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Abstract: Fast and reliable quantification of cone photoreceptors is a bottleneck in the
clinical utilization of adaptive optics scanning light ophthalmoscope (AOSLO) systems for
the study, diagnosis, and prognosis of retinal diseases. To-date, manual grading has been the
sole reliable source of AOSLO quantification, as no automatic method has been reliably
utilized for cone detection in real-world low-quality images of diseased retina. We present a
novel deep learning based approach that combines information from both the confocal and
non-confocal split detector AOSLO modalities to detect cones in subjects with
achromatopsia. Our dual-mode deep learning based approach outperforms the state-of-the-art
automated techniques and is on a par with human grading.
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1. Introduction

The ability to quantify the photoreceptor mosaic geometry is useful for the study, diagnosis,
and prognosis of diseases that affect photoreceptors such as achromatopsia (ACHM), age-
related macular degeneration, retinitis pigmentosa (RP)/Usher syndrome, Stargardt disease,
choroideremia, and blue-cone monochromacy [1, 2], or for evaluating subclinical
photoreceptor disruption from head trauma [3]. Adaptive optics (AO) ophthalmoscopes reveal
the photoreceptor mosaic in the living human retina [4—12], and have been used to study its
geometry in healthy [4, 13—19] and pathologic [3, 20-26] eyes.
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The most common of these AO systems is the adaptive optics scanning light
ophthalmoscope (AOSLO), which is often implemented with reflectance confocal [5] and,
more recently, also non-confocal modalities [27-31]. Reflectance confocal AOSLO relies on
intact and functional outer segment structure [32] to reveal the smallest photoreceptors in the
retina - rods and foveal cones [16]. Non-confocal AOSLO modalities have recently been
developed to utilize the multiple-scattered light not detected by the confocal channel to
provide an alternate source of information [27-30]. Split detector [29] is one of the most
widely used non-confocal AOSLO detection configurations, which reveals the cone inner
segment mosaic [29].

Quantitative analysis of the photoreceptor mosaic in AO images requires the localization
of each individual photoreceptor. Unfortunately, even in normal subjects with clear ocular
media, there is ambiguity in the identification of individual photoreceptors in AOSLO images
[29, 33], which is the all-important first step in the interpretation of these images. Manual
identification of these photoreceptors is highly subjective [34] and very time consuming, both
factors severely limiting the translation of photoreceptor imaging into a practical clinical tool.
Several automated methods have been developed for detecting cones in ophthalmic AO
images [33, 35-48]. However, most of these have not been tested on truly representative
images of diseased eyes or have shown comparatively poor performance [33, 48]. Typical
images from diseased eyes often exhibit substantially lower contrast and signal-to-noise ratio
than those from healthy subjects, as well as disease-dependent features that might not be
accounted for in algorithms designed or trained for healthy retinas. Thus, the general
consensus of the AO research community can be summarized as “... today's automated
approaches to identify cones should be used with caution, if at all,...” [32].

Fig. 1. Dual-mode AOSLO cone imaging in ACHM subjects. (a) Split detector AOSLO image
near the fovea of an ACHM subject. (b) Simultaneously captured confocal AOSLO image
from the same location as (a). (¢) Split detector AOSLO image at 12° from the fovea in
another subject with ACHM. (d) Simultaneously captured confocal AOSLO image from the
same location as (c). Orange arrows point to ambiguous locations in the split detector image
(c) that can be seen to be cones based on the dark circles in the confocal image (d). Scale bars:
20 um.



Research Article Vol. 9, No. 8 | 1 Aug 2018 | BIOMEDICAL OPTICS EXPRESS 3745 I

Biomedical Optics EXPRESS .

AOSLO imaging is already being used to select candidates for and predict the
effectiveness of gene therapy [32, 49] for conditions such as ACHM, a retinal condition
characterized by a lack of cone function resulting in color blindness, photophobia, nystagmus,
and severely reduced visual acuity [50]. Unfortunately, quantification of cone photoreceptors
in ACHM AOSLO images is especially challenging, even for human graders [34]. In confocal
AOSLO images of healthy eyes, cones appear as bright spots in the image, whereas in ACHM
they appear as dark spots [51]. As the rods appear to waveguide normally, it is sometimes
possible to indirectly infer the presence of a cone when seeing a dark spot circumscribed by a
ring of reflective rods, however this becomes challenging in images closer to the central
fovea, where rod numerosity declines. Non-confocal split detector AOSLO imaging reveals
remnant cone inner segment structures in areas that lack reflectivity in confocal AOSLO [29,
52] (Figs. 1(a) and 1(b)), showing potential for predicting therapeutic outcomes [32, 49], and
thus making automated detection of these cone structures desirable. Even though visualization
of cones is possible with this imaging modality, there is often uncertainty in identifying cone
locations due to the relatively poor contrast seen in typical images such as that shown in Fig.
1(c). It has been recently suggested that combining multiple modalities could improve the
reliability/accuracy/other for cone identification [32], and it has been shown that multiple
AOSLO modalities could improve performance in other image processing tasks such as
mosaicking [53]. As seen in Fig. 1(d), simultaneously captured confocal AOSLO images can
help resolve some ambiguities seen in the matching split detector image, even with cones
lacking intensity in ACHM subjects.

As with other computer vision tasks, automated analyses of AOSLO images with deep
learning convolutional neural networks (CNNs) that learn features directly from training data
are expected to outperform classic machine learning based techniques. CNNs have been
utilized in numerous ophthalmic image processing applications [46, 54—63]. In our previous
work [46], we developed the first CNN based AOSLO image analysis method for detecting
cones, demonstrating superiority to existing state-of-the-art techniques. Here, we expand on
this work by combining the complimentary confocal and non-confocal AOSLO information
to improve performance in low contrast images of diseased retinas.

The organization of the paper is as follows. We first introduce a novel dual-modality deep
learning AOSLO segmentation paradigm for identification of cones. We then demonstrate
that our method that incorporates dual-mode information from confocal and split detector
AOSLO images outperforms a comparable deep learning method that only uses a single
AOSLO imaging modality. Finally, we show that the dual-mode deep learning based method
outperforms the state-of-the-art automated techniques and is on a par with human grading.

2. Methods

Our proposed algorithm for identification of cones, shown in Fig. 2, is comprised of a training
and a testing phase. In the training phase, a set of reflectance confocal and split detector
AOSLO image pairs was broken into small patches. A subset of all patches was classified
(labeled) as cone and non-cone, based on manual markings. These labeled patches were used
to train a CNN classifier, which was then utilized to generate probability maps from all
overlapping patches in the images, which in turn allowed optimization of the parameters used
for detecting cones. The trained CNN was then used to detect cones in previously unseen
image pairs without known labels.
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Fig. 2. Schematic of the dual-mode CNN AOSLO cone detection algorithm.
2.1 Data set

The images for our data set were captured using a previously described AOSLO system [10,
29], which acquires both confocal and split detector modalities simultaneously and with
perfect spatial registration. For each subject, a series of image sequences, using a 1.0° and/or
1.75° field of view, were captured over a range of eccentricities (from the fovea to 12° along
the temporal and superior meridian). The images in this data set were strip-registered using
between 5 and 69 frames, as previously described [29, 64], although the number of frames
averaged within a given strip of the processed image could be anywhere between 1 and 69.
Within each sequence pair, transformation for both split detector and confocal modalities was
identical. Lateral scale/sampling for each subject was determined using axial length
measurements from an IOL Master (Carl Zeiss Meditec Inc., Dublin, California, USA).
Regions of interest (ROIs) were extracted from these images and used for analysis.

The final data set contained 200 split detector and confocal AOSLO image pairs (size 100
x 100 pm? each) from 16 subjects with ACHM. There were an uneven number of image pairs
per subject, with a minimum number of 6 and maximum of 29. For three subjects, the split
detector images had the opposite orientation as the rest of the set. Thus, the split detector and
confocal images from these subjects were horizontally flipped so that all images would have
the same orientation. All image pairs had their cones marked by two masked manual graders,
DC and SB. Manual grading was done primarily on the split detector images, with the
corresponding confocal images used to resolve any ambiguous cases. Over 9,200 cones were
marked by the first manual grader (DC) over the entire data set. We resized all images
(confocal and split detector) using cubic interpolation so they have a pixel size of 0.5 x 0.5
um (200 x 200 pixels per image) and adjusted the manual markings to match this change.
This resizing was performed due to the large differences in pixel size between images from
1.0° and 1.75° field of view scans.
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2.2 Image preprocessing and patch extraction

/

Fig. 3. Extraction of labeled patches from AOSLO image pairs. (a) Cropped split detector
AOSLO image. (b) Simultaneously captured cropped confocal AOSLO image from the same
location. Voronoi diagram overlain in cyan, manually marked cones are shown in green, and
randomly generated locations along Voronoi edges are shown in yellow. (¢) Example cone
patch pair from position shown in purple in (a) and (b). (d) Example non-cone patch pair from
position shown in red in (a) and (b).

We first normalized all split detector and confocal images so that their intensity values
stretched between 0 and 255. We then extracted cone and non-cone patch pairs from the
training images to be used to train the CNN in a similar fashion as presented in Cunefare et
al. [46]. In brief, for each training image pair, we used the first set of expert manual markings
to define the cone locations, and extracted patches of 33 x 33 pixels centered around each
marking in both the confocal and split detector images. The patch size was chosen so that
individual patches would be large enough to encompass any cone. The non-cone locations are
naturally more challenging to define as there were no manual annotations of non-cone areas,
so we used Voronoi diagrams [35], in which the center of each cell is defined by a cone
location, in order to find non-cone locations. As the Voronoi edges are equidistant to the two
nearest cone markings, they are generally located in the space between cones. Therefore, we
created the non-cone patches by randomly selecting a single point from each Voronoi edge,
rounding to the nearest pixel value, and extracting patches of 33 x 33 pixels around this
position from both the split detector and corresponding confocal images. Patches that would
extend outside the bounds of the image were not used. For each training image pair, the first
set of manual markings was used to generate the Voronoi diagram, as shown in Figs. 3(a) and
3(b). Note that all manually marked cones were used to generate the Voronoi diagram, which
differs from [46] where marked cones too close to the edges were not included when
generating the Voronoi diagram. Example paired patches are shown in Figs. 3(c) and 3(d).
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2.3 Convolutional neural network
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Fig. 4. Proposed late fusion dual-mode CNN (LF-DM-CNN) architecture, which consists of
the following layers: convolutional (Conv(N,F) where N is the number of kernels, and F is the
kernel size in the first two dimensions), fully connected (FC(X) where X is the number of
output nodes) batch normalization (BatchNorm), max pooling (MaxPool), average pooling
(AvePool), ReLu, concatenation, and soft-max.

We built upon the single-mode Cifar [65, 66] based network used in Cunefare et al. [46] to
incorporate dual-mode data. The network architecture, shown in Fig. 4, is similar to late
fusion architectures that have been used in other classification problems with multiple input
images [67, 68]. As such, we named this network the late fusion dual-mode CNN (LF-DM-
CNN). The late fusion network was chosen empirically over early fusion architectures based
on results across our data set. The network incorporates convolutional, batch normalization,
pooling, rectified linear units (ReLU), fully connected, concatenation (i.e. fusion), and soft-
max layers. The convolutional layers convolve an input of size W x H x D (before padding)
with N kernels of size F' x F' x D with a stride of 1 to get an output of size W x H x N, where
the output can be considered a stack of V feature maps. For each of these N feature maps, the
CNN adds a potentially different bias value. We set the kernel size, F, to be 5 throughout the
network. Figure 5 displays the trained filters from the first convolutional layer for both the
split detector and confocal paths. Batch normalization layers [69] normalize their inputs based
on mean and variance statistics, and are used to reduce internal covariate shift, which can
decrease overfitting during training. The pooling layers apply either a max or average
operation over the first two dimensions of the input in a 3 X 3 window while down-sampling
by a factor of 2 in the first two dimensions. ReLU layers [70] non-linearly transform their
inputs by setting all negative values to 0, which speeds up the training process and improves
the performance of the network [71]. Fully connected layers output multiple nodes that each
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result from the weighted sum of all the values from the previous layer, with an additional bias
term added for each node. The concatenation layer combines the two 64 x 1 vectors output
from the confocal and split detector paths into a single 128 x 1 vector. Finally, the soft-max
[72] layer takes a 2 x 1 vector from the last fully connected layer and applies the soft-max
function which normalizes each value to be between 0 and 1, and makes the sum of all values
1. These values can be thought of as the probability of the input patch pair belonging to a
cone or non-cone location.

I

(®)

Fig. 5. Filter weights from the first convolutional layer in the LFE-DM-CNN for the (a) split
detector and (b) confocal paths.

Before the network could be used to detect cones, the weight and biases needed to be
learned using the labeled patch pairs. The initial weights for the network were randomly
initialized, and the bias terms were set to zero similarly to [65]. The weights and biases were
then learned using stochastic gradient descent to minimize cross-entropy loss [73]. All of the
training data was split into mini-batches with 100 patch pairs per mini-batch, and each
iteration of the gradient descent occurred over a single mini-batch. This was repeated for all
mini-batches (known as an epoch), and we trained over 45 epochs. Data augmentation was
applied by randomly vertically flipping both patches in a pair 50% of the time the patch pair
is seen, in order to effectively increase our training data amount. The weight learning rates
were set initially to 0.001 for all convolutional and fully connected layers except the last fully
connected layer, where it was set to 0.0001. Bias learning rates were similarly set to 0.1 for
all layers except the last fully connected layer where it was set to 0.01. All learning rates were
reduced by a factor of 10 twice over training, at the beginning of epochs 31 and 41. Weight
decay was set to 0.0001. All noted training hyper-parameters were set empirically based on a
different online data set introduced in [46].
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2.4 Cone localization

Fig. 6. Detection of cones in split detector and confocal AOSLO image pairs. (a) Split detector
AOSLO image. (b) Simultaneously captured confocal AOSLO image from the same location.
(c) Probability maps generated from (a) and (b) using the trained LF-DM-CNN. (d) Extended
maxima of (c). (e-f) Detected cones marked in green on the split detector image shown in (a)
and on the confocal image shown in (b).

In the final step of our method, for each split detector and confocal AOSLO image pair, the
trained CNN generated a probability map from which the cone locations were inferred as
follows. We first normalized the intensity values to be between 0 and 255 for both images.
For each pixel position in the corresponding split detector and confocal images, we extracted
a pair of 33 x 33 pixel patches. We applied 16 pixel symmetric padding to the images that
mirrored the intensity values near the borders of the images to account for patches that would
have extended past the image boundaries. The paired patches were then input into the trained
LF-DM-CNN to determine the probability of that location being positioned on a cone. We
then used these probabilities to generate a single probability map the same size as one of the
images as shown in Fig. 6(c). We smoothed the map by convolving with a Gaussian filter
with standard deviation o to remove spurious maxima. Next, we applied the extended-maxima
transform using MATLAB’s imextendedmax function [74], which finds maximal regions
where the probability difference in the region is less than or equal to A and outputs these
regions in a binary map (Fig. 6(d)). We found all connected clusters in the binary map to use
as potential candidates for cone positions, and eliminated weak candidates by removing any
cluster whose maximum value in the filtered probability map was less than a threshold 7.
Finally, we found the center of mass of all remaining clusters which are considered to be the
cone positions. The values of o, H, and T were all automatically set by maximizing the
average Dice’s coefficient (explained in 2.5) across the training images over a set of potential
parameter combinations.

2.5 Validation and comparison to the state-of-the-art

We validated our method against the current gold-standard of manual grading and alternative
automatic cone detection methods. We used leave-one-subject-out cross validation to evaluate
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our method, which means that for each subject, all images from the other subjects were used
for training the network and cone localization parameters, and all images from that subject
were used as the validation data set. Thus, there was no overlap between subjects or images
used for training and testing of the algorithm. The first set of manual markings by the more
experienced grader (DC) was used for training.

For comparison to the state-of-the-art cone detection methods, we first evaluated the
performance of Bergeles et al. [48], which was designed for detecting cones in split detector
images and tested on subjects with Stargardt disease. We validated this algorithm across the
entire split detector data set. We horizontally flipped the split detector images to match the
orientation used in [48], and flipped the detected cone coordinates back to the original
orientation of the images. The parameters for diseased images in their software were used.
We also evaluated the software developed in Cunefare et al. [46] using the trained networks
and optimization parameters learned from healthy split detector (SD-CNN) and confocal (C-
CNN) AOSLO images exactly as reported in [46] across our split detector and confocal data
sets, respectively. Additionally, we evaluated the performance of Cunefare et al. [46] after
training new networks and parameters on the current ACHM split detector and confocal
images (SD-CNN-ACHM and C-CNN-ACHM) using leave-one-subject-out cross validation.

To quantify the performance of the different methods, we first matched the automatically
detected cones to the cones marked by the first grader one-to-one for each image pair in a
similar fashion to Cunefare et al. [46]. To summarize, an automatic cone was considered a
true positive if it was located within some distance d of a manually marked cone. The value d
was set to the smaller between 0.75 of the median spacing between manually marked cones in
the image and 8 pum. The upper limit was used to account for images with sparse cone
mosaics due to disease, and was chosen to be smaller than the maximum value of d found in
healthy eyes in [46]. Automatically detected cones that were not matched to a manually
marked cone were considered false positives, and manually marked cones that did not have a
matching automatically detected cone were considered false negatives. In the case that a
manually marked cone matched to more than one automatically detected cone, only the
automatically marked cone with the smallest distance to the manually marked cone was
considered a true positive, and the remaining were considered false positives. To remove
border artifacts, we did not analyze marked cones within 7 pixels (3.5 um) of the edges of the
images. After matching, for each image pair the number of automatically marked cones
(N automatic) and manually marked cones (Mypanua) can then be expressed as:

N =Nzp + N, M

Automatic

N =N, + Ny 2)

Manual

where NTP is the number of true positives, NFP is the number of false positives, and NFN is
the number of false negatives. For each image pair, we then calculated the true positive rate,
false discovery rate, and Dice’s coefficient [75, 76] as:

True positive rate = N, /N, 3
False diSCOVery rate = NFp / NAutomatic > (4)
Dice's coefficient = 2N, / (N T N Avtomatic )- )

The second set of manual markings (SB) was compared to the first set of manual markings in
the same way to assess inter-observer variability.

3. Results

Figure 7 shows a representative example of each automated method tested as well as the
second set of manual markings in comparison to the first set of manual markings. In the
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marked images, automatically detected cones that were matched to a manually marked cone
(true positives) are shown in green, cones missed by the automatic algorithm (false negatives)
are shown in cyan, and automatically detected cones with no corresponding manually marked
cone (false positive) are shown in red. Figure 8 displays examples of the performance of the
single modality Cunefare et al. [46] method with the SD-CNN-ACHM and our proposed
method using the dual-mode LF-DM-CNN architecture. Instances where the LF-DM-CNN,
which uses multimodal information, correctly marks ambiguous locations in the split detector
image where the single mode SD-CNN-ACHM method does not are indicated by orange
aITows.

Table 1 summarizes the performance of the automated methods in comparison to the first
(more experienced) manual grader, as well as the variability between the two graders over the
200 ACHM image pairs in our data set. A large increase in performance can be seen by
training Cunefare et al. [46] on ACHM images before testing. Our proposed method using the
LF-DM-CNN architecture had the best performance in terms of Dice’s coefficient. C-CNN
and SD-CNN had higher true positive rates at the cost of substantially worse false discovery
rates.

Table 1. Average performance of automatic methods and second manual marking with
respect to the first manual marking across the data set (standard deviations shown in
parenthesis).

True positive rate  False discovery rate  Dice’s coefficient

Bergeles et al. [48] 0.622 (0.206) 0.227 (0.249) 0.633 (0.163)
C-CNN [46] 0.999 (0.004) 0.907 (0.061) 0.166 (0.096)
SD-CNN [46] 0.985 (0.025) 0.448 (0.236) 0.675 (0.201)
C-CNN-ACHM 0.744 (0.193) 0.292 (0.200) 0.694 (0.159)
SD-CNN-ACHM 0.882 (0.113) 0.124 (0.138) 0.867 (0.097)
LF-DM-CNN 0.896 (0.091) 0.088 (0.097) 0.899 (0.075)

Manual (grader #2)  0.860 (0.131) 0.092 (0.122) 0.875 (0.106)
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Fig. 7. Performance of the automated cone detection algorithms on an ACHM image pair. (a)
Split detector AOSLO image. (b) Simultaneously captured confocal AOSLO image from the
same location. (c-i) Comparison to the first manual markings (with Dice’s coefficients) for (c)
the second manual markings (0.915), (d) Bergeles et al. [48] (0.667), (¢) C-CNN [46] (0.178),
(f) SD-CNN [46] (0.800), (g) C-CNN-ACHM (0.835), (h) SD-CNN-ACHM (0.907), and (i)
our proposed method using the LF-DM-CNN network (0.932). Green points denote true
positives, cyan denotes false negatives, and red denotes false positives.

We implemented and ran all methods in MATLAB 2016b (The MathWorks, Natick, MA)
with MatConvNet [66] 1.0-beta23 for training and evaluating the CNN’s. We ran all
experiments on a desktop PC with an 17-5930K CPU at 3.5 GHz, 64 GB of RAM, and a
GeForce GTX TITAN X GPU. The average run time of our method for cone detection after
training was 21.0 seconds using the LF-DM-CNN on 200 X 200 pixel image pairs. The
average run times for Cunefare et al. [46] with the C-CNN, SD-CNN, C-CNN-ACHM, and
SD-CNN-ACHM, and the method of Bergeles et al. [48] were 10.2, 10.4, 10.2, 10.0, and 10.2
seconds, respectively. The total training time (including training the network and learning
optimization parameters) for the LF-DM-CNN was under 3 hours. The mean values and
standard deviations of the automatically chosen cone detection parameters o, H, and T across
the validation groups for our method were 1.69 + 0.25, 0.07 + 0.03, and 0.77 + 0.07.
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Fig. 8. Comparison of our dual-mode method to the single-mode Cunefare et al. [46] method
with the SD-CNN-ACHM. Split detector AOSLO images from different subjects with ACHM
are shown in the top row, and the corresponding simultaneously captured confocal AOSLO
images are shown in the row second from the top. Comparisons to the first manual markings
for the single-mode SD-CNN-ACHM are shown in the second row from the bottom, and our
method using the dual-mode LF-DM-CNN are shown in the bottom row. Green points denote
true positives, cyan denotes false negatives, and red denotes false positives. Orange arrows
point to ambiguous locations in the split detector images. Dice’s coefficients for the SD-CNN-
ACHM are 0.914 in (a), 0.867 in (b), and 0.815 in (c). Dice’s coefficients for the LF-DM-
CNN are 0.986 in (a), 0.929 in (b), and 0.897 in (c).

4. Discussion

We developed an automatic CNN based method that incorporates both confocal and non-
confocal split detector AOSLO images to detect cone photoreceptors in challenging but
representative ACHM images. We showed that performance of this method that incorporates
dual-mode information in its CNN architecture outperformed a similar method using only a
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single-mode CNN architecture, and showed that our method had good agreement with the
current gold standard of manual grading. The method was tested on a set of images taken
from 16 different subjects and at a range of retinal eccentricities.

The proposed LF-DM-CNN architecture outperformed the other methods tested, including
the state-of-the-art Bergeles et al. [48] method. It should be noted that the parameters of [48]
were set experimentally based on Stargardt images. The performance might be improved by
optimizing the parameters for ACHM images. This highlights the utility of a method that
automatically learns features and parameters from training data, such as our CNN method,
instead of requiring manual adjustment. Our method also had comparable performance to a
second set of manual markings when the first set of manual markings was considered to be
the gold-standard.

Additionally, Table 1 shows that our method using a dual-mode architecture, LF-DM-
CNN, outperformed the other methods which only take advantage of a single imaging
modality. The C-CNN and SD-CNN [46] had higher true positive rates but much worse false
discovery rates. This is likely due to these networks being trained on healthy eyes with more
regular and higher density cone mosaics, and substantially different features in the case of the
confocal images. The SD-CNN-ACHM greatly outperformed the C-CNN-ACHM, which
might suggest that split detector images provide more information than the confocal images in
determining cone locations. Additionally, for the final fully connected layer of the LF-DM-
CNN which combines the information from the two modalities, 56.4% of the weight
magnitude was associated with the split detector information and 43.6% was associated with
the confocal information (averaged across the validation groups). This is not surprising
considering that the manual markings were done primarily using the split detector images
with the confocal images used to resolve ambiguities, and that split detector AOSLO is able
to visualize residual cone structures in ACHM, whereas confocal does not. Even so, from Fig.
1 and Fig. 8 it can be seen that the confocal AOSLO images can provide complimentary
information which can be used to resolve ambiguities in the simultaneously captured split
detector AOSLO images.

Figures 8(b) and 8(c) show examples of cones correctly detected by the single mode SD-
CNN network but missed by the dual-mode LF-DM-CNN network. In these cases, the cone-
like structures are more prominent in the split detector images than in the confocal images.
Thus, the single mode SD-CNN is more sensitive to these features than the LF-DM-CNN
method. Indeed, as shown in Table 1, the LF-DM-CNN is overall more reliable for detecting
cones.

A limitation of our study is that our method was only trained and tested on images of
ACHM. However, our CNN based deep learning method learns features directly from training
data, which should allow our method to accurately detect cones in other disease cases by
simply changing the training data. This is supported by the fact that our similar previous
single-mode method ([46]), which was originally tested on healthy images, performed well on
ACHM split detector images by only changing the training data set. Further, we expect that
this algorithm can be easily modified for detection of photoreceptors on alternative high-
resolution imaging techniques such as computational AO [77], and en face AO optical
coherence tomography images of photoreceptors, which are similar in structure to AOSLO
images [78], as well as for other retinal neurons such as ganglion cells which have recently
been visualized with ophthalmic AO technology [30, 79].
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