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Abstract. Laparoscopic Ultrasound (LUS) can enhance the safety of
laparoscopic liver resection by providing information on the location of
major blood vessels and tumours. Since many tumours are not visible
in ultrasound, registration to a pre-operative CT has been proposed as
a guidance method. In addition to being multi-modal, this registration
problem is greatly affected by the differences in field of view between
CT and LUS, and thus requires an accurate initialisation. We propose
a novel method of registering smaller field of view slices to a larger vol-
ume globally using a Content-based retrieval framework. This problem is
under-constrained for a single slice registration, resulting in non-unique
solutions. Therefore, we introduce kinematic priors in a Bayesian frame-
work in order to jointly register groups of ultrasound images. Our method
then produces an estimate of the most likely sequence of CT images to
represent the ultrasound acquisition and does not require tracking in-
formation nor an accurate initialisation. We demonstrate the feasibility
of this approach in multiple LUS acquisitions taken from three sets of
clinical data.

Keywords: Laparoscopic Ultrasound ·Multi-modal Registration · Bayesian
models.

1 Introduction

There are well known advantages of laparoscopic liver resection over open surgery.
However, globally, only 5-30% of cases are deemed suitable for the laparoscopic
approach, typically low risk cases in which tumours are small and far from ma-
jor vessels [1]. Laparoscopic Ultrasound (LUS) can reduce this risk by imaging
sub-surface structures of the liver. However, tumours are not always visible in
these images. Therefore, registration of LUS to CT based on vessel information
has been proposed as a guidance method.
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Registering LUS images to CT is a very challenging problem in part due to
the limited field of view of the LUS probe. The majority of US to CT registration
methods rely on the acquisition of complete liver sections using transabdominal
US [2, 3]. However, LUS captures much smaller sections of the liver, provid-
ing less information to constrain the registration problem. Therefore, current
methods either require manual point-picking of vessel bifurcations [4] or a fairly
accurate initialisation [5]. During laparoscopic surgery, none of these options are
desirable as they require a challenging and time consuming manual interaction
with the intra-operative data. It has been demonstrated that a globally opti-
mal registration can be obtained if enough LUS data is acquired [6]. However,
tracking information is required to compose the LUS images in 3D space.

We propose a novel registration method that is globally optimal and uses
a Content-Based Image Retrieval (CBIR) approach to register a group of un-
tracked ultrasound slices. By simulating a finite number of ultrasound planes in
the pre-operative model, we generate a discrete set of possible solutions for the
alignment. For this to be feasible, we encode the vessel content of each image
to a single feature vector [7]. A registration is then obtained by comparing the
feature vector of a segmented ultrasound image with the pre-computed retrieval
database. Due to differences between the pre-operative and intra-operative data,
the simulated CT will not contain exact matches with the LUS input. Thus a
set of possible matches must be considered. Assuming consecutive images are
close in rotation and translation space, we employ a probabilistic model to esti-
mate the most likely sequence of simulated images in CT space that represents
the LUS acquisition. We formulate a discrete Hidden Markov Model (HMM) in
which each state represents the probability of a CT match representing the orig-
inal LUS and incorporate a kinematic prior as a boundary condition. The most
likely combination of images is then estimated using the Viterbi algorithm. We
hypothesise that this sequence estimation converges to a correct solution after
enough LUS images hence states are combined in the algorithm.

Even though untracked ultrasound registration methods have been presented
[8, 9], the initialisation problem has not been solved. Our novel approach is the
first to tackle the problem of initialisation and to work without a tracker. We
perform tests in both synthetic and clinical LUS data from 3 different patients
and show the feasibility of this method.

2 Methods

Given a set of N , 2D ultrasound images {I1, ..., IN} and corresponding acqui-
sition time stamps {t1, ..., tN}, we aim to recover the sequence of LUS slices,
simulated from pre-operative CT slices {J1, ..., JN} that most closely represent
the LUS acquisition in terms of vascular content. In a first step we use CBIR to
obtain a set of K possible slices {J1i, ..., JKi} as candidates for each image Ii.
We then apply the Viterbi algorithm with kinematic prior information in order
to find the optimal sequence.
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Fig. 1. CBIR database generation. For each position on the liver surface P determined
by the surface mesh faces, each rotation R = [−→x ,−→y ,−→z ], and each depth d along the
surface normal, a binary image is simulated from the CT, capturing the vessels, which
are encoded as a feature vector f.

2.1 Retrieval based candidate selection

The pool of possible solutions J is generated by intersecting the CT segmented
vascular model with 2D planes, bounded by an LUS field of view and parame-
terised by a set of evenly distributed points PS along the segmented liver surface.
At each of these points PS , we create a virtual reference orientation of the LUS
probe by placing it orthogonal to the liver surface normal and aligning its imag-
ing plane with the sagittal plane. Several combinations of rotations Rx, Ry, and
Rz are applied to this reference to generate rotated projections parameterised
by R = [−→x ,−→y ,−→z ]. Additionally, we apply a translation d along the liver surface
normal, simulating the case in which the probe compresses the liver tissue and
images deeper structures. For each combination of PS ,R and d a binary image
containing vessel sections is generated, as illustrated in Figure 1. The 2D Cen-
troid position and area are extracted from each of the M binary vessel sections
and stored in a feature vector f as a single feature triplet, fi. Therefore, we es-
tablish a retrieval system in which f holds the content that encodes an image J
and corresponding probe configuration [PS , R, d].

Image Retrieval: Assuming prior segmentation of LUS vessel lumens, we
retrieve feasible candidate poses for an input LUS image, I, by comparing its fea-
ture vector fI to all the generated pre-computed vectors f. Comparison between
vectors is performed by calculating the weighted L2 distance,

D(fS ,MS , fL,ML) =

( ∑ML

1 A(fLi )∑MS

1 A(m(fSi , f
L))

)
·
MS∑
i=1

‖fSi −m(fSi , f
L))‖2 (1)
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Fig. 2. HMM formulation of the problem. Left depicts the graphical model of the HMM
that is optimised. Right is a visual representation of the translation probability density
function of an image Jki being followed by image Jki+1.

where fS and are fL are feature vectors with a smaller number MS and larger
number ML of vessel sections respectively. In equation 1, the function m(fSi , f

L)
returns the feature triplet values in fL with the closest lumen centroid to that
of triplet fSi , and the function A(·) returns the area value from a triplet. We
introduce an area ratio to penalise the exclusion of triplets from the longer
vector fL - the total area of all vessels in fL is divided by the sum of the ones
that were included in the matching. The larger the excluded areas, the larger D
becomes and the less similar the vectors.

To perform an efficient search over the database, we only search for vectors
that have a number of sections similar to the input fI . For this reason, we group
feature vectors in lookup tables FM according to their size M . The search for
the best candidates f∗ is expressed in equation 2:

f∗ = arg min
fT∈FT

D(f I ,M I , fT ,M
T )

min(M I ,MT )
, FT =

r⋃
l=−r

FMI+l (2)

Here, the distance D is computed between f I and members of the lookup tables
of size M I − r to M I + r, where r is the allowable limit on feature vector length
differences. The results are normalised by the minimum number of sections used
in each comparison, and a set of lowest K candidate f∗ vectors picked. Using
the CBIR encoding, these vectors then become a set of CT images {J1i, ..., JKi}
with corresponding probe poses.

2.2 Viterbi Algorithm Kinematic Constrained Optimisation

Once we obtain a pool of K possible matches {J1i, ..., JKi} for an image Ii we
introduce kinematic prior information to select the optimal candidate. We hy-
pothesise that, given enough LUS images and prior knowledge on the kinematics
of the acquisition, we can pick the sequence of candidates {Jk1, ..., JkN} that best
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represents {I1, ..., IN} in CT space. We formulate this problem as the optimisa-
tion of a discrete HMM as described in figure 2. In this model, nodes represent
probabilities of images Ii matching a candidate Jki and edges represent a prob-
ability associated with an input kinematic prior. We assume two main priors
in the acquisition: firstly, there is smoothness in the acquisition; secondly, the
probe follows a continuous path along the direction normal to the imaging plane
without moving backwards. We then define the transition probability between 2
candidates with the following multivariate Gaussian:

P (Jki+1|Jki) =
exp(− 1

2δ
T
ki+1,kiΣ

−1δki+1,ki)√
2π4|Σ|

, Σ = (ti+1 − ti)
[
Σt 0
0 σθ

]
(3)

where δki+1,ki is a vector containing the differences in rotation and translation
between the 2 candidates. Specifically this is the 3D difference between probe
contact points Pki+1 and Pki projected along the orientation Rki of Jki and
the angle between the imaging plane normals −→z ki+1 and −→z ki. The covariance
matrix Σ is expressed in block matrix notation and holds a variance σθ and a
diagonal translation covariance Σt with three terms σx, σy and σz. This equation
models a Gaussian distribution centered at the pose of the previous image Jki
with variance proportional to the time difference. The lower the time difference,
the lower the pose difference should be. Since we expect the probe to move along
the imaging plane normal, we define the variance σz to be larger than σx and
σy, favouring differences in that direction (see Figure 2).

To find the optimal sequence of candidates we find the lowest cost path of
this graphical model by applying the Viterbi algorithm. Since we are mainly
interested in constraining the problem with kinematic information, we assume
node probabilities P (Ii|Jki) to be 1. During optimisation, we introduce a hard
constraint in order to obtain trajectories that fulfil the forward movement prior.
For every path in the graphical model, a sweep direction is defined as the differ-
ence between the two first probe contact positions. The probability P (Jki+1|Jki)
is set to 0 if the angle between Pki+1 − Pki and that direction is above 90◦.

3 Experiments

We apply our method to data from 3 patients. Pre-operative models of the liver
surface and vasculature are segmented4 and respective databases generated using
rotation angles in the intervals Rx = Rz = [−40, 40◦], Ry = [−90, 90◦] with steps
of 10◦ and depth values in the interval d = [0, 20mm] with steps of 5mm.

Initially, we test the validity of our model by registering synthetic sweeps
generated from a CT model to itself. For each of the 3 patients we generate
3 smooth trajectories of 20 images with time stamps t = [1, ..., 20s]. Retrieval
with search limit r = 0 is applied to find K = 200 candidates for each image and

4 www.visiblepatient.com
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Fig. 3. Registration results for 9 synthetic sweeps. Left plot shows the number of
plausible sequences found by the Viterbi algorithm. Right plot displays the translation
and rotation error for each paths optimal registration. For visualisation purposes, the
mean error for these nine optimal paths is displayed. Bars have been placed to show
minimum achieved error and one standard deviation above the mean.

registrations are performed using model variances σz = 1.5mm, σx = σy = 0.2σz
and σθ = 2◦.

Mean results over the nine sweep registrations are summarised in Figure
3. Since the Viterbi algorithm is recursive on the number of columns of the
HMM, results are displayed as a function of the number of images used so far
in the optimisation (from 2 to 20). The left hand graph shows the number of
kinematically possible paths for N images. As expected, the number of plausible
trajectories found by the algorithm converges to 1 if enough images are used
(N = 17 in this case). The right hand graph shows the mean translation error
Et and mean rotation error Eθ across all N registered images for the lowest cost
path. Here the convergence is observed in terms of error: at an average number
of 7 images, these errors converge to 5mm and 10◦. Such values are expected
since the rotation resolution of the database is 10◦ and the used liver surfaces
have a spatial resolution in the range [3-4mm].

Table 1. Results of registration of 6 sweeps of clinical LUS. N is the number of images
in the sweep. NC the number of images the Viterbi algorithm required to converge
in error. Et and Eθ are the mean translation and rotation error respectively. TRE
represents the Root Mean Square (RMS) of the TRE of manually picked landmarks
found in the sweep.

Patient 1 Patient 2 Patient 3

Dataset Sweep 1 Sweep 2 Sweep 1 Sweep 2 Sweep 1 Sweep 2

N 42 12 25 11 23 19
NC 6 8 16 6 19 16

Et(mm) 14.7 18.7 11.2 10.3 19.1 15.3
Eθ (◦) 14.8 33.3 17.2 13.9 44.1 32.3

TRE(mm) 18.8 3.7 14.2 11.4 25.3 21.9
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Fig. 4. Registration result of Sweep 2 of Patient 2. Left shows the 3D registration of the
LUS planes using the Ground Truth (black planes with yellow dots) and the algorithm
solution (red planes with red dots). Right shows LUS and segmented CT alignment
results of 3 images in the sweep.

To test the feasibility of the method on real data, we retrospectively register
LUS acquired intra-operatively with a BK Medical 8666-RF5 probe at a frame
rate of 40Hz. From each patient, we select 2 sequences of contiguous images
that do not contain shadowing artefacts or large non-tubular vessel sections, and
manually segment their vessels. To avoid redundancy, inside each dataset we pick
evenly spaced images in time that differ in content. We apply the algorithm with
a wider search of r = 2 to find K = 1000 candidates. We double the translation
variance values (σz = 3mm) and keep the rotation the same. For each sweep,
we manually register LUS images to CT and interpolate the result with a cubic
polynomial to generate a ground truth trajectory. After obtaining a solution, we
again measure the errors Et and Eθ and assess the Target Registration Error
(TRE) of a set of manually picked vessel bifurcations found in the path. Since
these bifurcations may land in images in between the sequence that were not
registered, we perform a cubic polynomial fit to predict their position given the
algorithm solution.

Results on the six sweeps are summarised in Table 1. The best trajectory
registration results are found in the sweeps of patient 2, with translation er-
rors around 10mm. A visual result with the registration of Sweep 2 is shown
in Figure 4. Lowest accuracies are obtained for patient 3, but these do not sur-
pass 20mm. This value is still usable as we are performing a globally optimised
alignment. We also display the number of images NC at which the errors con-
verge as in the previous experiment. Since these vary greatly, we assume that
this value depends on the uniqueness of the registered images that is specific to
each dataset. TRE results are in the range of [3.7-25.3mm] and are in reasonable
agreement with the other errors.

5 www.bkmedical.com
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4 Conclusions

Our results show that our framework can register smaller field of view images to
a larger volume globally and without tracking information. While the proposed
method does not perfectly register each LUS frame, the accuracy is sufficient to
act as an initialisation for local registration methods such as [5]. We see this as a
great step forward in this field. It poses both a reduction in manual interaction
and less interruption to the clinical workflow as a tracking device is not required.
Furthermore, our simulation was purely rigid: by increasing the realism of our
database simulations with deformation, higher accuracies can be achieved.

Although the method used manually segmented vessels in ultrasound, we be-
lieve that automatic segmentation results can be obtained using state-of-the-art
Deep Learning frameworks [10]. We did not include ultrasound images with large
non-tubular sections in our validation. This is due to the fact that our retrieval
based in position and area is not specific enough to identify such structures.
We intend to tackle this problem by both refining our encoding and including
modelling of physics in the simulation step.

It is worth noting that this framework can be translated to other registration
problems. The only requirements are suitable priors on the acquisition and a
robust image-to-feature encoding that describes the target anatomy.
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