) = 〈v, ·〉 on A0,1,
(2) ι(v) is a derivation, that is,

ι(v)(α ∧ β) = (ι(v)α) ∧ β + (−1)i+jα ∧ (ι(v)β)

for α ∈ Ai,j and β ∈ Ak,l.
Consider the differential form

ω =
1

2
|v|2 +∇v + Ω ∈ A0,0 ⊕A1,1 ⊕A2,2.

Since
∇|v|2 = −2ι(v)∇v,

the following formula holds:

(5.8) (∇+ ι(v))ω = 0.
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We then can form:

exp(ω) := e−
|v|2
2

N∑
k=0

(−1)k

k!
(∇v + Ω)k ∈

N⊕
k=0

Ak,k,

where we adopt the usual sign convention

(5.9) (α⊗ eI) ∧ (β ⊗ eI′) = (−1)|I|deg(β)(α ∧ β)⊗ (eI ∧ eI′).

5.4. Explicit computation of U . Since V = RN comes equipped with its canonical
structure of an oriented Euclidean vector space, there is a canonical map

B : ∧•V → R,

called Berezin integral, defined by projecting α ∈ ∧•V onto the component of the mono-
mial e1 ∧ . . . ∧ eN .

The Berezin integral extends to a linear form B : Ai,j → Ai,0 which vanishes unless
j = N . There are obtained by composing the fonctions in C∞(V,∧jV ) with B. Since ∇
is compatible with the metric, we have:

(5.10) d ◦B = B ◦ ∇.

Theorem 12 (Mathai-Quillen). The invariant differential form

(5.11) U = (−1)
1
2N(N−1)(2π)−N/2e−

|v|2
2 B

(
N∑
k=0

(−1)k

k!
(∇v + Ω)k

)
∈ AN,0

is a closed N -form on the total space of the bundle P ×SON V , and has constant integral
1 along the fibers. In other words, U is a Thom form for the bundle P ×SON V .

Proof. The proof that B(exp(ω)) — and therefore U — is closed is a consequence of
(5.10) and (5.8):

dB (exp(ω)) = B (∇ exp(ω))

= B ((∇+ ι(v)) exp(ω))

= B (exp(ω)(∇+ ι(v))ω) = 0.

Since U is an invariant form, it remains to compute the integral along the fiber V over
the base point. This is done with a little linear algebra: identifying the constant functions
in C∞(V, V ) with V we can think of ∇v as an element in V ∗ ⊗ V . Then (∇v)k ∈
∧k(V ∗ ⊗ V ) has trivial image under B unless k = N . Then, applying the sign convention
(5.9), we have:

(∇v)N = N !(dx1 ⊗ e1) · · · (dxN ⊗ eN )

= (−1)N(N+1)/2N !(e1 ∧ . . . ∧ eN )(dx1 ∧ . . . ∧ dxN ).

We conclude that along the fiber V over the base point we have:

U =
(−1)

1
2N(N−1)

(2π)N/2
e−
|v|2
2 B

 N∑
k=0

(−1)k

k!

(
N∑
i=1

dxi ⊗ ei

)k
=

(−1)
1
2N(N−1)

(2π)N/2
e−
|v|2
2

(−1)N

N !
B
(

(−1)N(N+1)/2N !(e1 ∧ . . . ∧ eN )
)
dx1 ∧ . . . ∧ dxN

= (2π)−N/2e−
|v|2
2 dx1 ∧ . . . ∧ dxN .
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Since the Gaussian integral
∫ +∞
−∞ e−x

2/2dx =
√

2π we conclude that the total integral of
U along the fiber is indeed equal to 1. �

5.5. Pfaffian forms. We may express the invariant form U in terms of Pfaffian forms.
First assume that N = 2` is even. A skew-symmetric matrix A ∈ k = so(V ) can be

identified with an element A ∈ ∧2V . Then (following Quillen)

A∧`

`!
= Pf(A) · e1 ∧ . . . ∧ eN ,

gives the Pfaffian. We similarly denote by Pf(Ω) the N -form in HomSON (∧Ng,R):

(5.12) A1 ∧ · · · ∧AN 7→
∑
σ∈SN

sign(σ)Pf
(
[Aσ(1), Aσ(2)], . . . , [Aσ(N−1), Aσ(N)]

)
.

Considered as a constant function of V , it defines an element

(5.13) Pf(Ω) ∈ AN,0 = C∞(V,∧2(g⊕ V )∗)SON .

For general N we similarly construct forms in A2k,N−2k (0 ≤ k ≤ N ). To any subset
I ⊂ {1, . . . , N} with |I| = 2k even, it indeed corresponds a decomposition V = VI⊕VI′ ,
where say VI is generated by the ei’s (i ∈ I). By restriction and projection to the subspace
VI the curvature form Ω ∈ HomSO(N)(∧2g, so(V )) defines a form

ΩI ∈ HomSO(N)(∧2g, so(VI)) = HomSO(N)(∧2g,∧2VI).

Taking its k-th exterior product as above we define an alternating |I|-form

Pf(ΩI) ∈ HomSO(N)(∧|I|g,R).

And, being SON -invariant, the sum∑
I⊂{1,...,N}
|I|=2k

ε(I, I ′) Pf(ΩI)⊗ eI′ ,

considered as a constant function of V , defines a form in

C∞(V,∧2k(g⊕ V )∗ ⊗ (∧N−2kV )∗)SON = A2k,N−2k.

Theorem 13. The invariant Thom form

U ∈
[
S(V )⊗ ∧N (g⊕ V )∗

]SON ⊂ AN,0 = AN (P ×SON V )GLN (R)

is given by

(5.14) U = (2π)−N/2e−
|v|2
2

∑
I⊂{1,...,N}
|I| even

ε(I, I ′) Pf(ΩI)(dv + θ · v)I
′
.

Note that both sides of (5.14) are smooth functions on V as is |v|2. Taking v = 0, i.e.
restricting to the zero section, gives the Euler form.
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5.6. The form on the universal bundle E. Recall that the GLN (R)-equivariant bundle
(4.3) is GLN (R)-equivariantly isomorphic to P ×SON V via the map Φ (see (4.6)). By
pull-back, this map induces a GLN (R)-equivariant isomorphism

A•(P ×SON V )GLN (R) ∼→ A•(E)GLN (R).

We denote by

(5.15) ϕ ∈
[
S(V )⊗ ∧N (m⊕ V )∗

]SON ⊂ AN (E)GLN (R)

the pull-back Φ∗U .
At a point (eK, v) the differential of Φ maps an element (X,w) ∈ m ⊕ V to the class

of the vector (X,w −Xv) ∈ g⊕ V . It follows that the Schwartz function

ϕ ((X1 + w1) ∧ . . . ∧ (XN + wN )) ∈ S(V ) (Xj + wj ∈ m⊕ V, j = 1, . . . , N)

maps v ∈ V to

[U ((X1 + w1 −X1v) ∧ . . . ∧ (XN + wN −XNv))] (g−1v).

5.7. The form as a (g,K)-cocycle. The linear group GLN (R) acts on S(V ) via the
(Weil) representation ω:

ω(g) : S(V )→ S(V ); φ 7→ (v 7→ φ(g−1v)) (g ∈ GLN (R)) .

This makes the bundle

E × S(V )→ E

GLN (R)-equivariant. We may therefore also think of

ϕ ∈
[
S(V )⊗ ∧N (m⊕ V )∗

]SON ∼=
[
S(V )⊗AN (E)

]GLN (R)

as a GLN (R)-invariant N -form on the total space of E with values in S(V ). It follows
that its restriction

(5.16) ϕ ∈ HomSON (∧Nm,S(V ))

defines a (glN ,SON )-cocycle for the (Weil) representation ω of GLN (R) on S(V ).
For each v0 ∈ V , ϕ(v0) is a closed invariant N -form on S; it is equal to the pull-back

of the form ϕ of (5.15) on E by the flat section

v0 : S → S × V ; x 7→ (x, v0).

6. SOME EXPLICIT FORMULAS FOR THE MATHAI-QUILLEN THOM FORM

In applications we will need completely explicit formulas for the N -form (5.15). We
consider three cases respectively associated to the groups GL1(R), GL2(R) and GL2(C).

6.1. Explicit formula in the case N = 1. This case amounts to consider the oriented line
bundle π : R→ {∗} with Euclidean metric h(x) = x2. Then ∇v = dx⊗ 1 and we have

(6.1) ϕ = (2π)−1/2e−x
2/2B(∇v) = (2π)−1/2e−x

2/2dx ∈ A1(R).
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6.2. Explicit formula in the case N = 2. In this case the space S is disconnected and we
will rather work with the connected component

S+ = GL2(R)+/SO2;

the latter is identified withH×R>0 where

H = H2 = GL2(R)+/SO2Z(R)+

is the upper half-plane. We may coordinatize the GL2(R)+-equivariant bundle S+ ×R2

asH×R>0 ×C.

Classical coordinates. Write

(τ = x+ iy, t, z = u− vτ) ∈ H ×R>0 ×C.

In these coordinates the left action of GL2(R)+ on S+ ×R2

B · (Q, (u, v)) = (Q ◦B−1, (au+ bv, cu+ dv)),

where B =
(
a b
c d

)
and B−1 =

(
d −b
−c a

)
, translates into:

B : (τ, t, z) 7→
(
aτ + b

cτ + d
,det(B)1/2t,

z

cτ + d

)
.

In particular, by restricting to the subspace t = 1, we get a SL2(R)-equivariant embed-
ding

H×C→ S+ ×R2,

where (τ, z) is mapped to(
t
√
y

(
y x
0 1

)
,

(
u
v

))
∈ (GL2(R)+/SO2)×R2.

The corresponding quadratic form Qτ is associated to the symmetric matrix

1

y

(
1 −x
−x r2

)
,

where we wrote, for short, r2 = x2 + y2. It follows that the Qτ -norm of the vector (u, v)
is y−1|z|2, where u− vτ = z. The metric onH×C is therefore given by

|dτ |2

y2
+
|dz|2

y
.

The invariant Thom form. We now compute the restriction of ϕ to H ×C. To do so, we
consider the SL2(R)-equivariant embedding

Φ :

{
H×C → GL2(R)+ ×SO2 C
(τ, z) 7→ [gτ , y

−1/2z],

where, on the right side, we have identified C with R2 as fibers above i ∈ H, i.e. (u, v) ∈
R2 7→ u− iv ∈ C, τ = x+ iy and gτ =

(√
y x/
√
y

0 1/
√
y

)
.

On GL2(R)+×SO2 C the connection form θ is equal to p(g−1dg) (see §4.4) and, since

(6.2) g−1
τ dgτ =

(
1 0
0 −1

)
⊗ dy

2y
+

(
0 1
0 0

)
⊗ dx

y

the pull-back of θ by Φ is

p(g−1
τ dgτ ) =

(
0 1
−1 0

)
⊗ dx

2y
.
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We shall keep denoting by θ this connection form. In the coordinates z = u − iv, the
matrix

(
0 1
−1 0

)
acts on R2 like i on C. It follows that in complex coordinates we have

(6.3) θ =
i

2

dx

y
.

The (pullback of the) curvature form Ω = dθ is then given by

(6.4) Ω = − i
2

dx ∧ dy
y2

.

Finally, in the coordinates z = u − iv, a skew-symmetric matrix A ∈ k = so2 acts on
R2 = C by multiplication by a purely imaginary complex number zA, and

Pf(A) = izA.

From all this we conclude that the Thom form ϕ ∈ A2(H×C) is given by

1

2π
e−
|z|2
2y

(
Pf(Ω)− i

2

(
(d(y−1/2z) + y−1/2θz) ∧ (d(y−1/2z)− y−1/2θz)

))
=

1

2π
e−
|z|2
2y

(
1

2

dx ∧ dy
y2

− i

2

(
dz

y1/2
+
i

2

zdτ

y3/2

)
∧
(
dz̄

y1/2
− i

2

z̄dτ̄

y3/2

))
=

1

2π
e−
|z|2
2y

(
1

2

dx ∧ dy
y2

− 1

4

|z|2

y

dx ∧ dy
y2

+
1

4y2
(zdτ ∧ dz̄ + z̄dτ̄ ∧ dz)− idz ∧ dz̄

2y

)
.

The Thom form is therefore given by:

(6.5)

ϕ =
1

4π
e−
|z|2
2y

((
1− |z|

2

2y

)
dx ∧ dy
y2

+
1

2y2
(zdτ ∧ dz̄ + z̄dτ̄ ∧ dz)− idz ∧ dz̄

y

)
.

6.3. Explicit computations in the SL2(C)-case. The symmetric space associated to the
group SL2(C) is the 3-dimensional hyperbolic space. Let H3 be the upper half space
model for the latter; it consists of all quaternion numbers

r = z + jy (z ∈ C, y ∈ R>0, j
2 = −1, ij = −ji).

We shall write z(r) = z and y(r) = y.
Every element

(
a b
c d

)
∈ SL2(C) acts onH3 by

r 7→ (ar + b)(cr + d)−1,

where inversion and products are taken in the skew-field of quaternions.
Let us identify C2 with R4 via

(u, v) ∈ C2 7→


Re(u)
Re(v)
Im(u)
Im(v)

 ∈ R4.

In this way we identify SL2(C) as a subgroup of GL4(R) via the embedding

A+ iB 7→
(
A −B
B A

)
.

This yields an embedding of the symmetric space H3 into the space S = GL4(R)/SO4

of positive definite real quadratic forms on C2. The subspace H3 parametrizes positive
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definite Hermitian forms on C2 of discriminant 1. The point r = z + jy corresponds to
the Hermitian form associated to the Hermitian matrix

1

y

(
1 −z
−z̄ y2 + |z|2

)
.

With respect to this Hermitian form, the norm of the vector (u, v) is

y−1(|u|2 − (zūv + z̄uv̄) + (y2 + |z|2)|v|2) = y−1N(u− rv),

where N(·) denotes the norm on quaternions. We coordinatize H3 × C2 as (r = z +
jy, (u, v)). In these coordinates the action of SL2(C) on C2 is the usual (linear) one.

Consider the SL2(C)-equivariant embedding

Φ :

{
H3 ×C2 → GL4(R)×SO4 C2

(r, (u, v)) 7→
[
gr, g

−1
r ( uv )

]
,

where gr =
(
y1/2 y−1/2z

0 y−1/2

)
∈ SL2(C) — viewed as a matrix in GL4(R) — maps (0, 1) ∈

H3 to r = (z, y), and C2 is identified with R4 as above.
Computations similar to those of the preceding paragraph lead to

(6.6) θ =
1

2

(
0 dz

y

−dz̄y 0

)
and Ω =

1

4

(
−dz∧dzy −2dy∧dzy2

2dy∧dz̄y2
dz∧dz
y

)
,

and we find that, in restriction toH3 ×C2, the Thom form ϕ is given by

(6.7) ϕ = − 1

16π2
e−

N(u−rv)
2y

[
−dz ∧ dz

2y
∧B ∧B − dy ∧ dz̄

y2
∧A ∧B

+
dy ∧ dz
y2

∧B ∧A+
dz ∧ dz

2y
∧A ∧A+ C ∧D ∧D ∧ C

]
,

where

A = y−1/2(du− zdv)− 1

2
y−1/2vdz, B = y1/2dv − 1

2
y−3/2(u− zv)dz̄,

C = y−1/2(du− zdv)− 1

2
y−3/2(u− zv)dy − 1

2
y−1/2vdz,

and

D = y1/2dv +
1

2
y−1/2vdy − 1

2
y−3/2(u− zv)dz̄.

7. CANONICAL TRANSGRESSION OF THE THOM FORM

Consider the Euler form ϕ(0) on S as a GLN (R)-invariant form on E. Building on
Chern’s proof of the Gauss-Bonnet Theorem [18], Mathai and Quillen [39, §7] have con-
structed a primitive of ϕ(0) away from the zero section, i.e. on

E − {0} := S × (V − {0}).

Once the metric on V is fixed this transgression is canonical. In this section we briefly re-
call their construction and compute explicit formulas in each of the three cases considered
in the previous section. We first recast the Mathai-Quillen construction in (glN ,SON )-
cohomology of the Weil representation ω.
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7.1. Relation with the Weil representation. The spaceW = V⊕V ∗ is naturally equipped
with a symplectic form with respect to which V and V ∗ are isotropic and induces the
canonical duality between V and V ∗. The symplectic group Sp(W ) acts on S(V ) through
the Weil representation. Now (GL(V ),GL(1)) forms a dual pair — in the sense of Howe
[32] — in Sp(W ), and the restriction of the Weil representation to GL(V ) is precisely the
representation ω of GL(V ) in S(V ) that we are considering.

Let S(V ) ⊂ S(V ) be the polynomial Fock space. It consists of those Schwartz functions
on V that are of the form

v 7→ p(v)e−
|v|2
2 ,

where p is a polynomial on V . These functions are the vectors in S(V ) that span a finite di-
mensional subspace under the action of the maximal compact subgroup of the metaplectic
group. The form ϕ belongs to the polynomial Fock space.

7.2. A transgression of ϕ in (glN ,SON )-cohomology. Let L be the infinitesimal gener-
ator of the second factor GL(1) in the ‘dual pair’ (GL(V ),GL(1)); it acts on E = S × V
trivially on S and linearly on V . In other words, it acts by multiplication by t > 0 in the
fibers. This gives a 1-parameter group of diffeomorphisms in the variable s = log t.

Proposition 14. There exists

(7.1) ψ ∈
[
S(V )⊗ ∧N−1(m⊕ V )∗

]SON ⊂ AN−1(E)GLN (R)

such that

(7.2) ω(L) · ϕ = dψ.

Proof. The invariant vector field

X = 0N ⊕ (v1e1 + . . .+ vNeN )

on P ×SON V is associated to L and generates the flow associated to the one-parameter
group of diffeomorphisms acting by multiplication on the fibers. Then we have:

ω(L) · ϕ =
d

ds
t∗ϕ

= LX(t∗ϕ)

= d{iX(t∗ϕ)}.

We may therefore take ψ = iXϕ. �

It follows from Theorem 12 that

(7.3) ψ = −(−1)
1
2N(N−1)(2π)−N/2e−

|v|2
2 B

(
N∑
k=0

(−1)k

k!
v(∇v + Ω)k

)
∈ AN−1,0.

Remark. We may rewrite equation (7.2) as:

(7.4) d(t∗ψ) = t
d

dt
(t∗ϕ).
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7.3. Transgression of ϕ(0). As t tends 0 the form t∗ϕ tends to ϕ(0) (viewed as an in-
variant form on E), and, as t tends to +∞, t∗ϕ tends to zero on E − {0}. Integrating the
form

−t∗ψ = −iX(t∗ϕ)

from zero to infinity gives a transgression of ϕ(0) away from the zero section. In fact one
can prove:

Proposition 15. We have:

d

(∫ +∞

0

t∗ψ
dt

t

)
= δ0 − ϕ(0).

Here δ0 is the current of integration along the 0 section of E.

7.4. Explicit computations.

The case N = 1. Recall that this case amounts to consider the oriented line bundle π :
R→ {∗} with Euclidean metric h(x) = x2. It follows from (6.1) that ϕ(0) = 0 and that

(7.5) ψ(R,h) = (2π)−1/2e−x
2/2B(v) = −(2π)−1/2e−x

2/2x ∈ A0(R).

One easily checks that

−
∫ +∞

0

t∗ψ
dt

t
=

1

2
,

which is obviously a primitive of 0.

The case N = 2. Using the coordinates (τ, z) of §6.2, the vector field X on H × C
becomes

X = z
∂

∂z
+ z̄

∂

∂z̄
.

It then follows from (6.5) that the form ψ = iXϕ is equal to

(7.6) − 1

4π
e−
|z|2
2y

(
1

2y2
(|z|2dτ + |z|2dτ̄) +

i

y
(zdz̄ − z̄dz)

)
.

Rewriting ψ as

− 1

2π

(
|z|2

2y
e−
|z|2
2y

)(
1

2

(
dτ

y
+
dτ̄

y

)
+ i

(
dz̄

z̄
− dz

z

))
and using that ∫ ∞

0

t2|z|2

2y
e−

t2|z|2
2y

dt

t
=

1

2

∫ ∞
0

ue−u
du

u
=

1

2
,

we get that the transgression form is

(7.7) −
∫ ∞

0

t∗ψ
dt

t
=

1

4π

(
1

2

(
dτ

y
+
dτ̄

y

)
+ i

(
dz̄

z̄
− dz

z

))
.

One easily checks that the differential of the 1-form (7.7) is

1

4πy2
dx ∧ dy = ϕ(0).
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The case SL2(C). The total space is H3 × C2 and we use the coordinates (r = z +
jy, (u, v)) of §6.3. Rather the developing the full formula (6.7), we just identify the com-
ponents of ψ = ιXϕ of types dy ∧ du ∧ dv, dz ∧ du ∧ dv and dz̄ ∧ du ∧ dv. We find:

(7.8)

ψ =
1

2

(
i

2πy

)2

e−
N(u−rv)

2y
[
(ū− z̄v̄)2dz − 2(ū− z̄v̄)v̄ydy − (v̄y)2dz̄

]
∧ du ∧ dv

+ (other terms).

8. EISENSTEIN TRANSGRESSION

In this section we come back to torus bundles. We consider the universal family of real
tori — with level structure. We then globalize the Mathai-Quillen forms to construct an
explicit transgression of the Chern-Weil differential form representing the Euler class. This
refinement of Sullivan’s Theorem 23 is due to Bismut and Cheeger [8]. We rephrase their
construction in group theoretic terms using Howe’s viewpoint on theta series.

8.1. Universal families of real tori. Let’s identify the center Z of GLN with the multi-
plicative group Gm via the map z 7→ z · 1N . Write Z(R)+ for the connected component
of the identity in Z(R). The quotient

X = GLN (R)+/SONZ(R)+ = S+/Z(R)+

is identified with a connected component of the quotient of S by Z(R)+. It is also the
symmetric space associated to SLN (R). The bundle P ×SON V induces a GLN (R)+-
equivariant vector bundle of X . The latter is SLN (R)-equivariantly isomorphic to the
SLN (R)-equivariant bundle

X × V → X

via the restriction of the map Φ (see (4.6)).
Now, let L ⊂ V (Q) be a lattice, m be a positive integer and Γ be a subgroup of

GLN (Q)+(:= GLN (Q) ∩GLN (R)+) that fixes L. Consider the torus bundle

X × V/L→ X.

We refer to its quotient
T := Γ\(X × V/L)→ Γ\X

as the universal family of tori with level structure Γ. The fundamental group of the total
space T is Γ n L.

8.2. The affine group action. The total space of the fiber bundle E can be realized as a
homogeneous space under the action of the affine group GLN (R) n V where

(g, v) · (g′, v′) = (gg′, gv′ + v).

The left action of the affine group on E is transitive and the stabilizer of the base point
(eK, 0) in E is the group SON embedded in the affine group as

SON ↪→ GLN (R) n V ; k 7→ (k, 0).

The Weil representation ω of GLN (R) extends to a representation of the affine group
on S(V ) that we denote by5

ω(g, w) : S(V )→ S(V ); φ 7→ (v 7→ φ(g−1(v − w)) ((g, w) ∈ GLN (R) n V ) .

5The group law in GLN (R)nV is (g, w) ·(g′, w′) = (gg′, gw′+w) so that (g, w)−1 = (g−1,−g−1w).
Finally GLN (R) n V acts on V by (g, w) · v = gv + w.
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This makes the bundle

E × S(V )→ E = (GLN (R) n V )/SON

(GLN (R) n V )-equivariant. We may then think of ϕ and ψ as elements in

(8.1) [S(V )⊗ ∧•(m⊕ V )∗]
SON ∼= [S(V )⊗A•(E)]

GLN (R)nV
,

i.e. as (GLN (R) n V )-invariant forms on the total space of E with values in S(V ). In
particular ϕ defines a (glN n V,SON )-cocycle for ω.

8.3. Theta series. On S(V ) there is a distribution θL defined by

θL(φ) =
∑
λ∈L

φ(λ)

which satisfies

θL(ω(γ, λ)φ) = θL(φ) ((γ, λ) ∈ Γ n L).

For φ ∈ S(V ), g ∈ GLN (R) and v ∈ V , let

(8.2) θφ(g, v) = θL(ω(g, v) · φ) =
∑
λ∈L

φ(g−1(λ− v)).

Clearly this is invariant under v 7→ v + λ for λ ∈ L. It is also invariant under Γ n L. In
particular we get two forms:

(8.3) θϕ ∈ AN (E)ΓnL.

and

(8.4) θψ ∈ AN−1(E)ΓnL.

Proposition 16. The differential form θϕ represents a Thom form for the torus bundle
Γ\(S+ × V/L)→ Γ\S+.

Proof. It suffices to check that θϕ has integral 1 along the fibers. After unfolding the
integral this follows from the fact that ϕ is a Thom form. �

Remarks. 1. For all positive t, the differential form θt∗ϕ also represents a Thom form for
the torus bundle Γ\(S+ × V/L) → Γ\S+, and as t tends to infinity θt∗ϕ tends to 0 away
from the zero section.

2. Let v0 ∈ m−1L. Then translation by v0 on Γ\(S+ × V/L) maps the zero section of
the torus bundle to the image [v0] of the torsion section

v0 : Γ\S+ → Γ\(S+ × V/L); [x] 7→ [x, v0],

and the N -form

θϕ(g, v − v0) = [ω(e, v0)∗θϕ](g, v)

represents the dual class [v0] ∈ HN (Γ\(S+ × V/L)).
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8.4. Eisenstein regularization. The (N − 1)-form θt∗ψ is obtained by averaging t∗ψ
under the action of L. Proposition 19 suggests to rather average the form

(8.5)
∫ +∞

0

t∗ψ
dt

t

to get a transgression of the Euler class. Since (8.5) is not rapidly decreasing along the
fibers, the averaging has to be done in a regularized way. Formally on wants to consider

∫ +∞

0

θt∗ψ(g, v)
dt

t
=

∫ +∞

0

θψ(t−1g, v)
dt

t
.

Here the identity follows from the GLN (R)-invariance of ψ, see (8.1). As long as v /∈ L
this integral converges at +∞. As usual we shall make sense of it in a regularized way by
adding a power of t under the integral. We recall the basic features of this regularization
procedure in the following general proposition.

Consider a general function φ ∈ S(V ). Write

θ∗φ(g, v) =

{
θφ(g, v) if v /∈ L
θφ(g, v)− φ(0) if v ∈ L.

Proposition 17. On Γ\(S+ × V/L) the expression

(8.6) Eφ(g, v; s) =

∫ +∞

0

θ∗t∗φ(g, v)tNs
dt

t
=

∫ +∞

0

θ∗φ(t−1g, v)tNs
dt

t
,

is well defined for Re(s) > 0. It admits a meromorphic continuation to all s ∈ C, and is
holomorphic everywhere except at s = 0 and s = 1 where it has at most simple poles. It
has a pole at zero only when v ∈ L.

Proof. The function

t 7→
∑′

λ∈L

φ(tg−1(λ− v)),

where the prime means that we sum over λ 6= v, is rapidly decreasing, and the integral

∫ +∞

1

(∑′

λ∈L

φ(tg−1(λ− v))

)
tNs

dt

t

is regular at every s ∈ C. To deal with the integral from 0 to 1 we use Poisson summation
formula. Since the Fourier transform of ξ 7→ f(gξ) (g ∈ GLN (R)) is equal to ξ 7→
|det g|−1f((g>)−1ξ), we have:

(8.7)
∑
λ∈L

φ(tg−1(v + λ)) =
|det g|
tN

∑
λ∈L

φ̂(t−1g>λ)e2iπv·λ.
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Using the change of variable t 7→ t−1, this implies that the integral∫ 1

0

(∑′

λ∈L

φ(tg−1(λ− v))

)
tNs

dt

t

= |det g|
∫ 1

0

(∑
λ∈L

φ̂(t−1g>λ)e−2iπv·λ − δL(v)
tN

|det g|
φ(0)

)
tN(s−1) dt

t

= |det g|
∫ ∞

1

(∑′

λ∈L

φ̂(tg>λ)e−2iπv·λ

)
tN(1−s) dt

t

+
|det g|φ̂(0)

N(s− 1)
− δL(v)

φ(0)

Ns
.

is also regular at every s ∈ C − {0, 1}, has simple poles at s = 0 and s = 1, and only
when v ∈ L at s = 0. �

8.5. Eisenstein transgression. Since ψ(0) = 0, it follows from Proposition 17 that the
expression

(8.8) Eψ(g, v) := Eψ(g, v; 0)

is well defined. It is smooth away from the zero section and defines a (N − 1)-form on
Γ\(S+ × (V/L− {0})).

The action of Z(R)+ on S+ extends trivially to an action on S+×V which induces an
action on Γ\(S+× V/L) whose quotient is the universal family T . We also have a natural
action of Z(R)+ on differential forms on S+ × V , and by the invariance properties (8.1)
of ψ, for every z ∈ Z(R)+ we have

z∗Eψ(s) =

∫ +∞

0

z∗θψ(t−1g, v)tNs
dt

t

=

∫ +∞

0

θψ(t−1z−1g, v)tNs
dt

t

= z−NsEψ(s).

(8.9)

In particular Eψ is invariant by the center and defines a (N − 1)-form on T − {0}.
In the theorem below we compute the differential of Eψ using (7.4). To state it we first

need a definition.

Definition 18. The determinant

det ∈ [∧NV ∗]SON ∼= AN (E)GLN (R)nV

defines a (GLN (R) n V )-invariant N -form on the total space of E. It induces an N -form
volN on the universal family T .

Restricted to a fiber theN -form volN is equal — up to constant factor — to the invariant
probability volume form.

Theorem 19. The (N − 1)-form Eψ is smooth and is a primitive of −volN on T − {0}.
As a current on T its differential dEψ satisfies

(8.10) dEψ = δ{0} − volN .
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Proof. By (7.2) if v /∈ L and Re(s) > 1, we have

dEψ(g, v; s) =

∫ +∞

0

dθt∗ψt
Ns dt

t

=

∫ +∞

0

d

dt
θt∗ϕt

Nsdt.

(8.11)

For Re(s) > 1, partial integration applies to the last line of (8.11) and gives:

dEψ(g, v; s) = −Ns
∫ +∞

0

θt∗ϕt
Ns dt

t
.

Now, as in the the proof of Proposition 17, the Poisson summation formula implies that
the right hand side is absolutely convergent for Re(s) sufficiently large and extends to a
meromorphic function of s which is holomorphic at s = 0 equal to −ϕ̂(0). Using the
explicit formula for ϕ (see Theorems 12 and 13) we conclude that the form Eψ(g, v; 0) is
a primitive of −volN .

To prove (8.10) we have to take into account the behavior near the lattice points. �

9. THE EISENSTEIN TRANSGRESSION FOR GL2(R) AND CLASSICAL MODULAR
FORMS

In the case N = 2, we have X = H and the universal family of tori is the universal
elliptic curve. In this section we give explicit formulas for the form Eψ and relate it to
classical modular forms, compare with [4].

9.1. The universal elliptic curve. Given τ ∈ H we denote by Λτ the lattice Z + Zτ in
C and let Eτ = C/Λτ be the associated elliptic curve. The action of SL2(Z) on H × C
preserves the subset {(τ, z) : z ∈ Λτ}. Now Z2 acts onH×C by

(u, v) · (τ, z) = (τ, z + u− vτ)

and SL2(Z) on the quotient. The resulting double quotient

SL2(Z)\
(
(H×C)/Z2

)
is called the universal elliptic curve.

9.2. The Eisenstein series Eψ . The Eisenstein series Eψ defines a differential form on
the universal elliptic curve. On H ×C the 1-form dz is not invariant under the Z2-action
but the form

(9.1) α = dz − z − z̄
2i

dτ

y

is; in the coordinates z = u− vτ , we have: α = du− τdv.
We will derive an explicit expression for the 1-form Eψ in the basis of 1-forms given by

α, β = dτ and their complex conjugates. These forms are invariant under the Z2-action
and it follows from (7.6) that we have:

(9.2) ψ =
1

2π

(
|z|2

2y
e−
|z|2
2y

)[
i
(α
z
− ᾱ

z̄

)
− 1

2y

( z̄
z
β +

z

z̄
β̄
)]
.
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Now consider the 1-form

(9.3) θ∗t∗ψ(τ, z) = Re

(
− 1

2πy

∑′

ω∈Z+Zτ

t2|z + ω|2

2y
e−

t2|z+ω|2
2y

z̄ + ω̄

z + ω
β

+
i

π

∑′

ω∈Z+Zτ

t2|z + ω|2

2y
e−

t2|z+ω|2
2y

α

z + ω

)
,

where
∑′ means that if z ∈ Z + Zτ we omit the term corresponding to ω = −z. The

Mellin transform of θ∗t∗ψ(τ, z) gives

Eψ(τ, z; s) =

∫ ∞
0

θ∗t∗ψ(τ, z)t2s
dt

t

= Re

[
2s−1Γ(s+ 1)ys

(
− 1

2πy

∑′

ω∈Z+Zτ

(z̄ + ω̄)2

|z + ω|2s+2
β

+
i

π

∑′

ω∈Z+Zτ

z̄ + ω̄

|z + ω|2s+2
α

)]
.

In conclusion, the Eisenstein series Eψ(τ, z; s) is the real part of the sum

(9.4) − 2s−2Γ(s+ 1)
ys−1

π
K2(s+ 1, τ, z, 0)β + i2s−1Γ(s+ 1)

ys

π
K1(s+ 1, τ, z, 0)α,

where Ka(s, τ, z, u) is the classical Eisenstein-Kronecker series of weight a (see [50, Eq.
(27) p. 78]). In the next paragraph we briefly recall some of the properties of these series.
Note that (9.4) is Z2-invariant and therefore defines a 1-form on (H×C)/Z2.

9.3. The Eisenstein-Kronecker series. Given τ ∈ H and z, u ∈ C, the Eisenstein-
Kronecker series is defined by

Ka(s, τ, z, u) =
∑′

ω∈Z+Zτ

(ω̄ + z̄)a

|ω + z|2s
e

(
ωū− uω̄
τ − τ̄

)
.

Here a is some integer, e(z) = e2iπz , and the sum is absolutely convergent for Re(s) >
a
2 + 1.

The Eisenstein-Kronecker series Ka satisfies a functional equation: let

K∗a(s, τ, z, u) = π−sΓ(s)ys−aKa(s, τ, z, u).

It has meromorphic continuation to the whole complex s-plane with simple poles in s = 1
(if a = 0 and u ∈ Z + Zτ ) and s = 0 (if a = 0 and z ∈ Z + Zτ ), and we have

(9.5) K∗a(s, τ, z, u) = e

(
zū− uz̄
τ − τ̄

)
K∗a(a+ 1− s, τ, u, z).

(See [50, Eq. (32) p. 80].) In particular our Eisenstein series (9.4) is absolutely convergent
for Re(s) > 1 with meromorphic continuation to the whole complex s-plane.

We are interested in the value at s = 0. We define

E1(τ, z) =
i

2π
K1(1, τ, z, 0).

It is a (non-holomorphic) way to make sense of the divergent series
i

2π

∑′

ω∈Z+Zτ

1

ω + z
.



30 NICOLAS BERGERON, PIERRE CHAROLLOIS, AND LUIS E. GARCIA

We similarly define

E2(τ, z) = − 1

4πy
K2(1, τ, z, 0)

= − 1

2π2
K2(2, τ, 0, z).

Here the equality follows from the functional equation (9.5). It makes sense of the formal
series

− 1

2π2

∑′

ω∈Z+Zτ

1

ω2
e

(
ωz̄ − zω̄
τ − τ̄

)
.

It follows from (9.4) that the 1-form Eψ is the real part of

(9.6) E1(τ, z)α+ E2(τ, z)β.

9.4. Further transgression. LetL → H be the Hodge line bundle onH. ThenL carries a
canonical hermitian metric h and we have an isomorphism of metrized bundlesL ∼= H×C,
where the latter is equipped with the metric y−1| · |2 on the fiber over τ ∈ H. In other
words, in this case the basic geometric setup is the Hodge line bundle (L, h) → H, a
holomorphic line bundle over the complex manifold H. In this setting, Bismut-Gillet-
Soulé [7, Theorem 1.15] have refined the canonical transgression form ψ to a canonical
∂∂-transgression. Namely, there is a smooth function

(9.7) ν ∈ A0(L),

rapidly decreasing along the fibers of L, such that

(9.8) ∂∂ν(tv) = t
d

dt
ϕ(tv)

(compare Equation (7.4)). In the coordinates of §7.4 we have

(9.9) ν =
1

2π
e−|z|

2/2y.

The form satisfies

(9.10) i(∂ − ∂)ν = ψ.

To globalize this double transgression one can replace ψ by ν in the computations above.
We get:

Eν(τ, z; s) =

∫ ∞
0

θt∗ν(τ, z)t2s
dt

t

=
1

π
2s−2ys

∑′

ω∈Z+Zτ

1

|z + ω|2s

=
1

π
2s−2ysK0(s, τ, z, 0).

Letting
Eν = Eν(τ, z; 0) ∈ A0(L)Z

2

,

we deduce from (9.5) that
Eν =

y

4π2
K0(1, τ, 0, z).

It is a way to make sense of the sum of the (non absolutely convergent) series

y

4π2

∑′

m,n∈Z

e2iπ(mu+nv)

|m+ nτ |2
,
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where z = v − uτ . It finally follows from Kronecker second limit formula [47, Eqn. (39)
p. 28] that

(9.11) Eν =
1

2y
(Im z)2 − 1

2π
log |θ(τ, z)|

where θ is the classical Jacobi theta function, defined by the infinite product

(9.12) θ(τ, z) = q1/12(q1/2
z − q−1/2

z )
∏
n≥1

((1− qnqz)(1− qnq−1
z ))

(q = e(τ) and qz = e(z)). We have Eψ = i(∂ − ∂)Eν and one can then check directly
that onH×C, away from the zero section, we have

dEψ = 2i∂∂Eν

= 2i∂∂

(
1

2y
(Im z)2

)
= − i

2y
α ∧ α

where the 2-form on the right hand side is SL2(Z) n Z2-invariant and restricts to the
standard normalized volume form − idz∧dz2y on each fiber C/(Z + τZ).

10. RELATION BETWEEN THE EISENSTEIN TRANSGRESSION AND THE EISENSTEIN
CLASS

In this section we finally relate the (N − 1)-form Eψ on T − {0} with the classes zm
of Definition 10.

10.1. Action of a∗ on Eψ . By (8.6) we may think of Eψ as a (regularized) push-forward
of a form θϕ on the fiber bundle

Γ\
(
S+ × (V − L)/L

)
→ T − {0}

with fiber R>0. The following proposition should therefore not be surprising.

Proposition 20. Let a be a positive integer. Under the action of the push forward map a∗
induced by multiplication on the fibers a : T −T [a]→ T −{0}, the restriction of the form
Eψ to T − T [a] is mapped to Eψ:

a∗(Eψ) = Eψ.

Proof. By definition of the push forward map, we have:

[a∗(θψ)](g, v) =
∑

w∈a−1(v+L)/L

θψ(g, w).

Now the right hand side is equal to∑
w∈a−1(v+L)/L

∑
λ∈L

ψ(g−1(λ− w)) =
∑
λ∈L

ψ(g−1a−1(λ− v)) = θψ(ag, v).

It follows that

a∗Eψ(g, v; s) =

∫ +∞

0

a∗θψ(t−1g, v)ts
dt

t

=

∫ +∞

0

θψ(at−1g, v)ts
dt

t

= asEψ(g, v; s).
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Taking s = 0 we get the proposition. �

10.2. A de Rham realization of zm. We can now prove Theorem 3 of the Introduction.
Recall that in Definition 10 we have introduced a rational cohomology class

zm ∈ HN−1(T − T [m],Q).

Theorem 21. The expression

E
(m)
ψ (g, v) := Eψ(g,mv)−mNEψ(g, v)

defines a closed (N − 1)-form on T − T [m] whose cohomology class in HN−1(T −
T [m],R) is equal to (the image of) zm.

Proof. By Theorem 19, the (N−1)-formE
(m)
ψ is closed on T −T [m] and its cohomology

class in HN−1(T − T [m]) is mapped onto the class

(10.1) [T [m]−mN{0}] ∈ HN (T, T − T [m])

in the long exact sequence in cohomology associated to the pair (T, T [m]).
Proposition 20 furthermore implies that if a is an integer coprime to m, the differential

form E
(m)
ψ is fixed by a∗. Since zm is the unique such lift of (10.1), this concludes the

proof of the theorem. �

Example. Getting back to the case of GL2(R), we note that even though the Jacobi theta
function θ(τ, z) is not (Z + Zτ)-periodic in z, if m > 2 is an integer coprime to 6, the
function

(10.2) g0,m = θ(τ, z)m
2

θ(τ,mz)−1

is. It follows from the computations of §9.4 that

E
(m)
ψ =

i

2π
(∂ − ∂) log |g0,m|,

and indeed the divisor on the elliptic curve Eτ = C/(Z+Zτ) associated to g0,m is Eτ [m]−
m2{0}.

10.3. Pull-back by a torsion section. Now let v be a rational vector in V that does not
belong to L. Suppose that the class of v modulo L is fixed by Γ. It corresponds to v a
(torsion) section

v : Γ\X → T − {0}.

Definition 22. We denote by
Eψ,v = v∗Eψ

the pull-back of the differential form Eψ by the torsion section v.

As a function of g we have

Eψ,v(g) = Eψ(g, v).

Theorem 19 implies that Eψ,v is a closed (N − 1)-form on Γ\X; it therefore defines a
cohomology class

(10.3) [Eψ,v] ∈ HN−1(Γ\X).

Note that, for all m we have

(10.4) v∗E
(m)
ψ = Eψ,mv −mNEψ,v.
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Now recall that, in Definition 11, we have defined a natural rational cohomology class

(10.5) z(v) ∈ HN−1(Γ\X,Q)

associated to the torsion section v.

Theorem 23. Assume that v is of order coprime to m and that mv = v, then we have

[Eψ,v] = −z(v) in HN−1(Γ\X).

Proof. By definition of z(v), it follows from Theorem 21 that

z(v) =
1

mN − 1
v∗(zm) =

1

mN − 1
v∗[E

(m)
ψ ].

Now, since mv = v, the cohomology class of the pullback of (g, v) 7→ Eψ(g,mv) by v∗

is equal to the cohomology class of Eψ,v and we conclude that

z(v) =
1

mN − 1

(
[Eψ,v]−mN [Eψ,v]

)
= −[Eψ,v].

�

Remark. Using the remark following Definition 11, one shows that the class (mN−1)z(v)
in fact belongs to HN−1(Γ\X,Z`) for any ` coprime to m. As a consequence, the class
[Eψ,v] is ’almost integral:’

dN [Eψ,v] ∈ HN−1(Γ\X,Z).

Here dN is the denominator of half the N -th Bernoulli number. Note that Bismut and
Cheeger also prove rationality statements for the general cohomology class they define,
see [6, 8].

11. MORE SL2(R) COMPUTATIONS : DEDEKIND-RADEMACHER AND DAMERELL
RESULTS

Let us come back to the setting of Section 9 where Eψ,v defines a 1-form on a congru-
ence cover Γ\H of the modular surface. In this section, we relate this 1-form to classical
modular functions. We however want to emphasis that one should refrain to pull back Eψ
by a torsion section too hastily. To motivate this last sentence, in the last paragraph of this
section we explain how to derive a classical theorem of Damerell [20] by considering the
1-form E

(m)
ψ on the total space of the universal elliptic curve.

11.1. The 1-forms Eα,β . Let (α, β) ∈ (Q/Z)2 and let (k/`, r/`) ∈ Q2 be a representa-
tive. If Γ is a congruence subgroup of SL2(Z) that fixes (α, β) in (Q/Z)2, the map

H → H×C; τ 7→ (τ, (k − rτ)/`))

induces a section
sα,β : Γ\H → Γ\

(
(H×C)/Z2

)
.

Now the Eisenstein series (9.4) defines a Γ-invariant 1-form on the universal elliptic curve
with level structure Γ\

(
(H×C)/Z2

)
, and it follows from (9.6) that its pull-back by the

section sα,β is the 1-form

(11.1) Eα,β = Re (E2(τ, (k − rτ)/`))dτ) = − 1

2π2
Re (K2(2, τ, 0, (k − rτ)/`))dτ)

on Γ\H.
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11.2. Some classical facts on the weight 2 Eisenstein-Kronecker series. As we have
seen, the series

K2(s+ 2, τ, 0, (k − rτ)/`)) =
∑′

m,n

e
(
mk+nr

`

)
(mτ + n)2|mτ + n|2s

is absolutely convergent for Re(s) > 0, and for fixed τ can be extended by analytic con-
tinuation to a function of s on the entire complex plane. Defining

E2,(α,β)(τ) := K2(2, τ, 0, (k − rτ)/`)),

the regularization procedure we have used so far is Hecke’s way of making sense of the
formal sum ∑

m,n

′ e
(
mk+nr

`

)
(mτ + n)2

.

Another way — due to Eisenstein — is to specify an order of summation for the terms in
the conditionally convergent sum. We may define

E∗2,(α,β)(τ) :=
∑
m

∑
n

e
(
mk+nr

`

)
(mτ + n)2

,

where m,n run over Z2 in the prescribed order, omitting (0, 0). The Hecke summation
and the Eisenstein summation yield the same function when (α, β) 6= (0, 0) ∈ (Q/Z)2.
However in general we have:

E2,(α,β)(τ) =

{
E∗2,(α,β)(τ), if (α, β) 6= (0, 0) ∈ (Q/Z)2

E∗2,(0,0)(τ)− π
Im(τ) , if (α, β) = (0, 0) ∈ (Q/Z)2,

see e.g. [50, Part III, Eqn. (11)].
The holomorphic function E∗2,(0,0)(τ) on H is not a modular form of weight 2. On the

other hand E2,(0,0)(τ) = E∗2,(0,0)(τ) − π
Im(τ) is modular but not holomorphic. We will

mainly consider E2,(α,β)(τ) with (α, β) 6= (0, 0) ∈ (Q/Z)2. It defines a modular form of
weight 2 for the group Γ(`).

Remark. We recover in particular that our real 1-forms

Eα,β = − 1

2π2
Re
(
E2,(α,β)(τ)dτ

)
are closed except when (α, β) = (0, 0) ∈ (Q/Z)2. In the latter case we get a transgression
of the Euler/area form:

dE0,0 =
1

2π

dx ∧ dy
y2

.

11.3. Dedekind-Rademacher homomorphisms. One can attach to the form Eα,β a ho-
momorphism Φα,β : Γ→ Q defined by the rule

(11.2) Φα,β(γ) = −
∫ γτ0

τ0

Eα,β ,

for any τ0 ∈ H. The fact that Eα,β is a closed 1-form implies that the value (11.2) is
independent of τ0 and of the path from τ0 to γτ0. The fact that Φα,β(γ) is a rational
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number follows from the fact that Eα,β defines a rational cohomology class. We deduce
from [47, Theorem 13] that

(11.3) Φα,β
(
a b
c d

)
=

{
B̃2(β) bd if c = 0,

B̃2(β)a+d
c − 2sgn(c)sα,β(a/|c|) otherwise.

Here

B̃2(x) = B2(x− [x]) =
1

2π2

∑′

n∈Z

e(nx)

n2

is the ‘periodic second Bernoulli polynomial’ with B2(X) = X2−X + 1
6 , and sα,β is the

generalized Dedekind sum

(11.4) sα,β(r/m) =

m−1∑
k=0

B̃1

(
k − β
m

)
B̃1

(
r
k − β
m
− α

)
,

for m > 0 and (r,m) = 1. Here B̃1 : Q→ Q is the ‘periodic first Bernoulli polynomial’
x 7→ x− [x]− 1/2.

A formula of Siegel [47] relates Φα,β(γ) to some special values of L-functions. For
general N , this is systematically explored in the next section where we adopt the more
convenient adelic formulation.

11.4. A theorem of Damerell. To conclude this section, concerned with the special case
N = 2, we want to put the accent on the importance of considering the closed form

Eψ(τ, z)(m) = Eψ(τ,mz)−m2Eψ(τ, z),

that gives the de Rham realization of the Eisenstein class in H1(T −T [m],Q) on the total
space T − T [m], and not only its pullback by a torsion section.

Consider indeed the pullback of E(m)
ψ to a fixed CM elliptic curve Eτ = C/Λτ . It

follows from (9.4) that
(11.5)

Eψ(τ, z; s)|Eτ =
i

4π
Γ(s+ 1)(2y)s

(
K1(s+ 1, τ, z, 0)dz −K1(s+ 1, τ, z, 0)dz

)
.

We may then write
Eψ(τ, z)(m) = ω1,0 + ω0,1,

where ω1,0 is a holomorphic 1-form and ω0,1 = ω1,0. Moreover: ω1,0 has residue 1 at
each nonzero torsion point in Eτ [m] and residue (1 −m2) at 0 ∈ Eτ . Now the Riemann-
Roch Theorem implies that one can find a meromorphic function f on Eτ with divisor
Eτ [m]−m2{0}— we may, and will, moreover choose f to be defined over Q. Hence the
difference

ω1,0 − (2πi)−1df/f

extends to a holomorphic differential on Eτ , so that

(11.6) ω1,0 = (2πi)−1df/f + Cdz

for some complex number C. Now one can show that C = 0 by looking at the operator
a∗ for an integer a coprime to m: we have a∗dz = adz, however a∗(df/f) = df/f and
a∗ω

1,0 = ω1,0.
Assume that Eτ has complex multiplication by an order O in an imaginary quadratic

field K, let ωalg be a holomorphic global differential on Eτ defined over Q and let Ω ∈
R>0 be such that the rational periods of ωalg are K · Ω ⊂ C. Identifying Λτ with ΩO we
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see that we can take ωalg = Ωdz. Now let P be a torsion point that is not m-torsion and
evaluate both sides of

(11.7) 2πiω1,0 = df/f

at P . Since we have taken f to be algebraic, the right hand side of (11.7) belongs to
Q · ωalg(P ). The left hand side of (11.7) equals

(11.8) − 1

2
K1(1, τ, z, 0)Ω−1 · (Ωdz)

and we conclude the following:

Theorem 24 (Damerell). We have:

(11.9) K1(1, τ, z, 0) ∈ QΩ.

12. ADELIC FORMULATION, PERIOD COMPUTATIONS AND THE KLINGEN-SIEGEL
THEOREM

In this section we come back to our general setting and treat

(12.1) ψ ∈ [AN−1(GLN (R)/SON )⊗ S(V )]GLN (R)

as the Archimedean component of a global Schwartz form to which we apply the theta
operator in adelic formulation. The explicit definition of this Archimedean component is a
key feature of our invariant viewpoint while in the theory of automorphic forms it is usually
hard to pin down a good choice of Archimedean vector.

To exemplify the advantage of using ψ we revisit the classical computation of toric
periods of degenerate Eisenstein series. It is known that these periods are special values
of partial L-functions of (finite order) Hecke characters, see [51]. Here we show that
the periods of the Eisenstein form Eψ are special values of the corresponding global L-
functions. The cohomology class Eψ being rational we immediately recover the Klingen–
Siegel Theorem.

12.1. The adelic quotient. Let A be the adèle ring of Q and let

[GLN ] = GLN (Q)\GLN (A)/SONZ(R)+.

Strong approximation for GLN implies that, for any compact open subgroupK ⊂ GLN (Af ) =

GLN (Ẑ), the double quotient

Z(Af )\[GLN ]/K = GLN (Q)\
(
(GLN (R)/SONZ(R)+)×GLN (Af )

)
/K

is a finite union of finite volume quotients of X that can be described as follows. Write

GLN (Af ) =
∐
j

GLN (Q)+gjK.

Here GLN (Q)+ = GLN (Q) ∩GLN (R)+. Then

Z(A)\[GLN ]/K =
∐
j

Γj\X.

Here Γj is the image of GLN (Q)+ ∩ gjKg−1
j in GLN (R)+/Z(R)+.
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12.2. Adelic theta series. Define a map

(12.2) θ∗ψ : S(V (Af ))→ AN−1(GLN (Q)\GLN (Af )×GLN (R)/SO(N))

by

(12.3) θ∗ψ(gf ;ϕf ) =
∑

v∈V (Q)−{0}

ω(gf )ϕf (v)ψ(v).

Note that the left invariance under GLN (Q) means that γ∗θ∗(γgf ;ϕf ) = θ∗(gf , ϕf ) for
any γ ∈ GLN (Q); this follows from the GLN (R)-invariance of ψ, see (8.1). The map θ∗

intertwines the natural action of GLN (Af ) on both sides.

12.3. Adelic Eisenstein series. Note that for −1 ∈ Z(R) we have

(12.4) (−1)∗ψ(v) = ψ(−v) = (−1)Nψ(v).

Let ω = ⊗vωv : Q×\A× → C× be a character of finite order such that ω∞(x) =
sgn(x)N and letKω = ker(ω|Ẑ×). Forϕf ∈ S(V (Af )), gf ∈ GLN (Af ) and Re(s)� 1,
we define

(12.5) Eψ(gf , ω, ϕf , s) =

∫
Q×\A×/Kω

z∗∞θ
∗
ψ(zfgf ;ϕf )ω(z)|z|Ns dz∞

z∞
.

Then

(12.6) Eψ(ω, ϕf , s) ∈ AN−1(GLN (Q)\GLN (A)/SO(N))

and we have
(12.7)

z∗∞Eψ(zfgf , ω, ϕf , s) = ω(z)−1|z|−NsEψ(gf , ω, ϕf , s), z = (zf , z∞) ∈ A×.

Using Poisson summation, as in the preceding section, one proves that Eψ admits mero-
morphic continuation to s ∈ C with at most simple poles at s = 0 and s = 1. Moreover,
there is no pole at s = 0 if ϕf (0) = ϕ̂f (0) = 0. In that case we set

(12.8) Eψ(ω, ϕf ) = Eψ(ω, ϕf , s)|s=0 ∈ AN−1([GLN ]).

By Theorem 19, the form Eψ(ω, ϕf ) is closed. We obtain a cohomology class

(12.9) [Eψ(ω)] ∈ HN−1([GLN ],S0(V (Af ))∨)

with central character ω−1
f . Here S0(V (Af )) denotes the subspace of S(V (Af )) defined

by ϕf (0) = ϕ̂f (0) = 0.

12.4. Homology classes. There are natural degree N − 1 homology classes on which to
test the Eisenstein class: let γ ∈ GLN (Q) be an element with Q-irreducible characteristic
polynomial whose eigenvalues are all real and distinct. Then F := Q(γ) ⊂ MN (Q) is
a totally real number field of degree [F : Q] = N and QN is an F -vector space of F -
dimension one. We fix a nonzero vector v0 ∈ QN and identify the vector spaces F ' QN

via the map α 7→ αv0.
We write σ1, . . . , σN : F → R for the distinct real embeddings of F . Then we have

V = ⊕1≤i≤NVi, where

(12.10) Vi := V ⊗F,σi R = ker(γ − σi(γ))
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is the eigenspace associated with σi(γ). Fix g0 ∈ GLN (R) such that

γ = g0

 σ1(γ)
. . .

σN (γ)

 g−1
0 .

Note that the decomposition (12.10) is orthogonal with respect to the quadratic form
(g>0 )−1g−1

0 attached to g0; it is more generally orthogonal with respect to the quadratic
forms attached to any gγg0 where gγ is an element of the centralizer Gγ of γ in GLN (R).

We have

(12.11) Gγ ' (F ⊗R)×

so that Gγ is a maximal R-split torus of GLN (R). We orient Gγ as follows. Our choice
of real places of F identifies (F ⊗R)× with (R×)N and hence the tangent space TxGγ
for any x ∈ Gγ with RN , and we require that the standard orientation on RN corresponds
to our orientation of Gγ . We assume that we have chosen the real places such that this
is also the orientation induced by the standard orientation of RN under the identification
F ' QN given by v0.

Let Gder
γ = G+

γ ∩ SLN (R). The inclusion Gγ ⊂ GLN (R) induces an injective map

XGγ := Gder
γ ' G+

γ /Z(R)+ ιγ−→ GLN (R)+/SO(N)Z(R)+ = X

gγ 7→ gγg0SO(N)Z(R)+
(12.12)

The map ιγ identifies XGγ with the positive definite metrics in X (up to rescaling)
such that the decomposition V = ⊕Vi above is orthogonal. For any congruence subgroup
Γ ⊂ SLN (Z), it induces a map

(12.13) ιγ,Γ : Γ ∩G+
γ \XGγ → Γ\X.

The group Γ ∩G+
γ has finite index in O×F , and so the quotient

(12.14) Γ ∩G+
γ \XGγ

∼= Γ ∩G+
γ \(F ⊗R)1

+

is compact by Dirichlet’s unit theorem. The pushforward under ιγ,Γ of its fundamental
class defines a homology class

(12.15) (ιγ,Γ)∗[Γ ∩G+
γ \XGγ ] ∈ HN−1(Γ\X,Z).

Remark. In the case N = 2 we have associated to any real quadratic field Q(
√
d) a closed

oriented geodesic. This depends on the choice of γ or equivalently on the choice of a
fractional ideal. If one restricts to primitive geodesics (or ideals) there are only finitely
many conjugacy classes of such γ’s. The cardinality of this finite set is the class number of
Q(
√
d).

12.5. Hecke characters of finite order. Let χ : GF → Q
×

be a totally odd character
of finite order. We use the same symbol χ to denote the corresponding Hecke character
χ : F×\A×F → Q

×
associated by class field theory. Here AF denotes the adèles of F .

We shall simply denote by A the adèles of Q and let ω be the restriction of χ to A×.
When N = 2 a Hecke character of F = Q(

√
d) associates a rational number to each

primitive geodesic. The totally odd hypothesis is natural: we want a geodesic and its
opposite to be decorated with opposite numbers. In general, we similarly define a class

(12.16) γχ ∈ HN−1([GLN ],Z[χ]).
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Let Kχ = ker(χf |Ô×F ); thus Kχ is an open compact subgroup of Ô×F . Let F×+ ⊂ F×

the subset of totally positive elements and write

(12.17) A×F,f =
∐
i

F×+ tiKχ

(finite union). Then

(12.18) F×\A1
F /Kχ =

∐
i

Γi\(F ⊗R)1
+,

where Λi := F×+ ∩ tiKχt
−1
i . The bijection sends Λit∞ to F×(ti, t∞)Kχ. Define

(12.19) [χ] =
∑
i

χ(ti)[Λi\(F ⊗R)1
+] ∈ HN−1(F×\A1

F /Kχ,Z[χ]).

Consider the map A×F → GLN (A) induced by the inclusion F× = Q(γ)× ⊂ GLN (Q).
If Kf ⊂ GLN (Ẑ) is an open compact subgroup such that Kχ ⊆ Kf ∩A×F , we obtain a
well defined map

(12.20) ιγ,Kf : F×\A1
F /Kχ ' F×\A×F /KχR>0 → [GLN ]/Kf

and hence a class

(12.21) [χ]Kf := (ιγ,Kf )∗[χ] ∈ HN−1([GLN ]/Kf ,Z[χ]).

Note that if K ′f ⊆ Kf is a finite index subgroup that still satisfies Kχ ⊆ K ′f ∩A×F , then
the image of [χ]K′f under the natural map [GLN ]/K ′f → [GLN ]/Kf is [χ]Kf . Thus we
have defined a class in the projective limit

(12.22) [χ] ∈ lim
Kf∩A×F⊇Kχ

HN−1([GLN ]/Kf ,Z[χ]).

12.6. Period computations.

Theorem 25. Let ϕf ∈ S0(V (Af )) and assume that ϕf is fixed by some open compact
subgroup Kf of GLN (Ẑ) such that Kχ ⊆ Kf ∩A×F . Then the global period

[Eψ(ω, ϕf )]([χ]) = −L(χ, 0)

( ∏
v ramified

Zv(ϕv, χv, 0)

)
.

In the last product v runs over all finite ramified places of F and

Zv(ϕv, χv, s) :=

∫
F×v

χv(tv)|tv|svϕv(t−1
v v0)d×tv.

Since the Eisenstein class is a rational class if ϕf and χ are rational, we get:

[Eψ(ω, ϕf )]([χ]) ∈ Q.

This implies classical rationality results for L-functions of characters.
Indeed, we may consider particular cases of these results where ϕf is the characteristic

function of a coset of a lattice and express this in more classical language: let f and b be
two relatively prime ideals in the ring of integersOF . The partial zeta function attached to
the ray class b mod f is defined by

ζ(b, f, s) :=
∑

a≡b mod f

1

N(a)s
, Re(s) > 1,

where a runs over all integral ideals inOF such that the fractional ideal ab−1 is a principal
ideal generated by a totally positive number in the coset 1 + fb−1.
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The fractional ideal fb−1 defines a lattice L in F ⊗ R. Applying the above corollary
with ϕf equal to the characteristic function of the coset 1 + fb−1 we get:

Corollary 26 (Klingen, Siegel, Shintani).

ζ(b, f, 0) ∈ Q.

The Eisenstein class being almost integral our methods in fact imply the following in-
tegrality result.

Corollary 27 (Deligne-Ribet, Cassou-Noguès [22, 14]). Let c be an integral ideal coprime
to fb−1. Then, we have:

n(c)ζ(b, f, 0)− ζ(bc, f, 0) ∈ Z

[
1

n(c)

]
.

Here n denotes the norm.

The rest of this section is devoted to the proof of Theorem 25.

12.7. Pullback of the transgression form. Consider the cartesian diagram

(12.23) ι∗γE //

��

E

��
Gder
γ

ιγ // GLN (R)/SON ,

where E is the universal GLN (R)-bundle S × V and ι∗γE carries the metric, orientation
and equivariant structure induced by those of E. The pullback bundle ι∗γE also admits
an action of F ⊗ R compatible with its Gder

γ -equivariant structure, and this yields an
equivariant splitting

(12.24) ι∗γE ' ⊕1≤i≤NLi,

where each Li is a euclidean line bundle and the sum is orthogonal. More concretely,
the fiber of Li is the line Vi in (12.10), and the metric hLi,λ on the fiber of Li over λ =
(λ1, . . . , λN ) ∈ Gder

γ ⊂ RN
>0 is given by

(12.25) hLi,λ = λ2
ihLi,1.

We fix an orientation of each Li so that the natural isomorphism ⊗Li ' ∧N ι∗γE induced
by (12.24) preserves orientations. Using the functoriality of the Mathai-Quillen Thom
form ϕ = ϕE ∈ AN (E), we find that

(12.26) ι∗γϕ = ι∗γϕE = ϕι∗γE = ϕL1
∧ · · · ∧ ϕLN ∈ AN (ι∗γE).

For the transgression form ψ = ψE ∈ AN−1(E), we similarly find:

ι∗γψE = ψι∗γE

=
∑

1≤i≤n

(−1)i−1ψLiϕL1 ∧ · · · ∧ ϕ̂Li ∧ · · · ∧ ϕLn .(12.27)

As each Li is a trivial line bundle, from the formulas (6.1) and (7.5) we can write down
explicit expressions for ϕLi and ψLi . This is used in the next paragraph to compute the
integral over Gder

γ .
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12.8. The integral over Gder
γ . Let v ∈ RN and v∗ψE ∈ AN−1(GLN (R)/SO(N)) be

the pullback of ψE by the section of E corresponding to v. We can now use the previous
remarks to compute the integral

(12.28) Z∞(ψE , v, s) :=

∫
Gder
γ

∫ ∞
0

ι∗γ(tv)∗ψE t
s dt

t
.

Using the diagram (12.23), we have

(12.29) Z∞(ψE , v, s) =

∫
Gder
γ

∫ ∞
0

(tv)∗ψι∗γE t
s dt

t
.

Write v = (v1, . . . , vN ) according to the decomposition ι∗γE = ⊕Li and consider λ =

(λ1, . . . , λN ) ∈ Gder
γ . Using (12.25), (6.1) and (7.5) we compute

v∗ϕLi = (2π)−1/2e−λ
2
i v

2
i /2vidλi

v∗ψLi = −(2π)−1/2e−λ
2
i v

2
i /2viλi

(12.30)

and so by (12.27)
(12.31)

(tv)∗ψι∗γE = −(2π)−N/2e−
∑N
i=1 λ

2
i t

2v2i /2(tv1) · · · (tvN )

N∑
i=1

(−1)i−1λi ∧j 6=i dλj .

The change of variables ui = λit gives u1 · · ·uN = tN and dui
ui

= dλi
λi

+ dt
t , hence

(12.32) dt
t ∧

N∑
i=1

(−1)i−1 ∧j 6=i dλjλj = du1∧···∧duN
u1···uN

and

Z∞(ψE , v, s) = −(2π)−N/2
∫
RN
>0

e−
∑N
i=1 u

2
i v

2
i /2v1 · · · vN du1∧···∧duN

(u1···uN )−s/N

= −
N∏
i=1

I(vi, s),

(12.33)

where

I(v, s) = (2π)−1/2

∫ +∞

0

e−v
2u2/2vus/Ndu

=
1

π
1
2

2
s

2N−1Γ( s
2N + 1

2 ))
sgn(v)

|v|s/N
.

(12.34)

Note that I(v, 0) = sgn(v)/2 and so Z∞(ψE , v, 0) = −2−N
∏N
i=1 sgn(vi).

12.9. Proof of Theorem 25: computation of the global period. Let ϕf ∈ S0(V (Af ))

and assume that ϕf is fixed by some open compact subgroup Kf of GLN (Ẑ) such that
Kχ ⊆ Kf ∩A×F . Consider the integral

(12.35) Z(ϕf , χ, s) :=

∫
F×\A1

F /Kχ

χ(t) · ι∗γ,KfE(ω, ϕf , s).

Its value at s = 0 is

(12.36) Z(ϕf , χ, 0) = [E(ω, ϕf )]([χ]).
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Note that the integrand in Z(ϕf , χ, s) is defined on A×F and that it is invariant under Ẑ× ⊂
A×, hence using that Kχ ∩ Ẑ× = Kω , we have

(12.37) Z(ϕf , χ, s) = [Ẑ× : Kω]

∫
F×\A1

F /KχẐ
×
χ(t) · ι∗γ,KfE(ω, ϕf , s).

Since A×F = A1
FA
× and F×KχẐ

× = A1
F ∩ F×A×Kχ, we can write

(12.38) F×\A1
F /KχẐ

× ' F×A×\A×F /Kχ.

Assume that ϕf = ⊗wϕw where w runs over the non-archimedean places of F . Then
we have

[Ẑ× : Kω]−1Z(ϕf , χ, s) =

∫
A×F×\A×F /Kχ

χ(t) · E(t, ω, ϕf , s) ( by (12.37) and (12.38))

=

∫
A×F×\A×F /Kχ

χ(t)

∫
Q×\A×/Kω

θ∗(zt;ϕf )ω(z)|z|Ns dz∞
z∞

=

∫
A×F×\A×F /Kχ

∫
Q×\A×/Kω

χ(zt)|n(zt)|sθ∗(zt;ϕf )
dz∞
z∞

=

∫
F×\A×F /Kχ

χ(t)|n(t)|sθ∗(t;ϕf )
1

N

dn(t∞)

n(t∞)(
since Q×Kω\A× ' F×Kχ\A×F×Kχ

)
=

∫
F×\A×F /Kχ

χ(t)|n(t)|s
( ∑
x∈F×

ϕf (t−1
f xv0)ψ(t−1

∞ xv0)

)
1

N

dn(t∞)

n(t∞)

=

∫
A×F /Kχ

χ(t)|n(t)|sϕf (t−1
f v0)ψ(t−1

∞ v0)
1

N

dn(t∞)

n(t∞)

=
∏
w-∞

Zw(ϕw, χw, s) · Z∞(ψ, χ∞, s)

(12.39)

where

Zw(ϕw, χw, s) =

∫
F×w

χw(tw)|tw|svϕw(t−1
w v0)d×tw,

Z∞(ψ, χ∞, s) =

∫
F×∞

χ∞(t∞)|t∞|s∞ψ(t−1
∞ v0)

1

N

dn(t∞)

n(t∞)
,

(12.40)

and the measure d×tw for non-archimedean w is normalized so that the volume of Kχ,w

is one. For unramified w, writing πw for a uniformizer of OFw and qw = |OFw/πwOFw |,
we have

(12.41) Zw(ϕw, χw, s) = L(χw, s) = (1− χw(πw)q−sw )−1.

For the archimedean integral, since F×∞ has 2N connected components and the integrand
transforms like sgn under the action of {±1}N , using (12.33) we obtain

(12.42) Z∞(ψ, χ∞, 0) = −1

(recall that with our choices of orientations, writing v0 = (v1, . . . , vN ) we have sgn(v1) · · · sgn(vN ) =
1). This concludes the proof of Theorem 25. �
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13. EISENSTEIN THETA CORRESPONDENCE FOR THE DUAL PAIR (GLa,GLb)

We can think of our construction of the closed differential form Eψ as a regularized
theta lift

(13.1) Eψ(ω, ϕf ) = (ω, θ(ϕf ⊗ ψ))reg ∈ AN−1([GLN ])

of the character ω, for the dual pair (GLN ,GL1) of type II. This suggests looking more
generally at dual pairs (GLa,GLb). In this last section we discuss some examples, focusing
on the case a = N , b = 2.

13.1. Dual pairs. For a local field F , the group GLN (F )×GL2(F ) acts on FN ⊗F F 2.
If we rewrite this tensor product as MN,2(F ) (N × 2 matrices), the action is given by

(A,B) · x = AxB−1 ((A,B) ∈ GLN (F )×GL2(F ), x ∈MN,2) .

Denote by ω the induced action on the Schwartz space S(FN ⊗F F 2), given by

(13.2) ω(A,B)ϕ(x) = ϕ(A−1xB).

The canonical identification of FN ⊗F F 2 with the 2N -dimensional vector space F 2N

yields an embedding of GLN (F ) × GL2(F ) into GL2N (F ). In this way ω is just the
restriction of the Weil representation considered above, and we can use θ(ϕf ⊗ ψ) as a
kernel for a regularized theta lift. We describe an explicit incarnation of this lift in the next
paragraph. Before that, we first describe in more detail (and in classical terms) the dual
pair above when F = Q.

Let us start by saying that the reader may have been surprised by the non standard
coordinates (τ, z) of §6.2. We may now explain our choice: we have worked the whole
time with the dual pair (GLN ,GL1), we could however have worked with (GL1,GLN ).
In the latter case GLN (R) acts on the left on RN = M1,N (R), and when N = 2 this
corresponds to the standard coordinates (τ, uτ + v) onH×C.

Let us now discuss the dual pair (GLN ,GL2) so that GL2 acts from the right. Let V =
QN and fix a lattice L in V . With respect to the (now standard) coordinates (τ, z = uτ+v)
onH×C, an element

B =
(
a b
c d

)
∈ GL2(R)+

acts by

B : (τ, z = uτ + v) 7→
(
aτ + b

cτ + d
,

z

cτ + d

)
.

It induces a diagonal action of GL2(R)+ on

H× (V ⊗C) = H×CN

which commutes with the left linear action of GLN (R) on CN .
The Z2-action onH×C

(u, v) · (τ, z) = (τ, z + uτ + v)

induces an action of L⊗ Z2 on

H×CN = H× (L⊗C).

Any congruence subgroup of the modular group SL2(Z) = GL2(Z)+ acts on the quotient

(13.3) (H×CN )/(L⊗ Z2).

The quotient space is the total space of theN -fold fiber product EN of the universal elliptic
curve E over the corresponding modular curve Y .
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Let Γ be a subgroup of GL(V )+ that fixes L. The group Γ acts linearly (on the left) on
(13.3) and its action commutes with the (right) action of the modular group. This yields a
natural action of Γ on EN , and a diagonal action on X × EN . The quotient space

(13.4) Γ\(X × EN )

embeds naturally into the universal family T of metrized 2N -dimensional tori associated
to V ⊗C and L⊗Z2. We will now consider the restriction of the form Eψ constructed in
Section 8 to (13.4) minus the zero section.

13.2. A regularized theta lift. Locally the quotient (13.4) splits as a product that remem-
bers both the splitting

(13.5) X ×H×CN

and the complex structure on the last factor. Though this splitting doesn’t descend to
(13.4), it induces a splitting of tangent spaces and therefore also a splitting at the level of
differential forms. Write

Eψ =
∑

a+b+c+d=2N−1

E
(a,b,c,d)
ψ

for the corresponding decomposition, so that E(a,b,c,d)
ψ is of degree a along X , degree b

alongH and bi-degree (c, d) along CN .
Denote by dzi = τdui +dvi (i = 1, . . . , N ). The N -form dz1 ∧ . . .∧dzN on the space

(13.5) is of type (0, 0, N, 0). It is both (L ⊗ Z2)- and Γ-invariant, and is multiplied by
(cτ +d)−N under the action of an element

(
a b
c d

)
∈ GL2(R)+. It follows that the quotient

(13.6) E
(N−1,0,N,0)
ψ /dz1 ∧ . . . ∧ dzN

defines a Γ-invariant differential form in

(13.7) AN−1(X,A0(EN − {0},L⊗N )).

Here L is the line bundle over EN obtained as the pull back by the projection EN → Y
of the Hodge line bundle over Y , i.e. the pullback of O(−1) under the natural inclusion
H ⊂ P1(C), and the action of Γ on the spaceA0(EN ,L⊗N ) of sections ofL⊗N is induced
by the, respectively linear and trivial, actions of Γ on EN and Y .

Evaluated on a section x : Y → EN , an element of A0(EN ,L⊗N ) gives a section of
the Hodge line bundle over Y . It follows that any nonzero torsion section of x : Y → EN

gives rise to a form E
(N−1,0,N,0)
ψ,x of degree N −1 that takes values in the space of sections

of the Hodge line bundle over Y . After some computations in (g,K)-cohomology, one
can prove the following:

Lemma 28. The (N − 1)-form

E
(N−1,0,N,0)
ψ,x ∈ AN−1(X,A0(Y,L⊗N ))

is closed (along X).

Remark. In case N = 1, the dual pair is (GL1,GL2), the statement about closedness
is empty since then X is just a point. However, the component E(N−1,0,N,0)

ψ is already
interesting: it corresponds to the form E1(τ, z)dz.

The case of the dual pair (GL2,GL1) does not fall into a case above. The total space is
a quotient ofH× {pt} ×R2 where we don’t emphasize the complex structure on the last
factor. The induced splitting then only involves three parameters (a, b, c) with a+b+c = 1.
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However there is a corresponding closedness lemma that we have already observed: for any
(u, v) ∈ R2,

E
(1,0,0)
ψ,(u,v) = E2(τ, u− τv)dτ

indeed defines a closed 1-form onH.

It follows from the discussion above that any Γ-invariant nonzero torsion section x :

Y → EN gives rise to a closed (N − 1)-form E
(N−1,0,N,0)
ψ,x on Γ\X that takes values in

the space of sections of the Hodge line bundle over Y . Using properties of Howe’s theta
correspondence, one can finally prove:

Theorem 29. Integration of E(N−1,0,N,0)
ψ,x gives a non-trivial lift

(13.8) Λψ,x : HN−1(Γ\X)→MN (Y ).

Here MN (Y ) denotes the space of weight N modular forms on Y .
The lift Λψ,x is a de Rham version of the map (1.6) of the Introduction. It is a particular

case of a ‘regularized θ-lift.’ The general theory of the theta correspondence is a powerful
tool to study these lifts. In the next paragraph we explain how to use it to evaluate our lift
on certain homology classes. This shows in particular that Λψ,x is non-trivial in general.

13.3. Evaluation on tori. Let F/Q be a totally real number field of degree N . Denote by
OF its ring of integers. It corresponds to F a global dual pair

(F×,GL2(F ))

in GL2N (Q). In the terminology of Kudla [37] we even have a seesaw of dual pairs in
GL2N (Q):

(13.9) GLN (Q) GL2(F )

F× GL2(Q)

The corresponding seesaw identity allows us to evaluate the map

HN−1(Γ\X,R)→MN (Y )

of the preceding paragraph on the homology class associated to F×. By Dirichlet units
theorem the latter is an (N − 1)-dimensional torus since F is a totally real number field of
degree N .

Let us first define the lattices associated to the pair (GL2(F ), F×) in the seesaw (13.9).
Write F = Q(γ) as in §12.4. In the dual pair (F×,GL2(F )) we associate to F× ⊂

GLN (Q) a quotient
Γ ∩G+

γ \Xγ ⊂ Γ\X.
Let us now consider the GL2(F )-side: define the group

GL+
2 (OF ) =

{(
a b
c d

)
∈ GL2(F ) : a, b, c, d ∈ OF , ad− bc ∈ O+,×

F

}
.

We identify the center of GL+
2 (OF ) with O×F and let PGL+

2 (OF ) be the quotient. The
group GL+

2 (OF ) acts on (F ⊗R)2 ∼= F ⊗C from the right and stabilizes the lattice O2
F .

Identifying F with QN as in §12.4 we may, and will from now on, suppose thatL = OF
so that

L⊗ Z2 = O2
F .
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We consider the 2N -torus bundle

HN × (F ⊗R/OF )2

over

HN = H× · · · × H
= F ⊗H = {τ ∈ F ⊗C : Im(τ) totally positive}.

Note that the group GL+
2 (F ⊗R) acts simply transitively from the right on

{(ω1, ω2) ∈ (F ⊗C)2 : Im(ω1/ω2) > 0}

so that the map (ω1, ω2) 7→ τ = ω1/ω2 identifies the quotient

GL+
2 (F ⊗R)/(F ⊗C)× = GL+

2 (R)/SO2Z
+
2 × · · · ×GL+

2 (R)/SO2Z
+
2

withHN .
Suppose now that the torsion section x : Y → EN of the preceding paragraph is

associated to a nonzero torsion point in (F ⊗ R)2/O2
F and let Λ ⊂ GL+

2 (OF ) be the
stabilizer of this torsion point. Let ∆ = Λ ∩ O×F be the intersection of Λ with the cen-
ter. Then Λ ⊂ GL+

2 (OF ) and ∆ ⊂ O×F are subgroups of finite index and we define
Λ′ = Λ/∆ ⊂ PGL+

2 (OF ). Note that ∆ is contained in Γ ∩G+
γ .

Let A be the universal Abelian variety over the Hilbert modular curve of level Λ′, in
other words

A = Λ′\
[
HN × (F ⊗R/OF )

2
]
.

The group ∆ acts onA, and the global space corresponding to the dual pair (F×,GL2(F ))
is now

(13.10) ∆\(XGγ ×A) = ∆× Λ′\
[
XGγ ×HN × (F ⊗R/OF )

2
]
.

The analogue of the splitting (13.5) for this dual pair is the product

(13.11) XGγ × (H×C)N .

We then have an analogue of Theorem 29: the torsion section x defines a nonzero section

Λ′\HN → A.

Consider the restriction of Eψ to A − {0}, and pull back by x its component of degree
N − 1 along XGγ . It defines a closed form on ∆\XGγ that yields a lift which maps
the fundamental class in HN−1(∆\XGγ ) to a Hecke-Eisenstein modular form of weight
(1, . . . , 1) and of level Λ′.

Remark. Pulling back the total form Eψ by a global section of T yields a different lift
from HN−1(∆\XGγ ) to the Eisenstein cohomology of Hilbert modular varieties. This lift
is also interesting; it is considered in great generality by Graf in his thesis, see [28] and [2,
§5.5]. This leads to an integral version of all of Harder’s Eisenstein cohomology.
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Proceeding as in §12.8, the explicit computation of the Hecke-Eisenstein modular form
lifted from of the fundamental class in HN−1(∆\XGγ ) reduces to the following integral:∫

∆\(F×⊗QR)+

∫ ∞
0

t2Nsθψ1∧...∧ψN (µ, τ, x)(u1 · · ·uN )2Nsdu1 ∧ . . . ∧ duN

=
∑

(m,n)∈O2
F

∫
∆\(R>0)N

N∧
j=1

ψj(uj(xj +mjτj + nj))(u1 · · ·uN )2Nsdu1 ∧ . . . ∧ duN

=
∑

(m,n)∈O2
F /∆

∫
(R>0)N

N∧
j=1

ψj(uj(xj +mjτj + nj))(u1 · · ·uN )2Nsdu1 ∧ . . . ∧ duN .

Here ψj is our form ψ on the j-th factorH ofHN , and we have denoted by mj and nj the
images of m and n in R given by the j-th embedding of F in R. Finally, the last equality
follows from the fact that ∆ fixes the torsion point x.

Using the explicit form of ψj given by (7.6) we conclude that the weight N component
of the result of this period calculation, is(

2s−1Γ(s+ 1)
i

π

)N  N∏
j=1

Im(τj)
s

 ∑
(m,n)∈O2

F /∆

N∏
j=1

xj +mjτj + nj
|xj +mjτj + nj |2s+2

.

Taking s = 0 one indeed gets a Hecke-Eisenstein modular form of weight (1, . . . , 1) for
the congruence subgroup Λ′ of the Hilbert modular group PGL+

2 (OF ).
Now, the geometric content of the seesaw (13.9) is that the diagram

Γ\(X × EN )

%%
∆\(XGγ × EN )

ιγ
66

d

((

T

∆\(XGγ ×A)

99

is commutative. Here ιγ is induced by the inclusion XGγ ⊂ X and d is induced by the
diagonal embeddingH ⊂ HN . Identifying the two different ways to restrict Eψ to

∆\(XGγ × EN − {0})

we finally get Theorem 6 of the Introduction:

Theorem 30. The evaluation of Λψ,x on the image in HN−1(Γ\X,Z) of the fundamental
class in HN−1(∆\XGγ ,Z) is a modular form of weight N obtained as the restriction to
the diagonal H ⊂ HN of a Hecke-Eisenstein modular form of weight (1, . . . , 1) for a
congruence subgroup of PGL2(OF ).

13.4. Beyond totally real number fields. Cocycle methods have yet essentially been lim-
ited to totally real number fields. Let us now explain why we believe our tools should still
be useful in general.

Let K be an imaginary quadratic field. One may similarly associate to the dual pair
(GLN (K),K×) in GL2N (Q) a lift from the degree N − 1 homology groups of some
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congruence subgroups of GLN (K) to Hecke characters of K of type z̄/z at infinity. This
leads to complex valued (N − 1)-cocycles on congruence subgroups of GLN (OK).6

A computation similar to that of §12.8 furthermore implies that the evaluation of such
a cocycle on homology classes associated to a degree N extension F/K, and a Dirichlet
character χ of F is, up to a nonzero constant in Q, equal to some special value of a (partial)
L-function.

Example in the N = 2 case. Let L be a lattice in C with complex multiplication by OK .
Using the expression (7.8) for ψ, one can get an explicit expression for the cohomo-

logical Eisenstein series that realizes the lift we just alluded to: given two torsion points
u, v ∈ C/L, we obtain a complex differentiable 1-form

(13.12) Eψ,(u,v)(q, s) = Ez(q, s;u, v)dz + Ey(q, s;u, v)dt+ Ez̄(q, s;u, v)dz̄

where7

Ez(q, s;u, v) = Γ(2s+ 2)y2s
∑

m∈L+u, n∈L+v

(n− zm)2

(|n− zm|2 + |my|2)2s+2
,

Ez̄(q, s;u, v) = −Γ(2s+ 2)y2s
∑

m∈L+u, n∈L+v

(m̄y)2

(|n− zm|2 + |my|2)2s+2
,

and

Ey(q, s;u, v) = −2Γ(2s+ 2)y2s
∑

m∈L+u, n∈L+v

(n− zm)m̄y

(|n− zm|2 + |my|2)2s+2
.

That form can be meromorphically continued in the variable s; it is well defined at s = 0
and becomes a closed 1-form ω(u, v). These forms were first considered by Hiroshi Ito
[34] who proved that the integral of ω(u, v) along the cycle ZA associated to a hyperbolic
matrix A =

(
a b
c d

)
∈ SL2(OK) ((a+d)2 6= 0, 1, 4) that preserves L and fixes (u, v) (mod.

L2) is given by

(13.13)
∫
ZA

ω(u, v) = ±(α− α′)L(A, 1;u, v).

Here α and α′ are the two distinct solutions of the equation cX2 + (d − a)X − b = 0 in
C, the quadratic form

Q(m,n) = (mα+ n)(mα′ + n)

and

L(A, s;u, v) =
∑

(m,n)

Q(m,n)

|Q(m,n)|2s
,

where (m,n) runs through a complete set of elements of (L + u) × (L + v) − {(0, 0)}
not associated with respect to the action of A. This L-series is absolutely convergent for
Re(s) > 3/2 and has an analytic continuation to the whole s-plane.

Our viewpoint is well suited to study integrality features of the cohomology classes as-
sociated to the above complex cocycles. This leads to a new proof of the general conjecture

6A recent work by Florez, Karabulut and Wong [24], generalising Sczech’s Eisenstein cocycle to extensions
of an imaginary quadratic fields, provides a different construction of a similar degree N − 1 cocycle.

7Compare to (7.8) there is a missing factor −(4π)2 = (2πi)2; this normalisation is made to have integral
periods and is reminiscent of the factor 2πi factor in equation (11.6).
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of Deligne [21] for characters,8 and establishes that the corresponding L-values are ‘almost
integral’ as in Corollary 27.

Consider finally the seesaw

(13.14) GLN (K) GL2(Q)

GLN (Q) K×

obtained by seeingKN either as aK-module or as a Q-module. It relates the lifts of § 13.2
to the complex cocycles on congruence subgroups of GLN (K): the latters map N -tuples
of matrices in GLN (Q) to values of weight N modular forms at CM points.

Example. Before Ito’s work Sczech [42] had introduced a related complex-valued 1-
cocycle; we will refer to it as the Sczech elliptic cocycle. Ito indeed proves that this other
— a priori unrelated — Sczech cocycle is associated to the differential 1-form ω(u, v)
arising from (13.12). The seesaw identity associated to (13.14) implies that Sczech elliptic
cocycle evaluated on a hyperbolic matrix in SL2(Z) is equal to the evaluation at a CM
point of a weight 2 modular form onH obtained as the restriction to the diagonalH ⊂ H2

of a Hilbert modular form of weight (1, 1). The seesaw identity (13.14) for N = 2 thus
relates the two Sczech cocycles introduced separately in [42, 43].

13.5. Modular complex and modular units. To conclude, we consider an example re-
lated to a regulator map from higher algebraic K-theory. Namely, we set N = 2, so that

(13.15) S+ = GL2(R)+/SO2Z(R)+ ' H×R>0.

Recall from Section §9 that we have defined a smooth function

Eν ∈ A0(H×C)SL2(Z)nZ2

,

associated to a function ν ∈ A0(L) on the Hodge line bundle L over H, that is rapidly
decreasing along the fibers.

For any integer m we have

(13.16) E(m)
ν := E(τ,mz; ν, 0)−m2E(τ, z; ν, 0) =

1

2π
log |g0,m(τ, z)|,

where g0,m is the modular unit inO(Y (`))× (withm|`), defined in (10.2). More generally,
one can attach a modular unit gχ to every Dirichlet character χ.

The map log | · | : O(Y (`))× → A0(Y (`)) is an example of a regulator. A more
interesting example is the map

reg : ∧2O(Y (`))× → A1(Y (`))

u ∧ u′ 7→ i log |u′|d arg u− i log |u|d arg u′.
(13.17)

We now briefly explain how to recover this regulator as a theta lift for the dual pair
(GL2,GL2). Consider the bundle L2 → H. Writing π1, π2 for the canonical projections
L2 → L, let νi = π∗i ν (i = 1, 2) and define

ω1(ν1 ∧ ν2) := ν1∂ν2 − ν2∂ν1

− ν1∂ν2 + ν2∂ν1 ∈ A1(L2).
(13.18)

8This conjecture has been verified in many cases by Colmez [19], and has been announced by Harder [29, 30].
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Remark. One motivation to consider this form comes from (9.11) and Goncharov’s explicit
formulas for regulators (cf. [27, (3.19)]); this form also appears naturally in a formalism
of Chern character in equivariant Deligne cohomology.

The underlying real vector bundle of L2 is E2 = E ⊗ R2 whose fiber is canonically
identified with V 2; in particular we may identify a pair (v1, v2) ∈ V 2 with a section of L2.
We obtain a Schwartz form

(13.19) ν̃(v1, v2) := (v1, v2)∗ω1(ν1 ∧ ν2) ∈ [S(V 2)⊗A1(H)]GL2(R).

Here GL2(R) acts diagonally on V 2. Choosing Schwartz functionsϕf,1, ϕf,2 ∈ S(V (Af ))
fixed by the congruence subgroup K(`) ⊂ GL2(Af ), we may form a theta series

(13.20) θ(g;ϕf ⊗ ν̃) :=
∑

v∈V (Q)2

(ϕf ⊗ ν̃)(v · g), (ϕf = ϕf,1 ⊗ ϕf,2)

that defines a 1-form on Y (`) with values in automorphic forms on GL2, or a ‘kernel’ in
A(GL2)⊗A1(Y (`)). Consider the seesaw

(13.21) GL2 GL2
2

GL2
1 GL2,

where the vertical lines denote inclusions: GL2
1 ⊂ GL2 gives the torus of diagonal matrices

and GL2 ⊂ GL2
2 is the diagonal embedding. If χ1, χ2 are Dirichlet characters (that we

identify with automorphic forms on GL1(A)) and we choose ϕf appropriately, then the
seesaw identity shows that

(13.22) 〈χ1 × χ2, θ(ϕf ⊗ ν̃)〉 = reg(gχ1 ∧ gχ2).

The seesaw can therefore be interpreted as defining a 1-form on Y (`) for every pair of
cusps in P1(Q); moreover, this 1-form is the regulator of a product of two modular units,
compare with the work of Brunault [13] on the explicit Beilinson–Kato relations.

REFERENCES

[1] M. F. Atiyah, H. Donnelly, and I. M. Singer. Eta invariants, signature defects of cusps, and values of L-
functions. Ann. of Math. (2), 118(1):131–177, 1983.

[2] Alexander Beilinson, Guido Kings, and Andrey Levin. Topological polylogarithms and p-adic interpolation
of L-values of totally real fields. Math. Ann., 371(3-4):1449–1495, 2018.

[3] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators. Grundlehren Text
Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original.

[4] A. Beı̆linson and A. Levin. The elliptic polylogarithm. In Motives (Seattle, WA, 1991), volume 55 of Proc.
Sympos. Pure Math., pages 123–190. Amer. Math. Soc., Providence, RI, 1994.

[5] A. A. Beı̆linson. Higher regulators and values of L-functions. In Current problems in mathematics, Vol.
24, Itogi Nauki i Tekhniki, pages 181–238. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1984.

[6] J.-M. Bismut and J. Cheeger. Remarks on the index theorem for families of Dirac operators on manifolds
with boundary. In Differential geometry, volume 52 of Pitman Monogr. Surveys Pure Appl. Math., pages
59–83. Longman Sci. Tech., Harlow, 1991.

[7] J.-M. Bismut, H. Gillet, and C. Soulé. Analytic torsion and holomorphic determinant bundles. I. Bott-Chern
forms and analytic torsion. Comm. Math. Phys., 115(1):49–78, 1988.

[8] Jean-Michel Bismut and Jeff Cheeger. Transgressed Euler classes of SL(2n,Z) vector bundles, adiabatic
limits of eta invariants and special values of L-functions. Ann. Sci. École Norm. Sup. (4), 25(4):335–391,
1992.

[9] Don Blasius. On the critical values of Hecke L-series. Ann. of Math. (2), 124(1):23–63, 1986.



TRANSGRESSIONS OF THE EULER CLASS AND EISENSTEIN COHOMOLOGY OF GLN (Z) 51

[10] Lev A. Borisov and Paul E. Gunnells. Toric modular forms and nonvanishing of L-functions. J. Reine
Angew. Math., 539:149–165, 2001.

[11] Lev A. Borisov and Paul E. Gunnells. Toric varieties and modular forms. Invent. Math., 144(2):297–325,
2001.

[12] Raoul Bott and Loring W. Tu. Differential forms in algebraic topology, volume 82 of Graduate Texts in
Mathematics. Springer-Verlag, New York-Berlin, 1982.

[13] François Brunault. Beilinson-Kato elements in K2 of modular curves. Acta Arith., 134(3):283–298, 2008.
[14] Pierrette Cassou-Noguès. Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent.

Math., 51(1):29–59, 1979.
[15] Pierre Charollois and Samit Dasgupta. Integral Eisenstein cocycles on GLn, I: Sczech’s cocycle and p-adic

L-functions of totally real fields. Camb. J. Math., 2(1):49–90, 2014.
[16] Pierre Charollois, Samit Dasgupta, and Matthew Greenberg. Integral Eisenstein cocycles on GLn, II: Shin-

tani’s method. Comment. Math. Helv., 90(2):435–477, 2015.
[17] Pierre Charollois and Robert Sczech. Elliptic functions according to Eisenstein and Kronecker: an update.

Eur. Math. Soc. Newsl., (101):8–14, 2016.
[18] Shiing-shen Chern. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds.

Ann. of Math. (2), 45:747–752, 1944.
[19] P. Colmez. Algébricité de valeurs spéciales de fonctions L. Invent. Math., 95(1):161–205, 1989.
[20] R. M. Damerell. L-functions of elliptic curves with complex multiplication. I. Acta Arith., 17:287–301,

1970.
[21] P. Deligne. Valeurs de fonctions L et périodes d’intégrales. In Automorphic forms, representations and L-

functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos.
Pure Math., XXXIII, pages 313–346. Amer. Math. Soc., Providence, R.I., 1979. With an appendix by N.
Koblitz and A. Ogus.

[22] Pierre Deligne and Kenneth A. Ribet. Values of abelian L-functions at negative integers over totally real
fields. Invent. Math., 59(3):227–286, 1980.

[23] Gerd Faltings. Arithmetic Eisenstein classes on the Siegel space: some computations. In Number fields
and function fields—two parallel worlds, volume 239 of Progr. Math., pages 133–166. Birkhäuser Boston,
Boston, MA, 2005.

[24] Jorge Flórez, Cihan Karabulut, and Tian An Wong. Eisenstein cocycles over imaginary quadratic fields and
special values of L-functions. J. Number Theory, 204:497–531, 2019.

[25] Luis E. Garcia. Superconnections, theta series, and period domains. Adv. Math., 329:555–589, 2018.
[26] Ezra Getzler. The Thom class of Mathai and Quillen and probability theory. In Stochastic analysis and

applications (Lisbon, 1989), volume 26 of Progr. Probab., pages 111–122. Birkhäuser Boston, Boston,
MA, 1991.

[27] Alexander B. Goncharov. Regulators. In Handbook ofK-theory. Vol. 1, 2, pages 295–349. Springer, Berlin,
2005.

[28] P. Graf. Polylogarithms for GL2 over totally real fields. ArXiv e-prints, April 2016.
[29] G. Harder and N. Schappacher. Special values of Hecke L-functions and abelian integrals. In Workshop

Bonn 1984 (Bonn, 1984), volume 1111 of Lecture Notes in Math., pages 17–49. Springer, Berlin, 1985.
[30] Günter Harder. Some results on the Eisenstein cohomology of arithmetic subgroups of GLn. In Cohomology

of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), volume 1447 of Lecture Notes in
Math., pages 85–153. Springer, Berlin, 1990.

[31] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University Press, Oxford,
sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles.

[32] R. Howe. θ-series and invariant theory. In Automorphic forms, representations and L-functions (Proc. Sym-
pos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII,
pages 275–285. Amer. Math. Soc., Providence, R.I., 1979.

[33] Taku Ishii and Takayuki Oda. A short history on investigation of the special values of zeta and L-functions
of totally real number fields. In Automorphic forms and zeta functions, pages 198–233. World Sci. Publ.,
Hackensack, NJ, 2006.

[34] Hiroshi Ito. A function on the upper half space which is analogous to the imaginary part of log η(z). J.
Reine Angew. Math., 373:148–165, 1987.

[35] Kazuya Kato. p-adic Hodge theory and values of zeta functions of modular forms. Number 295, pages ix,
117–290. 2004. Cohomologies p-adiques et applications arithmétiques. III.

[36] Helmut Klingen. über die Werte der Dedekindschen Zetafunktion. Math. Ann., 145:265–272, 1961/1962.
[37] Stephen S. Kudla. Seesaw dual reductive pairs. In Automorphic forms of several variables (Katata, 1983),

volume 46 of Progr. Math., pages 244–268. Birkhäuser Boston, Boston, MA, 1984.



52 NICOLAS BERGERON, PIERRE CHAROLLOIS, AND LUIS E. GARCIA

[38] Stephen S. Kudla and John J. Millson. Intersection numbers of cycles on locally symmetric spaces and
Fourier coefficients of holomorphic modular forms in several complex variables. Inst. Hautes Études Sci.
Publ. Math., (71):121–172, 1990.

[39] Varghese Mathai and Daniel Quillen. Superconnections, Thom classes, and equivariant differential forms.
Topology, 25(1):85–110, 1986.

[40] Werner Müller. Signature defects of cusps of Hilbert modular varieties and values of L-series at s = 1. J.
Differential Geom., 20(1):55–119, 1984.

[41] Madhav V. Nori. Some Eisenstein cohomology classes for the integral unimodular group. In Proceedings of
the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 690–696. Birkhäuser, Basel,
1995.

[42] Robert Sczech. Dedekindsummen mit elliptischen Funktionen. Invent. Math., 76(3):523–551, 1984.
[43] Robert Sczech. Eisenstein cocycles for GL2Q and values of L-functions in real quadratic fields. Comment.

Math. Helv., 67(3):363–382, 1992.
[44] Robert Sczech. Eisenstein group cocycles for GLn and values of L-functions. Invent. Math., 113(3):581–

616, 1993.
[45] Takuro Shintani. On evaluation of zeta functions of totally real algebraic number fields at non-positive

integers. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23(2):393–417, 1976.
[46] Carl Ludwig Siegel. Über die analytische Theorie der quadratischen Formen. III. Ann. of Math. (2),

38(1):212–291, 1937.
[47] Carl Ludwig Siegel. Advanced analytic number theory, volume 9 of Tata Institute of Fundamental Research

Studies in Mathematics. Tata Institute of Fundamental Research, Bombay, second edition, 1980.
[48] Carl Ludwig Siegel. Gesammelte Abhandlungen. IV. Springer Collected Works in Mathematics. Springer,

Heidelberg, 2015. Edited by Komaravolu Chandrasekharan and Hans Maaß, Reprint of the 1979 edition [
MR0543842], Original publication incorrectly given as 1966 edition on the title page.

[49] Dennis Sullivan. La classe d’Euler réelle d’un fibré vectoriel à groupe structural SLn(Z) est nulle. C. R.
Acad. Sci. Paris Sér. A-B, 281(1):Aii, A17–A18, 1975.

[50] André Weil. Elliptic functions according to Eisenstein and Kronecker. Classics in Mathematics. Springer-
Verlag, Berlin, 1999. Reprint of the 1976 original.

[51] Franck Wielonsky. Séries d’Eisenstein, intégrales toroïdales et une formule de Hecke. Enseign. Math. (2),
31(1-2):93–135, 1985.

ENS / PSL UNIVERSITY, DÉPARTEMENT DE MATHÉMATIQUES ET APPLICATIONS, F-75005, PARIS,
FRANCE

Email address: nicolas.bergeron@ens.fr
URL: https://sites.google.com/view/nicolasbergeron/accueil

SORBONNE UNIVERSITÉ, INSTITUT DE MATHÉMATIQUES DE JUSSIEU–PARIS RIVE GAUCHE, CNRS,
UNIV PARIS DIDEROT, F-75005, PARIS, FRANCE

Email address: pierre.charollois@imj-prg.fr
URL: http://people.math.jussieu.fr/~charollois

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, GOWER STREET, LONDON WC1E
6BT, UNITED KINGDOM

Email address: l.e.garcia@ucl.ac.uk


	1. Introduction
	2. Thom and Euler classes and torus bundles
	3. The Eisenstein class
	4. The universal space of oriented quadratic spaces
	5. Mathai-Quillen Thom form on the universal space of oriented quadratic spaces
	6. Some explicit formulas for the Mathai-Quillen Thom form
	7. Canonical transgression of the Thom form
	8. Eisenstein transgression
	9. The Eisenstein transgression for GL2 (R) and classical modular forms
	10. Relation between the Eisenstein transgression and the Eisenstein class
	11. More SL2 (R) computations : Dedekind-Rademacher and Damerell results
	12. Adelic formulation, period computations and the Klingen-Siegel Theorem
	13. Eisenstein theta correspondence for the dual pair (GLa, GLb)
	References

