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Abstract
Solutions are found for the growth of infinitesimally thin, two-dimensional fingers governed
by Poisson’s equation in a long strip. The analytical results determine the asymptotic paths
selected by the fingers which compare well with the recent numerical results of Cohen
and Rothman (J Stat Phys 167:703–712, 2017) for the case of two and three fingers. The
generalisation of the method to an arbitrary number of fingers is presented and further results
for four finger evolution given. The relation to the analogous problem of finger growth in a
Laplacian field is also discussed.

Keywords Poisson paths · Laplacian growth · Free boundary problems ·
Conformal mapping

1 Introduction

Systems in which an interface separating two different phases evolving in response to diffu-
sion arise in many different scenarios over widely varying scales. Even in two dimensions
the deforming interface frequently leads to complicated, often striking, patterns. Examples
include Saffman–Taylor fingering [16], diffusion limited aggregation [18], the formation of
ramified river valley networks by groundwater flow [6,15], combustion fronts [19], magnetic
flux dendrite formation in superconductors [10], and growth of bacterial colonies [8]. In all
these examples the interface is characterised by long narrow protrusions—fingers—of one
phase penetrating the other.

Even in the simplest mathematical framework with only one active phase whose diffusion
is modelled by Laplace’s equation, and when the interface velocity is proportional to the
gradient of the phase, theoretical study of two-dimensional Laplacian growth and its resultant
pattern formation involves consideration of difficult nonlinear free boundary problems. One
assumption which enables progress is to assume that the fingers are infinitesimally thin and
advance at their tips only with velocity proportional to the local gradient of the phase. In
terms of complex analysis the fingers can be thought of as evolving slits in the complex plane.
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This realisation, coupled with conformal-mapping methods, has resulted in considerable
understanding of the Laplacian growth of thin fingers, or their straight-line counterpart:
needles e.g. [1,5,17].

Laplace’s equation is frequently used as a natural first approximation to more complicated
physics when the interface dynamics is governed by a general diffusive-type PDE. Studies
concernedwith the latter are rare primarily because applicationofmathematical tools basedon
complex analytic methods are not immediately obvious for general PDEs. Some exceptions
include [11,13,14]. The present work is a contribution to non-Laplacian growth in that it
considers Poisson’s equation as the governing PDE.

This work considers a specific example of finger growth in a Poisson field (with constant
right-hand side) applying to the growth of a stream network incised by groundwater flow.
Laplacian growthmodels have been successful in describingmany features of these networks:
a prominent example of this being an explanation of the remarkable observation that the
angle at which streams bifurcate is close to 2π/5 e.g. [6,7,15]. However, the groundwater
flow field φ is more appropriately modelled by Poisson’s equation, in non-dimensional form,
Δφ = −1 where the constant right-hand side represents a constant source (precipitation).
This paper derives explicit results for fingers growing in a Poisson field which agree with the
recent numerical experiments of Cohen and Rothman [4] who grow two or three fingers in a
long strip-like channel and find, interestingly, after carrying out a large number of numerical
experiments that the fingers eventually grow parallel to the channel boundaries with the same
well-defined spacing irrespective of their initial starting locations. Their method and results
are discussed in Sect. 2. Here, analytical results using conformal mapping combined with
the principle of local symmetry suitably modified to account for the non-zero right hand side
of Poisson’s equation are derived in Sect. 3 and compared to [4]. The relationship between
the Poisson fingers to the analogous Laplacian case is discussed in Sect. 4. The general case
of 2N -fingers is discussed in Sect. 5.

2 Background: The Numerical Experiments of Cohen and Rothman

Cohen and Rothman [4] consider the growth of either 2 or 3 infinitesimally thin fingers in
a two-dimensional, narrow strip of width 2l and length L = 50l. The fingers penetrate the
interior of the strip from one of the short sides, and their dynamics determined by solving
Poisson’s equation Δφ = −1, subject to φ = 0 on the fingers and all boundaries of the strip,
except the side opposite from which the fingers grow where a zero flux condition ∂φ/∂n = 0
is imposed. Figure 1 shows the equivalent set-up to be considered herewith l = 1 and complex
coordinates z = x + iy chosen so that the centreline of the strip is aligned with y = 1 and the
fingers grow from the edge aligned with the imaginary axis x = 0, 0 ≤ y ≤ 2. The fingers
computed in [4] are grown at their tips with constant velocity in directions according to the
principle of local symmetry. This involves numerically solving the Poisson equation in the
slit domain at a given timestep and using the solution to find the leading terms in the local
expansion of φ(x, y) near the tip of each finger:

φ(r , θ) = d1r
1/2 cos(θ/2) + d2r sin θ + O(r3/2), (1)

where d1,2 are coefficients determined by the global numerical solution of the Poisson prob-
lem, r and θ are local polar coordinates such that θ = ±π coincides with the finger near its
tip at r = 0. The principle of local symmetry requires that the fingers grows in a direction
such that d2 = 0 [3,7]. As noted in [4] while the path selection and growth mechanism of
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Fig. 1 The strip domain showing finger trajectories (thick curved lines) which asymptotically approach paths
parallel to, and distance lw from, the long boundaries of the strip. The asymptotic paths are equidistant form
the centreline of the strip shown by the dotted line. Cohen and Rothman [4] solve Poisson’s equationΔφ = −1
in the slit domain subject to φ = 0 on all boundaries and fingers, except the dashed line at x = L where a
zero flux condition ∂φ/∂x = 0 is applied. This paper considers the asymptotic problem when the fingers are
straight needles parallel to the sides of the strip

fingers is similar at a local level near finger tips for both harmonic (Laplacian) and Poisson
fields, the trajectories will differ since the coefficients in (1) depend on the global field.

Using the above procedure Cohen and Rothman [4] carry out a large number of experi-
ments in which they initiate either 2 or 3 fingers at random positions yi along the edge at
x = 0 and grow each at constant velocity in directions determined by the principle of local
symmetry. Their Fig. 4 shows that after an initial adjustment of order the width of the strip
the fingers grow approximately parallel to the long axis of the strip. The notable feature being
that irrespective of the starting locations yi , the fingers asymptotically approach the same
particular—selected—paths parallel to the along-strip axis. For 2 fingers, [4] find in 200
numerical experiments with differing initial conditions that the straight paths are symmetri-
cally placed either side of the strip centreline with each finger a distance lw = 0.74 ± 0.027
from the edge of the strip (see Fig. 1 for the definition of lw). For 3fingers, the ultimate selected
paths are again symmetric about a middle finger aligned with the strip centreline, with the
other twofingers growingparallel at a distance lw = 0.60±0.031 from the outer edges of strip.

In Sect. 3 the asymptotic length scales lw are obtained explicitly using conformal mapping
combined with the principle of local symmetry suitably modified to account for Poisson’s
equation.

3 Derivation of Asymptotic Finger Paths

Problem formulation: two finger case Motivated by [4] it is assumed that the selected paths
are parallel to the long sides of the strip, are symmetric about the strip centreline and that the
fingers themselves are long compared to the strip width, but short compared to the length L
of the strip. Thus the problem is approximated by semi-infinite straight fingers in an infinite
strip (L → ∞) as shown in the z-plane sketch of Fig. 2. Symmetry about y = 1 is assumed
so that only half the strip width 0 ≤ y ≤ 1 need be considered. The mathematical task is to
find ya = lw , by solving Poisson’s equation in the cut strip, subject to φ = 0 along y = 0
and on the finger itself along y = ya , φy = 0 along y = 1 and φx = 0 for |x | → ∞, and
that the principle of local symmetry holds at the finger’s tip.

Let

φ(x, y) = y − y2

2
+ ψ(x, y), (2)
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Fig. 2 The sequence of conformal maps from the z to thew-plane and then ζ -plane as indicated by the arrows.
The dashed line indicates the portion of the boundary in which the zero flux boundary condition applies. The
finger tip za is mapped to w = a and then ζ = ζa with these locations indicated by small dots

so that in the cut stripΔψ = 0, andψ = 0 on y = 0,ψ = c = y2a/2− ya on the finger along
y = ya , ψy = 0 on y = 1 and ψx = 0 as |x | → ∞. Since ψ is harmonic, the solution of the
boundary problem is facilitated using conformal mapping. The z-plane cut strip geometry is
a degenerate polygon and can be mapped to the upper half of the w = u + iv plane by a
Schwarz-Christoffel map—see Fig. 2. The map is

z = f (w) = 1 − a

2π
log(w − 1) + 1 + a

2π
log(w + 1), (3)

where a is a real parameter such that |a| < 1 and maps to the tip of the finger at z = za
where ya = (1 − a)/2 (e.g. [12], p. 155).

The boundary conditions along the real axis of the w-plane are ψ = c for |u| ≤ 1, ψ = 0
for u > 1, ψv = 0 for u < −1. Additionally, ∇ψ → 0 for w → ∞. A further map to the
ζ -plane given by ζ = (1 + w)1/2 maps the upper half of the w-plane to the first quadrant of
the ζ -plane, with the zero flux boundary condition being mapped to the positive imaginary
axis in the ζ -plane i.e. ψξ = 0 on ξ = 0, η > 0, where ζ = ξ + iη. This boundary condition
implies that it is sufficient to seek a solution to Laplace’s equation which is symmetric about
the imaginary axis in the upper half of the ζ -plane, with boundary conditions on the real axis
ψ = c for |ξ | ≤ √

2 and ψ = 0 for |ξ | >
√
2. The sequence of maps z = h(ζ ) = f (w(ζ ))

is shown in Fig. 2. The image of the finger tip za in the ζ -plane is denoted ζa .
The solution in the ζ -plane satisfying the zero flux condition at infinity is ψ = ImF(ζ )

where

F(ζ ) = c

π
log

(
ζ − √

2

ζ + √
2

)
. (4)

Principle of local symmetry The principle of local symmetry demands that the behaviour of
the ψ field about z = za be calculated and so it is necessary to find the first and second
derivatives of the map z = h(ζ ) at ζ = ζa . Note
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h′(ζ ) = dh

dw

dw

dζ
= 2ζ

π

w − a

w2 − 1
, (5)

and hence that h′(ζa) = 0 as expected. Further differentiation yields

h′′(ζa) = 4ζ 2
a

π(a2 − 1)
, h′′′(ζa) = (5a + 3)

(1 − a)

h′′(ζa)
ζa

. (6)

Let δ = z − za = h(ζ ) − h(ζa) be a small displacement that a general point z is from the
finger tip za , and ε = ζ − ζa be the corresponding increment in the ζ -plane. Using results
in [2] based on Taylor expansion, ε(δ) can be expanded as series ε = α1δ

1/2 + α2δ + · · ·
where

α2
1 = 2

h′′(ζa)
, α2 = −α2

1

6

h′′′(ζa)
h′′(ζa)

. (7)

Expanding the difference in complex potential F(z) − F(za) = F(za + ε) − F(za) as a
power series in ε using solution (4) gives

F(z) − F(za) = c

π
log

(
ζ − √

2

ζ + √
2

)
− c

π
log

(
ζa − √

2

ζa + √
2

)

= β1ε + β2ε
2 + O(ε3)

= α1β1δ
1/2 + (β1α2 + β2α

2
1)δ + O(δ3/2), (8)

where

β1 = 2c
√
2

π(ζ 2
a − 2)

, β2 = − 2c
√
2ζa

π(ζ 2
a − 2)2

. (9)

In the Laplacian case the principle of local symmetry states that the coefficient of δ

vanishes in the expansion (8) [3]. Effectively this guarantees that the path taken by the finger
is such that it maintains local symmetry in the potential field about the tip and is equivalent
to maximising the flux into the tip [4,7]. However in the Poisson case this must be modified
owing to the contribution of the term (2) that has been added to ψ needed to satisfy the
right hand side of Poisson’s equation. In this problem the term is given by y − y2/2. Now,
compare (8) with (1) and identify d2 = β1α2 + β2α

2
1 with the gradient of the potential field

(the imaginary part of F(z)) near the finger tip in the direction orthogonal to it (here the
imaginary i.e. y-direction). In the Poisson case in order that the field be symmetric about
the tip this gradient must balance the gradient of the term y − y2/2 in the same direction:
Va = 1 − ya . Thus the principle of local symmetry becomes

β1α2 + β2α
2
1 + Va = 0. (10)

Substituting (6), (7) and (9) into (10) and simplifying gives an algebraic equation for a:

(a + 3)2 = 24√
2
(1 + a)3/2, (11)

with solution a ≈ −0.48099 on the permitted interval |a| ≤ 1. This in turn gives ya = lw ≈
0.74 in agreement with [4] who found lw = 0.74 ± 0.027.

Three finger caseThe case of 3 fingers proceeds similarly to the above, the primary difference
being the application of different boundary conditions on separate portions of the axis of
symmetry y = 1 owing to the presence of a growing finger along a semi-infinite part of
y = 1. It is assumed that this middle finger is of the same length of the other two fingers and
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Fig. 3 The sequence of conformal maps for the three finger case from the z to the w-plane and then ζ -plane as
indicated by the arrows. The dashed line indicates the portion of the boundary in which the zero flux boundary
condition applies. The finger tip za is mapped to w = a and then ζ = ζa , while the finger tip along the
symmetry axis is mapped to w = −b and then ζ = 0; both are indicated by the small dots

so its tip is at xa + i while the tip of the other finger in the domain is xa + iya . Figure 3 shows
the situation. The boundary condition along y = 1 is then:ψ = φ − y+ y2/2 = −1/2 along
the finger x ≤ xa , and ψy = 0 for x > xa . The same conformal map used in the two finger
analysis maps the z-plane to the w-plane with zb = xa + i being mapped to w = −b, where
b > 1. There are two unknown parameters to be determined: a and b.

In the w-plane the boundary conditions are mapped to the real axis and are ψ = c for
|u| ≤ 1; ψ = 0 for u > 1; ψ = −1/2 for −b ≤ u < −1; ψv = 0 for u < −b. Again, the
upper half of the w-plane is subsequently mapped to the first quadrant of the ζ -plane via the
map ζ = (w + b)1/2 which has the effect of mapping the zero flux boundary condition to the
positive imaginary axis in the ζ -plane. Extending the region of consideration to the upper
half of the ζ -plane and demanding the solution is symmetric about the imaginary axis results
in results in the following boundary conditions along the ξ axis: ψ = 0 for ξ > (b + 1)1/2;
ψ = c for (b − 1)1/2 < |ξ | < (b + 1)1/2; ψ = −1/2 for |u| < (b − 1)−1/2; and that the
gradient of ψ vanishes at infinity—see Fig. 3.

The solution for ψ in the ζ -plane is ψ = Im f (ζ ) where

F(ζ ) = c

π
log

(
ζ − (b + 1)1/2

ζ + (b + 1)1/2

)
− (1/2 + c)

π
log

(
ζ − (b − 1)1/2

ζ + (b − 1)1/2

)
. (12)

Note in this case za is mapped successively to w = a and then ζa = (a + b)1/2.
Let z = h(ζ ) be the composite map from the ζ -plane to the z-plane. Computing the first

three derivatives and evaluating at ζa gives as expected h′(ζa) = 0, and

h′′(ζa) = 4ζ 2
a

π(a2 − 1)
, h′′′(ζa) = 4ζa

π(a2 − 1)2
(3a2 − 3 − 8aζ 2

a ). (13)

Expanding the difference in complex potential F(z) (12) evaluated at the points z and za as
a power series in ε of the same form as (8) with now
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β1 = (b − 1)1/2(1 + 2c)

π(b − 1 − ζ 2
a )

− 2(b + 1)1/2c

π(1 + b − ζ 2
a )

,

β2 = ζa(b − 1)1/2(1 + 2c)

π(b − 1 − ζ 2
a )2

− 2ζa(b + 1)1/2c

π(1 + b − ζ 2
a )2

. (14)

In the limit b → 1 (14) reduces to (9); physically in this limit the length of themiddle finger
becomes negligible compared to the other two fingers and the two finger case is recovered.
For the three finger case, the additional unknown parameter b is found by assuming that the
length of the middle finger is the same as the two fingers either side, this being consistent
with the numerical experiments [4] in which fingers are grown at constant speed. Hence the
Schwarz–Christoffel map (3) upon equating real parts for the tips of the fingers gives the
following relation between a and b:

(1 − a) log(1 − a) + (1 + a) log(1 + a) = (1 − a) log(b + 1) + (1 + a) log(1 − b).

(15)

Substituting (13) into the local symmetry condition (10) gives

π(5a2 + 8ab + 3)β1 + 6π(a2 − 1)ζaβ2 = −12ζ 3
a Va, (16)

where the coefficients β1,2 are given by (14). Equations (15) and (16) are a pair of coupled
nonlinear equations for a and bwhich can be solved numerically e.g. using matlab’s vpasolve
routine. The permissible solution is a ≈ −0.2213 and b ≈ 1.2904, leading to ya = lw ≈ 0.61
for the three finger case. This is again in good agreement with [4] who find lw ≈ 0.60±0.031.

4 Relation to the Laplacian Growth Case

A similar method to that used in Sect. 3 can be used to find the asymptotic paths selected by
fingers growing in a semi-infinite strip which are governed by Laplace’s equationΔφ = 0. In
this case the flux needed to drive the finger growth is provided at infinity. Paths can be found
using two alternative methods: the first methods proceeds by solving the chordal Loewner
equation for slit evolution in the upper half of the w-plane and then mapping the paths to the
strip domain. This is done below and then the result compared to that using the method used
in Sect. 3.

The Laplacian paths which obey the principle of local symmetry (‘geodesic’ Loewner
paths) for two fingers growing from the real axis into the upper half ζ ∗-plane while main-
taining symmetry about the imaginary axis are known exactly [9]. After initial adjustment
they approach straight line paths diverging with an angle π/5 between them. That is, fingers,
on which φ = 0, asymptote toward the rays r exp(2π/5) and r exp(3π/5) where r and θ are
polar coordinates with θ = 0, π coinciding with the real w-axis along which φ = 0. The
far-field condition used in deriving the solution is that used in standard Loewner growth:
φ → Im(ζ ∗) as ζ ∗ → ∞.

To find the equivalent paths in a semi-infinite strip (the z-plane) with φ = 0 on all
boundaries, the above finger trajectories (assumed to emanate from the interval |Rew| ≤ 1)
are simply mapped to the z-plane using the map ζ ∗ = cosh(π z/2) which takes the upper
half of the ζ ∗-plane to the semi-infinite strip 0 ≤ y ≤ 2 and x > 0. Interest here is on the
far-field paths, one branch of which tends to

x + iy = 2

π
cosh−1

(
re2π i/5

)
, as r → ∞. (17)
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and so y → 4/5, a path a distance 0.2 from the centreline y = 1. The other path is symmet-
rically placed the other side of the strip centreline.

The method of Sect. 3 is now used to reproduce this result: two fingers are assumed to
grow parallel and equidistant from the strip centreline as in Fig. 2. The condition ψ = c
is replaced by ψ = 0 in the Laplacian case since there is no difference between φ and ψ .
The primary difference is instead of the vanishing flux condition at infinity used in Sect 2,
the far-field condition in the z-plane is now φ → Im[ 12 exp(π z/2)]. This condition comes
from the map ζ ∗ = cosh(π z/2) applied to the standard chordal Loewner far-field condition
φ → Imζ ∗ as ζ ∗ → ∞.

After the same successive transformations from the z to w and then ζ -planes described
in Sect 3, the problem in the ζ -plane then becomes that of finding a harmonic field ψ which
vanishes on the real axis. Note that in this sequence of transformations the far-field behaves
as z → (1/π) logw → (2/π) log ζ . Hence in the ζ -plane, ψ tends to (1/2)Imζ at infinity,
and thus ψ = ImF(z) where F(z) = ζ/2 is the solution. Expanding F(z) − F(za) in the
sameway as (8) gives β1 = 1/2 and β2 = 0, for which in turn the principle of local symmetry
(10) with V = 0 immediately gives a = −3/5 or ya = lw = 4/5. Essentially this symmetry
principle is equivalent to demanding that the third derivative (6) h′′′(ζa) = 0—see also [2]).
The fingers grow parallel and distance 0.2 either side of the centreline in agreement to the
above argument based on mapping the solution [9] for 2 fingers growing in the half-plane.

5 General Case: 2N Fingers

This section generalises the method of Sect. 3 to determine the paths selected by 2N parallel
fingers propagating along the strip i.e. N fingers placed symmetrically either side of the
centreline. It is possible to also consider the 2N + 1 finger case with the middle finger
propagating along the centreline but the details are not presented here.

Let zi = xi + iyi , i = 1, . . . , N be the tips of the N fingers arranged with increasing
imaginary part i.e. 0 < y1 < · · · < yN < 1. It is assumed that the fingers are of equal length:
xi = x j for all i and j . On each finger ψ = ci = y2i /2 − yi and, as before, ψ = 0 on y = 0
and ψy = 0 on the centreline y = 1.

The Schwarz–Christoffel map from the upper half of thew-plane to the z-plane z = f (w)

can be constructed from the primitive

d f

dw
= 1

π

(w − a1)(w − a2) · · · (w − aN )

(w − 1)(w − b2) · · · (w − bN )(w + 1)
, (18)

where w = ai , i = 1, . . . , N , are real parameters such that zi = f (ai ), and bi are real
parameterswhichmap to x → −∞. The parameters are ordered accordingai > bi+1 > ai+i ,
i = 1, N − 1. Figure 4 shows the finger arrangement in the z-plane and the sequence of ai
and bi on the real w-axis. Further, define b1 = 1 and bN+1 = −1. The parameters ai ,
i = 1, . . . , N and bi , i = 2, . . . , N represent 2N − 1 unknown real parameters which need
to be found.

Writing (18) as partial fractions and integrating gives z = f (w)

z = 1

π

N+1∑
i=1

γi log(w − bi ), (19)
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Fig. 4 Conformal map from the z-plane to the w-plane for N slits. The finger tips z1, . . . , zN map to
a1, . . . , aN . The points b1, . . . , bN represent the images of the points at infinity between the slits. The zero
normal flux condition hold on the dashed lines

where γi are real constants determined from the a j and b j by

γi =
∏N

j=1(bi − a j )∏N+1
j=1

( j 
=i)

(bi − b j )
, i = 1, . . . , N + 1. (20)

The distances yi of the fingers from the strip boundary y = 0 are found by considering
the imaginary part of the logarithms in (19)

yi =
i∑

j=1

γ j , i = 1, . . . , N . (21)

Demanding that all N fingers have the same length gives N − 1 equations of the form
x1 = x2, x1 = x3 etc., where

πxi =
N+1∑
j=1

γ j log |ai − b j |. i = 1, . . . , N . (22)

A further N equations for the unknown parameters are obtained by considering the princi-
ple of local symmetry at each of the N finger tips. As in Sect. 3, the upper half of thew-plane
is mapped via a square root ζ = (w + 1)1/2 to the first quadrant on the ζ -plane which is
subsequently extended to the entire upper half ζ -plane by virtue of the symmetry condition
along the imaginary ζ -axis. The complex potential in the ζ -plane is then

F(z) = 1

π

N∑
j=1

(c j − c j−1) log

(
ζ − (b j + 1)1/2

ζ + (b j + 1)1/2

)
, (23)

where c0 = 0 is understood.
Now considering the principle of local symmetry at each tip requires calculation of the

expansion F(ζai + ε) − F(ζai ) = β1iε + β2iε
2 · · · = d1iδ1/2 + d2iδ + · · · , where β1iα2i +

β2iα
2
1i = d2i . The first two terms in the expansion of F(zai + ε) − F(zai ) using (23) are

β1i = 2

π

N∑
j=1

(c j − c j−1)(b j + 1)1/2

ζ 2
ai − b j − 1

β2i = − 2

π

N∑
j=1

(c j − c j−1)(b j + 1)1/2ζai
(ζ 2

ai − b j − 1)2
, (24)
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and the coefficients α1i and α2i have the same form as (7) and are calculated from the map
(19).

Once the expressions d2i are found then local symmetry demands

d2i + Vi = 0, i = 1, . . . , N , (25)

where Vi = 1− yi = 1−∑i
j=1 γi . Thus (25) together with the N −1 equal length conditions

give 2N − 1 equations for the 2N − 1 unknown parameters ai and bi .

Example: N = 4 Solving (e.g. using matlab routine vpasolve) the three nonlinear coupled
equations x1 = x2 given by (22) and (25) for i = 1, 2 for the unknown parameters a1, a2
and b1 on the interval [−1, 1] gives

a1 ≈ 0.1816, a2 ≈ −0.8578, b1 ≈ −0.4341, (26)

which in turn from (20) and (21) determines the elevation of each of the fingers: y1 ≈ 0.53
and y2 ≈ 0.85.

6 Concluding Remarks

Explicit solutions for the asymptotic paths selected by fingers in a Poisson field have been
found which compare well with the equivalent paths recently found numerically [4]. The
method relies on finding a particular solution for the Poisson field, and then using conformal
mapping on the resulting harmonic problem to find the local field in the vicinity of the
fingertips. The principle of local symmetry, suitably modified to account for the particular
solution needed to account for the Poisson forcing, determines the unknown parameters of
the mapping enabling the paths selected by the fingers to be calculated. To the author’s
knowledge these are the first exact solutions, albeit applying to the asymptotic idealisation to
the finite length strip geometry, for the non-Laplacian growth of infinitesimally thin fingers.

It is of interest to see if a similar approach can be usefully employed in other geometries
and boundary conditions, and for other forms of Poisson forcing which may involve either
non-constant or time varying functions. Beyond Poisson’s equation, other elliptic PDEs are
relevant to modelling other physical processes and studying their fingering patterns is also of
interest e.g. stream networks formed by the non-Laplacian flow of groundwater with spatially
varying diffusivity.

While the fingers here evolve steadily in a fixed direction, the time-varying problem in
which they take curved paths requires study. The classical approach to studying slit evolution
in the half-plane involves solution of the chordal Loewner equation. In Laplacian growth this
involves so-called geodesic dynamics [1,7,9,17] in which the Loewner forcing function has a
precise form and results in paths equivalent to thosewhich evolve according to the principle of
local symmetry [7]. How is this Loewner evolution modified for Poisson growth? Even more
fundamentally, it is interesting to speculate on whether it is possible to derive a Loewner-type
equation governing slit evolution in a Poisson field. The approach taken here of finding a
particular solution for the inhomogeneous Poisson term results in a harmonic problem for
the potential ψ to be solved subject to ψ 
= 0 on the fingers. Approximating the fingers as
straight needles evolving parallel to the strip meant here that ψ = constant on the fingers,
but in general, ψ = ψ0(x, y) on curved fingers where ψ0 is a given function depending on
the choice of particular solution. It is an open problem to incorporate boundary conditions
more general than ψ = 0 on fingers in Loewner theory.
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Another approximation employed here which does not necessarily apply in more realistic
scenarios is the assumption that the different fingers grow with the same velocity. In contrast,
it is well-known that interacting fingers and needles grow competitively with velocities pro-
portional to the local gradient of the phase field at their tips [1,5], with the effect that longer
fingers tend to grow more rapidly than shorter fingers. This effect, referred to as screening,
plays a key role in determining patterns selected in finger growth [1,5,9].

Section 4 shows the paths selected by Laplacian fingers are different to those than in
the Poisson case. There is no continuous parameter which connects the two limits since
the forcing is different: in the Laplacian case there is a flux from infinity, whereas in the
Poisson case the forcing is uniform over the whole domain. However, by combining the
two different forcings in an appropriate proportion related to the constant on the RHS of
the Poisson equation is may be possible to connect them continuously, though this set-up is
perhaps physically difficult to justify. From the stream network development view, use of the
Laplace approximation has been highly successful in explaining phenomenon which act on a
local level (e.g. stream bifurcation), but the same approximation should be used with caution
over larger scales when streams interact with each other and far-field boundary conditions.
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