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Abstract: Fast and reliable quantification of cone photoreceptors is a bottleneck in the 
clinical utilization of adaptive optics scanning light ophthalmoscope (AOSLO) systems for 
the study, diagnosis, and prognosis of retinal diseases. To-date, manual grading has been the 
sole reliable source of AOSLO quantification, as no automatic method has been reliably 
utilized for cone detection in real-world low-quality images of diseased retina. We present a 
novel deep learning based approach that combines information from both the confocal and 
non-confocal split detector AOSLO modalities to detect cones in subjects with 
achromatopsia. Our dual-mode deep learning based approach outperforms the state-of-the-art 
automated techniques and is on a par with human grading. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

The ability to quantify the photoreceptor mosaic geometry is useful for the study, diagnosis, 
and prognosis of diseases that affect photoreceptors such as achromatopsia (ACHM), age-
related macular degeneration, retinitis pigmentosa (RP)/Usher syndrome, Stargardt disease, 
choroideremia, and blue-cone monochromacy [1, 2], or for evaluating subclinical 
photoreceptor disruption from head trauma [3]. Adaptive optics (AO) ophthalmoscopes reveal 
the photoreceptor mosaic in the living human retina [4–12], and have been used to study its 
geometry in healthy [4, 13–19] and pathologic [3, 20–26] eyes. 
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AOSLO imaging is already being used to select candidates for and predict the 
effectiveness of gene therapy [32, 49] for conditions such as ACHM, a retinal condition 
characterized by a lack of cone function resulting in color blindness, photophobia, nystagmus, 
and severely reduced visual acuity [50]. Unfortunately, quantification of cone photoreceptors 
in ACHM AOSLO images is especially challenging, even for human graders [34]. In confocal 
AOSLO images of healthy eyes, cones appear as bright spots in the image, whereas in ACHM 
they appear as dark spots [51]. As the rods appear to waveguide normally, it is sometimes 
possible to indirectly infer the presence of a cone when seeing a dark spot circumscribed by a 
ring of reflective rods, however this becomes challenging in images closer to the central 
fovea, where rod numerosity declines. Non-confocal split detector AOSLO imaging reveals 
remnant cone inner segment structures in areas that lack reflectivity in confocal AOSLO [29, 
52] (Figs. 1(a) and 1(b)), showing potential for predicting therapeutic outcomes [32, 49], and 
thus making automated detection of these cone structures desirable. Even though visualization 
of cones is possible with this imaging modality, there is often uncertainty in identifying cone 
locations due to the relatively poor contrast seen in typical images such as that shown in Fig. 
1(c). It has been recently suggested that combining multiple modalities could improve the 
reliability/accuracy/other for cone identification [32], and it has been shown that multiple 
AOSLO modalities could improve performance in other image processing tasks such as 
mosaicking [53]. As seen in Fig. 1(d), simultaneously captured confocal AOSLO images can 
help resolve some ambiguities seen in the matching split detector image, even with cones 
lacking intensity in ACHM subjects. 

As with other computer vision tasks, automated analyses of AOSLO images with deep 
learning convolutional neural networks (CNNs) that learn features directly from training data 
are expected to outperform classic machine learning based techniques. CNNs have been 
utilized in numerous ophthalmic image processing applications [46, 54–63]. In our previous 
work [46], we developed the first CNN based AOSLO image analysis method for detecting 
cones, demonstrating superiority to existing state-of-the-art techniques. Here, we expand on 
this work by combining the complimentary confocal and non-confocal AOSLO information 
to improve performance in low contrast images of diseased retinas. 

The organization of the paper is as follows. We first introduce a novel dual-modality deep 
learning AOSLO segmentation paradigm for identification of cones. We then demonstrate 
that our method that incorporates dual-mode information from confocal and split detector 
AOSLO images outperforms a comparable deep learning method that only uses a single 
AOSLO imaging modality. Finally, we show that the dual-mode deep learning based method 
outperforms the state-of-the-art automated techniques and is on a par with human grading. 

2. Methods 

Our proposed algorithm for identification of cones, shown in Fig. 2, is comprised of a training 
and a testing phase. In the training phase, a set of reflectance confocal and split detector 
AOSLO image pairs was broken into small patches. A subset of all patches was classified 
(labeled) as cone and non-cone, based on manual markings. These labeled patches were used 
to train a CNN classifier, which was then utilized to generate probability maps from all 
overlapping patches in the images, which in turn allowed optimization of the parameters used 
for detecting cones. The trained CNN was then used to detect cones in previously unseen 
image pairs without known labels. 
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our method, which means that for each subject, all images from the other subjects were used 
for training the network and cone localization parameters, and all images from that subject 
were used as the validation data set. Thus, there was no overlap between subjects or images 
used for training and testing of the algorithm. The first set of manual markings by the more 
experienced grader (DC) was used for training. 

For comparison to the state-of-the-art cone detection methods, we first evaluated the 
performance of Bergeles et al. [48], which was designed for detecting cones in split detector 
images and tested on subjects with Stargardt disease. We validated this algorithm across the 
entire split detector data set. We horizontally flipped the split detector images to match the 
orientation used in [48], and flipped the detected cone coordinates back to the original 
orientation of the images. The parameters for diseased images in their software were used. 
We also evaluated the software developed in Cunefare et al. [46] using the trained networks 
and optimization parameters learned from healthy split detector (SD-CNN) and confocal (C-
CNN) AOSLO images exactly as reported in [46] across our split detector and confocal data 
sets, respectively. Additionally, we evaluated the performance of Cunefare et al. [46] after 
training new networks and parameters on the current ACHM split detector and confocal 
images (SD-CNN-ACHM and C-CNN-ACHM) using leave-one-subject-out cross validation. 

To quantify the performance of the different methods, we first matched the automatically 
detected cones to the cones marked by the first grader one-to-one for each image pair in a 
similar fashion to Cunefare et al. [46]. To summarize, an automatic cone was considered a 
true positive if it was located within some distance d of a manually marked cone. The value d 
was set to the smaller between 0.75 of the median spacing between manually marked cones in 
the image and 8 μm. The upper limit was used to account for images with sparse cone 
mosaics due to disease, and was chosen to be smaller than the maximum value of d found in 
healthy eyes in [46]. Automatically detected cones that were not matched to a manually 
marked cone were considered false positives, and manually marked cones that did not have a 
matching automatically detected cone were considered false negatives. In the case that a 
manually marked cone matched to more than one automatically detected cone, only the 
automatically marked cone with the smallest distance to the manually marked cone was 
considered a true positive, and the remaining were considered false positives. To remove 
border artifacts, we did not analyze marked cones within 7 pixels (3.5 μm) of the edges of the 
images. After matching, for each image pair the number of automatically marked cones 
(NAutomatic) and manually marked cones (NManual) can then be expressed as: 

 Automatic TP FPN N N ,= +  (1) 

 Manual TP FNN N N ,= +  (2) 

where NTP is the number of true positives, NFP is the number of false positives, and NFN is 
the number of false negatives. For each image pair, we then calculated the true positive rate, 
false discovery rate, and Dice’s coefficient [75, 76] as: 

 TP ManualTrue positive rate N / N ,=  (3) 

 FP AutomaticFalse discovery rate N / N ,=  (4) 

 TP Manual AutomaticDice's coefficient 2N / (N N ).= +  (5) 

The second set of manual markings (SB) was compared to the first set of manual markings in 
the same way to assess inter-observer variability. 

3. Results 

Figure 7 shows a representative example of each automated method tested as well as the 
second set of manual markings in comparison to the first set of manual markings. In the 
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marked images, automatically detected cones that were matched to a manually marked cone 
(true positives) are shown in green, cones missed by the automatic algorithm (false negatives) 
are shown in cyan, and automatically detected cones with no corresponding manually marked 
cone (false positive) are shown in red. Figure 8 displays examples of the performance of the 
single modality Cunefare et al. [46] method with the SD-CNN-ACHM and our proposed 
method using the dual–mode LF-DM-CNN architecture. Instances where the LF-DM-CNN, 
which uses multimodal information, correctly marks ambiguous locations in the split detector 
image where the single mode SD-CNN-ACHM method does not are indicated by orange 
arrows. 

Table 1 summarizes the performance of the automated methods in comparison to the first 
(more experienced) manual grader, as well as the variability between the two graders over the 
200 ACHM image pairs in our data set. A large increase in performance can be seen by 
training Cunefare et al. [46] on ACHM images before testing. Our proposed method using the 
LF-DM-CNN architecture had the best performance in terms of Dice’s coefficient. C-CNN 
and SD-CNN had higher true positive rates at the cost of substantially worse false discovery 
rates. 

Table 1. Average performance of automatic methods and second manual marking with 
respect to the first manual marking across the data set (standard deviations shown in 

parenthesis). 

 True positive rate False discovery rate Dice’s coefficient 

Bergeles et al. [48] 0.622 (0.206) 0.227 (0.249) 0.633 (0.163) 

C-CNN [46] 0.999 (0.004) 0.907 (0.061) 0.166 (0.096) 

SD-CNN [46] 0.985 (0.025) 0.448 (0.236) 0.675 (0.201) 

C-CNN-ACHM 
 

0.744 (0.193) 0.292 (0.200) 0.694 (0.159) 

SD-CNN-ACHM 
 

0.882 (0.113) 0.124 (0.138) 0.867 (0.097) 

LF-DM-CNN 0.896 (0.091) 0.088 (0.097) 0.899 (0.075) 

Manual (grader # 2) 0.860 (0.131) 0.092 (0.122) 0.875 (0.106) 
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single-mode CNN architecture, and showed that our method had good agreement with the 
current gold standard of manual grading. The method was tested on a set of images taken 
from 16 different subjects and at a range of retinal eccentricities. 

The proposed LF-DM-CNN architecture outperformed the other methods tested, including 
the state-of-the-art Bergeles et al. [48] method. It should be noted that the parameters of [48] 
were set experimentally based on Stargardt images. The performance might be improved by 
optimizing the parameters for ACHM images. This highlights the utility of a method that 
automatically learns features and parameters from training data, such as our CNN method, 
instead of requiring manual adjustment. Our method also had comparable performance to a 
second set of manual markings when the first set of manual markings was considered to be 
the gold-standard. 

Additionally, Table 1 shows that our method using a dual-mode architecture, LF-DM-
CNN, outperformed the other methods which only take advantage of a single imaging 
modality. The C-CNN and SD-CNN [46] had higher true positive rates but much worse false 
discovery rates. This is likely due to these networks being trained on healthy eyes with more 
regular and higher density cone mosaics, and substantially different features in the case of the 
confocal images. The SD-CNN-ACHM greatly outperformed the C-CNN-ACHM, which 
might suggest that split detector images provide more information than the confocal images in 
determining cone locations. Additionally, for the final fully connected layer of the LF-DM-
CNN which combines the information from the two modalities, 56.4% of the weight 
magnitude was associated with the split detector information and 43.6% was associated with 
the confocal information (averaged across the validation groups). This is not surprising 
considering that the manual markings were done primarily using the split detector images 
with the confocal images used to resolve ambiguities, and that split detector AOSLO is able 
to visualize residual cone structures in ACHM, whereas confocal does not. Even so, from Fig. 
1 and Fig. 8 it can be seen that the confocal AOSLO images can provide complimentary 
information which can be used to resolve ambiguities in the simultaneously captured split 
detector AOSLO images. 

Figures 8(b) and 8(c) show examples of cones correctly detected by the single mode SD-
CNN network but missed by the dual-mode LF-DM-CNN network. In these cases, the cone-
like structures are more prominent in the split detector images than in the confocal images. 
Thus, the single mode SD-CNN is more sensitive to these features than the LF-DM-CNN 
method. Indeed, as shown in Table 1, the LF-DM-CNN is overall more reliable for detecting 
cones. 

A limitation of our study is that our method was only trained and tested on images of 
ACHM. However, our CNN based deep learning method learns features directly from training 
data, which should allow our method to accurately detect cones in other disease cases by 
simply changing the training data. This is supported by the fact that our similar previous 
single-mode method ([46]), which was originally tested on healthy images, performed well on 
ACHM split detector images by only changing the training data set. Further, we expect that 
this algorithm can be easily modified for detection of photoreceptors on alternative high-
resolution imaging techniques such as computational AO [77], and en face AO optical 
coherence tomography images of photoreceptors, which are similar in structure to AOSLO 
images [78], as well as for other retinal neurons such as ganglion cells which have recently 
been visualized with ophthalmic AO technology [30, 79]. 
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