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Abstract: 24 

We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and 25 

establish a reference map of the genetic architecture of MS that includes 200 autosomal 26 

susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X 27 

variant, and 32 within the extended MHC. We used an ensemble of methods to prioritize 551 28 

putative susceptibility genes, that implicate multiple innate and adaptive pathways distributed 29 

across the cellular components of the immune system. Using expression profiles from purified 30 

human microglia, we observe enrichment for MS genes in these brain-resident immune cells, 31 

suggesting that these may have a role in targeting an autoimmune process to the central nervous 32 

system, although MS is most likely initially triggered by perturbation of peripheral immune 33 

responses. 34 

 35 

 36 

One Sentence Summary: We report a detailed genetic and genomic map of multiple sclerosis, 37 

and describe the role of putatively affected genes in the peripheral immune system and brain 38 

resident microglia.  39 
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Introduction 40 

Over the last decade, elements of the genetic architecture of multiple sclerosis (MS) 41 

susceptibility have gradually emerged from genome-wide and targeted studies.(1-6) The role of 42 

the adaptive arm of the immune system, particularly its CD4+ T cell component has become 43 

clearer, with multiple different T cell subsets being implicated.(4) While the T cell component 44 

plays an important role, functional and epigenomic annotation studies have begun to suggest that 45 

other elements of the immune system may be involved as well.(7, 8) Here, we assemble available 46 

genome-wide MS data to perform a meta-analysis followed by a systematic, comprehensive 47 

replication effort in large independent sets of subjects. This effort has yielded a detailed genome- 48 

wide genetic map that includes the first successful evaluation of the X chromosome in MS, and 49 

provides a powerful platform for the creation of a detailed genomic map, outlining the functional 50 

consequences of most variants and their assembly into susceptibility networks (Fig. S1). 51 

Discovery and replication of genetic associations  52 

We organized available (1, 2, 4, 5) and newly genotyped genome-wide data in 15 data sets, 53 

totaling 14,802 subjects with MS and 26,703 controls for our discovery study (9) (Tables S1-S3). 54 

After rigorous per data set quality control, we imputed all samples using the 1000 Genomes 55 

European panel resulting in an average of 7.8 million imputed single nucleotide polymorphisms 56 

(SNPs) with minor allele frequency (MAF) of at least 1% (9). We then performed a meta- 57 

analysis, penalized for within-data set residual genomic inflation, to a total of 8,278,136 SNPs 58 

with data in at least two data sets (9). Of these, 26,395 SNPs reached genome-wide significance 59 

(p-value < 5x10-8; fixed effects inverse-variance meta-analysis) and another 576,204 SNPs had at 60 

least nominal evidence of association (5x10-8 > p-value < 0.05; fixed effects inverse-variance 61 

meta-analysis). In order to identify statistically independent SNPs in the discovery set and to 62 

prioritize variants for replication, we applied a genome partitioning approach (9). Briefly, we first 63 

excluded an extended region of ~12Mb around the major histocompatibility complex (MHC) 64 

locus to scrutinize this unique region separately (see below), and we then applied an iterative 65 

method to discover statistically independent SNPs in the rest of the genome using conditional 66 
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modeling. We partitioned the genome into regions by extracting ±1Mbs on either side of the most 67 

statistically significant SNP and repeating this procedure until there were no SNPs with a p- 68 

value<0.05 (fixed effects inverse-variance meta-analysis) left in the genome. Within each region 69 

we applied conditional modeling to identify statistically independent effects (Fig. S2). As a result, 70 

we identified 1,961 non-MHC autosomal regions that included 4,842 presumably statistically 71 

independent SNPs. We refer to these 4,842 prioritized SNPs as “effects”, assuming that these 72 

SNPs tag a true causal genetic effect. Of these, 82 effects were genome-wide significant in the 73 

discovery analysis, and another 125 had a p-value < 1x10-5 (fixed effects inverse-variance meta- 74 

analysis).  75 

In order to replicate these 4,842 effects, we analyzed two large-scale independent sets of data. 76 

First, we designed the MS Chip to directly replicate each of the prioritized effects (9) and, after 77 

stringent quality check (9) (Table S4), analyzed 20,360 MS subjects and 19,047 controls, which 78 

were organized in 9 data sets. Second, we incorporated targeted genotyping data generated using 79 

the ImmunoChip platform on an additional 12,267 MS subjects and 22,625 control subjects that 80 

had not been used in either the discovery or the MS Chip subject sets (Table S5).(3) Overall, we 81 

jointly analyzed data from 47,429 MS cases and 68,374 control subjects to provide the largest and 82 

most comprehensive genetic evaluation of MS susceptibility to date.   83 

For 4,311 of the 4,842 effects (89%) that were prioritized in the discovery analysis, we could 84 

identify at least one tagging SNP in the replication data (9) (Table S6). 156 regions had at least 85 

one genome-wide effect, and, overall, 200 prioritized effects reached a level of genome-wide 86 

significance (GW) in these 156 regions (Fig. 1). 62 of these 200 effects represent secondary, 87 

independent, effects that emerged from conditional modeling within a given locus (9) (Table S7, 88 

Fig. S3). The odds ratios (ORs) of these genome-wide effects ranged from 1.06 to 2.06, and the 89 

allele frequencies of the respective risk allele from 2.1% to 98.4% in the European samples of the 90 

1000 Genomes reference (mean: 51.3%, standard deviation: 24.5%; Table S8 and Fig. S4). 19.9% 91 

of regions (31 out of 156) harbored more than one statistically independent GW effect. One of the 92 

most complex regions was the one harboring the EVI5 gene that has been the subject of several 93 
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reports with contradictory results.(10-13) In this locus, we identified four statistically independent 94 

genome-wide effects, three of which were found under the same association peak (Fig. 2A), 95 

illustrating how our approach and the large sample size clarifies associations described in smaller 96 

studies and can facilitate functional follow-up of complex loci.  97 

We also performed a joint analysis of available data on sex chromosome variants (9), and we 98 

identified rs2807267 as genome-wide significant (ORT=1.07, p-value=6.86x10-9; fixed effects 99 

inverse-variance meta-analysis; Tables S9-S10). This variant lies within an enhancer peak 100 

specific for T cells and is 948bps downstream of the RNA U6 small nuclear 320 pseudogene 101 

(RNU6-320P), a component of the U6 small nuclear ribonucleoprotein (snRNP) that is part of the 102 

spliceosome and is responsible for the splicing of introns from pre-mRNA (14) (Fig. 2B). The 103 

nearest gene is VGLL1 (27,486bps upstream) that has been proposed to be a co-activator of 104 

mammalian transcription factors.(15) No variant in the Y chromosome had a p-value lower than 105 

0.05 (fixed effects inverse-variance meta-analysis).   106 

 The MHC was the first MS susceptibility locus to be identified, and prior studies have found 107 

that it harbors multiple independent susceptibility variants, including interactions within the class 108 

II HLA genes.(16, 17) We undertook a detailed modeling of this region to account for its long- 109 

range linkage disequilibrium and allelic heterogeneity using SNP data as well as imputed 110 

classical alleles and amino acids of the human leukocyte antigen (HLA) genes in the assembled 111 

data. We confirm prior MHC susceptibility variants (including a non-classical HLA effect located 112 

in the TNFA/LST1 long haplotype), and we extend the association map to uncover a total of 31 113 

statistically independent effects at the genome-wide level within the MHC (Fig. 3, Table S11). 114 

An interesting finding is that multiple HLA and nearby non-HLA genes have several independent 115 

effects that can now be identified due to our large sample, e.g. the HLA-DRB1 locus has six 116 

statistically independent effects. Another exciting finding involves HLA-B that also appears to 117 

harbor 6 independent effects on MS susceptibility. The role of the non-classical HLA and non- 118 

HLA genome in the MHC is also highlighted. One third (9 out of 31) of the identified variants lie 119 

within either intergenic regions or in a long-range haplotype that contains several non-classical 120 
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HLA and other non-HLA genes.(17) Recently, we reported an interaction between HLA- 121 

DRB1*15:01 and HLA-DQA1*01:01 by analyzing imputed HLA alleles.(16) Here we reinforce 122 

this analysis by analyzing SNPs, HLA alleles, and respective amino acids. We replicate the 123 

presence of interactions among class II alleles but note that the second interaction term, besides 124 

HLA-DRB1*15:01, can vary depending on the other independent variants that are included in the 125 

model. First, we found that there are interaction models of HLA-DRB1*15:01 with other variants 126 

in MHC that explain better the data than our previously reported HLA-DRB1*15:01/HLA- 127 

DQA1*01:01 interaction term (Fig. S5). Second, we observe that there is a group of HLA*DQB1 128 

and HLA*DQA1 SNPs, alleles, and amino acids that consistently rank amongst the best models 129 

with HLA-DRB1*15:01 interaction terms (Fig. S6). This group of HLA-DRB1*15:01-interacting 130 

variants is consistently identified regardless of the marginal effects of other statistically 131 

independent variants that are added in the model, implying that these interaction terms capture a 132 

different subset of phenotypic variance and can be explored after the identification of the 133 

marginal effects. Finally, we performed a sensitivity analysis by including interaction terms of 134 

HLA-DRB1*15:01 in each step and selecting the model with the lowest Bayesian information 135 

criterion (BIC), instead of testing only the marginal results of the variants as we did in the main 136 

analysis (classical model MHC analysis; Table S12). This sensitivity analysis also resulted in 32 137 

statistically independent effects with a genome-wide significant p-value (fixed effects inverse- 138 

variance meta-analysis; Table S12), of which one third (9 out of 32) were different than the ones 139 

in classical model MHC analysis. The main differences between the results of the two approaches 140 

were the inclusion of interaction of HLA-DRB1*15:01 and rs1049058 in step 3 and the stronger 141 

association of HLA*DPB1/2 effects over HLA*DRB1 effects in the sensitivity model (Tables 142 

S12-S13 and Fig. S6). Thus, overall, our MHC results are not strongly affected by the analytic 143 

model that we have selected. 144 

Characterization of non-genome wide effects  145 

The commonly used threshold of genome-wide significance (p-value = 5x10-8) has played an 146 

important role in making human genetic study results robust; however, several studies have 147 
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demonstrated that non-genome-wide effects explain an important proportion of the effect of 148 

genetic variation on disease susceptibility. (18, 19) More importantly, several such effects are 149 

eventually identified as genome-wide significant, given enough sample size and true effects.(3) 150 

Thus, we also evaluated the non-genome-wide effects that were selected for replication, have 151 

available replication data (n=4,111), but do not meet a standard threshold of genome-wide 152 

significance (p<5x10-8).  Specifically, we decided to stratify these 4,111 effects into 2 main 153 

categories (9): (1) suggestive effects (S, n=416), and (2) non-replicated effects (NR, n= 3,695). 154 

We used these categories in downstream analyses to further characterize the prioritized effects 155 

from the discovery study in terms of potential to eventually be replicated. We also included a 156 

third category: effects for which there were no data for replication in any of the replication sets 157 

(no data, ND, n=532). Furthermore, to add granularity in each category, we sub-stratified the 158 

suggestive effects into 2 groups: (1a) strongly suggestive (5 x10-8 > p-value <1x10-5; sS, n= 117; 159 

fixed effects inverse-variance meta-analysis) and (1b) underpowered suggestive (unS, n=299). Of 160 

these two categories of suggestive effects, the ones in the sS category have a high probability of 161 

reaching genome-wide significance as we increase our sample size in future studies (9) (Table 162 

S14). 163 

Heritability explained  164 

To estimate the extent to which we have characterized the genetic architecture of MS 165 

susceptibility with our 200 genome-wide non-MHC autosomal MS effects, we calculated the 166 

narrow-sense heritability captured by common variation (h2g), i.e. the ratio of additive genetic 167 

variance to the total phenotypic variance ().(18, 20) Only the 15 strata of data from the discovery 168 

set had true genome-wide coverage, and hence we used these 14,802 MS subjects and 26,703 169 

controls for the heritability analyses. The overall heritability estimate for MS susceptibility in the 170 

discovery set of subjects was 19.2% (95%CI: 18.5-19.8%). Heritability partitioning using minor 171 

allele frequency or p-value thresholds has led to significant insights in previous studies,(21) and 172 

we therefore applied a similar partitioning approach but in a fashion that took into consideration 173 

the study design and the existence of replication information from the 2 large-scale replication 174 
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cohorts. First, we partitioned the autosomal genome into 3 components: i) the super extended 175 

MHC (SE MHC, see above), ii) a component with the 1,961 regions prioritized for replication 176 

(Regions), and iii) the rest of the genome that had a p-value>0.05 (fixed effects inverse-variance 177 

meta-analysis) in the discovery study (Non-associated regions). Then, we estimated the h2g that 178 

can be attributed to each component as a proportion of the overall narrow-sense heritability 179 

observed. The SE MHC explained 21.4% of the h2g, with the remaining 78.6% being captured by 180 

the second component (Fig. 4A). Then, we further partitioned the non-MHC component into one 181 

that captured all 4,842 statistically independent effects (Prioritized for replication), which 182 

explained the vast majority of the overall estimated heritability: 68.3%. The “Non-prioritized” 183 

SNPs in the 1,961 regions explained 11.6% of the heritability, which suggests that there may be 184 

residual LD with prioritized effects or true effects that have not yet been identified (Fig. 4B).  185 

We then used the replication-based categories described above to further partition the 186 

“Prioritized” heritability component, namely “GW”, “S”, “NR”, “ND” (Fig. 4C). The genome- 187 

wide effects (GW) captured 18.3% of the overall heritability. Thus, along with the contribution of 188 

the SE MHC (20.2% in the same model), we can now explain ~39% of the genetic predisposition 189 

to MS with the validated susceptibility alleles. This can be extended to ~48% if we include the 190 

suggestive (S) effects (9.0%). Interestingly the non-replicated (NR) effects captured 38.8% of the 191 

heritability, which could imply that some of these effects might be falsely non-replicated, i.e. that 192 

these are true effects that need further data to emerge robustly or that their effect may be true and 193 

present in only a subset of the data. However, few of the 3,695 NR effects would fall in either of 194 

the above two cases; the vast majority of these effects are likely to be false positive results.  195 

Functional implications of the MS loci, enriched pathways and gene-sets  196 

Next, we began to annotate the MS effects. To prioritize the cell types or tissues in which the 197 

200 non-MHC autosomal effects may exert their effect, we used two different approaches: one 198 

that leverages atlases of gene expression patterns and another that uses a catalog of epigenomic 199 

features such as DNase hypersensitivity sites (DHSs).(8, 9, 22-24) Significant enrichment for MS 200 

susceptibility loci was apparent in many different immune cell types and tissues, whereas there 201 
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was an absence of enrichment in tissue-level central nervous system (CNS) profiles (Fig. 5). An 202 

important finding is that the enrichment is observed not only in immune cells that have long been 203 

studied in MS, e.g. T cells, but also in B cells whose role has emerged more recently.(25) 204 

Furthermore, while the adaptive immune system has been proposed to play a predominant role in 205 

MS onset,(26) we now demonstrate that many elements of innate immunity, such as natural killer 206 

(NK) cells and dendritic cells also display strong enrichment for MS susceptibility genes. 207 

Interestingly, at the tissue level, the role of the thymus is also highlighted, possibly suggesting a 208 

role of genetic variation in thymic selection of autoreactive T cells in MS.(27) Public tissue-level 209 

CNS data – which are derived from a complex mixture of cell types - do not show an excess of 210 

MS susceptibility variants in annotation analyses. However, since MS is a disease of the CNS, we 211 

extended the annotation analyses by analyzing data generated from human iPSC-derived neurons 212 

as well as from purified primary human astrocytes and microglia (9). As seen in Fig. 6, 213 

enrichment for MS genes is seen in human microglia (p=5x10-14) but not in astrocytes or neurons, 214 

suggesting that the resident immune cells of the brain may also play a role in MS susceptibility. 215 

We repeated the enrichment analyses for the “S” and “NR” effects aiming to test whether 216 

these have a similar enrichment pattern with the 200 “GW” effects. The “S” effects exhibited a 217 

pattern of enrichment that is similar to the “GW” effects, with only B cell expression reaching a 218 

threshold of statistical significance (Fig. S7). This provides additional circumstantial evidence 219 

that this category of variants may harbor true causal associations. On the other hand, the “NR” 220 

enrichment results seem to follow a rather random pattern, suggesting that most of these effects 221 

are indeed not truly MS-related (Fig. S7).  222 

The strong enrichment of the GW effects in immune cell types motivated us to prioritize 223 

candidate MS susceptibility genes by identifying those susceptibility variants, which affect RNA 224 

expression of nearby genes (cis expression quantitative trait loci effect, cis -eQTL) (±500Kbps 225 

around the effect SNP) (9). Thus, we interrogated the potential function of MS susceptibility 226 

variants in naive CD4+ T cells and monocytes from 211 healthy subjects as well as peripheral 227 

blood mononuclear cells (PBMCs) from 225 remitting relapsing MS subjects. Thirty-six out of 228 
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the 200 GW MS effects (18%) had at least one tagging SNP (r2>=0.5) that altered the expression 229 

of 46 genes (false discovery rate; FDR<5%) in CD4+ naïve T cells (Table S15-S16), and 36 MS 230 

effects (18%; 10 common with the CD4+ naïve T cells) influenced the expression of 48 genes in 231 

monocytes (11 genes in common with T cells). In MS PBMC, 30% of the GW effects (60 out of 232 

the 200) were cis-eQTLs for 92 genes in the PBMC MS samples, with several loci being shared 233 

with those found in healthy T cells and monocytes (26 effects and 27 genes in T cells, and 21 234 

effects and 24 genes in monocytes, respectively; Table S15-S16).  235 

Since MS is a disease of the CNS, we also investigated a large collection of dorsolateral 236 

prefrontal cortex RNA sequencing profiles from two longitudinal cohort studies of aging (n=455), 237 

which recruit cognitively non-impaired individuals (9). This cortical sample provides a tissue- 238 

level profile derived from a complex mixture of neurons, astrocytes, and other parenchymal cells 239 

such as microglia and occasional peripheral immune cells. In these data, we found that 66 of the 240 

GW MS effects (33% of the 200 effects) were cis-eQTLs for 104 genes. Over this CNS and the 241 

three immune sets of data, 104 GW effects were cis-eQTLs for 203 unique genes (n=211 cis- 242 

eQTLs), with several appearing to be seemingly specific for one of the cell/tissue type (Table 243 

S16). Specifically, 21.2% (45 out of 212 cis-eQTLs) of these cortical cis-eQTLs displayed no 244 

evidence of association (p-value>0.05, for linear regression(9), with any SNP with r2>0.1) in the 245 

immune cell/tissue results and are less likely to be immune-related (Table S16-S17).  246 

To further explore the challenging and critical question of whether some of the MS variants 247 

have an effect that is primarily exerted through a non-immune cell, we performed a secondary 248 

analysis of our cortical RNAseq data in which we attempted to ascribe a brain cis-eQTL to a 249 

particular cell type. Specifically, we assessed our tissue-level profile and adjusted each cis-eQTL 250 

analysis for the proportion of neurons, astrocytes, microglia, and oligodendrocytes estimated to 251 

be present in the tissue: the hypothesis was that the effect of a SNP with a cell type-specific cis- 252 

eQTL would be stronger if we adjusted for the proportion of the target cell type (Fig. 6; Fig. S8). 253 

As anticipated, almost all of the MS variants present in cortex remain ambiguous: it is likely that 254 

many of them influence gene function in multiple immune and non-immune cell types. However, 255 
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the SLC12A5 locus is different: here, the effect of the SNP is significantly stronger when we 256 

account for the proportion of neurons (Fig. 6A and 6B), and the CLECL1 locus emerges when we 257 

account for the proportion of microglia. SLC12A5 is a potassium/chloride transporter that is 258 

known to be expressed in neurons, and a rare variant in SLC12A5 causes a form of pediatric 259 

epilepsy (28, 29). While this MS locus may therefore appear to be a good candidate to have a 260 

primarily neuronal effect, further evaluation finds that this MS susceptibility haplotype also 261 

harbors susceptibility to rheumatoid arthritis (30) and a cis-eQTL in B cells for the CD40 gene 262 

(31). Thus, the same haplotype harbors different functional effects in very different contexts, 263 

illustrating the challenge in dissecting the functional consequences of autoimmune variants in 264 

immune function as opposed to the tissue targeted in autoimmune disease. On the other hand, 265 

CLECL1 represents a simpler case of a known susceptibility effect that has previously been 266 

linked to altered CLECL1 RNA expression in monocytes (26, 32); its enrichment in microglial 267 

cells, which share many molecular pathways with other myeloid cells, is more straightforward to 268 

understand. CLECL1 is expressed at low level in our cortical RNAseq profiles because microglia 269 

represent just a small fraction of cells at the cortical tissue level, and its expression level is 20- 270 

fold greater when we compare its level of expression in purified human cortical microglia to the 271 

bulk cortical tissue (Fig. 6). CLECL1 therefore suggests a potential role of microglia in MS 272 

susceptibility, which is under-estimated in bulk tissue profiles that are available in epigenomic 273 

and transcriptomic reference data. Overall, many genes that are eQTL targets of MS variants in 274 

the human cortex are most likely to affect multiple cell types. These brain eQTL results and the 275 

enrichment found in analyses of our purified human microglia data therefore highlight the need 276 

for more targeted, cell-type specific data for the CNS to adequately determine the extent of its 277 

role in MS susceptibility.  278 

These eQTL studies begin to transition our genetic map into a resource outlining the likely 279 

MS susceptibility gene(s) in a locus and the potential functional consequences of certain MS 280 

variants. To assemble these single-locus results into a higher-order perspective of MS 281 

susceptibility, we turned to pathway analyses to evaluate how the extended list of genome-wide 282 
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effects provides new insights into the pathophysiology of the disease. Acknowledging that there 283 

is no available method to identify all causal genes following GWAS discoveries, we prioritized 284 

genes for pathway analyses while allowing several different hypotheses for mechanisms of 285 

actions (9). In brief, we prioritized genes that: (i) were cis-eQTLs in any of the eQTL data sets 286 

outlined above, (ii) had at least one exonic variant at r2>=0.1 with any of the 200 effects, (iii) had 287 

high score of regulatory potential using a cell specific network approach, (iv) had a similar co- 288 

expression pattern as identified using DEPICT.(33) Sensitivity analyses were performed 289 

including different combinations of the above categories, and including genes with intronic 290 

variants at r2>=0.5 with any of the 200 effects (9). Overall, we prioritized 551 candidate MS 291 

genes (Table S18; Table S19 for sensitivity analyses) to test for statistical enrichment of known 292 

pathways. Approximately 39.6% (142 out of 358) of the Ingenuity Pathway Analysis (IPA) 293 

canonical pathways,(34) that had overlap with at least one of the identified genes, were enriched 294 

for MS genes at an FDR<5% (Table S20). Sensitivity analyses including different criteria to 295 

prioritize genes revealed a similar pattern of pathway enrichment (9) (Table S21). Interestingly, 296 

the extensive list of susceptibility genes, that more than doubles the previous knowledge in MS, 297 

captures processes of development, maturation, and terminal differentiation of several immune 298 

cells that potentially interact to predispose to MS. In particular, the role of B cells, dendritic cells 299 

and natural killer cells has emerged more clearly, broadening the prior narrative of T cell 300 

dysregulation that emerged from earlier studies.(4) Given the over-representation of immune 301 

pathways in these databases, ambiguity remains as to where some variants may have their effect: 302 

neurons and particularly astrocytes repurpose the component genes of many “immune” signaling 303 

pathways, such as the ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), and 304 

neuregulin signaling pathways that are highly significant in our analysis (Table S20). These 305 

results – along with the results relating to microglia – emphasize the need for further dissection of 306 

these pathways in specific cell types to resolve where a variant is exerting its effect; it is possible 307 

that multiple, different cell types could be involved in disease since they all experience the effect 308 

of the variant.  309 
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Pathway and gene-set enrichment analyses can only identify statistically significant 310 

connections of genes in already reported, and in some cases validated, mechanisms of action. 311 

However, the function of many genes is yet to be uncovered and, even for well-studied genes, the 312 

full repertoire of possible mechanisms is still incomplete. To complement the pathway analysis 313 

approach and to explore the connectivity of our prioritized GW genes, we performed a protein- 314 

protein interaction (PPI) analysis using GeNets.(9, 35) About a third of the 551 prioritized genes 315 

(n=190; 34.5%) were connected (p-value = 0.052; permutation-based p-value) and these could be 316 

organized into 13 communities, i.e. sub-networks with higher connectivity (p-value: < 0.002; 317 

permutation-based p-value; Table S22). This compares to 9 communities that could be identified 318 

by the previously reported MS susceptibility list (81 connected genes out of 307; Table S23).(3) 319 

Next, we leveraged GeNets to predict candidate genes based on network connectivity and 320 

pathway membership similarity and test whether our previous known MS susceptibility list could 321 

have predicted any of the genes prioritized by the newly identified effects. Of the 244 genes 322 

prioritized by novel findings (out of the 551 overall prioritized genes) only five could be 323 

predicted given the old results (out of 70 candidates that emerge from the extrapolation of earlier 324 

data; Fig. S9 and Table S24). In a similar fashion we estimated that the list of 551 prioritized 325 

genes could predict 102 new candidate genes, four of which can be prioritized since they are in 326 

the list of suggestive effects. (Fig. 1; Fig. S10 and Table S25).    327 

Discussion  328 

This detailed genetic map of MS is a powerful substrate for annotation and functional 329 

studies and provides a new level of understanding for the molecular events that contribute to MS 330 

susceptibility. Although the exact amount of MS’s heritability varies given the data and method 331 

used, (36-38) we report that our findings can explain up to 48% of the heritability that can be 332 

estimated using large-scale GWAS data. It is clear that these events are widely distributed across 333 

the many different cellular components of both the innate and adaptive arms of the immune 334 

system: every major immune cell type is enriched for MS susceptibility genes. An important 335 

caveat is that many of the implicated molecular pathways, such as response to TNFα and type I 336 
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interferons, are repurposed in many different cell types, leading to an important ambiguity: is risk 337 

of disease driven by altered function of only one of the implicated cell types or are all of them 338 

contributing to susceptibility equally? This question highlights the important issue of the context 339 

in which these variants are exerting their effects. We have been thorough in our evaluation of 340 

available reference epigenomic data, but many different cell types and cell states remain to be 341 

characterized and could alter our summary. Further, inter-individual variability has not been 342 

established in such reference data that are typically produced from one or a handful of 343 

individuals; thus, this issue is better evaluated in the eQTL data where we have examined a range 344 

of samples and states in large numbers of subjects. Overall, while we have identified putative 345 

functional consequences for the identified MS variants, the functional consequence of most of 346 

these MS variants requires further investigation.  347 

Even where a function is reported, further work is needed to demonstrate that the effect is 348 

the causal functional change. This is particularly true of the role of the CNS in MS susceptibility: 349 

we mostly have data at the level of the human cortex, a complex tissue with many different cell 350 

types, including resident microglia and a small number of infiltrating macrophage and 351 

lymphocytes. MS variants clearly influence gene expression in this tissue, and we must now: (1) 352 

resolve the implicated cell types and whether pathways shared with immune cells are having their 353 

MS susceptibility effect in the periphery or in the brain and; (2) more deeply identify additional 354 

functional consequences that may be present in only a subset of cells, such as microglia or 355 

activated astrocytes, that are obscured in the cortical tissue level profile. A handful of loci are 356 

intriguing in that they alter gene expression in the human cortex but not in the sampled immune 357 

cells; these MS susceptibility variants deserve close examination to resolve the important 358 

question of the extent to which the CNS is involved in disease onset. Thus, our study suggests 359 

that while MS is a disease whose origin may lie primarily within the peripheral immune 360 

compartment where dysregulation of all branches of the immune system leads to organ specific 361 

autoimmunity, there is subset of loci with a key role in directing the tissue specific autoimmune 362 

response. This is similar to our previous examination of ulcerative colitis, where we observed 363 
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enrichment of genetic variants mapping to colon tissue.(7) This view is consistent with our 364 

understanding of the mechanism of important MS therapies such as natalizumab and fingolimod 365 

that sequester pathogenic immune cell populations in the peripheral circulation to prevent 366 

episodes of acute CNS inflammation. It also has important implications as we begin to consider 367 

prevention strategies to block the onset of the disease by early targeting peripheral immune cells. 368 

An important step forward in MS genetics, for a disease with a 3:1 preponderance of 369 

women being affected, is robust evidence for a susceptibility locus on the X chromosome. 370 

Although chromosome X associations cannot be the sole explanation for the preponderance of 371 

women among MS patients, the discovery of an MS locus on the X chromosome is an exciting 372 

first step towards understanding the genetic contributions of this strong sex bias. This result also 373 

highlights the need for additional, dedicated genetic studies of the sex chromosomes in MS as 374 

existing data have not been fully leveraged. (39) Future studies will also need to incorporate the 375 

interaction of the autosomal genome with factors that can affect the sex bias, e.g. hormones. (40) 376 

This genomic map of MS – the genetic map and its integrated functional annotation - is a 377 

foundation on which the next generation of projects will be developed. It is an important substrate 378 

with which to further dissect the genetic architecture of MS by accounting for the contribution of 379 

sex, evaluating the possibility of interaction among loci and assessing other important factors 380 

such as heterogeneity of effects across human populations or certain subsets of patients given the 381 

heterogeneity of this disease. In the current study we have included individuals with either the 382 

relapsing remitting or the progressive form of MS as they are currently conceptualized to belong 383 

to the same disease spectrum. Further investigation may lead to the identification of variants that 384 

have an effect on the neurodegenerative component of MS, which is largely genetically distinct 385 

from MS susceptibility. (41) Beyond the characterization of the molecular events that trigger MS, 386 

this map will also inform the development of primary prevention strategies since we can leverage 387 

this information to identify the subset of individuals who are at greatest risk of developing MS. 388 

While insufficient by itself, an MS Genetic Risk Score has a role to play in guiding the 389 

management of the population of individuals “at risk” of MS (such as family members) when 390 
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deployed in combination with other measures of risk and biomarkers that capture intermediate 391 

phenotypes along the trajectory from health to disease.(42) We thus report an important milestone 392 

in the investigation of MS and share a roadmap for future work: the establishment of a map with 393 

which to guide the development of the next generation of studies with high-dimensional 394 

molecular data to explore both the initial steps of immune dysregulation across both the adaptive 395 

and innate arms of the immune system and secondly the translation of this auto-immune process 396 

to the CNS where it triggers a neurodegenerative cascade.  397 

Materials and Methods 398 

Detailed materials and methods are listed in the Supplementary Material (9). In brief, we 399 

analyzed genetic data from 15 GWAS of MS. For the autosomal non-MHC genome, we applied a 400 

partitioning approach to create regions of ±1Mbps around the most statistically significant SNP. 401 

Then we performed stepwise conditional analyses within each region to identify statistically 402 

independent effects (n=4,842). We replicated these effects in two large-scale replication cohorts: 403 

i) nine (9) data sets genotyped with the MS Replication Chip, and ii) eleven (11) data sets 404 

genotyped with the ImmunoChip. Chromosomes X and Y were analyzed jointly across all the 405 

data sets, i.e. the discovery and replication. The extended MHC region was also analyzed jointly 406 

across all data sets. We further imputed HLA class I and II alleles and corresponding amino acids. 407 

Statistically independent effects in the autosomal non-MHC genome were group into 4 categories 408 

post-replication: i) genome-wide effects (GW), ii) suggestive effects (S), iii) non-replicated (NR), 409 

and iv) no replication data (ND). Narrow sense heritability was estimated for various 410 

combinations of these effects, and the extended MHC region, to quantify the amount of the 411 

heritability our findings could explain. Next, we leveraged enrichment methods and tissue/cell 412 

reference data sets to characterize the potential involvement of the identified MS effects in the 413 

immune and central nervous system, at the tissue and cellular level. We developed an ensemble 414 

approach to prioritize genes putative associated with the identify effects, leveraging cell-specific 415 

eQTL studies, network approaches, and genomic annotations. Pathway analyses were performed 416 
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to characterize canonical pathways statistically enriched for the putative causal genes. Finally, we 417 

leveraged protein-protein interaction networks to quantify the degree of connectivity of the 418 

putative causal genes and identify new mechanisms of action. 419 

  420 
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Fig. legends: 656 

 657 

Fig. 1. The genetic map of multiple sclerosis. The circos plot displays the 4,842 prioritized 658 

autosomal non-MHC effects and the associations in chromosome X. Joint analysis (discovery and 659 

replication) p-values are plotted as lines (fixed effects inverse-variance meta-analysis). The green 660 

inner layer displays genome-wide significance (p-value<5x10-8), the blue inner layer suggestive 661 

p-values (1x10-5<p-value>5x10-8), and the grey p-values > 1x10-5. Each line in the inner layers 662 

represents one effect. 200 autosomal non-MHC and one in chromosome X genome-wide effects 663 

are listed. The vertical lines in the inner layers represent one effect and the respective color 664 

displays the replication status (see main text and Online Methods): green (genome-wide), blue 665 

(potentially replicated), red (non-replicated). 551 prioritized genes are plotted on the outer 666 

surface. The inner circle space includes protein-protein interactions (PPI) between genome-wide 667 

genes (green), and genome-wide genes and potentially replicated genes (blue) that are identified 668 

as candidates using protein-protein interaction networks (see main text) (9). 669 

 670 

 671 

Fig. 2. Multiple independent effects in the EVI5 locus and chromosome X associations. A) 672 

Regional association plot of the EVI5 locus. Discovery p-values (fixed effects inverse-variance 673 

meta-analysis) are displayed. The layer tagged “Marginal” plots the associations of the marginal 674 

analysis, with most statistically significant SNP being rs11809700 (ORT=1.16; p-value= 3.51x10- 675 

15). The “Step 1” plots the associations conditioning on rs11809700; rs12133753 is the most 676 

statistically significant SNP (ORC=1.14; p-value= 8.53x10-09). “Step 2” plots the results 677 

conditioning on rs11809700 and rs12133753, with rs1415069 displaying the lowest p-value 678 

(ORG=1.10; p-value= 4.01x10-5). Finally, “Step 3” plots the associations conditioning on 679 

rs11809700, rs12133753, and rs1415069, identifying rs58394161 as the most-statistically 680 

significant SNP (ORC=1.10; p-value= 8.63x10-4). All 4 SNPs reached genome-wide significance 681 
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in the respective joint, discovery plus replication, analyses (Table S7). Each of the independent 4 682 

SNPs, i.e. lead SNPs, are highlighted using a triangle in the respective layer. B) Regional 683 

association plot for the genome-wide chromosome X variant. Joint analysis p-values (fixed 684 

effects inverse-variance meta-analysis) are displayed. Linkage disequilibrium, in terms of r2 based 685 

on the 1000 Genomes European panel, is indicated using a combination of color grade and 686 

symbol size (see legend for details). All positions are in human genome 19.   687 

 688 

 689 

Fig. 3. Independent associations in the major histocompatibility locus. Regional association 690 

plot in the MHC locus. Only genome-wide statistically independent effects are listed. The order 691 

of variants in the X-axis represents the order these were identified. The size of the circle 692 

represents different values of –log10(p-value) (fixed effects inverse-variance meta-analysis). 693 

Different colors are used to depict class I, II, III, and non-HLA effects. Y-axis displays million 694 

base pairs. 695 

 696 

Fig. 4. Heritability partitioning. Proportion of the overall narrow-sense heritability under the 697 

liability model (~19.2%) explained by different genetic components. (A) The overall heritability 698 

is partitioned in the super extended MHC (SE MHC), the 1,962 Regions that include all SNPs 699 

with p-value<0.05 (Regions; fixed effects inverse-variance meta-analysis), and the rest of genome 700 

with p-values>0.05 (Non-associated regions). (B) The Regions are further partitioned to the 701 

seemingly statistically independent effects (Prioritized) and the residual (Non-prioritized).  (C) 702 

The Prioritized component is partitioned based on the replication knowledge to genome-wide 703 

effects (GW), suggestive (S), non-replicated (ND), and no data (ND). The lines connecting the 704 

pie charts depict the component that is partitioned. All values are estimated using the discovery 705 

data-sets (n= 4,802 cases and 26,703 controls).  706 

 707 
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Fig. 5. Tissue and cell type enrichment analyses. (A) Gene Atlas tissues and cell types gene 708 

expression enrichment. (B) DNA hypersensitivity sites (DHS) enrichment for tissues and cell 709 

types from the NIH Epigenetic Roadmap. Rows are sorted from immune cells/tissues to central 710 

nervous system related ones. Both X axes display –log10 of Benjamini & Hochberg p-values 711 

(false discovery rate).     712 

 713 

 714 

Fig. 6. Dissection of cortical RNAseq data. In (A), we present a heatmap of the results of our 715 

analysis assessing whether a cortical eQTL is likely to come from one of the component cell 716 

types of the cortex: neurons, oligodendrocytes, endothelial cells, microglia and astrocytes (in 717 

rows). Each column presents results for one of the MS brain eQTLs. The color scheme relates to 718 

the p-value of the interaction term (linear regression), with red denoting a more extreme result. 719 

(B) We present the same results in a different form, comparing results of assessing for interaction 720 

with neuronal proportion (y axis) and microglial proportion (x-axis): the SLC12A5 eQTL is 721 

significantly stronger when accounting for neuronal proportion, and CLECL1 is significantly 722 

stronger when accounting for microglia. The Bonferroni-corrected threshold of significance is 723 

highlighted by the dashed line. (C) Locus view of the SLC12A5/CD40 locus, illustrating the 724 

distribution of MS susceptibility and the SLC12A5 brain eQTL in a segment of chromosome 20 725 

(x axis); the y axis presents the p-value of association with MS susceptibility (top panel; fixed 726 

effects inverse-variance meta-analysis) or SLC12A5 RNA expression (bottom panel; linear 727 

regression). The lead MS SNP is denoted by a triangle, other SNPs are circles, with the intensity 728 

of the red color denoting the strength of LD with the lead MS SNP in both panels. (D) Here we 729 

plot the level of expression, transcriptome-wide, for each measured gene in our cortical RNAseq 730 

dataset (n=455)(y-axis) and purified human microglia (n=10)(x-axis) from the same cortical 731 

region. In blue, we highlight those genes with > 4 fold increased expression in microglia relative 732 

to bulk cortical tissue and are expressed at a reasonable level in microglia. Each dot is one gene. 733 

Gray dots denote the 551 putative MS genes from our integrated analysis. SLC12A5 and CLECL1 734 
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are highlighted in red; in blue, we highlight a selected subset of the MS genes – many of them 735 

well-validated – which are enriched in microglia. For clarity, we did not include all of the MS 736 

genes that fall in this category.   737 

  738 



 28 

Supplementary Materials: 739 

Materials and Methods 740 

Supplementary Text 741 

Consortium Memberships 742 

Figs. S1 to S40 743 

Tables S1 to S53 744 

Supplementary text files with detailed cis-eQTL results (n=4)  745 

References (42–69) 746 

 747 

Extended Author list and Affiliations: 748 

Nikolaos A Patsopoulos,1-4 Sergio E Baranzini,5 Adam Santaniello,5 Parisa Shoostari,4,6-7 Chris 749 

Cotsapas,4,6-7 Garrett Wong,1,3 Ashley H Beecham,8 Tojo James,9 Joseph Replogle,10 Ioannis S 750 

Vlachos,1,3-4 Cristin McCabe,4 Tune H Pers,11 Aaron Brandes,4 Charles White,4,10 Brendan 751 

Keenan,12 Maria Cimpean,10 Phoebe Winn,10 Ioannis-Pavlos Panteliadis,1,4 Allison Robbins,10 Till 752 

FM Andlauer,13-15 Onigiusz Zarzycki,1,4 Bénédicte Dubois,16 An Goris,16 Helle Bach 753 

Søndergaard,17 Finn Sellebjerg,17 Per Soelberg Sorensen,17 Henrik Ullum,18 Lise Wegner 754 

Thoerner,18 Janna Saarela,19 Isabelle Cournu-Rebeix,20 Vincent Damotte,20,21 Bertrand Fontaine,20, 755 

22 Lena Guillot-Noel,20 Mark Lathrop,23-25 Sandra Vukusic,26-28 Achim Berthele, 14-15 Viola 756 

Pongratz, 14-15 Dorothea Buck, 14-15 Christiane Gasperi, 14-15 Christiane Graetz, 15,29 Verena 757 

Grummel, 14-15 Bernhard Hemmer,14-15,30, Muni Hoshi, 14-15 Benjamin Knier, 14-15 Thomas Korn,14- 758 

15,30 Christina M Lill, 15,31-32 Felix Luessi, 15,31 Mark Mühlau, 14-15 Frauke Zipp, 15,31 Efthimios 759 

Dardiotis,33 Cristina Agliardi,34 Antonio Amoroso,35 Nadia Barizzone,36 Maria D Benedetti,37-38 760 

Luisa Bernardinelli,39 Paola Cavalla,40 Ferdinando Clarelli,41 Giancarlo Comi,41-42 Daniele Cusi,43 761 

Federica Esposito,41,44 Laura Ferrè,44 Daniela Galimberti,45-46 Clara Guaschino,41,44 Maurizio A 762 

Leone,47 Vittorio Martinelli,44 Lucia Moiola,44 Marco Salvetti,48-49 Melissa Sorosina,41 Domizia 763 

Vecchio,50 Andrea Zauli,41 Silvia Santoro,41 Nicasio Mancini,51 Miriam Zuccalà,52 Julia 764 

Mescheriakova,53 Cornelia van Duijn,53-54 Steffan D Bos,55 Elisabeth G Celius,55-56 Anne 765 



 29 

Spurkland,57 Manuel Comabella,58 Xavier Montalban,58 Lars Alfredsson,59 Izaura L Bomfim,60 766 

David Gomez-Cabrero,60 Jan Hillert,60 Maja Jagodic,60 Magdalena Lindén,60 Fredrik Piehl,60 Ilijas 767 

Jelčić,61-62 Roland Martin,61-62 Mirela Sospedra,61-62 Amie Baker,63 Maria Ban,64 Clive Hawkins,64 768 

Pirro Hysi,65 Seema Kalra,66 Fredrik Karpe,66 Jyoti Khadake,67 Genevieve Lachance,65 Paul 769 

Molyneux,65 Matthew Neville,66 John Thorpe,68 Elizabeth Bradshaw,10 Stacy J Caillier,5 Peter 770 

Calabresi,69 Bruce AC Cree,5 Anne Cross,70 Mary Davis,71 Paul WI de Bakker,2-4† Silvia 771 

Delgado,72 Marieme Dembele,69 Keith Edwards,73 Kate Fitzgerald,69 Irene Y Frohlich,10 Pierre- 772 

Antoine Gourraud,5,74 Jonathan L Haines,75 Hakon Hakonarson,76-77  Dorlan Kimbrough,78 Noriko 773 

Isobe,5,79 Ioanna Konidari,8 Ellen Lathi,80 Michelle H Lee,10 Taibo Li,81 David An,81 Andrew 774 

Zimmer,81 Lohith Madireddy,5 Clara P Manrique,8 Mitja Mitrovic,4,6-7 Marta Olah,10 Ellis 775 

Patrick,10,82-83 Margaret A Pericak-Vance,8 Laura Piccio,69 Cathy Schaefer,84 Howard Weiner,85 776 

Kasper Lage,80 ANZgene, IIBDGC, WTCCC2, Alastair Compston,62 David Hafler, 4,86 Hanne F 777 

Harbo,54-55 Stephen L Hauser,5 Graeme Stewart,87 Sandra D'Alfonso,88 Georgios Hadjigeorgiou,33 778 

Bruce Taylor,89 Lisa F Barcellos,90 David Booth,91 Rogier Hintzen,92 Ingrid Kockum,9 Filippo 779 

Martinelli-Boneschi,41-42 Jacob L McCauley,8 Jorge R Oksenberg,5 Annette Oturai,16 Stephen 780 

Sawcer,62 Adrian J Ivinson,93 Tomas Olsson,9 Philip L De Jager,4,10 781 

 782 

1.  Systems Biology and Computer Science Program, Ann Romney Center for Neurological 783 

Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, 02115 MA, USA 784 

2. Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard 785 

Medical School, Boston, MA, USA. 786 

3. Harvard Medical School, Boston, MA 02115, USA. 787 

4. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA 788 

5. Department of Neurology, University of California at San Francisco, Sandler Neurosciences 789 

Center, 675 Nelson Rising Lane, San Francisco, CA 94158, USA. 790 

6. Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA 791 

7. Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA. 792 



 30 

8. John P. Hussman Institute for Human Genomics, University of Miami, Miller School of 793 

Medicine, Miami, FL 33136, USA. 794 

9. Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 795 

10. Center for Translational & Computational Neuroimmunology, Multiple Sclerosis Center, 796 

Department of Neurology, Columbia University Medical Center, New York, NY, USA. 797 

11. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and 798 

Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark. 799 

12. Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of 800 

Medicine, Philadelphia, PA. 801 

13. Max Planck Institute of Psychiatry, 80804 Munich, Germany. 802 

14. Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, 81675 803 

Munich, Germany. 804 

15. German competence network for multiple sclerosis. 805 

16. KU Leuven Department of Neurosciences, Laboratory for Neuroimmunology, Herestraat 49 806 

bus 1022, 3000 Leuven, Belgium. 807 

17. Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of 808 

Copenhagen, Section 6311, 2100 Copenhagen, Denmark. 809 

18. Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Section 810 

2082, 2100 Copenhagen, Denmark. 811 

19. Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. 812 

20. ICM-UMR 1127, INSERM, Sorbonne University, Hôpital Universitaire Pitié-Salpêtrière 47 813 

Boulevard de l’Hôpital, F-75013 Paris. 814 

21. UMR1167 Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille. 815 

22. CRM-UMR974 Department of Neurology Hôpital Universitaire Pitié-Salpêtrière 47 816 

Boulevard de l’Hôpital F-75013 Paris. 817 

23. Commissariat à l′Energie Atomique, Institut Genomique, Centre National de Génotypage, 818 

Evry, France. 819 



 31 

24. Fondation Jean Dausset - Centre d'Etude du Polymorphisme Humain, Paris, France. 820 

25. McGill University and Genome Quebec Innovation Center, Montreal, Canada. 821 

26. Hospices Civils de Lyon, Service de Neurologie, sclérose en plaques, pathologies de la 822 

myéline et neuro-inflammation, F-69677 Bron, France. 823 

27. Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de 824 

Lyon, INSERM 1028 et CNRS UMR 5292, F-69003 Lyon, France. 825 

28. Université de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France; Eugène Devic 826 

EDMUS Foundation against multiple sclerosis, F-69677 Bron, France. 827 

29. Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network 828 

(rmn2), Johannes Gutenberg University-Medical Center, Mainz, Germany. 829 

30. Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany. 830 

31. Department of Neurology, Focus Program Translational Neuroscience (FTN), and 831 

Immunology (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the 832 

Johannes Gutenberg University Mainz, Mainz, Germany. 833 

32. Genetic and Molecular Epidemiology Group, Institute of Neurogenetics, University of 834 

Luebeck, Luebeck, Germany. 835 

33. Neurology Dpt, Neurogenetics Lab, University Hospital of Larissa, Greece. 836 

34. Laboratory of Molecular Medicine and Biotechnology, Don C. Gnocchi Foundation ONLUS, 837 

IRCCS S. Maria Nascente, Milan, Italy. 838 

35. Department of Medical Sciences, Torino University, Turin, Italy.  839 

36. Department of Health Sciences and Interdisciplinary Research Center of Autoimmune 840 

Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy. 841 

37. Centro Regionale Sclerosi Multipla, Neurologia B, AOUI Verona, Italy. 842 

38. Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Italy. 843 

39. Medical Research Council Biostatistics Unit, Robinson Way, Cambridge CB2 0SR, UK. 844 

40. MS Center, Department of Neuroscience, A.O. Città della Salute e della Scienza di Torino & 845 

University of Turin, Torino, Italy.  846 



 32 

41. Laboratory of Human Genetics of Neurological complex disorder, Institute of Experimental 847 

Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 848 

58, 20132, Milan, Italy. 849 

42. Department of Biomedical Sciences for Health, University of Milan, Milan, Italy. 850 

43. University of Milan, Department of Health Sciences, San Paolo Hospital and Filarete 851 

Foundation, viale Ortles 22/4, 20139 Milan, Italy. 852 

44. Department of Neurology, Institute of Experimental Neurology (INSPE), Division of 853 

Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy. 854 

45. Neurology Unit, Dept. of Pathophysiology and Transplantation, University of Milan, , Dino 855 

Ferrari Center, Milan, Italy. 856 

46. Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy. 857 

47. Fondazione IRCCS Casa Sollievo della Sofferenza, Unit of Neurology, San Giovanni 858 

Rotondo (FG), Italy. 859 

48. Center for Experimental Neurological Therapy (CENTERS), Neurology and Department of 860 

Neurosciences, Mental Health and Sensory Organs, Università La Sapienza, Roma, Italy. 861 

49. IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy. 862 

50. Department of Neurology, Ospedale Maggiore, Novara, Italy.  863 

51. Laboratory of Microbiology and Virology, University Vita-Salute San Raffaele, Hospital San 864 

Raffaele, Milan, Italy. 865 

52. Department of Health Sciences and Interdisciplinary Research Center of Autoimmune 866 

Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy. 867 

53. Department of Neurology, Erasmus MC, Rotterdam, Netherlands. 868 

54. Nuffield Department of Population Health, Big Data Institute, University of Oxford, Li Ka 869 

Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, UK. 870 

55. Department of Neurology, Institute of Clinical Medicine, University of Oslo, Norway. 871 

56. Department of Neurology, Oslo University Hospital, Oslo, Norway. 872 

57. Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway. 873 



 33 

58. Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya 874 

(Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Spain. 875 

59. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 876 

60. Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 877 

61. Neuroimmunology and MS Research (nims), Neurology Clinic, University Hospital Zurich, 878 

Frauenklinikstrasse 26, 8091 Zurich, Switzerland . 879 

62. Department of Neuroimmunology and MS Research, Neurology Clinic, University Hospital 880 

Zürich, Frauenklinikstrasse 26, 8091 Zürich, Switzerland. 881 

63. University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Hospital, 882 

BOX 165, Hills Road, Cambridge CB2 0QQ, UK. 883 

64. Keele University Medical School, University Hospital of North Staffordshire, Stoke-on-Trent 884 

ST4 7NY, UK. 885 

65. Department of Twin Research and Genetic Epidemiology, King’s College London, London, 886 

SE1 7EH, UK. 887 

66. NIHR Oxford Biomedical Research Centre, Diabetes and Metabolism Theme, OCDEM, 888 

Churchill Hospital, Oxford UK. 889 

67. NIHR BioResource, Box 299,University of Cambridge and Cambridge University Hospitals 890 

NHS Foundation Trust Hills Road, Cambridge CB2 0QQ, UK. 891 

68. Department of Neurology, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate, 892 

Peterborough PE3 9GZ, UK. 893 

69. Department of Neurology, Johns Hopkins University School of medicine, Baltimore MD. 894 

70. Multiple sclerosis center, Department of neurology, School of medicine, Washington 895 

University St Louis, St Louis MO. 896 

71. Center for Human Genetics Research, Vanderbilt University Medical Center, 525 Light Hall, 897 

2215 Garland Avenue, Nashville, TN 37232, USA. 898 

72. Multiple Sclerosis Division, Department of Neurology, University of Miami, Miller School of 899 

Medicine, Miami, FL 33136, USA. 900 



 34 

73. MS Center of Northeastern NY 1205 Troy Schenectady Rd, Latham, NY 12110. 901 

74. Université de Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, 902 

UMR 1064, ATIP-Avenir, Equipe 5, Nantes, France. 903 

75. Population & Quantitative Health Sciences, Department of Epidemiology and Biostatistics, 904 

Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4945 USA. 905 

76. Center for Applied Genomics, The Children's Hospital of Philadelphia, 3615 Civic Center 906 

Blvd., Philadelphia, PA 19104, USA.  907 

77. Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, 908 

Philadelphia PA, USA. 909 

78. Department of Neurology, Brigham & Women's Hospital, Boston, 02115 MA, USA. 910 

79. Departments of Neurology and Neurological Therapeutics, Neurological Institute, Graduate 911 

School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 912 

Fukuoka 812-8582 Japan. 913 

80. The Elliot Lewis Center, 110 Cedar St, Wellesley MA, 02481, USA. 914 

81. Broad Institute of Harvard University and MIT, Cambridge, 02142 MA, USA. 915 

82. School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia 916 

83. Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, 917 

Australia. 918 

84. Kaiser Permanente Division of Research, Oakland, CA, USA. 919 

85. Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & 920 

Women's Hospital, Boston, 02115 MA, USA.  921 

86. Departments of Neurology and Immunobiology, Yale University School of Medicine, New 922 

Haven, CT 06520, USA. 923 

87. Westmead Millennium Institute, University of Sydney, New South Wales, Australia. 924 

88. Department of Health Sciences and Interdisciplinary Research Center of Autoimmune 925 

Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy.  926 

89. Menzies Research Institute Tasmania, University of Tasmania, Australia. 927 



 35 

90. UC Berkeley School of Public Health and Center for Computational Biology, USA. 928 

91. Westmead Millennium Institute, University of Sydney, New South Wales, Australia.  929 

92. Department of Neurology and Department of Immunology, Erasmus MC, Rotterdam, 930 

Netherlands. 931 

93. UK Dementia Research Institute, University College London, Gower Street, London WC1E 932 

6BT, UK. 933 

 934 

† Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, 935 

USA. 936 

 937 

Expanded list of group authorships (to not be included as individual authors) 938 

 939 

ANZgene Membership  940 

Rodney J Scott 1, Jeannette Lechner-Scott 1, Rod Lea 1, Pablo Moscato 1, David R Booth 2, 941 

Graeme J Stewart 2, Stephen Vucic 2, Grant Parnell 2, Michael Barnett 3, Deborah Mason 4, Lyn 942 

Griffiths 5, Simon Broadley 6, Lotti Tajouri 7, Alan Baxter 8, Mark Slee 9, Bruce V Taylor 10, Jac 943 

Charlesworth 10, Trevor J Kilpatrick 11, Justin Rubio 11, Vilija Jokubaitis 12, James Wiley 11, 944 

Helmut Butzkueven 12, Stephen Leslie 11, Allan Motyer 11, Jim Stankovich 11, William M 945 

Carroll 13, Allan G Kermode 13, Marzena Pedrini 13. 946 

 Hunter Medical Research Institute, University of Newcastle NSW Australia 947 

1 Westmead Institute for Medical Research, University of Sydney NSW Australia 948 

2 Brain and Mind Centre, University of Sydney NSW Australia 949 

3 Canterbury District Health Board, Christchurch, New Zealand 950 

4 Griffith Institute of Health and Medical Research, Griffith University, Gold Coast QLD 951 

Australia 952 

5 School of Medicine, Griffith University, Gold Coast QLD Australia 953 



 36 

6 Bond University, Gold Coast QLD Australia 954 

7 James Cook University, Townsville, QLD Australia 955 

8 Flinders University, SA Australia 956 

9 Menzies Research Institute Tasmania, University of Tasmania Australia 957 

10 University of Melbourne, VIC Australia 958 

11 Monash University, VIC Australia 959 

12 Sir Charles Gairdner Hospital, Perth, WA Australia 960 

 961 

 962 

International IBD Genetics Consortium (IIBDGC) contributing members 963 

Murray Barclay1, Laurent Peyrin-Biroulet2, Mathias Chamaillard3, Jean-Frederick Colombe4, 964 

Mario Cottone5, Anthony Croft6, Renata D'Incà7, Jonas Halfvarson8,9, Katherine Hanigan6, Paul 965 

Henderson10,11, Jean-Pierre Hugot12,13, Amir Karban14, Nicholas A Kennedy15, Mohammed Azam 966 

Khan16, Marc Lémann17, Arie Levine18, Dunecan Massey19, Monica Milla20, Grant W 967 

Montgomery21, Sok Meng Evelyn Ng22, Ioannis Oikonomou22, Harald Peeters23, Deborah D. 968 

Proctor22, Jean-Francois Rahier24, Rebecca Roberts2, Paul Rutgeerts25, Frank Seibold26, Laura 969 

Stronati27, Kirstin M Taylor28, Leif Törkvist29, Kullak Ublick30, Johan Van Limbergen31, Andre 970 

Van Gossum32, Morten H. Vatn33, Hu Zhang20, Wei Zhang22, Australia and New Zealand 971 

IBDGC*, Belgium Genetic Consortium†, Initiative on Crohn and Colitis, NIDDK IBDGC‡, 972 

United Kingdom IBDGC, Wellcome Trust Case Control Consortium§  973 

1 Department of Medicine, University of Otago, Christchurch, New Zealand.  974 

2 Gastroenterology Unit, INSERM U954, Nancy University and Hospital, France.  975 

3 INSERM, U1019, Lille, France.  976 

4 Univ Lille Nord de France, CHU Lille and Lille-2 University,Gastroenterology Unit, France.  977 

5 Division of Internal Medicine, Villa Sofia-V. Cervello Hospital, University of Palermo, 978 

Palermo, Italy.  979 



 37 

6 Inflammatory Bowel Diseases, Genetic Epidemiology, Queensland Institute of Medical 980 

Research, Brisbane, Australia.  981 

7 Department of Surgical and Gastroenterological Sciences, University of Padua, Padua, Italy.  982 

8 Department of Medicine, Örebro University Hospital, Örebro, Sweden.  983 

9 School of Health and Medical Sciences, Örebro University, Örebro, Sweden.  984 

10 Royal Hospital for Sick Children, Paediatric Gastroenterology and Nutrition, Edinburgh, UK.  985 

11 Child Life and Health, University of Edinburgh, Edinburgh, UK.  986 

12 INSERM U843, Paris, France.  987 

13 Univ-Paris Diderot Sorbonne Paris-Cité, Paris France.  988 

14 Department of Gastroenterology, Faculty of Medicine, Technion-Israel Institute of 989 

Technology, Haifa, Israel.  990 

15 Gastrointestinal Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, 991 

Edinburgh, UK.  992 

16 Genetic Medicine, MAHSC, University of Manchester, Manchester, UK.  993 

17 Université Paris Diderot, GETAID group, Paris, France.  994 

18 Pediatric Gastroenterology Unit, Wolfson Medical Center and Sackler School of Medicine, 995 

Tel Aviv University, Tel Aviv, Israel.  996 

19 Inflammatory Bowel Disease Research Group, Addenbrooke’s Hospital, University of 997 

Cambridge, Cambridge, UK.  998 

20 Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, 999 

Italy.  1000 

21 Molecular Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia.  1001 

22 Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, 1002 

New Haven, Connecticut, USA.  1003 

23 Dept Gastroenterology - University hospital Gent - De Pintelaan - 9000 Gent Belgium.  1004 

24 Dept Gastroenterology - UCL Mont Godinne Belgium.  1005 

25 Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium.  1006 



 38 

26 University of Bern, Division of Gastroenterology, Inselspital, Bern, 1007 

 1008 

 1009 

Membership of Wellcome Trust Case Control Consortium 2 (WTCCC2) 1010 

Management Committee 1011 

Peter Donnelly (Chair)1,2, Ines Barroso (Deputy Chair)3, Jenefer M Blackwell4, 5, Elvira 1012 

Bramon6, Matthew A Brown7, Juan P Casas8, Aiden Corvin9, Panos Deloukas3, Audrey 1013 

Duncanson10, Janusz Jankowski11, Hugh S Markus12, Christopher G Mathew13, Colin NA 1014 

Palmer14, Robert Plomin15, Anna Rautanen1, Stephen J Sawcer16, Richard C Trembath13, 1015 

Ananth C Viswanathan17, Nicholas W Wood18  1016 

Data and Analysis Group 1017 

Chris C A Spencer1, Gavin Band1, Céline Bellenguez1, Colin Freeman1, Garrett 1018 

Hellenthal1, Eleni Giannoulatou1, Matti Pirinen1, Richard Pearson1, Amy Strange1, Zhan 1019 

Su1, Damjan Vukcevic1, Peter Donnelly1,2  1020 

DNA, Genotyping, Data QC and Informatics Group 1021 

Cordelia Langford3, Sarah E Hunt3, Sarah Edkins3, Rhian Gwilliam3, Hannah Blackburn3, 1022 

Suzannah J Bumpstead3, Serge Dronov3, Matthew Gillman3, Emma Gray3, Naomi 1023 

Hammond3, Alagurevathi Jayakumar3, Owen T McCann3, Jennifer Liddle3, Simon C 1024 

Potter3, Radhi Ravindrarajah3, Michelle Ricketts3, Matthew Waller3, Paul Weston3, Sara 1025 

Widaa3, Pamela Whittaker3, Ines Barroso3, Panos Deloukas3.  1026 

Publications Committee 1027 

Christopher G Mathew (Chair)13, Jenefer M Blackwell4,5, Matthew A Brown7, Aiden 1028 

Corvin9, Chris C A Spencer1 1029 

 1030 



 39 

1 Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, 1031 

Oxford OX3 7BN, UK; 2 Dept Statistics, University of Oxford, Oxford OX1 3TG, UK; 3 1032 

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge 1033 

CB10 1SA, UK; 4 Telethon Institute for Child Health Research, Centre for Child Health 1034 

Research, University of Western Australia, 100 Roberts Road, Subiaco, Western 1035 

Australia 6008; 5 Cambridge Institute for Medical Research, University of Cambridge 1036 

School of Clinical Medicine, Cambridge CB2 0XY, UK; 6 Department of Psychosis 1037 

Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of 1038 

Psychiatry, King’s College London and The South London and Maudsley NHS 1039 

Foundation Trust, Denmark Hill, London SE5 8AF, UK; 7 University of Queensland 1040 

Diamantina Institute, Brisbane, Queensland, Australia; 8 Dept Epidemiology and 1041 

Population Health, London School of Hygiene and Tropical Medicine, London WC1E 1042 

7HT and Dept Epidemiology and Public Health, University College London WC1E 6BT, 1043 

UK; 9 Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, 1044 

Trinity College Dublin, Dublin 2, Eire; 10 Molecular and Physiological Sciences, The 1045 

Wellcome Trust, London NW1 2BE; 11 Department of Oncology, Old Road Campus, 1046 

University of Oxford, Oxford OX3 7DQ, UK , Digestive Diseases Centre, Leicester 1047 

Royal Infirmary, Leicester LE7 7HH, UK and Centre for Digestive Diseases, Queen 1048 

Mary University of London, London E1 2AD, UK; 12 Clinical Neurosciences, St 1049 

George's University of London, London SW17 0RE; 13 King’s College London Dept 1050 

Medical and Molecular Genetics, King’s Health Partners, Guy’s Hospital, London SE1 1051 

9RT, UK; 14 Biomedical Research Centre, Ninewells Hospital and Medical School, 1052 

Dundee DD1 9SY, UK; 15 King’s College London Social, Genetic and Developmental 1053 

Psychiatry Centre, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK; 16 1054 



 40 

University of Cambridge Dept Clinical Neurosciences, Addenbrooke’s Hospital, 1055 

Cambridge CB2 0QQ, UK; 17 NIHR Biomedical Research Centre for Ophthalmology, 1056 

Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 1057 

London EC1V 2PD, UK; 18 Dept Molecular Neuroscience, Institute of Neurology, 1058 

Queen Square, London WC1N 3BG, UK.  1059 

  1060 



 41 

 1061 

Figs: 1062 

Fig. 1 1063 

 1064 

  1065 



 42 

Fig. 2 1066 

1067 



 43 

Fig. 3 1068 
 1069 
  1070 



 44 

Fig. 4 1071 

  1072 

80

90

100
Pe

rc
en

ta
ge

80

100 100

0

10

20

30

40

50

60

70

0

10

0

10

80

Regions
78.6 %

SE MHC
21.4 %

Non-associated
regions
0.0 %

SE MHC
20.2 %

Prioritized
68.3 %

Non-prioritized
11.6 %

SE MHC
20.2 %

Non-prioritized
12.1 %

Non-replicated
38.8 %

Suggestive
9.3 %

Genome-wide
18.0 %

No data
1.6 %

A B C



 45 

Fig. 5 1073 

 1074 

  1075 

Whole_Brain
Cingulate_Cortex
Prefrontal_Cortex
Occipital_Lobe
Parietal_Lobe

Temporal_Lobe
Amygdala

Caudate_Nucleus
Globus_Pallidus
Hypothalamus

Subthalamic_Nucleus
Thalamus

Pons
Medulla_Oblongata

Cerebellum
Cerebellum_Peduncles

Olfactory_Bulb
Spinal_Cord
Fetal_Brain

Tongue
Salivary_Gland

Lung
Fetal_Lung

Bronchial_Epithelial_cells
Trachea
Heart

Cardiac_Myocytes
Smooth_Muscle

Atrioventricular_Node
Ciliary_Ganglion

DRG
Superior_Cervical_Ganglion

Trigeminal_Ganglion
Liver

Fetal_Liver
Appendix

Colorectal_Adenocarcinoma
Pancreas

Pancreatic_Islets
Adipocyte

Adrenal_Cortex
Adrenal_Gland

Pituitary
Thyroid

Fetal_Thyroid
Kidney

Prostate
Uterus

Uterus_Corpus
Testis

Testis_Germ_cell
Testis_Interstitial

Testis_Leydig_cell
Testis_Seminiferous_Tubule

Ovary
Placenta

Skeletal_Muscle
Skin
Tonsil

Thymus
Lymph_Node

721_B_Lymphoblasts
Lymphoma_Burkitts_Daudi
Lymphoma_Burkitts_Raji

Bone_Marrow
BM−CD105+Endothelial

BM−CD33+Myeloid
BM−CD34+

BM−CD71+Early_Erythroid
Leukemia_Chronic_Myelogenous(k562)

Leukemia_Lymphoblastic(molt4)
Leukemia_Promyelocytic(hl60)

Whole_Blood
PB−BDCA4+Dentritic_cells

PB−CD14+Monocytes
PB−CD19+B_cells

PB−CD4+T_cells
PB−CD8+T_cells

PB−CD56+NK_cells

0 2 4 6
−log10 pvalue

Ti
ss

ue
 ty

pe
A

Fetal_Brain
Fetal_Spinal_Cord

H1_Derived_Neuronal_Progenitor_Cultured_Cells
H1_Derived_Mesenchymal_Stem_Cells

H1_BMP4_Derived_Trophoblast_Cultured_Cells
H1_BMP4_Derived_Mesendoderm_Cultured_Cells

H9
H1

IMR90
Breast_vHMEC

Fetal_Heart
Fetal_Lung

Fetal_Lung_Right
Fetal_Lung_Left

Fetal_Intestine_Small
Fetal_Intestine_Large

Fetal_Stomach
Gastric

Pancreas
Fetal_Adrenal_Gland
Fetal_Renal_Pelvis

Fetal_Renal_Pelvis_Right
Fetal_Renal_Pelvis_Left

Fetal_Renal_Cortex
Fetal_Renal_Cortex_Right
Fetal_Renal_Cortex_Left

Fetal_Kidney
Fetal_Kidney_Right
Fetal_Kidney_Left

Fetal_Testes
Fetal_Placenta

Penis_Foreskin_Melanocyte_Primary_Cells
Penis_Foreskin_Keratinocyte_Primary_Cells
Penis_Foreskin_Fibroblast_Primary_Cells

Fetal_Muscle_Trunk
Fetal_Muscle_Leg
Fetal_Muscle_Back
Fetal_Muscle_Arm

Fibroblasts_Fetal_Skin_Upper_Back
Fibroblasts_Fetal_Skin_Scalp

Fibroblasts_Fetal_Skin_Quadriceps_Right
Fibroblasts_Fetal_Skin_Quadriceps_Left

Fibroblasts_Fetal_Skin_Biceps_Right
Fibroblasts_Fetal_Skin_Biceps_Left

Fibroblasts_Fetal_Skin_Back
Fibroblasts_Fetal_Skin_Abdomen

Fetal_Thymus
Mobilized_CD3_Primary_Cells
Mobilized_CD34_Primary_Cells
Mobilized_CD4_Primary_Cells

CD3_Primary_Cells
CD14_Primary_Cells
CD19_Primary_Cells
CD4_Primary_Cells
CD8_Primary_Cells

CD56_Primary_Cells

0 2.5 5 7.5
−log10 pvalue

B



 46 

Fig. 6 1076 
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