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Abstract

The Lotka-Volterra equations are a dynamical system in the form of an auto-

nomous ODE. The aim of this thesis is to explore the carrying simplex for non-

competitive Lotka-Volterra systems for the case of 2- and 3-species, where it is refer-

red to as a balance simplex. Carrying simplices were developed by M.W. Hirsch in

a series of papers. They are hypersurfaces which asymptotically attract all non-zero

solutions in the phase portrait. This essentially means that all the non-trivial dy-

namics occur on the carrying simplex, which is one dimension less than the system

itself. Many of its properties have been studied by various authors, for example:

E.C. Zeeman, M.L. Zeeman, S. Baigent, J. Mierczyński.

The first few chapters of this thesis explores the 2-species scaled Lotka-Volterra

system, where all intrinsic growth rates and intraspecific interaction rates are set to

the value 1. This simplification of the model allows for an explicit, analytic form of

the balance simplex to be found. This is done by transforming the system to polar

co-ordinates and explicitly integrating the new system. The balance simplex for this

2-species model is precisely composed of the heteroclinic orbits connecting non-zero

steady states, along with these states themselves.

The later chapters of this thesis focuses on the 3-species case. The existence of

the balance simplex in particular parameter cases is proven and it is shown to be
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piecewise analytic (when the interaction matrix containing the parameters is strictly

copositive). These chapters also work towards plotting the balance simplex so it can

be visualised for the 3-species system.

In another chapter, more general planar Kolmogorov models are considered. Con-

ditions sufficient for the balance simplex to exist are given, and it is again composed

of heteroclinic orbits between non-zero steady states.

This thesis was completed under the supervision of Stephen Baigent.
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Impact Statement

Our research and results will primarily be useful for those studying the areas of

population ecology and continuous autonomous dynamical systems. The carrying

simplex has been an area of mathematical interest as it implies all the non-trivial

dynamics of the system occurs on a hypersurface, which is one dimension less than

the system itself. Our work extends the existence of the carrying simplex beyond

competitive systems where we call it a balance simplex or manifold. Currently we

have published two papers on this research, with more to come. These will be useful

particularly for other mathematicians and ecologists, who may build on this research

in the future.

In Chapter 6, we discuss general planar Kolmogorov models and provide sufficient

conditions for the existence of the balance manifold when the system has at most

one interior steady state. These types of models cover many different ecological

models thus our work may be useful outside of academia too, in the area of species

preservation or population ecology. For example, the results are applicable to models

with facultative mutualism, or where a prey species has a Holling type-II functional

response. Researchers who study these planar Kolmogorov systems will be able to

test whether the system has a balance manifold using our conditions. Note that not

all of our conditions are necessary for the balance manifold to exist, so researchers

may also be able to determine other sufficient conditions by comparing our conditions

with their model.

Our work on 2-species scaled Lotka–Volterra systems provides explicit and analy-
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tic expressions for the balance simplex. We believe these results will be beneficial for

future research as the balance simplex in the 3-species system matches these expres-

sions on the planar boundaries. The curvature of the balance simplex can also be

explicitly studied. The curvature of the carrying simplex for Lotka–Volterra models

has been studied by a number of researchers (e.g. E.C. Zeeman, M.L. Zeeman, S.

Baigent) as it has implications for the stability of the unique interior steady state

when it exists.

In Chapter 5, we explore a method to plot the balance simplex in the 3-species sy-

stem which works in non-competitive cases. M.L. Zeeman and M. LaMar developed

CSimplex for the program Geomview which plots the carrying simplex for compe-

titive 3-species systems. Our method, based on Darboux polynomials, is not just a

numerical result, but gives an insight as to why the method works and the solution

is in the form of a zero set to a series which satisfies the dynamics of the system.

We believe these methods may be useful for those studying invariant manifolds in

3-dimensional systems (thus to pure mathematicians as well).
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Chapter 1. Introduction to Lotka–Volterra Systems and Carrying Simplices 17

1.1 The Lotka–Volterra equations

The Lotka–Volterra equations, in their predator-prey form, were first used in the

early 20th century. Lotka used them to model chemical reactions [55], and later

applied them to organic systems of herbivores and plants [56]. The same equations

were also published by Volterra who was asked to investigate the population of fish

in the Adriatic Sea after World War I [91].

Whilst the original model was not realistic in its assumptions (e.g. the environ-

ment and food supply for the prey does not change over time), the model in its

general form has been an area of mathematical interest [97].

Definition 1.1.1 For an n-species system, the general Lotka–Volterra equations for

i = 1, . . . , n are:

dxi
dt

= xi

(
ri −

n∑
j=1

αijxj

)
(1.1)

=: xifi

=: Fi

where xi is the density of species i, thus x = (x1, . . . , xn) ∈ Rn
≥0 = [0,∞)n, the

non-negative orthant. The per capita growth rate of species i is given by fi which is

a polynomial of degree 1. This model assumes that individuals from the same species

are identical in terms of their interactions and fitness. The intrinsic growth rate of

species i is given by ri and represents the growth rate of an individual of species i

when there is no interaction with any other individuals.

Definition 1.1.2 If i = j, αii is called an intraspecific interaction coefficient, the ef-

fect species i has on itself. If i 6= j, αij is called an interspecific interaction coefficient,

the effect species j has on species i (a different species).
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Note that for the system (1.1), we have used a minus sign in front of these inte-

raction coefficients, so if αij > 0, then species j has a negative effect on species i. If

additionally αji > 0, we say that species i and j compete with one another. If these

coefficients are both negative, we say that the species are co-operating, and if the

coefficients are different signs, we say one species predates on the other. The latter

case may not represent the classic predator-prey model, depending on the sign of the

intrinsic growth rates.

Definition 1.1.3 We say (1.1) is a competitive Lotka–Volterra system if ri > 0 and

αij > 0 for all i, j ∈ 1, . . . , n.

We will only consider systems where ri and αij are constant for all i, j. Systems

where this is not true have also been studied [49]. For example, if ri and αij depend on

time with a delay period, it can be used to model seasonal shifts in the environment

and changes in animal behaviour [65], making the model more realistic but harder

to work with analytically in higher dimensions. Putting a time delay on the variable

xi can be used to represent a gestation period for the species; eating another species

is not instantly beneficial to the predator’s population size [26, 96]. This delay can

also be used to model species migration in and out of the system [16]. Alternatively,

species migration can be modelled with multiple habitats (known as patches), each

with their own Lotka–Volterra system, with a term for species movement between

patches [32,60]. Another example of making the Lotka–Volterra model more realistic

is having the intraspecific interaction coefficients αii depend on xi, this dependency

is usually written as a separate term from the constant intraspecific effect [105].

This can be used to model the Allee effect which describes how small populations

benefit from increasing the number of individuals (e.g. it will be easier to find a

mate or gather resources together) but large populations do not due to the increase

in intraspecific competition [21,82].

Lotka–Volterra models have been extended to study different areas. For example,
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the effect infectious diseases has on a Lotka–Volterra system [89], or finding travelling

wave solutions to Lotka–Volterra systems with a diffusion term [25]. Outside of

population dynamics, the Lotka–Volterra system can also be used in finance and

manufacturing [20, 39, 52]. Modis considered company stocks as species competing

for investors as the resource [64]. Chiang used the competitive model to forecast the

markets for two different types of semiconductors in Taiwan, based on past data [17].

In physics, the Lotka–Volterra models have been used in the study of lasers, where

the variables can represent the electromagnetic field intensity and the population

inversion [45, 73]. The equations have also been used in cosmology, for example,

Perez et al. [68] showed that Friedmann–Lemâıtre cosmological dynamics can be

viewed as a Lotka–Volterra system where the species are barotropic fluids, leading

them to find a Lyapunov function to describe the asymptotic behaviour.

An important property of the n-species Lotka–Volterra model is that there exists

a homeomorphism which maps it to the (n+1)-strategy replicator equations [37,67],

essentially meaning the behaviour of models can be made equivalent. The replicator

equations are key to the study of game theory which can be used to model behaviour

and exploring which strategies will prevail in certain contexts [37]. For example,

game theory can be used to explain ritualistic fighting behaviour in animals and why

individuals of the same species typically do not fight each other to the death, but

rather until an individual surrenders [80].

The dynamics of the Lotka–Volterra system can be analysed through the phase

portrait and steady state analysis [37]. The phase portrait shows how solutions to

the system change over time through the use of orbits. It is easy to see that Rn
≥0 is

invariant for the system. In fact, the interior of the orthant, Rn
>0 = (0,∞)n, is also

invariant for the system but of course as time goes to infinity, species can become

extinct thus the limit point of an initial population may not belong in Rn
>0. We now

list some basic theory typical from analysing dynamical systems [69].
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Definition 1.1.4 We define the flow of (1.1) as the unique solution to the system,

denoted by ϕt : Rn
≥0 → Rn

≥0 where t ∈ R. We call ϕt a semiflow if we only consider

t ≥ 0. When the point x0 ∈ Rn
≥0 is fixed, the trajectory through x0 is denoted ϕt(x0)

and is the same as the map: x0 7→ x(t, x0). The image of R under this map gives

the orbit of x0.

Definition 1.1.5 We denote by O+(x) = {ϕt(x) : t ≥ 0} the forward orbit through

x and O−(x) = {ϕt(x) : t ≤ 0} the backward orbit through x. The orbit through x

is denoted by O(x) = O+(x) ∪O−(x).

Definition 1.1.6 A steady state of (1.1) is a point s ∈ Rn
≥0 which satisfies F (s) =

(F1(s), . . . , Fn(s)) = 0. Equivalently, φt(s) = s for all t ∈ R. In literature s is also

referred to as a fixed point, critical point or an equilibrium point.

An interior steady state s∗ ∈ Rn
>0 of (1.1) is a point such that f(s∗)

= (f1(s∗), . . . , fn(s∗)) = 0. For (1.1), s∗ is typically unique when it exists, otherwise

there are infinitely many points satisfying f(s∗) = 0. In the unique case we say the

interior steady state does not exist if s∗ /∈ Rn
>0.

Definition 1.1.7 The ω-limit of a point x, denoted by ω(x), is the set of all points y

for which there exists some sequence tn →∞ such that limn→∞ ϕtn(x) = y. Similarly,

the α-limit of x, denoted α(x) is the set of all points z for which there exists some

sequence tn →∞ such that limn→∞ ϕ−tn(x) = z.

Theorem 1.1.1 ( [69]) For any system where the vector field is C1 (continuously

differentiable), e.g. (1.1), if an orbit through x is contained in a compact subset

of Rn
≥0, then α(x) and ω(x) are non-empty, compact, connected subsets of Rn

≥0 (by

a connected set, say C, we mean a set which cannot be divided into two disjoint

non-empty subsets which are open in C).

Definition 1.1.8 A homoclinic orbit is an orbit which has its α-limit and ω-limit
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equal to the same steady state. A heteroclinic orbit has its α-limit and ω-limit equal

to different steady states.

Definition 1.1.9 Let s be a steady state of (1.1), we call any orbit which has its

α-limit equal to p an unstable orbit of p. Similarly, any orbit which has its ω-limit

equal to p is called a stable orbit of p.

Theorem 1.1.2 (Poincaré-Bendixson [84]) Let dx
dt

= F (x) be an ODE system

defined on an open set of R2. Let ω(x) be a compact, non-empty ω-set which contains

a finite number of steady states. Then one of the following holds:

1. ω(x) is precisely one steady state.

2. ω(x) is a periodic orbit.

3. ω(x) is a connected set containing steady states with homoclinic and heteroclinic

orbits connecting these states.

Definition 1.1.10 ( [69]) Let N be a neighbourhood of s ∈ Rn
≥0. The local stable

manifold of s relative to N is W s
loc(s) = {x ∈ N : O+(x) ⊂ N and ϕt(x)→ s as t→

∞}. The global stable manifold is W s(s) =
⋃
t≤0 ϕt(W

s
loc(s)).

The local unstable manifold of p relative to N is W u
loc(s) = {x ∈ N : O−(x) ⊂

N and ϕt(x)→ s as t→ −∞}. The global unstable manifold is W u(s) =⋃
t≥0 ϕt(W

u
loc(s)).

Definition 1.1.11 The basin of repulsion of a steady state s, R(s), is the set of all

points x such that limt→∞ ϕ−t(x) = s, i.e. R(s) = W u(s). The basin of attraction

of s, B(s), is the set of all points y such that limt→∞ ϕt(y) = s, i.e. B(s) = W s(s).

Note that these sets are open [83].

Definition 1.1.12 The Jacobian matrix of (1.1) is the n × n matrix J =
[
∂Fi
∂xj

]
.

When i 6= j, ∂Fi
∂xj

= xi
∂fi
∂xj

and when i = j, ∂Fi
∂xi

= xi
∂fi
∂xi

+ fi.
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Definition 1.1.13 A steady state s is called hyperbolic if J (s) has no eigenvalues

with their real part equal to zero.

We will typically only consider the cases where all steady states are hyperbolic since

the local dynamics are completely known due to the following theorem:

Theorem 1.1.3 (The Hartman–Grobman Theorem [69]) Let E be an open

subset of Rn containing the origin and let ϕt be the flow of a nonlinear system, e.g.

(1.1), where the vector field F is C1. Suppose that F (0) = 0, and that A := J (0)

has no eigenvalue with zero real part. Then there exists a homeomorphism H of an

open set U containing the origin onto an open set V containing the origin such that

for each x0 ∈ U , there is an open interval I0 ⊂ R containing zero such that

H ◦ ϕt(x0) = eAtH(x0), for all t ∈ I0, (1.2)

i.e. H maps orbits of the nonlinear system near the origin onto orbits of the linearised

system
(
dx
dt

= Ax
)

near the origin and preserves the parametrisation by time. This

result can be applied to steady states which are not on the origin by a linear change

of co-ordinates.

This theorem means that Jacobian analysis is an effective way to determine the local

dynamics around hyperbolic steady states. The signs of the eigenvalues of a steady

state determine its stability type.

Theorem 1.1.4 (The Stable Manifold Theorem [69]) Let E be an open subset

of Rn containing the origin and let ϕt be the flow of a nonlinear system, e.g. (1.1),

where the vector field F is C1. Suppose that the origin is a hyperbolic steady state:

F (0) = 0 and J (0) has k eigenvalues with negative real part and n − k eigenvalues

with positive real part. Then there exists a k-dimensional differentiable manifold

S tangent to the stable subspace (spanned by the corresponding eigenvectors) of the
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linearised system of (1.1) at 0 such that for all t ≥ 0, ϕt(S) ⊂ S and for all x0 ∈ S,

limt→∞ ϕt(x0) = 0.

Similarly, there exists an n − k dimensional differentiable manifold U tangent to

the unstable subspace of the linearised system of (1.1) at 0 such that for all t ≤ 0,

ϕt(U) ⊂ U and for all x0 ∈ U , limt→−∞ ϕt(x0) = 0.

We call S the stable manifold of 0 and U the unstable manifold of 0. This result

can be applied to steady states which are not on the origin by a linear change of

co-ordinates.

Definition 1.1.14 ( [43,69]) M is an n-dimensional analytic manifold if there ex-

ists an open covering {Oα} where each cover is homeomorphic to Rn by φα : Oα → Rn

such that when Oα ∩ Oβ is nonempty then the composition map

φα ◦ φ−1
β : φβ(Oα ∩ Oβ)→ φα(Oα ∩ Oβ) (1.3)

is analytic meaning it can be represented by a convergent power series in a neig-

hbourhood of any point in φβ(Oα ∩ Oβ).

1.2 The scaled Lotka–Volterra system

In this thesis, we will consider some simplifications to the standard Lotka–Volterra

system so that we can find some analytical results. Namely, we set all intrinsic growth

rates ri and intraspecific interaction coefficients αii to the value 1, we called this the

scaled Lotka–Volterra system. A classic example of this system is the May-Leonard

model for three competing species [59].
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Definition 1.2.1 The scaled Lotka–Volterra system for i = 1, . . . , n is given by:

dxi
dt

= xi

1− xi −
n∑
j 6=i
j=1

αijxj

 (1.4)

=: xifi

=: Fi.

Compared to the general model (1.1), we have set 2n out of the n2 + n parameters

to have the value 1. Whilst this may seem quite restricted, particularly in the

2-species case where four out of six parameters will be fixed, any general Lotka–

Volterra system with equal, positive intrinsic growth rates ri = r > 0 and non-zero

intraspecific interaction coefficients αii can be written as a scaled Lotka-Volterra

system with the change of variables x̃i(t) = αii
r
xi
(
t
r

)
. This follows from the remark

before equation (1.1) in Tineo [85] (after correcting the expression in their argument

of xi).

By setting αii = 1, the system (1.4) has steady states on each axis given by the

standard unit basis vectors – a column vector of 0s with 1 in the ith entry. We will

refer to these as the axial steady states. Having positive intrinsic growth rates ri

means the origin is an unstable node, it is easy to verify that the Jacobian matrix

at the origin is a diagonal matrix with entries ri, see Definition 1.1.12. In (1.4), the

Jacobian matrix at the origin is the identity matrix which has the eigenvalue 1 with

multiplicity n.

Since the origin is an unstable node and αii = 1 > 0 for all i ∈ {1, . . . , n}, it is

clear then that every axial steady state is stable on the axis it lies on. Indeed, the

dynamics on the xi axis is given by:

dxi
dt

= xi(1− xi). (1.5)
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If xi < 1 then dxi
dt
> 0, if xi > 1 then dxi

dt
< 0. This also means the dynamics on each

axis remains bounded for all time.

We are interested in studying a particular (n − 1)-dimensional surface for the

scaled Lotka–Volterra system (1.4) which does not exist as a connected surface if

the dynamics in Rn
≥0 are unbounded. In the 2-species system, the case we need

to exclude is when the two species are strongly co-operative, i.e. α12α21 > 1 and

both α12, α21 < 0. Physically, this means the two species benefit from each other

so much that it outweighs any intraspecific competition. In our model, both species

populations would tend to infinity – this unrealistic outcome can occur due to positive

feedback; each species benefits proportionally to the other’s population size, which

in turn increases their growth rate and their own population size.

1.3 The carrying simplex

Hirsch studied the properties of convergence for co-operative and competitive

systems of continuous differential equations in a series of papers [33–35].

Definition 1.3.1 Consider a C1 system of differential equations in Rn,

dxi
dt

= Fi(x1, . . . , xn) = Fi(x), i = 1, . . . , n. (1.6)

This system is called co-operative if ∂Fi
∂xj
≥ 0 for i 6= j, and competitive if ∂Fi

∂xj
≤ 0 for

i 6= j.

Note that a competitive system is co-operative when time is reversed, i.e. t < 0.

A feature of co-operative systems is that the flow is monotone [34, 44]. We use the

standard notation for vector ordering, e.g. x ≤ y if xi ≤ yi for all i, and other

inequalities having the analogous meaning. A flow ϕt of a system is monotone if

ϕt(x) ≤ ϕt(y) for all x ≤ y and t > 0, meaning it is order preserving. Hirsch used
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this property to prove theorems such as there are no attracting non-constant periodic

solutions in co-operative systems [34]. Another related property is that if all forward

orbits in a co-operative system are bounded, then the forward orbit of almost every

initial state converges to an equilibrium [79].

Hirsch’s purpose for the series of papers [33–35] was to explore when the long-

term behaviour of dynamical systems are known. When modelling systems that

exist in the real world, we typically encounter models in which almost all orbits to

converge to a steady state or asymptotically approach a periodic orbit. Systems

which lack this property and cannot be approximated by other systems which do

have this property can be said to be chaotic or possess strange attractors [33].

Hirsch found that research into the long-term behaviour of different types systems

is divided into two approaches. The first considers exploring the consequences of

certain assumptions about the large scale structure of the system, e.g. the structural

stability [75, 76] – whether properties and dynamics of the system remain similar

under a small perturbation of the parameters or variables. The techniques used tend

to be topological as examples come from geometry and physics. A benefit of this

approach is that it gives a wider, conceptual understanding of such systems, but may

not help in understanding a specific system.

The second approach focuses on specific classes of systems that arise in areas such

as biology, chemistry and economics where it may be hard to determine whether these

systems have a given structural property. Hirsch’s aim was to blend both of these

approaches by using the structural ideas to analyse classes of systems typically used

to model real systems such as those in biology.

In his third paper of this series [35], Hirsch focused on the long-term dynamics

of competitive Kolmogorov-type systems:
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Definition 1.3.2 Consider a Kolmogorov-type system in Rn
≥0,

dxi
dt

= Fi(x) = xifi(x), i = 1, . . . , n, (1.7)

where the per capita growth rates fi(x) are C1. It is called competitive if ∂fi
∂xj
≤ 0

for i 6= j. If ∂fi
∂xj

< 0 for all i, j, we call this system totally competitive.

Remark 1.3.1 Hirsch [35] only considered competitive systems with the following

properties:

1. Dissipation: There is a compact invariant set (called the fundamental attractor)

which uniformly attracts each compact set of initial points. This also implies

that infinity is repelling.

2. Irreducibility: The community matrix
[
∂fi
∂xj

]
is irreducible in Rn

≥0; for any x ∈

Rn
≥0 and i 6= j, there exists a finite sequence i = s1, . . . , sm = j such that

∂fsk
∂xsk+1

(x) 6= 0 for k = 1, . . . ,m− 1.

This essentially means that each species (directly or indirectly) influences every

other species.

Both of these conditions are satisfied for totally competitive Kolmogorov systems.

An example of a Kolmogorov-type system is the general Lotka–Volterra equations.

If we consider a competitive Lotka–Volterra system in which ri > 0 and αij > 0 for

all i, j, then it is totally competitive.

Hirsch’s key result is the existence of the carrying simplex, which he defines more

succinctly in a later paper [36]:

Definition 1.3.3 A carrying simplex of the competitive system (1.7) is a set

Σ ⊂ Rn
≥0\ 0 with the following properties:



Chapter 1. Introduction to Lotka–Volterra Systems and Carrying Simplices 28

1. Σ is compact and invariant to the flow of (1.7), ϕt.

2. The solution orbit of every non-zero point x ∈ Rn
≥0 is asymptotic with some

point y ∈ Σ, i.e. limt→∞|ϕt(x)−ϕt(y)|= 0. We will say that systems with this

property are asymptotically complete.

3. Σ is unordered, i.e. if x, y ∈ Σ and x ≥ y, then x = y.

The final property means that any line from the origin intersects Σ only once. This

can then be used to prove that Σ is homeomorphic to the (n − 1)-simplex, ∆n−1 =

{x ∈ Rn
≥0|
∑

i xi = 1}, by radial projection: x 7→ x∑
i xi

[36]. Carrying simplices

are Lipschitz continuous manifolds, thus they are continuous but not necessarily

C1-continuous. Conditions for the interior of Σ to be C1-continuous were given by

Brunovský [12] and Miercyński [61,63]. Examples of systems where the boundary of

Σ is not C1-continuous can be found in [62].

We briefly define what it means for a manifold to be Lipschitz.

Definition 1.3.4 ( [70]) Given two metric spaces (X, d) and (X ′, d′), a function

f : X → X ′ is called Lipschitz if there exists a constant L such that

d′(f(x), f(y)) ≤ Ld(x, y) (1.8)

for all x, y ∈ X.

If every x ∈ X has a neighbourhood U such that f |U is Lipschitz, then f is called

locally Lipschitz.

A function f : X → X ′ is called a lipeomorphism (or bi-Lipschitz) if it is a bijection

such that f and f−1 are locally Lipschitz [57].

Definition 1.3.5 ( [57]) A Lipschitz n-manifold is a separable metric space M such

that every point x ∈ M has a closed neighbourhood U which is lipeomorphic to

[−1, 1]n (recall that a space is called separable if it has a countable, dense subset).
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Carrying simplices as a concept were first introduced by Smale [77] who showed

that an arbitrary smooth flow in ∆n−1 can be embedded as an attractor in a com-

petitive system in the form of (1.7) with the additional conditions that the origin is

an unstable node, and ∂fi
∂xj

< 0 for all i, j (these conditions means the assumptions

of Remark 1.3.1 are satisfied). Hirsch builds on this, showing that in fact all of the

non-trivial dynamics of any such competitive system occur on a manifold which is

one dimension less than the system itself.

Theorem 1.3.2 (Carrying simplex [35]) In the competitive system (1.7) (with

assumptions from Remark 1.3.1), assume additionally that the origin is an unstable

node, and that at every non-zero steady state, we have ∂fi
∂xj

< 0 for all i, j. Then

Σ = ∂R(∞) (the boundary relative to Rn
≥0 of the basin of repulsion of infinity R(∞))

satisfies the conditions in Definition 1.3.3 to be a carrying simplex.

The condition that ∂fi
∂xj

< 0 for all i, j at every non-zero steady state ensures that

these states cannot be unstable nodes [35]. Indeed, take any of these non-zero steady

states, say s, and a small positive vector ε ∈ Rn
>0. At least one fi(s) = 0 for some i,

thus by continuity fi(s + ε) < 0. This means dxi
dt

(s + ε) < 0 implying that s is not

an unstable node.

Since all non-zero steady states and other ω-limit sets lie on Σ, it essentially

contains all the ‘interesting’ dynamics of the system [35]. For example, periodic

orbits occur only on Σ, when they exist.

In [36], Hirsch states sufficient conditions for a carrying simplex of (1.7) to be

unique. This can also be applied to discrete systems where the concept of a carrying

simplex also exists and has been well studied [24, 40, 72]. Smith [78] considered

discrete periodic Kolmogorov systems with the Poincaré map [84], providing several

conditions which were conjectured for the existence of a carrying simplex. This

was later proved by Wang and Jiang [92] with an additional condition based an

inequality involving the ratio of two points and their orbits. Carrying simplices are
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also applicable to a range of more general models, including nonautonomous and

random competitive Kolmogorov systems [74].

In [5], Baigent proved that for 3-dimensional totally competitive Kolmogorov

systems (1.7), the carrying simplex is unique using a method of surface evolution.

Theorem 1.3.3 ( [5]) Consider a 3-dimensional totally competitive Kolmogorov sy-

stem (1.7) which generates a semiflow ϕt for which the origin is a repeller. Then

there is a unique Lipschitz invariant surface Σ such that if M is a plane with unit

normal N > 0 for which M0 = M ∩ R3
≥0 6= ∅ then Mt = ϕt(M0) is a sequence of

smooth surfaces (with corners) that converges uniformly to Σ.

The theory of carrying simplices for both continuous and discrete-time is an

active research field, but to the best of our knowledge, all known results for carrying

simplices relate to competitive [24, 35, 36, 40, 92] or type-K competitive systems [53,

54]. Type-K competitive systems are Kolmogorov systems where the matrix
[
− ∂fi
∂xj

]
can be written in the following block matrix form:

[
− ∂fi
∂xj

]
=

 M1 −M2

−M3 M4

 , (1.9)

where M1 is a k×k matrix, M2 is a (n−k)×k matrix, M3 is a k×(n−k) matrix and

M4 is a (n−k)×(n−k) matrix. Both M2,M3 ≥ 0, and M1 and M4 have non-negative

off-diagonal elements. Note that for Lotka–Volterra systems, this matrix is equal to

A := [αij]. For n = 3, k = 2, an example is if species 1 and 3 are co-operating,

species 2 and 3 are also co-operating, but species 1 and 2 are competing. This does

not cover predator-prey type relationships.



Chapter 1. Introduction to Lotka–Volterra Systems and Carrying Simplices 31

1.4 The carrying simplex in competitive

Lotka–Volterra systems

When we study Lotka–Volterra systems with positive intrinsic growth rates for

all species and positive intraspecific interaction coefficients, we will observe that

∂R(∞) = ∂R(0) [101]. For competitive Lotka–Volterra systems, we will define the

carrying simplex to be the following uniquely defined set:

Definition 1.4.1 For competitive Lotka–Volterra systems, the carrying simplex Σ

will always refer to the set ∂R(0). It satisfies the properties discussed by Hirsch (e.g.

Definition 1.3.3).

Recall that we call a Lotka–Volterra system competitive if ri > 0 and αij > 0 for

all i, j. The condition ri > 0 is equivalent to the origin being an unstable node, and

−αij = ∂fi
∂xj

< 0 means the system is totally competitive and satisfies Theorem 1.3.2.

With a change in co-ordinates, it can be shown that the dynamics on Σ ⊂ Rn
≥0 follow

an (n− 1)-species Lotka–Volterra system but it is not typically competitive [10].

Definition 1.4.2 ( [37]) In biology, the carrying capacity (of an environment for a

particular species) is the maximum number of individuals from that species which

the environment can sustain when there are no interactions with other species. The-

oretically, when the population is above the carrying capacity, it will decrease in size,

if it below the carrying capacity, it will increase in size.

The reason Σ is called the carrying simplex is because it can be considered as

the higher dimensional version of the carrying capacity, separating solutions which

are growing from the origin from those which are declining from infinity. Indeed,

the 0-dimensional carrying simplex (for a 1-species system) is exactly the carrying

capacity. However, in higher dimensions the carrying simplex contains states where

some species (but not all) may be extinct.
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The carrying simplex is particularly useful for analysing 3-dimensional systems

as the dynamics on planar systems are relatively well understood. In fact, in the

3-species competitive Lotka–Volterra system, the convexity of the boundary edges

of Σ can determine whether an interior steady state is globally stable or repelling

when it exists [101]. In this paper, Zeeman and Zeeman also found a computational

condition for when an interior steady state of an n-species competitive system is

globally attracting or repelling. This is based on the tangent plane of Σ at the

interior steady state, thus the structure of Σ can provide information on the system

as a whole.

Theorem 1.4.1 ( [101]) Given the competitive Lotka–Volterra n-species system

with an interior steady state x∗, let H be the tangent plane to the carrying simplex

Σ at x∗. If Σ \ {x∗} lies above H then x∗ is a global attractor in Rn
>0, if Σ \ {x∗} lies

below H then x∗ repels in Rn
>0 excluding its 1-dimensional stable manifold.

This theorem is based around a split-Lyapunov function with respect to H.

Definition 1.4.3 ( [101]) The split-Lyapunov function V with respect to H is a

function defined on Rn
>0 such that:

V̇ > 0 in the region below H,

V̇ = 0 on H,

V̇ < 0 in the region above H.

The split-Lyapunov function can be thought of as a generalisation of some dxi
dt

and

its nullcline. Zeeman and Zeeman found a split-Lyapunov function which works for

any competitive Lotka–Volterra system, and a more computable version of Theorem

1.4.1 based on conditions for the signs of eigenvalues. Full details are in [101]. In [5],

Baigent shows that in a competitive 3-species system, it is the local curvature near x∗
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which can determine whether x∗ is globally attracting or repelling in R3
>0, assuming

Σ near x∗ is of differentiability class C2. In competitive 2-species Lotka–Volterra

systems, it is known that the interior of Σ is C1 [63].

In this thesis, we will explore the carrying simplex in 2- and 3-species scaled

Lotka–Volterra systems. When these systems are not competitive, we will refer to Σ

as the balance simplex (which is still defined as ∂R(0)). We refer to it by a different

name as we expect the aforementioned properties from the carrying simplex will no

longer hold in the non-competitive systems.

We know the balance simplex must be invariant to the flow and contain all non-

zero steady states. Thus in the 2-species case, we expect it to be composed of

heteroclinic orbits connecting these non-zero steady states. Our aim for this case

is to find an explicit, analytic solution for the balance simplex. For the 3-species

case, our goal will be to find a reliable method of plotting the balance simplex, after

proving its existence.

1.5 Thesis outline

The rest of this thesis is written as follows:

Chapters 2 and 3 considers Σ in general 2-species scaled Lotka–Volterra systems.

In Chapter 2, we examine the partial derivatives of the transformed system, where we

work with the proportion of species 1, and the total population density as variables.

We find the parameter space where the partial derivatives of the dynamics remain

bounded, meaning we can follow the ideas of Baigent’s paper [5] using the Hadamard

graph transform method [29]. This will prove the existence of Σ when α12, α21 < 2,

α12, α21 6= 1, and the system is not co-operative. This parameter space includes

cases where species are weakly competitive, or where there is a predator-prey type

relationship between the species and predation is not very strong.
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In Chapter 3 we transform the 2-species system into polar co-ordinates. By doing

this, we can solve the system using an integrating factor to find the general solution

explicitly and identify the balance simplex. In this chapter, we will cover all possible

parameter cases, as long as the dynamics are bounded (i.e. we exclude the strongly

co-operative case where both α12, α21 < 0 and α12α21 ≥ 1).

Chapters 4, 5 and 6 considers Σ in general 3-species scaled Lotka–Volterra sys-

tems. In Chapter 4, we follow the ideas of the 2-species explicit solution. We will

find a parametric series solution in the form x1 = G(T1, T2), x2 = T1G(T1, T2), x3 =

T2G(T1, T2). It matches exactly one of the known solutions on the boundaries, using

this we can prove the existence of Σ when the dynamics of the system are bounded

and αij < 1 and αijαji < 1 for all i 6= j, i, j ∈ {1, 2, 3}. Physically, this excludes the

case where species are strongly competitive or strongly co-operative. It also excludes

the case where one species is heavily predated on by another. Additionally, this

parametric solution gives the explicit form of Σ in the special case where αij = n
n+1

,

n ∈ N, for all i 6= j (where G is now a polynomial). In this chapter we also prove that

when the balance simplex exists, it is asymptotically complete. This also applies to

the 2-species scaled Lotka–Volterra system.

In Chapter 5, we prove the existence of Σ as long as the interaction matrix A =

[αij] is strictly copositive and compare this space to the parameter space discussed

in Chapter 4. Physically, this means that the average fitness of the population is

always positive.

Chapter 6 focuses on plotting an approximation of Σ in the 3-species system, since

in general we do not have an explicit expression. The method resembles finding a

Darboux polynomial [22], but we find an infinite series instead.

In Chapter 7 we consider general planar Kolmogorov systems with at most one

interior steady state. By analysing the stability and Poincaré index [69] of steady

states, we provide sufficient conditions for the balance manifold to exist. In this
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chapter, we do not refer to Σ as the balance simplex as it may not project radially

1-to-1 to the unit simplex.

In Chapter 8 we give some concluding remarks on our results and state some

possible areas for research in the future.



Chapter 2

The Extension of Parameters for

Boundedness

36
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In this chapter, we consider the 2-species scaled Lotka-Volterra system where all

intrinsic growth rates and intraspecific interaction coefficients are set to the value 1.

We have the following system:

dx1

dt
= x1(1− x1 − αx2) =: F1,

dx2

dt
= x2(1− βx1 − x2) =: F2, (2.1)

where we have denoted the interspecific interaction coefficients as α12 =: α and

α21 =: β. We will denote the interaction matrix by A:

A =

1 α

β 1

 . (2.2)

To ensure we only consider hyperbolic steady states, we exclude the case where α = 1

or β = 1. Towards the end of the chapter, our calculations will follow the ideas

of Baigent’s papers [4, 5] who proved the existence and uniqueness of the carrying

simplex for the 3-species competitive Lotka–Volterra model using a method based

on the graph transform method by Hadamard [29].

The idea is to start with an initial surface close to the origin such that under the

semiflow of the system, ϕt (t ≥ 0), it forms a sequence of increasing surfaces. Another

initial surface is taken sufficiently far from the origin such that under the semiflow

it forms a sequence of decreasing surfaces. Baigent showed that these two sequences

converge to the same unique, invariant Lipschitz surface Σ which asymptotically

attracts all non-zero solutions, i.e. the carrying simplex. This was achieved by

examining how the unit normal of these surfaces changes in time, and by using the

fact that competitive flows are order-preserving in backwards time, i.e. if ϕt(x) ≤

ϕt(y) then ϕs(x) ≤ ϕs(y) for all s ≤ t. The methods and proofs used also apply to

the 2-species competitive case.
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The aim of this thesis is to explore the carrying simplex in non-competitive sy-

stems, we refer to this as a balance simplex, as not all the properties of a carrying

simplex will hold. We know that for the Lotka–Volterra model with positive intrin-

sic growth rates, the carrying simplex is the boundary (relative to Rn
≥0) of the basin

of repulsion of the origin, which is equal to the boundary (relative to Rn
≥0) of the

basin of repulsion of infinity [101]. Thus in the 2-species model, the carrying simplex

is composed of the (unique) heteroclinic orbits connecting non-zero steady states,

including these states [4].

Definition 2.0.1 For the n-species Lotka–Volterra equations, the balance simplex

Σ will always refer to the set ∂R(0), the boundary (relative to Rn
≥0) of the basin

of repulsion of the origin R(0). When the system is competitive, it is precisely the

carrying simplex.

Remark 2.0.1 We will often refer to the balance simplex as a manifold to keep the

terminology consistent with the carrying simplex. In the upcoming chapters of this

thesis, we will see that Σ may not be smooth everywhere, however it will be composed

piecewise of analytic manifolds (namely the unstable manifolds of non-zero steady

states).

For non-competitive systems, we do not generally have the property of order

preservation in backwards time. Instead, we consider a transformation of the 2-

species system into the total population density and the proportion of species 1. We

will find the space where the parameters (α and β) keep the partial derivatives of

the dynamics bounded. This enables us to find a sequence of Lipschitz surfaces as

in Baigent’s paper [5].
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2.1 Jacobian analysis

Before we start, it will be useful to classify the stability of the steady states of

(2.1). The Jacobian matrices are:

J (0, 0) =

1 0

0 1

 , (2.3)

J (0, 1) =

1− α 0

−β −1

 , (2.4)

J (1, 0) =

−1 −α

0 1− β

 , (2.5)

J (x∗) =

 −x∗1 −αx∗1

−βx∗2 −x∗2

 ; x∗1, x
∗
2 > 0. (2.6)

We denote the interior steady state by x∗ :=
(
α−1
αβ−1

, β−1
αβ−1

)
which exists when it lies

in R2
>0. By examining the signs of the traces and determinants:

• The origin is always an unstable node.

• If α < 1 and β > 1, then x∗ does not exist, (0, 1) is a saddle point and (1, 0) is

a stable node.

• If (α = 1 and β > 1) or (α < 1 and β = 1), then x∗ does not exist. One

of the Jacobian matrices of the axial steady states will have an eigenvalue

of 0 meaning that state is non-hyperbolic. We do not consider these cases

but discuss them here for completeness. By plotting the phase plane and

considering the nullclines, we again find that (0, 1) is a saddle point and (1, 0)

is a stable node.

• If (α ≥ 1 and β < 1) or (α > 1 and β ≤ 1), then x∗ does not exist and (0, 1) is

a stable node and (1, 0) is a saddle point.
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• If both α, β > 1 then x∗ exists as a saddle point and both axial steady states

are stable nodes.

• If both α, β < 1 and αβ < 1, then x∗ exists as a stable node and both axial

states are saddle points.

• If both α, β < 1 and αβ ≥ 1, then x∗ does not exist and both axial steady

states are saddle points; the dynamics are unbounded. The concept of a balance

simplex is not applicable and both species are strongly co-operative.

• If both α = β = 1 then all the points on the line x2 = 1−x1 (joining both axial

steady states) are interior steady states. For this case, this line is the carrying

simplex.

Note that when the axial steady states are saddle points, their stable manifold is

always the axis they lie on. This can be shown with the eigenvectors, or the fact

that the origin and infinity are always repelling in our system. For these axial saddle

points, the unstable manifold is tangent to the (unique) unstable eigenvector pointing

into R2
>0 and forms the heteroclinic orbit. Note also that in this system one of the

ends of all heteroclinic orbits is a saddle point.

Note the following:

Lemma 2.1.1 The system (2.1) has no interior non-trivial periodic orbits.

Proof : Follows directly from the statement of the Dulac Theorem [69] with the

Dulac function σ(x) = 1
x1x2

. Indeed,

div(σ(F1, F2)) = − 1

x1

− 1

x2
< 0; x = (x1, x2) ∈ R2

>0,

and so there can be no non-trivial periodic orbits lying completely in R2
>0. �
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2.2 Transformation to (u,N)-co-ordinates

Consider the n-species scaled Lotka–Volterra system. We transform this to the

(u,N) co-ordinates where u = (u1, . . . , un)T is the vector containing the proportions

of each species, and N = x1 + . . . + xn is the total population density. Note that

ui = xi
N
, i = 1, . . . , n. The dynamics in this new co-ordinate system is given by:

dN

dt
=

n∑
i=1

Nui(1−N(Au)i)

= N −N2uTAu,

dui
dt

= ui(1−N(Au)i)− ui(1−NuTAu)

= uiN(uTAu− (Au)i),

where i = 1, . . . , n − 1 and the proportion of species n is given by un = 1 − u1 −

. . .− un−1. We can rescale time by N without affecting the qualitative behaviour on

the phase plane (except that it will no longer show that N = 0 is a steady state).

The positions and stability of the other steady states remain unaffected. Keeping

the same notation for t and the derivative, we have the system:

dN

dt
= 1−NuTAu, (2.7)

dui
dt

= ui(u
TAu− (Au)i), i = 1, . . . , n− 1. (2.8)

Note that the ui dynamics are now independent of N . This decoupling of the u

dynamics has been used by several authors (e.g. [15,104]) and relies on the fact that

all species have the same intrinsic growth rate (in this case, ri = 1).

For now, we focus on the 2-species case, where the proportion of species 1 is

denoted by u (and the proportion of species 2 is 1 − u). An example of the phase

portrait in both co-ordinate systems is shown in Figure 2.1. We will denote B :=
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(a) (x1, x2)-co-ordinates
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(b) (u,N)-co-ordinates

Figure 2.1: A competitive 2-species scaled Lotka–Volterra system (2.1) where α = 0.5
and β = 0.3 shown in the two co-ordinates systems we consider. Recall that u is the
proportion of species 1, and N is the total population density of both species. The
black points are the steady states. The interior steady state is globally attracting on
the interior.

α + β − 2. In (u,N) co-ordinates, the space we consider is [0, 1] × [0,∞) and the

dynamics are:

dN

dt
= 1− (1 +Bu−Bu2)N

=: 1− h(u)N, (2.9)

du

dt
= u(1− u)(1− α +Bu)

=: g(u). (2.10)

Note that u can be solved for independently of N , and the solution for this system

is in the form N = N(u(t), t) which is smooth as the vector field is smooth [8].

Additionally, we assume the system is bounded, from the previous section we know

the unbounded case is where both species are strongly co-operative, i.e. α, β < 0 and

αβ ≥ 1. The new co-ordinate system maps the origin (x1, x2) = 0 to the line N = 0.

The axial steady states (x1, x2) = (0, 1) and (1, 0) are mapped to (u,N) = (0, 1) and
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(1, 1) (respectively). We consider an initial condition N(u, 0) = ε > 0 (where ε is

arbitrarily small) for u ∈ [0, 1] and evolve this line with the flow of the system over

time. Note that on this initial line, ∂N
∂u

is bounded. We consider:

dN

dt
=
∂N

∂t
+ g(u)

∂N

∂u
= 1− h(u)N. (2.11)

Taking the partial derivative with respect to u and rearranging using the total time

derivative:

∂

∂t

∂N

∂u
+ g′(u)

∂N

∂u
+ g(u)

∂2N

∂u2
= −h′(u)N − h(u)

∂N

∂u
,

⇒ d

dt

∂N

∂u
= −(h(u) + g′(u))

∂N

∂u
− h′(u)N, (2.12)

where the prime ′ is used to denote the derivative with respect to u. On u ∈ [0, 1],

the polynomials h and h′ are bounded and we are assuming N remains bounded. If

we additionally have h(u) + g′(u) > 0 for u ∈ [0, 1] this would mean that ∂N
∂u

remains

bounded for t > 0 and thus ∂N
∂t

is also bounded for t > 0 by equation (2.11). This

means the solution N(u, t) is a Lipschitz function in u and t (see [66] and also Lemma

2.2.1); as we evolve our initial line with the flow, it remains Lipschitz and we know

it remains bounded (with respect to the N co-ordinate).

Definition 2.2.1 A function f : R2 → R is called Lipschitz if it is Lipschitz continu-

ous, i.e. |f(x)−f(y)|≤ C||x−y|| for all x, y ∈ R2 where C is a constant, independent

of x, y. The norm ||·|| is the Euclidean norm.

Lemma 2.2.1 If ∂N
∂u

and ∂N
∂t

are bounded for u ∈ [0, 1], t ≥ 0 then N(u, t) is a

Lipschitz function in the variables u and t.

Proof : Define the finite constants:

M1 = sup

{∣∣∣∣∂N∂u (u, t)

∣∣∣∣ | (u, t) ∈ [0, 1]× [0,∞)

}
, (2.13)
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M2 = sup

{∣∣∣∣∂N∂t (u, t)

∣∣∣∣ | (u, t) ∈ [0, 1]× [0,∞)

}
. (2.14)

Let u1, u2 ∈ [0, 1], t1, t2 > 0. By the triangle inequality:

|N(u1, t1)−N(u2, t2)|≤ |N(u1, t1)−N(u1, t2)|+|N(u1, t2)−N(u2, t2)|. (2.15)

Using the Mean Value Theorem [71], there exists some T between t1 and t2 such that

N(u1, t1)−N(u1, t2)

t1 − t2
=
∂N

∂t
(u1, T ), (2.16)

thus |N(u1, t1)−N(u1, t2)|≤M2|t1−t2|. Similarly |N(u1, t2)−N(u2, t2)|≤M1|u1−u2|.

We find that:

|N(u1, t1)−N(u2, t2)| ≤M2|t1 − t2|+M1|u1 − u2|

≤
√
M2

1 +M2
2 ||(u1, t1)− (u2, t2)||, (2.17)

where we have used the Cauchy–Schwarz inequality [71]. Thus N(u, t) is a Lipschitz

function in the variables u and t, with the Lipschitz constant
√
M2

1 +M2
2 . �

Therefore, we can form a sequence of uniformly bounded functions that are Lip-

schitz, {N(u, t)}t∈N = {Nt}, of which there exists a convergent subsequence, con-

verging to a function which is also Lipschitz. This follows from a version of the

Arzelà–Ascoli theorem [66,71]:

Theorem 2.2.2 (Arzelà–Ascoli) If {fn}n∈N is a uniformly bounded sequence of

real valued functions on [a, b] such that each fn is Lipschitz continuous with the same

Lipschitz constant, then there is a subsequence that converges uniformly on [a, b].

The limit function is also Lipschitz continuous with the same Lipschitz constant.

The fact that each function in {Nt} has the same Lipschitz constant follows from
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the fact that the partial derivatives of N can be bounded by the same bound for any

t > 0 (see M1 and M2 in the proof of Lemma 2.2.1).

2.3 The boundedness of ∂N
∂u

The condition h(u) + g′(u) > 0 is equivalent to requiring maxu∈[0,1][−h(u) −

g′(u)] < 0 which simplifies to:

max
u∈[0,1]

[α− 2 + u(2(1− α)− 3B) + 4Bu2] =: max
u∈[0,1]

[M(u)] < 0. (2.18)

Recall that B = α + β − 2. M(u) has a turning point ũ = −2(1−α)+3B
8B

, at which the

second derivative is M ′′(ũ) = 8B. We now have several distinct cases:

1. ũ ∈ (0, 1) and B > 0. This implies ũ is a minimum so we want the endpoints

of M(u) to be negative, i.e. max{α− 2, β − 2} < 0.

2. ũ ∈ (0, 1) and B < 0. Here, ũ is a maximum, so we want M(ũ) < 0. This

simplifies to 9α2−16α+14αβ−16β+9β2 < 0 which gives an ellipse contained

in [−1, 2]2 of the αβ-plane. The condition ũ ∈ (0, 1) will remove parts of this

ellipse.

3. ũ /∈ (0, 1). For this case, just consider the end points again, i.e. we want

max{α− 2, β − 2} < 0.

4. B = 0 (which occurs on the line α + β = 2). In this case, we would consider

(2.18) directly, which gives max{α− 2,−α} < 0.

The regions on which one of these cases is satisfied will be denoted by Ω, shown

in Figure 2.2. We can conclude that any (α, β) ∈ Ω implies ∂N
∂u

remains bounded

for any t > 0 (thus also the boundedness of ∂N
∂t

). This then implies our functions
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Figure 2.2: The four distinct, open regions on the αβ-plane which imply the boun-
dedness of ∂N

∂u
. The union of these regions is denoted by Ω. Note that Ω does not

include values where both α, β < 0 (the co-operative case).

{Nt} are Lipschitz and so on as described previously. We will show these functions

converge to the balance simplex (Definition 2.0.1).

The most notable result is that we have regions where one of the parameters is

positive and the other negative which has not been discussed before in the context of

carrying simplices. The disadvantage of changing to (u,N) co-ordinates is that our

region does not cover all competitive cases (specifically, the case where the species are

very strongly competing), where we know the carrying simplex exists by the work

of Hirsch [35]. This parameter space does include cases where species are weakly

competitive, or where there is a predator-prey type relationship between the species

but the prey is not strongly beneficial to the predator.
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2.4 Convergence to a unique balance sim-

plex

With the assumption (α, β) ∈ Ω, we have a sequence of uniformly bounded Lip-

schitz functions {Nt} in the uN -plane. For the solution N(u, t) with fixed t, denote

the region underneath it (containing the line N = 0) by N−(u, t) = {(u0, N0) | N0 <

N(u0, t)} and the (unbounded) region above it by N+(u, t) = {(u0, N0) | N0 >

N(u0, t)}.

If we start with N(u, 0) = ε > 0 sufficiently small, then dN
dt

> 0 thus the set

N−(u, t1) ⊂ N−(u, t2) for any 0 ≤ t1 < t2. This means that {Nt} is an increasing

(with respect to the N co-ordinate at each u), uniformly bounded sequence of Lip-

schitz functions which converges to some Σ1, say. Similarly, if ε > 0 was sufficiently

large, then dN
dt

< 0 and N−(u, t2) ⊂ N−(u, t1) for any 0 ≤ t1 < t2. In this case,

{Nt} is now a decreasing, uniformly bounded sequence of Lipschitz functions which

converges to some Σ2, say. We have found two limits from above and below and aim

to show they are equal. When discussing convergence using the (x1, x2)-co-ordinates,

we will denote these two limit sets as Σx
1 and Σx

2 .

Lemma 2.4.1 Σ1 lies in the region under Σ2, i.e. for any fixed u0 ∈ [0, 1], Σ1(u0) ≤

Σ2(u0). The same statement holds in the x1x2-plane in the sense that the first inter-

section of any ray in R2
≥0 from the origin must either be with Σx

1, or both Σx
1 and Σx

2

simultaneously.

Proof : In the uN -plane, the statement holds due to the construction of Σ1 and Σ2.

In the x1x2-plane, the statement follows when considering the analogous limit sets

Σx
1 and Σx

2 . �

Lemma 2.4.2 In the uN-plane, Σ1 and Σ2 both intersect the line u = 0 at the

steady state (0, 1), and the line u = 1 at the steady state (1, 1).
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(a) x∗ does not exist (b) x∗ does exist

Figure 2.3: The region Jx is shaded in grey. The red lines are Xε
1 and Xε

2 which are
dependent on the arbitrarily small parameter ε > 0. When the interior steady state
x∗ does exist, we expect that x∗ ∈ ∂Jx due to its invariance. In this case, Jx is split
into two distinct regions.

In the x1x2-plane, Σx
1 and Σx

2 both intersect the x1-axis at the axial steady state (1, 0)

and the x2-axis at the axial steady state (0, 1).

Proof : Since Σ1 and Σ2 are the limits of a sequence of functions which evolve with

the flow of the system (2.9) and (2.10), they are invariant to the flow. Thus they are

also invariant on the lines boundary lines u = 0 and u = 1.

Recall that for the system (2.1) in x-co-ordinates, there is a unique non-zero

steady state which attracts all positive points on the x1-axis, and similarly for the

x2-axis. This also true for the lines u = 0 and u = 1 when we consider the uN -plane,

where the steady states are (1, 0) and (1, 1). It is clear then that Σ1 ∩ {u = 0} =

Σ2 ∩ {u = 0} = (0, 1) and Σ1 ∩ {u = 1} = Σ2 ∩ {u = 1} = (1, 1).

The statement in the x1x2-plane follows when considering Σx
1 and Σx

2 . �

Claim 1 Let Ju be the region enclosed by Σ1 and Σ2. It is not possible for Σ1 6= Σ2

and Ju to have an area of 0 for the system (2.9), (2.10).

Proof : Σ1 and Σ2 are continuous, Lipschitz curves which are invariant to the flow

of (2.9), (2.10). The only possibility for the statement of the claim to be true is if Σ1
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and Σ2 differs from each other by ‘spikes’ of zero area. The neighbourhood around

these spikes would contradict the Lipschitz property (Definition 2.2.1). �

Lemma 2.4.3 The two limit functions Σ1 and Σ2 are equal.

Proof : Suppose Σ1 6= Σ2 and that there is a non-empty region enclosed by the

two curves called Ju (the case where the inequality holds but this enclosed region

is empty was handled in Claim 1). By Lemma 2.4.2, ∂Ju ∩ {u = 0} = (0, 1) and

∂Ju ∩ {u = 1} = (1, 1), where ∂Ju denotes the boundary of Ju.

The change in co-ordinates (x1, x2) 7→ (u,N) is a bijection if we exclude the

origin in the x1x2-plane and the line N = 0 in the uN -plane. We know that N = 0

is repelling so it does not intersect Σ1 or Σ2. Thus we can map Σ1 and Σ2 back to

the x1x2-plane where they are still continuous, bounded curves denoted by Σx
1 and

Σx
2 respectively. In the x1x2-plane, Ju is mapped to a region we will denote by Jx

(the shaded region in Figure 2.3). The boundary ∂Jx touches the x1-axis at (1, 0)

and the x2-axis at (0, 1). Following Baigent’s paper [4], we work with these regions

in the x1x2-plane.

Consider a small ε > 0 and the domain [ε,∞)2 =: R2
≥ε. Denote Jx ∩ R2

≥ε by Jεx.

For the boundary ∂Jεx, label the horizontal segment ∂Jεx ∩ {x2 = ε} =: Xε
1 and the

vertical segment ∂Jεx ∩{x1 = ε} =: Xε
2 (See again Figure 2.3 showing these regions).

We know that Xε
1 and Xε

2 each resemble the connected lines shown in Figure 2.3

since ε can be made arbitrarily small and we are only considering hyperbolic steady

states (the local dynamics are completely known due to the Hartman–Grobman

Theorem [69]). Since the axial steady states are either saddles or stable nodes (recall

the classification in Section 2.1), ∂Jx will not intersect the lines x1 = ε or x2 = ε

each more than twice.

Let σ(x) = 1
x1x2

for any x ∈ R2
≥ε. Recall that the vector field of the system (2.1)
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is denoted by Fi(x) := xifi(x) and F = (F1, F2).

div(σF ) = − 1

x1

− 1

x2

, (2.19)

note that in R2
≥ε, div(σF ) < 0.

Now we consider the Divergence Theorem [81] on Jεx:

ˆ
∂Jεx

σF · n dS =

ˆ
Jεx

div(σF ) dV, (2.20)

where n denotes the outward pointing unit normal vector of ∂Jεx (taken anticloc-

kwise), dS is a line element and dV is a volume element. We know that

ˆ
Jεx

div(σF ) dV < 0, (2.21)

and the value of this integral decreases as ε > 0 decreases, since the integrand is

negative and Jεx would increase in area. We know that on ∂Jεx \ (Xε
1 ∪Xε

2), F.n =

0 since ∂Jx is composed of the limit sets Σx
1 and Σx

2 which are tangent to flow

everywhere, except at the finite number of steady states, where F = 0.

If x∗ exists, it lies on ∂Jx due to invariance. At this point, the unit normal is well

defined:

n =
∇F
|∇F |

, (2.22)

∇F (x∗) = (−x∗1,−x∗2)T 6= 0. (2.23)

For the line integral then, we have

ˆ
∂Jεx

σF · n dS = 0−
ˆ
Xε

1

f2(x1, ε)

x1

dx1 −
ˆ
Xε

2

f1(ε, x2)

x2

dx2

= −
ˆ
Xε

1

1− βx1 − ε
x1

dx1 −
ˆ
Xε

2

1− ε− αx2

x2

dx2. (2.24)
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Using the triangle inequality:

∣∣∣∣ˆ
∂Jεx

σF · n dS
∣∣∣∣ ≤ |Xε

1 |max
x∈Xε

1

∣∣∣∣1− βx1 − ε
x1

∣∣∣∣+ |Xε
2 |max
x∈Xε

2

∣∣∣∣1− ε− αx2

x2

∣∣∣∣ . (2.25)

Recalling Lemma 2.4.2, we note that as ε→ 0, Xε
1 and Xε

2 become shorter in length

and all points on these lines converge to (x1, x2) = (1, 0) and (0, 1) respectively,

thus the terms in the maximum functions remain bounded in this limit. This means

the line integral (2.24) is tending to 0 as ε → 0, whereas the area integral (2.21) is

becoming larger in magnitude (since it is negative and decreasing as ε > 0 decreases).

We can thus choose an ε > 0 such that (2.20) does not hold, contradicting the

Divergence Theorem. We can conclude that Jx has an area of 0 and Σ1 = Σ2. �

With the calculations in the proof of Lemma 2.4.3, we also find the following:

Corollary 2.4.4 The system (2.1) has no interior non-trivial closed orbits.

Proof : The non-trivial periodic orbits were covered by Lemma 2.1.1. The only

remaining case is homoclinic orbits of the interior steady state x∗. We consider the

Divergence Theorem for the homoclinic orbit H(x∗), and the function σ = 1
x1x2

in

R2
>0. See equation (2.20) but with Jεx replaced with H(x∗).

On H(x∗), n is perpendicular to F everywhere except possibly at x∗. From

(2.22), n(x∗) is finite thus will not effect the value of the line integral. Since the

integrand σF ·n = 0 everywhere else on H(x∗), the line integral is zero, contradicting

the equality with the area integral from the Divergence Theorem. Thus no such

homoclinic orbit exists H(x∗). �
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2.5 Extension of the previous parameter

space

Our previous parameter space Ω was contained in [−1, 2]2. We can improve on

this result by using a different transformation from the (x1, x2) co-ordinates in R2
≥0.

For a, b > 0, let x1 = Sva and x2 = S(1 − v)b; we consider the new co-ordinates

(v, S) where

S =
1

a
x1 +

1

b
x2, (2.26)

v =
x1

aS
. (2.27)

Note that the boundedness of the system in (x1, x2) co-ordinates implies the boun-

dedness of S. When x1 = 0 we have v = 0, otherwise v = (1 + ax2

bx1
)−1 so v ∈ [0, 1].

The dynamics are:

dS

dt
= S + S2[b(v − 1)(1 + v(α− 1)) + av(v(β − 1)− β)],

dv

dt
= S(1− v)v[b(v − 1)(α− 1) + av(β − 1)]. (2.28)

By rescaling time by S and simplifying, we have:

dS

dt
= 1− S[b+ v(b(α− 2) + aβ) + v2(b(1− α) + a(1− β))]

=: 1− h̃(v)S,

dv

dt
= v(1− v)[b(v − 1)(α− 1) + av(β − 1)]

=: g̃(v). (2.29)
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Note that

dS

dt
=
∂S

∂t
+ g̃(v)

∂S

∂v
. (2.30)

We can find our parameter space following the previous method,

d

dt

∂S

∂v
= −

(
h̃(v) + g̃′(v)

) ∂S
∂v
− h̃′(v)S. (2.31)

We want h̃(v) + g̃′(v) > 0 on v ∈ [0, 1] which is equivalent to

maxv∈[0,1][−h̃(v)− g̃′(v)] < 0, i.e.

max
v∈[0,1]

b(α− 2) + v[b(6− 5α) + a(2− 3β)] + 4v2[b(α− 1) + a(β − 1)]

=: max
v∈[0,1]

M̃(v) < 0. (2.32)

M̃(v) has a turning point

vM̃ =
b(5α− 6) + a(3β − 2)

8[b(α− 1) + a(β − 1)]
, (2.33)

at which the second derivative of M̃ is d := 8[b(α − 1) + a(β − 1)]. Now we have

several distinct cases:

1. vM̃ ∈ (0, 1) and d > 0. This implies vM̃ is a minimum so we want the end

points of M̃(v) to be negative, i.e. max{b(α− 2), a(β − 2)} < 0. Since a, b > 0

this is equivalent to max{α− 2, β − 2} < 0.

2. vM̃ ∈ (0, 1) and d < 0. This implies vM̃ is a maximum and we want M̃(vM̃) < 0.

The simplifies to b2(2− 3α)2 + a2(2− 3β)2 − 2ab(4 + 2α + 2β − 7αβ) < 0.

3. vM̃ /∈ (0, 1). For this case, we just consider the end points again, i.e. we want

max{α− 2, β − 2} < 0.
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Figure 2.4: The union of cases 1 to 4 is Ω̃, where ∂S
∂v

remains bounded. This is
the parameter space where we can form a series of Lipschitz functions to show the
balance simplex Σ exists. This example uses a = 7 and b = 1 in the transformation
to (v, S) co-ordinates.

4. d = 0 which occurs on the line b(α−1)+a(β−1) = 0. In this case, we consider

equation (2.32) directly, i.e. max{b(α− 2), 4b(1− α) + a(2− 3β)} < 0. Using

d = 0 and a, b > 0 this simplifies to max{α− 2, β − 2} < 0.

Let Ω̃ be the space where the parameters (α, β) satisfies one of the cases above,

where ∂S
∂v

remains bounded for any t > 0. An example of this region is shown in

Figure 2.4. If Ω̃ is non-empty then the sequence of functions {S(v, t)}t∈N =: {St} are

Lipschitz and we can follow the previous arguments to find a unique Σ. Note that the

transformation (x1, x2) 7→ (v, S) is still bijective, excluding the origin (x1, x2) = (0, 0)

and the line S = 0.

Our plots show that the previous parameter space Ω can be extended in one of

the negative directions to form Ω̃. This transformation still does not include the

co-operative case where both α, β < 0. Since the competitive case has already been

studied, we focus on the case where α and β have different signs.

Lemma 2.5.1 Suppose α and β are not equal to 1, have different signs and

max{α, β} < 2. Then the balance simplex Σ exists.
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Proof : Without loss of generality suppose 0 < α < 2 and β < 0. It is always

possible to choose a > 0 and b > 0 such that d = 8[b(α−1)+a(β−1)] > 0. By doing

this, we are in case 1 or 3 of Ω̃. However, max{α − 2, β − 2} < 0 is automatically

satisfied, so regardless of vM̃ , we have (α, β) ∈ Ω̃. This means we can find a, b > 0

such that ∂S
∂v

remains bounded for any non-negative time and we can repeat the

previous arguments in Section 2.4 to find a unique Σ. �

The physical interpretation of 0 < α < 2 and β < 0 is that species 1 benefits from

species 2, whilst species 2 has a negative effect from species 1. Species 1 can then be

described as a predator of species 2. Note that this is not the classic Lotka–Volterra

predator-prey system since all of our species have the same intraspecific competition

coefficients and positive intrinsic growth rates.

2.6 Conclusions

In this chapter, we have proved the existence of the balance simplex for (2.1)

when both interspecific interaction coefficients satisfy α, β < 2, α, β 6= 1 and the

system is not co-operative. This parameter space includes cases where species are

weakly competitive, or where there is a predator-prey type relationship between the

species and predation is not very strong. The balance simplex is analogous to the

carrying simplex for the Lotka–Volterra 2-species model in that it is an invariant

curve which asymptotically attracts all non-zero solutions. It separates R2
≥0 into two

regions where orbits have their α-limit as either the origin, or infinity.

The method differs slightly from the one used by Baigent [5] as it involves using

the uN -plane, where u is the proportion of species 1, and N = x1 + x2 is the total

number of individuals in the system. This enabled us to find conditions on the

parameters α and β where the partial derivatives of N remain bounded for all t > 0,

this is shown in Figure 2.2. With these conditions, we have a sequence of uniformly
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bounded, Lipschitz functions (in the variables u and t) starting either near the origin,

or far from it. There will be a convergent subsequence and we showed the limits of

these two sets of sequences are equal to the (invariant) balance simplex. We were

able to extend this parameter space to non-competitive cases, as long as the system

was not co-operative and both α, β < 2 and α, β 6= 1.

Whilst the existence of Σ = ∂R(0) could have been examined through the use

of the Poincaré-Bendixson Theorem [84] (which we will consider in Chapter 7), our

method here shows that Σ is still an attracting Lipschitz manifold for some non-

competitive systems.
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In this chapter, we discuss the methods and results of our recent paper [18], where

we derive explicit expressions for the balance simplex in 2-species scaled Lotka–

Volterra systems with any parameters (as long as the dynamics are bounded). The

main method will involve transforming the system to polar co-ordinates where the

exact solution can be found using an integrating factor. We discuss the convergence

of this solution in different parameter cases and show that it can also be written in

the form of a Gaussian hypergeometric function [6].

3.1 Background

For a Lotka–Volterra system with 2-species, the phase portraits are well known

[10,37,47]. However, explicit solutions are rare, whether for actual solutions [58,88],

or for invariant manifolds [9,98]. Here we obtain an explicit and analytic solution for

the heteroclinic orbits that connect non-zero steady states in a scaled Lotka–Volterra

system (see (3.1) on the next page). This solution, which we call a balance simplex

Σ, attracts all non-zero solutions and is invariant under the flow of the system. It

also divides the phase plane into two distinct regions. The lower region (containing

the origin) has solutions which are repelled by the origin. The unbounded region

above Σ has solutions in the phase plane which are declining from infinity.

In the case where both species compete against one another, Σ is precisely the

carrying simplex introduced by Hirsch [35]. The carrying simplex is a Lipschitz

manifold that attracts all non-trivial solutions and has been studied in more general

and higher dimensional systems (for continuous time see, for example, [5, 35, 85]

and for discrete-time [40, 41]). Our solution Σ provides an explicit example of an

analogue of the carrying simplex which also applies to predator-prey type or a co-

operative interactions. Figure 3.1 shows schematic views of the carrying simplex and

the balance simplex in a planar system.
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(a) Carrying simplex (b) Balance simplex

Figure 3.1: A general diagram of a carrying simplex and balance simplex in red. The
diagonal blue line is the unit simplex and the four grey points in each plot are steady
states of the system. The grey curves are solution orbits of the system.

3.2 2-species scaled Lotka–Volterra

system

Recall the 2-species scaled Lotka–Volterra system, where all intrinsic growth rates

are equal to 1 and the intraspecific interaction coefficients for both species are 1. The

former condition means that the origin is always an unstable node, and the latter

condition ensures there are no periodic orbits in (0,∞)2 [37] (see also Corollary 2.4.4

from Chapter 2). Taken together these conditions also mean that each species has

a normalised carrying capacity of 1, i.e. we have two axial steady states: (0, 1) and

(1, 0). The resulting system is:

dx1

dt
= x1(1− x1 − αx2),

dx2

dt
= x2(1− βx1 − x2). (3.1)

Standing assumption: The interspecific interaction coefficients α and
β can be of any sign or zero, but α, β 6= 1 (these cases will be discussed
in Section 3.9).

Note that all solutions are repelled from infinity apart from in the strongly co-
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operative case (where both α, β < 0 and αβ ≥ 1) which we do not consider as

all positive solutions will be unbounded; the concept of a balance simplex is not

applicable.

The system (3.1) has at most one interior steady state, x∗ =
(
α−1
αβ−1

, β−1
αβ−1

)
, which

we say exists when x∗ ∈ (0,∞)2, i.e. when both α, β > 1 or both α, β < 1 and

αβ < 1.

Definition 3.2.1 For the bounded system (3.1), we define the balance simplex Σ to

be the boundary (taken relative to R2
≥0) of the basin of repulsion of the origin, i.e.

Σ = ∂R(0).

Following the concept of the carrying simplex, the balance simplex will have the

following properties:

i) Σ is compact and invariant under the flow of the system.

ii) Σ globally attracts all non-zero points in [0,∞)2. Note that this is not the same

as asymptotic completeness from carrying simplices (see Chapter 1 Definition

1.3.3), which will be proven in Chapter 4 Theorem 4.5.2.

Thus Σ is compact, connected and contains all non-zero steady states, and Σ

separates solutions which are repelled by the origin from those which decline from

infinity. For the vast majority of parameter cases, we expect Σ to project radially

1-to-1 and onto the unit probability simplex [101].

A classification of the stability of the steady states in different parameter cases

was given in the Chapter 2 Section 2.1. The hyperbolic cases are represented in

Figure 3.2, showing their generic dynamics. In the next section, we will prove the

following lemma by finding the exact expression for the balance simplex Σ.

Lemma 3.2.1 When (α, β) ∈ R2 \ {(α, β) : α < 0, β < 0, αβ ≥ 1} the planar

system (3.1) has a compact and connected 1-dimensional invariant manifold Σ that
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(a) α, β < 1 ∗ (b) α > 1, β < 1 (c) α < 1, β > 1 (d) α, β > 1

Figure 3.2: Phase plots of 2-species scaled Lotka–Volterra systems in the x1x2-plane.
These four plots cover the generic qualitative dynamics of the system with different
interspecific interaction coefficients (α and β). The grey points are the steady states
of the system and the arrows show how solution orbits evolve over time. ∗Note Figure
3.2a does not apply to the strongly co-operative case (α, β < 0 and αβ ≥ 1) where
all positive solutions are unbounded.

globally attracts all non-zero solutions, and contains all non-zero steady states and

the heteroclinic orbits connecting them.

3.3 Explicit expressions for the balance

simplex

In this section we explicitly construct the balance simplex of Lemma 3.2.1 for all

(α, β) ∈ R2 \ {(a, b) : a < 0, b < 0, ab ≥ 1}.

We begin by transforming (3.1) into polar co-ordinates:

θ̇ = R cos θ sin θ[cos θ (1− β) + sin θ (α− 1)],

Ṙ = R[1−R cos2 θ (cos θ + α sin θ)−R sin2 θ (sin θ + β cos θ)].

With some simplification, we can write:

dR

dθ
−RB

A
= − 4

A
,

where A = (1 − α)(cos θ − cos 3θ) − (1 − β)(sin θ + sin 3θ) and B = (3 + β) cos θ +
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(1− β) cos 3θ + (3 + α) sin θ − (1− α) sin 3θ.

To work with rational functions, we use the substitution T = tan θ. Note that

we are only interested in the first quadrant, θ ∈
[
0, π

2

]
(i.e. T ∈ [0,∞)) and T = x2

x1
.

Using the chain rule, we can now write

dR

dT
+R

1 + αT + βT 2 + T 3

T (1 + T 2)[(1− β) + T (α− 1)]
=

√
1 + T 2

T [(1− β) + T (α− 1)]
. (3.2)

The differential equation (3.2) can be solved using the following integrating factor:

ν(T ) =
T

1
1−βΘ(T )ξ+1

√
1 + T 2

, (3.3)

where Θ(T ) = 1−β−T (1−α) and ξ+1 = −1+αβ
(α−1)(β−1)

, i.e. ξ = −2+α+β
(α−1)(β−1)

. Multiplying

by this integrating factor, then integrating we obtain formally

R(T ) =

´ T
0
s

β
1−βΘ(s)ξ ds+ C

ν(T )
, (3.4)

where C is a constant. If (T,R(T )) is a local solution of (3.2) passing through the

point (T0, R(T0)) = (T0, R0) where T0 ∈ [0,∞), then (x1(t), x2(t)) :=
(

R(t)√
1+t2

, tR(t)√
1+t2

)
is a local solution of (3.1) passing through the point (x0, y0) where x0 = R0√

1+T 2
0

and

y0 = T0R0√
1+T 2

0

. Different choices of T0, R0 determine the constant C in (3.4).

We define

µ(T ) =

ˆ T

0

s
β

1−βΘ(s)ξ ds (3.5)

= T
1

1−β (1− β)ξ
ˆ 1

0

s
β

1−β

(
1− sT

T ∗

)ξ
ds,

where T ∗ = β−1
α−1

(which may be positive or negative – recall that we restrict α 6=

1, β 6= 1). Depending on α, β, and the value of T , the integral µ(T ) may not always

converge, and this determines the range of values of T for which the local solution
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to (3.2) can be extended. Formally, our solution would then be:

R(T ) =
(1− β)ξ

√
1 + T 2

´ 1

0
s

β
1−β
(
1− sT

T ∗

)ξ
ds

Θ(T )ξ+1
+

C
√

1 + T 2

T
1

1−βΘ(T )ξ+1
, (3.6)

for which the balance manifold is given parametrically in (x1, x2) co-ordinates by{(
R(T )√
1+T 2 ,

TR(T )√
1+T 2

)
| T ∈ I

}
, where I ⊆ [0,∞) is the interval where (3.6) converges.

To provide an alternative solution form when the solution above fails to converge,

it is useful to note a symmetry in this problem. If α and β are swapped, this is

equivalent to swapping the index of the two species without changing the dynamics.

In the phase plane, this is equivalent to a reflection on x1 = x2, i.e. the axes are

swapped. We can return to our original dynamics by re-indexing the two species,

which we can do in the form of the transformation T → 1
T

=: T . With this in mind,

we define

µ2

(
T
)

=

ˆ T

0

s
α

1−αΘ2(s)ξ ds

= T
1

1−α (1− α)ξ
ˆ 1

0

s
α

1−α
(
1− sTT ∗

)ξ
ds, (3.7)

ν2

(
T
)

=
T

1
1−αΘ2(T )ξ+1√

1 + T
2

, (3.8)

where Θ2(T ) := 1−α− T (1− β). Using (3.7) and (3.8) we obtain a second solution

to (3.2):

R2 (T ) =
µ2

(
T
)

+ C2

ν2

(
T
) =

µ2

(
1
T

)
+ C2

ν2

(
1
T

) , (3.9)

where C2 is a constant of integration. For clarity, we will add the subscript ‘1’ to

our first solution (and Θ(T )):

R1(T ) =
µ1(T ) + C1

ν1(T )
. (3.10)
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R1(T ) R2 (T )

Case 1: β < 1, 1 < α < 2− β [0,∞) –

Case 2: α < 1, 1 < β < 2− α – [0,∞)

Case 3: α, β < 1 and αβ < 1 [0, T ∗] [T ∗,∞)

Case 4: β < 1, 1 < 2− β < α [0,∞) –

Case 5: α < 1, 1 < 2− α < β – [0,∞)

Table 3.1: The valid ranges in T for which we can use the solutions R1(T ) and
R2 (T ) in different parameter cases α and β. The remaining case (case 6) where both
α, β > 1 uses a slightly different solution and will be discussed later in Section 3.4.6.
A region plot of these cases can be found in Figure 3.3.

We will explore solutions to (3.2) made from R1 and R2 for different parameters

α and β in order to find an explicit expression for the balance simplex.

Remark 3.3.1 We note that solutions R1, R2 with appropriate constants C1 or C2

can be used to describe all orbits of (3.1), but this is not the focus of our study.

Rather we are concerned with the balance simplex which is constructed from special

orbits of (3.2), namely heteroclinic orbits.

The forthcoming analysis derives valid ranges we can use the solutions in different

parameter cases (see Figure 3.3) and a summary is given in Table 3.1.

3.4 Construction of the heteroclinic or-

bits

Now we will determine which constants C1 and C2 correspond to the solution

connecting all the non-zero steady states by explicitly examining the limits of the

solutions R1(T ) and R2 (T ). We will make use of two important results on the
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Case 6

Case 4

Case 1

Case 5

Case 2

Case 3

Unbounded

dynamics
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2

3

4

5

α

β

Figure 3.3: The parameter space (α, β) with the different cases shown, each extending
to infinity. Note that in the region of unbounded dynamics (both α, β < 0 and
αβ ≥ 1), the balance simplex does not exist.
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convergence of integrals (p-integrals [42]):

I1:

ˆ 1

0

1

xp
dx =

ˆ 1

0

x−p dx <∞ if and only if p < 1 (i.e.− p > −1).

I2:

ˆ ∞
1

1

xp
dx =

ˆ ∞
1

x−p dx <∞ if and only if p > 1 (i.e.− p < −1).

In what follows we use that when the interior steady state x∗ =
(
α−1
αβ−1

, β−1
αβ−1

)
exists, its position with respect to the variable T is given by T ∗ = β−1

α−1
> 0. For

(α, β) ∈ R2 \ {(α, b) : α < 0, β < 0, αβ ≥ 1}, x∗ exists if and only if T ∗ > 0. We

write T
∗

= 1
T ∗

.

3.4.1 Case 1: −∞ < β < 1 and 1 < α < 2− β

Here ξ > 0, 1
1−β > 0 and T ∗ < 0, so that there is no interior steady state. In this

case we expect the balance simplex to consist of a single heteroclinic orbit connecting

(1, 0) and (0, 1). We use the first solution R1(T ) since Θ1(T ) > 0 for T ∈ [0,∞).

Next we determine the constant C in (3.6) so that the balance simplex passes through

(1, 0) at T = 0 and (0, 1) at T =∞.

a) T → 0

For the limit of R1(T ) as T → 0, we have a potential problem with the T
1

1−β in

the denominator of the term with the constant C1 := C in equation (3.6). However,

if we set C1 = 0, then we can calculate the limit

lim
T→0

R1(T ) =
(1− β)ξ ·

√
1 · (1− β)

(1− β + 0)ξ+1
= 1, (3.11)

which in our original co-ordinates means (x1(0), x2(0)) = (1, 0), the axial steady state

on the x1 axis.
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b) T →∞

The leading order of ν(T ) as T → ∞ is 1
1−β + ξ > 0, thus ν(T ) is unbounded

T →∞. Note that β
1−β > −1, so from I2 and equation (3.5), µ(T ) is also unbounded

as T →∞. We consider the limit of R1(T ) using L’Hôpital’s rule:

lim
T→∞

R1(T ) = lim
T→∞

µ1(T ) + C1

ν1(T )
= lim

T→∞

µ′1(T )

ν ′1(T )
(3.12)

where

µ′1(T ) =T
β

1−βΘ(T )ξ,

ν ′1(T ) =
1√

1 + T 2

T
β

1−β

1− β
Θ1(T )ξ+1 +

1√
1 + T 2

T
1

1−β (ξ + 1)(α− 1)Θ1(T )ξ

− T
1

1−βΘ1(T )ξ+1 T

(1 + T 2)
3
2

. (3.13)

With some simplifications, we can show:

lim
T→∞

R1(T ) = lim
T→∞

µ′1(T )

ν ′1(T )
=

1
1

1−β (α− 1) + (ξ + 1)(α− 1)− (α− 1)
= 1. (3.14)

It is worth noting that the limit has this value regardless of the constant of inte-

gration C1. This is expected as the axial state (0, 1) is locally attracting with these

parameters.

We can conclude that with the choice of C1 = 0, the solution R(T ) = R1(T ), T ∈

[0,∞) corresponds to the balance simplex in (T,R) co-ordinates, joining both axial

steady states.

3.4.2 Case 2: β > 1 and −∞ < α < 2− β < 1

For our domain T ∈ [0,∞), Θ1(T ) < 0 which will be complex when raised to the

power ξ, however Θ2(T ) > 0 here so we consider the second solution, R2 (T ), instead.



Chapter 3. Explicit Solution for Σ in 2-Species Systems 68

This parameter space is equivalent to the case where −∞ < α < 1 and 1 < β < 2−α;

this is Case 1 with α and β exchanged. The solution is thus obtained analogously

from Case 1 by exchanging α and β, and the variable T with T everywhere in the

calculations since we are now using the second solution. The balance simplex Σ is

thus given by R = R2(T ) with C2 = 0 which joins the two axial steady states.

3.4.3 Case 3: −∞ < α, β < 1 and αβ < 1

The inequality αβ < 1 is required for boundedness of all solutions; without it,

the balance simplex does not always exist. Here ξ < −1, 1
1−β > 0 and T ∗ > 0, so

that there is an interior steady state. To construct the balance simplex will need to

join together the two solutions R1 and R2 at the interior steady state T = T ∗.

a) T → 0

Near T = 0, Θ1(T ) > 0 and we can calculate the limit of R1(T ) as done previously,

making the choice of C1 = 0 for boundedness: limT→0R1(T ) = 1.

b) T →∞, i.e. T → 0

For large T , we consider the solution R2 (T ) since Θ2

(
T
)
> 0 when T > T ∗. We

can use the analogous calculations in case 3a if we consider T small. With the choice

of C2 = 0: limT→∞R2 (T ) = limT→0
µ2(T )

ν2(T )
= 1.

c) T → T ∗

We first consider this limit from below, T → T ∗−, where only the first solution

R1(T ) is real. Since ξ < −1, µ(T ) behaves like I1; we know that µ(T ) is unbounded

as T → T ∗. The function ν(T ) is also unbounded as T → T ∗, again using ξ < −1.
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This means we can examine this limit of R1(T ) using L’Hôpital’s rule. We have:

lim
T→T ∗−

R1(T ) = lim
T→T ∗−

µ′1(T )

ν ′1(T )
=

√
(α− 1)2 + (β − 1)2

1− αβ
, (3.15)

which matches the value R(T ∗) =
√

(x∗1)2 + (x∗2)2 obtained from polar co-ordinates at

the interior steady state x∗. This is a valid conclusion for any constant of integration

C1, consistent with x∗ being attracting. We could also do an analogous calculation

for the limit T → T ∗+. Here the second solution R2 (T ) is real and we would consider

the limit T → T
∗− which gives exactly the same limit value as R2(T ∗) = R1(T ∗).

We conclude that by choosing C1 = C2 = 0, we have a solution which connects

each axial steady state to the interior steady state, thus giving the balance simplex.

3.4.4 Case 4: −∞ < β < 1 and 1 < 2− β < α

Here ξ < 0, 1
1−β > 0 and T ∗ < 0, so that there is no interior steady state. We use

the first solution R1(T ).

a) T → 0

Once again, if we set C1 = 0, then we find limT→0R1(T ) = 1, corresponding to

(1, 0).

b) T →∞

It is clear from I2 and equation (3.5) that µ1(T ) is unbounded as T → ∞ since

the leading order of its integrand is β
1−β + ξ = 1

α−1
− 1 > −1. The leading order of

ν1(T ) is β
1−β + 1 + ξ = 1

α−1
> 0 and so ν1(T ) is also unbounded as T → ∞ and we

can again apply L’Hôpital’s rule on R1(T ) to conclude limT→∞R1(T ) = 1 for any

constant C1, consistent with (0, 1) being attracting.
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Hence with C1 = 0, the solution R = R1(T ) corresponds to the balance simplex

joining both axial steady states.

3.4.5 Case 5: β > 1 and 2− β < α < 1

Here, we use the second solution, R2(T ), since Θ2(T ) > 0. Equivalently, this case

is where α < 1 and 1 < 2 − α < β which has been covered analogously in Case 4

with the first solution R1(T ). The balance simplex Σ is thus given by R = R2(T )

with C2 = 0.

3.4.6 Case 6: α, β > 1

Here ξ > 0, β
1−β < −1 and T ∗ > 0, so that there is an interior steady state. As

in Case 4 we will join R1 and R2 at T = T ∗.

a) T →∞

In this case Θ1(T ) > 0 if and only if T > T ∗. Thus for large T we now consider

the modification:

R∗1(T ) =
µ∗1(T ) + C1

ν1(T )
(3.16)

where

µ∗1(T ) =

ˆ T

T ∗
s

β
1−βΘ1(s)ξ ds. (3.17)

The integrand has leading order β
1−β + ξ = −1 + 1

α−1
> −1 since α > 1. This

means µ∗1(T ) is unbounded as T → ∞ using I2. The leading order of ν1(T ) is

β
1−β + 1 + ξ = 1

α−1
> 0 and so ν1(T ) is also unbounded as T →∞ and we can apply
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L’Hôpital’s rule,

lim
T→∞

R∗1(T ) = lim
T→∞

µ∗1(T ) + C1

ν1(T )
= lim

T→∞

µ′1(T )

ν ′1(T )
. (3.18)

This follows exactly the same calculation as in case 1b, thus we can conclude

limT→∞R
∗
1(T ) = 1, regardless of the constant of integration C1, consistent with (0, 1)

being attracting.

b) T → 0, i.e. T →∞

For small T (i.e. large T ), since Θ2(T ) > 0 when T < T ∗ we consider the

modification:

R∗2 (T ) =
µ∗2
(
T
)

+ C2

ν2

(
T
) =

µ∗2
(

1
T

)
+ C2

ν2

(
1
T

) (3.19)

where

µ∗2
(
T
)

=

ˆ T

T
∗
s

α
1−αΘ2 (s)ξ ds. (3.20)

Using the analogous calculations from case 6a, µ∗2
(
T
)

is unbounded as T → ∞,

and the same is true for ν2

(
T
)
. Thus we can apply L’Hôpital’s rule to conclude

that R∗2 (T ) converges to 1 as T → 0, i.e. as T →∞, regardless of the constant C2,

consistent with (1, 0) being attracting.

c) T → T ∗

Another point we must examine is T ∗ > 0 since Θ1(T ∗) = 0 and ξ > 0. We first

examine the limit from above (T → T ∗+) where R∗1(T ) remains real. It is clear that

ν1(T ∗) = 0 and limT→T ∗+ µ
∗
1(T ) = 0.

Since R∗1(T ) =
µ∗1(T )+C1

ν1(T )
, if C1 6= 0, then R∗1(T ) is unbounded as T → T ∗+. Setting
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C1 = 0, we can use L’Hôpital’s rule to examine the limit of R∗1(T ) as T → T ∗+. This

follows the calculation from case 3c, but we must be careful with the sign of α − 1

when simplifying and bringing terms into the square root:

lim
T→T ∗+

R∗1(T ) = lim
T→T ∗+

µ′1(T )

ν ′1(T )
=

√
(α− 1)2 + (β − 1)2

αβ − 1
, (3.21)

which matches the value of R(T ∗) =
√

(x∗1)2 + (x∗2)2 at the interior steady state

x∗. Since we expect x∗ to lie on the balance simplex, C1 = 0 is indeed the correct

constant for the balance simplex.

We can also do an analogous calculation for the limit of R∗2 (T ) as T → T ∗− (i.e.

as T → T
∗
+), which gives exactly the same limit value with the choice of C2 = 0.

Thus, for the case where both α, β > 1 we use the modified solution R∗1(T ) with

C1 = 0 in the range T ∈ [T ∗,∞) and R∗2(T ) with C2 = 0 in T ∈ [0, T ∗] for the

balance simplex.

3.5 Our solution is Σ, a balance simplex

Recall that the general solution R to (3.2) was found by transforming the scaled

Lotka–Volterra system (3.1) into polar co-ordinates, then using the substitution T =

tan θ. The constants C1 and/or C2 were set to 0 to find the balance simplex. This

gives a simple parametric form of our solution, for example, for R1(T ):

x1 =
1√

1 + T 2
R1(T ),

x2 =
T√

1 + T 2
R1(T ). (3.22)

Let R(T ), T ∈ [0,∞), be our complete solution to (3.2), equal to R1(T ) or R2 (T )

in the appropriate ranges of T , with the constants of integration C1 and/or C2 set to

0. We have seen that parametrically (x1, x2) =
(

1√
1+T 2R(T ), T√

1+T 2R(T )
)

and the
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function R(T ) is injective. We can therefore map our solution to the unit simplex

using (x1, x2) 7→ (u, 1−u) where u = x1

x1+x2
= 1

1+T
is the relative frequency of species

1. Thus our solution is homeomorphic to the unit 1-simplex by radial projection.

We have seen that in the 2-species scaled Lotka–Volterra system (3.1) where the

dynamics are bounded and steady states are hyperbolic, non-zero orbits are attracted

to non-zero steady states (e.g. Figure 3.2 and Chapter 2) which all lie on our solution.

The solution is also a heteroclinic orbit which is invariant to the flow of the system.

Thus our solution is Σ, a balance simplex, satisfying Definition 3.2.1.

3.6 Simplifications that use the Gaussian

hypergeometric function

The Gaussian hypergeometric function (GHF) [6,7,90] is defined for a, b, c, z ∈ C

by

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk, (3.23)

where the Pochhammer symbol means (x)0 = 1 and (x)k = x(x + 1) · · · (x + k − 1)

for a positive integer k. This power series in z is defined when c is not equal to a

non-positive integer and converges if |z|< 1.

The GHF also has the following integral representation which converges if |z|< 1

and <(c) > <(b) > 0 [6]:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt (3.24)
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where Γ is the Gamma function:

Γ(z) =

ˆ ∞
0

xz−1e−x dx, (3.25)

which converges absolutely when <(z) > 0. We now show that we can actually write

our solutions R1, R2, R∗1 and R∗2 in terms of GHFs.

We will also make use of Euler’s transformation of the hypergeometric function [6,

pp. 64], derived from the substitution t→ 1−t
1−tz in the integral representation (3.24):

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z). (3.26)

We can now write the integral µ1 (3.5) for β < 1 in the following way, using a = −ξ,

b = 1
1−β > 0, c = 2−β

1−β > 0, and also that Γ[c]
Γ[b]Γ[c−b] = Γ[b+1]

Γ[b]Γ[1]
= b = 1

1−β ,

µ1(T ) = T
1

1−β (1− β)ξ
ˆ 1

0

s
β

1−β

(
1− sT

T ∗

)ξ
ds

= T
1

1−β (1− β)ξ+1
2F1

[
−ξ, −1

β − 1
;
β − 2

β − 1
;
T

T ∗

]
= T

1
1−βΘ1(T )ξ+1

2F1

[
α

α− 1
, 1;

β − 2

β − 1
;
T

T ∗

]
, (3.27)

giving the general solution for β < 1:

R1(T ) =
√

1 + T 2
2F1

[
α

α− 1
, 1;

β − 2

β − 1
;
T

T ∗

]
+

C1

√
1 + T 2

T
1

1−βΘ1(T )ξ+1
. (3.28)

Similarly, recalling that we use T to denote 1
T

,

µ2

(
T
)

= T
1

1−αΘ2(T )ξ+1
2F1

[
β

β − 1
, 1;

α− 2

α− 1
;TT ∗

]
, (3.29)
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giving the general solution for α < 1:

R2 (T ) =

√
1 + T

2
2F1

[
β

β − 1
, 1;

α− 2

α− 1
;TT ∗

]
+

C2

√
1 + T

2

T
1

1−αΘ2

(
T
)ξ+1

. (3.30)

Remark 3.6.1 The third argument of 2F1 in µ1 (respectively µ2) is a non-positive

integer when β (respectively α) belongs to the set:

K =

{
k − 2

k − 1
| k is a non-positive integer

}
=

{
k − 1

k
| k is a negative integer

}
. (3.31)

note that K ⊂ (1, 2]. From Table 3.1, we can see that we only use µ1 in the case

where β < 1, thus β /∈ K and the GHF in equation (3.28) is well defined. Similarly,

µ2 is only used in cases where α < 1.

The integrals µ∗1 (3.17) and µ∗2 (3.20) (from case 6 where both α, β > 1) can also

be written in terms of GHFs:

µ∗1(T ) =

ˆ T

T ∗
s

β
1−βΘ1(s)ξ ds

= (α− 1)ξ
ˆ 1

0

[s(T − T ∗) + T ∗]
β

1−β [s(T − T ∗)]ξ (T − T ∗) ds

= (α− 1)ξ(T − T ∗)ξ+1T ∗
β

1−β

ˆ 1

0

sξ
(

1− s
(
T ∗ − T
T ∗

)) β
1−β

ds

=
(α− 1)ξ(T − T ∗)ξ+1T ∗

β
1−β

ξ + 1
2F1

[
β

β − 1
, ξ + 1; ξ + 2;

T ∗ − T
T ∗

]
.

Applying Euler’s transformation, we have

2F1

[
β

β − 1
, ξ + 1; ξ + 2;

T ∗ − T
T ∗

]
= 2F1

[
ξ + 1,

β

β − 1
; ξ + 2;

T ∗ − T
T ∗

]
=

(
T

T ∗

) 1
1−β

2F1

[
α

α− 1
, 1; ξ + 2;

T ∗ − T
T ∗

]
.
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Hence the general solution for T > T ∗ when α, β > 1 is

R∗1(T ) =
µ∗1(T ) + C1

ν(T )

=
α− 1

αβ − 1

√
1 + T 2

2F1

[
α

α− 1
, 1; ξ + 2;

T ∗ − T
T ∗

]
+

C1

√
1 + T 2

T
1

1−βΘ1(T )ξ+1
. (3.32)

Similarly,

µ∗2
(
T
)

=

ˆ T

T
∗
s

α
1−αΘ2 (s)ξ ds

=
(β − 1)ξ(T − T ∗)ξ+1T

∗ α
1−α

ξ + 1
2F1

[
α

α− 1
, ξ + 1; ξ + 2;

T
∗ − T
T
∗

]
. (3.33)

and so after applying the Euler transformation, the general solution for T < T ∗ is

R∗2(T ) =
µ∗2(T ) + C2

ν2(T )

=
β − 1

αβ − 1

√
1 + T

2
2F1

[
β

β − 1
, 1; ξ + 2;

T
∗ − T
T
∗

]
+

C2

√
1 + T

2

T
1

1−αΘ2(T )ξ+1
. (3.34)

Remark 3.6.2 For both µ∗1 and µ∗2 the third argument of their GHFs is a non-

positive integer k when

α =
k(1− β) + β

k(1− β)− 1 + 2β
. (3.35)

Note that the numerator and denominator are both positive since β > 1 and k is

a non-positive integer. Using β − 1 > 0 we can also see that k(1 − β) + β <

k(1−β)− 1 + 2β implying α < 1 in (3.35). Thus when using µ∗1 and µ∗2, their GHFs

are always defined since we only use them in the case where both α, β > 1.
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3.7 Summary of explicit solutions

Recall that T ∗ = β−1
α−1

and note that ξ+2 = 2αβ−α−β
(α−1)(β−1)

. When writing 2F1 here, we

are referring to the Gaussian hypergeometric function, with its analytic continuation.

1. −∞ < β < 1, α > 1:

(x1(T ), x2(T )) = 2F 1

[
α

α− 1
, 1;

β − 2

β − 1
;
T

T ∗

]
× (1, T ), T ∈ [0,∞).

2. −∞ < α < 1, β > 1:

(x1(T ), x2(T )) = 2F 1

[
β

β − 1
, 1;

α− 2

α− 1
;
T ∗

T

]
×
(

1

T
, 1

)
, T ∈ [0,∞).

3. −∞ < α, β < 1 and αβ < 1:

(x1(T ), x2(T )) =


2F 1

[
α

α− 1
, 1;

β − 2

β − 1
;
T

T ∗

]
× (1, T ), T ∈ [0, T ∗]

2F 1

[
β

β − 1
, 1;

α− 2

α− 1
;
T ∗

T

]
×
(

1

T
, 1

)
, T ∈ [T ∗,∞].

4. α > 1, β > 1:

(x1(T ), x2(T ))

=


β − 1

αβ − 1
2F1

[
β

β − 1
, 1; ξ + 2; 1− T ∗

T

]
×
(

1

T
, 1

)
, T ∈ [0, T ∗]

α− 1

αβ − 1
2F1

[
α

α− 1
, 1; ξ + 2; 1− T

T ∗

]
× (1, T ), T ∈ [T ∗,∞).
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3.8 Example plots for different species-

species interactions

Some phase plots with example parameters for α and β showing the balance

simplex can be found in Figures 3.4 and 3.5. Recall that the system (3.1) always has

axial steady states at (0,1) and (1,0).

1. Competition (α, β > 0) is shown in Figures 3.4a, 3.4b and 3.5b. Here Σ coi-

ncides with the carrying simplex which is known to be C1-continuous on the

interior R2
>0 [63]. From [4,85] it is known that the carrying simplex of the com-

petitive system (3.1) is convex when α + β < 2 (weakly competitive), concave

when α + β > 1 (strongly competitive) and a straight line if α + β = 1.

2. Predation (αβ < 0) is shown in Figures 3.4d and 3.5a. Note that this model is

not the same as the classic predator-prey model, since the origin is repelling.

We are taking all intrinsic growth rates to be positive – suggesting that the

predator has a secondary food source which it switches to when it primary food

source is scarce (known as ‘prey-switching’, see for example [87] and references

within).

3. Cooperation (α, β < 0) is shown in Figure 3.4c. As is well-known [37, 47],

the effect of cooperation is to enhance the population densities of both species

beyond that of their respective carrying capacities, as seen here. The most

notable feature in the balance simplex is that there is now a cusp at the in-

terior steady state, thus showing by example that, although the individual

heteroclinic orbits forming Σ are as smooth as the vector field, they may not

join smoothly at an interior steady state. Therefore, we can conclude that the

balance simplex for this model is at least continuous and piecewise analytic.

In Figure 3.5a, we provide an example of a non-competitive system where the
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balance simplex is analytic (not just piecewise).

3.9 Special cases

3.9.1 Rational function as the integrand

For any non-zero integers n1, n2 (of any sign), let α = n2−1
n2

and β = n1−1
n1

. From

our original integral µ(T ) (3.5), we find that:

µ(T ) =

ˆ
T n1−1

(
1− n1 − 1

n1

− T
(

1− n2 − 1

n2

))−n1−n2

dT. (3.36)

Note that n1−1 and−n1−n2 are integers meaning the integrand is a rational function

which we can integrate in the standard way and use the same original integrating

factor ν(T ) (3.3) to plot our solution R(T ).

3.9.2 Case α = 1 and β /∈ K ∪ {1}

If either α = 1 or β = 1 we have a different integral to start with and the interior

steady state x∗ does not exist. Note the case where both are equal to 1 has a line of

interior steady states which is also the carrying simplex, see Figure 3.7b.

Suppose, without loss of generality, that α = 1 and β /∈ K ∪ {1} (see (3.31) for

the definition of K). We now have:

dR

dT
+R

1 + T + βT 2 + T 3

T (1 + T 2)(1− β)
=

√
1 + T 2

T (1− β)
. (3.37)

The integrating factor is:

ν3(T ) =
T

1
1−β

√
1 + T 2

e
T

1−β . (3.38)
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(a) α = 0.2, β = 1.3 (case 2)
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(b) α = 0.5, β = 0.3 (case 3)
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(c) α = −0.1, β = −0.2 (case 3)
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(d) α = −0.5, β = 0.7 (case 3)

Figure 3.4: Phase plots of 2-species scaled Lotka–Volterra systems with different
interspecific interaction coefficients (α and β). Here Figures 3.4a and 3.4b are com-
petitive systems, 3.4c is a co-operative system and 3.4d is an example of predation.
In these plots, the solutions R1(T ) (dashed, orange) and R2 (T ) (solid, green) only
meet at the interior steady state x∗. Recall that there are always axial steady states
at (0,1) and (1,0).



Chapter 3. Explicit Solution for Σ in 2-Species Systems 81

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

x1

x
2

(a) α = 1.2, β = −0.9 (case 1)
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(b) α = 1.9, β = 2.2 (case 6)

Figure 3.5: Phase plots of 2-species scaled Lotka–Volterra systems with different
interspecific interaction coefficients (α and β). Here, 3.5a is an example of predation
where we only need to use one solution, R1(T ) (dashed, orange). Figure 3.5b is
a strongly competitive system, using the solutions R∗1(T ) (solid, black) and R∗2(T )
(dashed and dotted, red).

Now:

µ3(T ) =
1

1− β

ˆ
e
−T
β−1 T

−β
β−1 dT

= C − 1

1− β

ˆ ∞
T

e
−t
β−1 t

−β
β−1 dt

= C + (β − 1)
−β
β−1

ˆ ∞
T
β−1

e−τ τ
−β
β−1 dτ

= C + (β − 1)
−β
β−1 Γ

[
1

1− β
,

T

β − 1

]
(3.39)

where we have kept the constant of integration C in the definition of µ3 and Γ here

is the incomplete gamma function: Γ[s, x] =
´∞
x
ts−1e−t dt. By analytic continuity, Γ

can be defined for any x (even negative) except when s is a non-positive integer [7, vol

II]. For our case, this is when β ∈ K. Note that the case 1
1−β = 0 is not possible.

Thus when α = 1 and β /∈ K ∪ {1}, we have the general solution:

R(T ) =
µ3(T )

ν3(T )
. (3.40)
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An example of this case is plotted in Figure 3.6a. Note that when α = 1, the steady

state (0, 1) is non-hyperbolic.

3.9.3 Case α = 1 and β ∈ K

If α = 1 and β ∈ K suppose β = k1−1
k1

, where k1 is a negative integer. Recall that

K ⊂ (1, 2]. From (3.37), our integral is:

µ4(T ) = k1

ˆ
ek1T T k1−1 dT = C − k1

ˆ ∞
T

ek1t tk1−1 dt. (3.41)

By repeated integration by parts we have

µ4(T ) = C − k1e
k1t

tk1

k1

∣∣∣∣∣
∞

T

+ k1

ˆ ∞
T

ek1t tk1 dt

= C − k1e
k1t

tk1

k1

∣∣∣∣∣
∞

T

+ k1e
k1t

tk1+1

k1 + 1

∣∣∣∣∣
∞

T

− k2
1

k1 + 1

ˆ ∞
T

ek1t tk1+1 dt

= C − k1e
k1t

tk1

k1

∣∣∣∣∣
∞

T

+ k1e
k1t

tk1+1

k1 + 1

∣∣∣∣∣
∞

T

− k2
1

k1 + 1
ek1t

tk1+2

k1 + 2

∣∣∣∣∣
∞

T

+
k3

1

(k1 + 1)(k1 + 2)

ˆ ∞
T

ek1t tk1+2 dt. (3.42)

Note that when we evaluate the terms at∞ and T , the∞ part is equal to zero (since

k1 < 0), and the T part will have a minus sign. We use the following notation:

Ki =
ki1

(k1 + 1) · · · (k1 + i)
(3.43)

and let n = −1− k1 so that k1 + n = −1.

µ4(T ) = C + ek1T T k1 − K1 e
k1T T k1+1 + . . .+ (−1)iKi e

k1T T k1+i

+ . . .+ (−1)nKn e
k1T T k1+n + (−1)n

ˆ ∞
T

Kn k1 e
k1t

tk1+n

k1 + n
dt (3.44)



Chapter 3. Explicit Solution for Σ in 2-Species Systems 83

where

(−1)n
ˆ ∞
T

Kn k1 e
k1t

tk1+n

k1 + n
dt = (−1)n+1

ˆ ∞
T

Kn k1 e
k1t

1

t
dt

= (−1)n+1

ˆ ∞
−k1T

Kn k1 e
−τ 1

τ
dτ

= (−1)nKn k1Ei(k1T ). (3.45)

Here Ei(z) = −
´∞
−z e

−tt−1dt is the exponential integral. Note that we have the same

integrating factor, ν3 (3.38), as our previous case, thus when α = 1 and β ∈ K, we

have the general solution

R(T ) =
µ4(T )

ν3(T )
. (3.46)

For example with α = 1 and β = 5
4

(so that k1 = −4).

µ4(T ) =
e−4T

T 4
− 4e−4T

3T 3
+

16e−4T

6T 2
− 64e−4T

6T
− 256Ei(−4T )

6
(3.47)

which is plotted in the Figure 3.6b.

3.9.4 Case α + β = 2

It is known that for the competitive 2-species scaled Lotka–Volterra system, the

curvature of the carrying simplex depends on the term α+β−2 [4]. The sign of this

can affect whether the carrying simplex is convex or concave. As we have mentioned,

when α = β = 1, there is a line of interior steady states and this line (x2 = 1− x1)

is the carrying simplex (Figure 3.7b).

In other cases, we can still use the solutions we have derived (Section 3.7). So we
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(a) α = 1, β = −1.32 (β /∈ K ∪ {1}, C =
0.274)
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(b) α = 1, β = 1.25 (β ∈ K, C = 0)

Figure 3.6: Phase plots of 2-species scaled Lotka–Volterra systems where one of the
interspecfic interaction coefficients, α (without loss of generality), is equal to 1. The
solid green curve is the balance simplex, connecting both axial steady states.

assume α + β = 2 and α, β 6= 1, note that:

1− α = β − 1 (3.48)

α

α− 1
=
β − 2

β − 1
. (3.49)

The hypergeometric function used for first solution to the balance simplex simplifies

to

2F1

[
α

α− 1
, 1;

β − 2

β − 1
;
T (α− 1)

β − 1

]
=
∞∑
n=0

(−T )n. (3.50)

Thus in the cases which use this first solution, x1 = 1 − T + T 2 − T 3 + . . . and

x2 = Tx1 = T − T 2 + T 3 − . . . = 1 − x1 (since x1 converges). Thus the balance

simplex is precisely the line x2 = 1− x1. An example is shown in Figure 3.7a where

α = 2.23 and β = −0.23. The same holds for the hypergeometric function from the

second solution, so we can conclude that even in non-competitive cases, if α+β = 2,

the balance simplex is the line x2 = 1− x1.
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(a) α = 2.32, β = −0.32
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(b) α = 1, β = 1

Figure 3.7: Phase plots of 2-species scaled Lotka–Volterra systems where α+ β = 2.
In these cases, the balance simplex is the line x2 = 1− x1.

3.10 Discussion

We have introduced the concept of a balance simplex Σ to describe a manifold

where growth from small population densities and decay from large densities ba-

lance, and derived explicit formulae for Σ for the 2-species scaled Lotka–Volterra

equations (3.1) when the dynamics are bounded. These expressions are valid even

in non-competitive cases, showing that an analogous concept of the carrying simplex

introduced by Hirsch [35] exists outside of competitive systems, although not all of

the properties still hold. For example, carrying simplices are unordered, meaning if

x, y ∈ Σ and x ≥ y then x = y. This clearly does not hold for the non-competitive

system shown in Figure 3.4d.

All non-zero solutions tend to the balance simplex which therefore contains all

limit sets. In our planar system, as is well-known in the competitive case (e.g. [37])

this immediately implies that every orbit is convergent (since we have discounted

unbounded orbits).

Our explicit solutions confirm that for (3.1), Σ maps radially 1-to-1 and onto the

probability simplex and the same is found in more general competitive models [35].
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For models with more general functional forms for the per-capita growth rate, in-

jectivity of the radial projection may fail, and in that case we call Σ the balance

simplex, further discussed in Chapter 6. In particular, this lack of injectivity can

occur in predator-prey systems when there is an interior stable spiral [18]. Practi-

cally, injectivity of the radial projection means that if a sample of the population is

taken and an approximation of the balance simplex is known, the actual population

densities and total population size can be estimated if the system is close to balance.

Carrying simplices of planar competitive Lotka–Volterra systems have a curvature

that is single-signed. In planar and higher dimensional Lotka–Volterra systems, the

sign of this Gaussian curvature can be indicative of global stability of interior fixed

points [4, 101]. In fact, for the planar case this curvature depends solely on the sign

of a simple expression of the parameters [4, 85, 99]. For our scaled Lotka–Volterra

system in the competitive case, this expression is α + β − 2. This difference in

convexity properties can be seen in Figures 3.4b and 3.5b where α + β − 2 = −1.2

and 2.1 respectively. We have also seen in Section 3.9.4 that when α + β = 2, even

for non-competitive systems, the balance simplex is always the straight line 1− x1.

For non-competitive scaled Lotka–Volterra systems (with only hyperbolic steady

states), we initially believed that each heteroclinic orbit would have a constant sign

of curvature. However, examining a perturbation of the system in Figure 3.6a (i.e.

considering α = 1.01, β = −1.32 which is part of Case 1) the shape of the balance

simplex remains similar in that its curvature changes sign near (0,1).

We expect balance simplices (as the common boundary of repulsion of the ori-

gin and infinity) to appear in higher dimensional population models. In a 3-species

Lotka–Volterra system where the origin and infinity are repellers, the presence of a

balance simplex would also have strong implications for the long-term dynamics. If

the resulting balance simplex is sufficiently smooth, then the flow on the balance sim-

plex is 2-dimensional and hence amenable to treatment by the Poincaré-Bendixson
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Theorem [84] and similar tools. In particular chaos would not be possible in a 3-

species system with a sufficiently regular balance simplex.
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In this chapter we explore the balance simplex Σ for the 3-species case. We

do not expect to be able to find an explicit solution, so we work towards a series

solution which we want to match exactly to the (now known) 2-species solutions on

the boundaries.

We know that the carrying simplex exists for the competitive case [35]. The

structure of the carrying simplex for the 3-species system has been studied by several

authors. Zeeman and Zeeman [100, 102], and Baigent [5] both studied how the

curvature of the carrying simplex can affect the stability of an existing interior steady

state. Mierczyński’s work on carrying simplices focuses on exploring the smoothness

at the boundaries and corners (where the axial steady states lie) [62].

We work towards proving the existence of the balance simplex, however the work

in this chapter will only be applicable to the parameter space where the dynamics

are bounded and αij < 1 and αijαji < 1, i 6= j, i, j ∈ {1, 2, 3}. Physically this

excludes the case where species are strongly competitive or strongly co-operative. It

also excludes any cases where one species is heavily predated on by another. Recall

that by the balance simplex Σ, we mean an invariant surface which divides R3
≥0 into

two distinct regions. It separates points with the α-limit of the origin, from those

with the α-limit of infinity. All points on Σ have an α-limit which is neither the

origin nor infinity, thus all non-zero steady states lie on Σ.

4.1 A series solution

We consider the three-species scaled Lotka–Volterra equations:

dx1

dt
= x1(1− x1 − α12x2 − α13x3),

dx2

dt
= x2(1− α21x1 − x2 − α23x3),

dx3

dt
= x3(1− α31x1 − α32x2 − x3). (4.1)
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For the two-species case in Chapter 3, we found solutions in the form x1 = G(T ), x2 =

TG(T ) where T = x2

x1
∈ [0,∞). The function G(T ) takes the form of a hypergeome-

tric function, and may need to be defined piecewise in some cases or multiplied by

T−1 and constants.

We proceed with this idea for the 3-species case and consider x1 = G(T1, T2),

x2 = T1G(T1, T2) and x3 = T2G(T1, T2) where T1 = x2

x1
, T2 = x3

x1
∈ [0,∞). We expect

to find G through a series solution, rather than an exact, analytic representation.

Considering dx1

dt
= dG

dt
we have:

dT1

dt

∂G

∂T1

+
dT2

dt

∂G

∂T2

= G(1−G− α12T1G− α13T2G). (4.2)

From dx2

dt
we have:

dT1

dt

(
G+ T1

∂G

∂T1

)
+ T1

dT2

dt

∂G

∂T2

= G
dT1

dt
+ T1

dG

dt

= T1G(1− α21G− T1G− α23T2G). (4.3)

Substituting dG
dt

as (4.2) into (4.3) and rearranging, we find

dT1

dt
= T1G [(1− α21) + T1(α12 − 1) + T2(α13 − α23)] . (4.4)

Similarly, considering dG
dt

and dx3

dt
gives:

dT2

dt
= T2G [(1− α31) + T1(α12 − α32) + T2(α13 − 1)] . (4.5)

By substituting (4.4) and (4.5) into (4.2), we can solve G as a series solution of the

form

G(T1, T2) =
∞∑

i,j=0

ci,jT
i
1T

j
2 , (4.6)
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with the condition G(0, 0) = 1, meaning that the point (1, 0, 0) lies on {G, T1G, T2G}

(which will form part of the balance simplex Σ). For i, j ≥ 1:

c0,0 = 1

ci,0 =
i(α12 − 1) + 1

i(α21 − 1)− 1
ci−1,0

c0,j =
j(α13 − 1) + 1

j(α31 − 1)− 1
c0,j−1

ci,j = − [α12 + (i− 1)(α12 − 1) + j(α12 − α32)]

i(1− α21) + j(1− α31) + 1
ci−1,j

− [α13 + i(α13 − α23) + (j − 1)(α13 − 1)]

i(1− α21) + j(1− α31) + 1
ci,j−1. (4.7)

With some rearranging and simplifying,

ci,0 =

(
α12

α12−1

)
i(

α21−2
α21−1

)
i

(
α12 − 1

α21 − 1

)i
, (4.8)

where we have used the Pochhammer symbol, (x)n = x(x + 1) · · · (x + n − 1) for

n ≥ 1 and (x)0 = 1. We now consider the case where T2 = 0, i.e. the 2-species

subcase with x1 and x2.

G(T1, 0) =
∞∑
i=0

(
α12

α12−1

)
i(

α21−2
α21−1

)
i

(
α12 − 1

α21 − 1

)i
T i1 (4.9)

= 2F1

[
α12

α12 − 1
, 1;

α21 − 2

α21 − 1
;
T1

T ∗1

]
, (4.10)

where T ∗1 = α21−1
α12−1

. This matches the x1 co-ordinate of our first solution for the

balance simplex in the 2-species case (with α = α12 and β = α21) which is used

when:

1. α12 > 1 and α21 < 1, in which case the known integral solution is valid for

T1 ∈ [0,∞).

2. −∞ < α12, α21 < 1 and α12α21 < 1, in which case the known integral solution
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is valid for T1 ∈ [0, T ∗1 ].

However, we know that as the form of an infinite series (4.9), G(T1, 0) may not

converge when T1 ≥ |T ∗1 |, so we will focus on the second case above (in Chapter 3,

this refers to case 3, see Table 3.1).

Similarly, on the x1x3-plane:

G(0, T2) =
∞∑
j=0

(
α13

α13−1

)
j(

α31−2
α31−1

)
j

(
α13 − 1

α31 − 1

)j
T j2

= 2F1

[
α13

α13 − 1
, 1;

α31 − 2

α31 − 1
;
T2

T ∗2

]
(4.11)

where T ∗2 = α31−1
α13−1

. In its series form, we know this converges for T2 ∈ [0, T ∗2 ) when

α13, α31 < 1 and α13α31 < 1 which is what we will also assume.

In these cases, the convergence of T1 and T2 at the 2-species boundary interior

steady states (T ∗1 and T ∗2 , respectively) holds due to Gauss’ theorem:

Theorem 4.1.1 (Gauss’ Theorem [6]) When <(c− a− b) > 0,

2F1[a, b; c; 1] =
Γ[c]Γ[c− a− b]
Γ[c− a]Γ[c− b]

, (4.12)

where 2F1 refers to the Gaussian hypergeometric function in its series form.

The condition <(c − a − b) > 0 holds if α12α21 < 1 and α12, α21 < 1 for (4.9), and

if α13α31 < 1 and α13, α31 < 1 for (4.11). Note that G does not necessarily converge

in the whole interior of the domain (T1, T2) ∈ [0, T ∗1 ] × [0, T ∗2 ], convergence is only

guaranteed on its boundaries where T1 or T2 = 0.

If we want to use the parametric surface {G, T1G, T2G} (with the analogous

coefficients) for the other two axial steady states ((0, 1, 0) and (0, 0, 1)) by rotation,

we need to ensure they also follow the same parameter case and use the first known

solution on the boundaries.
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Remark 4.1.2 We consider only the following parameter space for the interaction

matrix A of the system (4.1):

A ={A ∈ R3×3 |αii = 1, αij < 1, αijαji < 1, i 6= j, i, j ∈ {1, 2, 3}

and the dynamics of (4.1) are bounded } (4.13)

This means each 2-species subsystem has an interior steady state which is attracting.

The 3-species interior steady state may or may not exist.

Note the condition that the dynamics of (4.1) are bounded is not implied by the

preceding inequalities. In the co-operative case, each pair of species will be weakly

co-operative (meaning the dynamics on the boundaries are bounded), however the

full system can still be unbounded. Consider the case where αij = −0.6 for all i 6= j.

The interior steady state of the full system does not exist, and since all species are

co-operating, the dynamics are unbounded.

In Figure 4.1, we consider a competitive 3-species system where 0 < αij < 1. The

orange surface is the parametric surface {G, T1G, T2G} (up to order 100 in T1 and T2)

starting from the axial steady state (1, 0, 0) in the domain (T1, T2) ∈ [0, T ∗1 ]× [0, T ∗2 ].

The red and light blue surfaces were found by rotating the system (in terms of re-

indexing each species and the corresponding interaction coefficients) and applying

the series solution G with these new parameters and co-ordinates (so this G has

different coefficients). The darker patches in the red surface are where the numerical

solution (in navy and shown separately in Figure 4.1b) lies slightly above the surface.

We can also see an exposed navy region in the interior where the numerical solution

is not covered by the domains of the parametric surfaces. If we try extending the

domains, G (for all three cases) becomes very large in magnitude and sometimes

negative, thus we have a problem with convergence to the numerical solution. In

fact, even without extending, the orange surface does not converge entirely on its
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domain to the numerical solution. This means that in this case, the union of these

surfaces is not a good approximation for the carrying simplex as it does not form

a simply connected surface (recall that a surface is called simply connected if every

closed curve on the surface can be contracted to a point without leaving the surface).

In Figure 4.1c, we have used the series G only up to degree 20 in T1 and T2.

By doing this, the parametric surfaces can be plotted slightly further beyond the

aforementioned domains, whilst still resembling the numerical and boundary soluti-

ons. This tells us that the parametric surfaces {G, T1G, T2G} does not require many

terms to give us an idea of how Σ should appear. This also covers up the previously

exposed region although the overlapping regions do not match exactly (some parts

lie above or below other surfaces).

Figure 4.2 shows a fully co-operative system. In this case, the basic numerical

solution from Mathematica does not work (numerical instabilities appear in the ma-

jority of the plot), and our parametric surfaces {G, T1G, T2G} still gives us a good

idea of the shape of the balance simplex. In Figure 4.2b, we see that the edges of

each surface is not smooth, this is due to the plot itself in Mathematica. Where the

surfaces intersect is where we expect the interior edges of the balance simplex to be.

The parts above these edges can be ignored.

4.2 Existence of the balance simplex

when A ∈ A

We only consider the parameter case we have been working on, A (4.13). On

the boundaries, this corresponds to case 3 in our 2-species solution classification

(Chapter 3).

In the 3-species model, it is useful to recall the transformation to the total popu-

lation size N = x1 + x2 + x3 and the proportions of each species, ui = xi
N
, i = 1, 2, 3
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(a) The parametric surface {G,T1G,T2G} (or-
der 100 in T1, T2)

(b) The numerical solution for Σ

(c) The parametric surface {G,T1G,T2G} (or-
der 20 in T1, T2)

Figure 4.1: The parametric surface {G, T1G, T2G} (or the equivalent rotation) from
each axial steady state in yellow, red and light blue. The navy surface in all three
figures is the numerical solution for Σ. The black points are the non-zero steady
states.
Parameters: α12 = 0.75, α13 = 0.18, α21 = 0.62, α23 = 0.54, α31 = 0.32, α32 = 0.87.
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(a)

(b)

Figure 4.2: Different views of the same parametric surface {G, T1G, T2G} (or the
equivalent rotation) from each axial steady state where G is up to the order 100
in T1, T2. Where the surfaces intersect is where we expect the edges of the balance
simplex to be.
Parameters: α12 = −0.25, α13 = −0.18, α21 = −0.22, α23 = −0.14, α31 =
−0.32, α32 = −0.57.
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(a) Case 7 (b) Case 35

Figure 4.3: The relevant cases from Bomze’s classification [10,11], showing the generic
dynamics of the species proportions, u. Each vertex represents the case where only
one species exists. In cases 7 and 35, there is a steady state which globally attracts
everything from the interior of this simplex.

(Chapter 2, Section 2.2). After rescaling time by N , the dynamics are given by:

dN

dt
= 1−NuTAu, (4.14)

du1

dt
= u1

(
uTAu− (Au)1

)
, (4.15)

du2

dt
= u2

(
uTAu− (Au)2

)
, (4.16)

where A = [αij] is the interaction matrix and u = (u1, u2, u3)T is the vector of

species proportions. The u dynamics are independent of the dynamics of the total

population size N . When the former is known, the latter is in the form:

N = exp

[
−
ˆ t

0

uTAuds

](ˆ t

0

exp

[ˆ r

0

uTAuds

]
dr +N0

)
. (4.17)

Recall that for A ∈ A, each 2-species subsystem has an interior steady state which

is globally attracting in the interior that subsystem. The interior steady state of the

full 3-species system, x∗, does not always exist. With this, we can easily identify

that the u dynamics for the 3-species system will be case 7 or 35 from Bomze’s

classification [10,11] (see Figure 4.3).

In our 3-species system, we assume the dynamics are bounded and that the origin

and infinity are repelling. This means dN
dt
> 0 for N small, and dN

dt
< 0 for N large,

thus N∗ = (uTs Aus) > 0 is attracting for N (where us is the globally attracting state
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for u in case 7 or 35). Note that by rescaling time by N , these equations do not

show that N = 0 is a steady state. However, the rescaling does not effect any other

qualitative dynamics or the positions of the other steady states in (u,N).

Our aim in this section is to prove the existence of the balance simplex Σ in the 3-

species system when the interaction matrix A ∈ A. By construction, {G, T1G, T2G}

satisfies the dynamics of the system near (T1, T2) = (0, 0) where G(0, 0) = 1 (which

is equivalent to the axial steady state (1,0,0) in the x-co-ordinates). It also matches

exactly with the series form of the known solutions on the 2-species boundaries when

T1 ∈ [0, T ∗1 ] and T2 ∈ [0, T ∗2 ].

Taking the domain T1 ∈ [0, T ∗1 ] and T2 ∈ [0, T ∗2 ], we have seen that {G, T1G, T2G}

may not converge in the whole domain (e.g. parts of the interior). However, since

the vector field of the system (4.1) is analytic (and thus analytic in a compact,

convex region near (1,0,0) in the x-co-ordinates), the solution is analytic and unique

near (1,0,0) [8] (also follows from the ODE version of the Cauchy–Kovalevskaya

Theorem [23]). Therefore the solution of (4.1) can be represented by {G, T1G, T2G}

in a neighbourhood of (1, 0, 0). This means we know {G, T1G, T2G} converges near

(1, 0, 0) and we can plot it.

We can repeat this process for the other two axial steady states (0, 1, 0) and

(0, 0, 1) (since all 2-species subsystems belong to the same case) by rotating the

parameters and system, an example is shown in Figure 4.4a. These neighbourhoods

near the axial steady states can be taken arbitrarily small.

Lemma 4.2.1 The 3-species system (4.1) has no non-trivial periodic orbits or non-

trivial closed orbits when A ∈ A.

Proof : As we have discussed, the species proportions follow the dynamics of du1

dt
and

du2

dt
on a unit simplex as either case 7 or case 35 in Bomze’s classification (Figure 4.3).

Using this classification there are no non-trivial periodic orbits, or any non-trivial

closed orbits (e.g. homoclinic orbits). �
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(a) E in (x1, x2, x3) co-ordinates
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(b) The projection of E in the u1u2-plane,
Eu

Figure 4.4: In Figure 4.4a, the surface E is the solution {G, T1G, T2G} (or the
equivalent rotation) near the axial steady states where it is guaranteed to converge.
For the purposes of this plot, we have used G up to degree 100 in T1 and T2, but in
the theory, E uses the full infinite series G. These regions can be taken arbitrarily
close to the axial steady states. In Figure 4.4b, the orbits shown are the u-dynamics
and follows case 35 of Bomze’s classification.
Parameters: α12 = 0.75, α13 = −0.18, α21 = 0.62, α23 = 0.54, α31 = 0.32, α32 =
0.87.

Lemma 4.2.2 The 3-species balance simplex of (4.1) exists as a piecewise analytic

surface when A ∈ A.

Proof : Since we assume the dynamics of (4.1) are bounded, we know infinity is

repelling. This means we can consider the system in a compact domain (which must

contain all steady states of the system) rather than the whole of R3
≥0. For example,

for the co-operative system in Figure 4.2 we can consider the compact domain [0, 3]3.

Since the vector field is C1-continuous with bounded derivatives on this compact

domain, we know it is Lipschitz in the x variables on this domain [8]. This means

solutions exist, are unique and vary continuously with initial conditions [8]. The

same can be done with the system in (u,N)-co-ordinates, where the total population

size N is bounded.

Recall our disjoint surface E which satisfies the dynamics of the system (4.1)

(Figure 4.4a). When considering E in the u-simplex, we will call it Eu (Figure 4.4b).
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Take any point on the interior boundary of E, say x0. With this initial value, we can

calculate the corresponding value in (u,N)-co-ordinates: (u0, N0). We know that u0

lies in the interior of the u-simplex. Additionally, from Bomze’s classification (Figure

4.3), we know the solution u(u0, t) will converge to the steady state in the u-simplex,

denoted by us, which globally attracts the interior. Thus the dynamics of the species

proportions are known and the total population N(u, t) can be solved for with the

initial condition N(u0, 0) = N0.

From the Lipschitz property and analyticity of the vector field (of the (u,N)

system in a compact domain), the solution N is unique, varies continuously with

initial conditions u0 and is analytic along orbits [8]. We know N will converge to

Ns := (uTs Aus)
−1 > 0. Putting this solution back in the x-co-ordinates gives an orbit

from x0 converging to xs := usNs, which is the steady state that globally attracts the

interior R3
>0. Since N varies continuously with the initial condition u0, as we take

conditions u0 around the interior of Eu, the solution trajectories will form a surface in

both the (u,N)-co-ordinates and the x-co-ordinates (we know N remains non-zero).

From Bomze’s classification (Figure 4.3) and the Stable Manifold Theorem [69], we

know these orbits in the x-co-ordinates represent the unstable manifolds of the axial

steady states which are 2-dimensional (recall the axial steady states are stable on

the axis they lie on).

Thus at any interior point on these unstable manifolds, we know the solution,

and that the orbits converge to xs. Again, using the continuity of solutions with

initial conditions, it follows that the boundary of these unstable manifolds (relative

to R3
≥0) are the heteroclinic orbits from the boundary 2-species interior steady states

to xs. Taking the union of these surfaces, all the non-zero steady states, and the

heteroclinic orbits starting from the non-axial, non-zero steady states, we identify

the balance simplex Σ.

This surface is indeed simply connected. From Bomze’s classification, we know
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there cannot be periodic orbits or closed orbits in R3
≥0. As we mentioned, the surface

in question is continuous, thus if it is not simply connected, there would be a closed

orbit on the surface satisfying the dynamics which is not possible. �

4.3 The carrying simplex when αij = α =

n/(n + 1)

In this section, we explore whether we can find an explicit solution for the 3-

species case when the system is simplified, namely we impose that all interaction

coefficients are equal, αij = α. Recall that our series solution is based on G (4.6),

which has coefficients ci,j (4.7).

Lemma 4.3.1 When all interaction coefficients αij = α = n
n+1

; n ∈ N, G is poly-

nomial with a finite number of terms.

Proof : We will examine the coefficients of G,

cn+1,0 = c0,n+1 =

(
α
α−1

)
n+1(

α−2
α−1

)
n+1

=
α(α + (α− 1)) · · · (α + n(α− 1))

(α− 2)(α− 2 + (α− 1)) · · · (α− 2 + n(α− 1))
. (4.18)

When α = n
n+1

, cn+1,0 = c0,n+1 = 0. Note that this also implies cm,0 = c0,m = 0 for

all m > n+ 1 ∈ N. Now consider

cn+1,j = − α + n(α− 1)

(1− α)(n+ 1 + j) + 1
cn,j −

(α + (j − 1)(α− 1))

(1− α)(n+ 1 + j) + 1
cn+1,j−1

= 0− (α + (j − 1)(α− 1))

(1− α)(n+ 1 + j) + 1
cn+1,j−1, (4.19)

where the value of α simplifies the first term to 0. Following this recursion in j, we

find that cn+1,j is a multiple of cn+1,0 = 0, therefore cn+1,j = 0 for any j ∈ N. By
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symmetry, we can also conclude that ci,n+1 = 0 for any i ∈ N. Now consider

cn+2,j = 0− (α + (j − 1)(α− 1))

(1− α)(n+ 2 + j) + 1
cn+2,j−1. (4.20)

Again, following the recursion, we find that cn+2,j is a multiple of cn+2,0 = 0. This

pattern continues and we can conclude that cm,j = 0 for any j > 0 and m > n+1. By

symmetry, ci,m = 0 for any i > 0 and m > n+ 1. Therefore G is a finite polynomial

with the highest order term of T n1 T
n
2 when α = n

n+1
. �

G is symmetric in terms of T1 and T2 and has (n + 1)2 terms. For example, if

α = 2
3
, then G = 1− T1

2
− T2

2
+ 2T1T2

5
+

T 2
1

10
+

T 2
2

10
− T 2

1 T2

10
− T1T 2

2

10
+

T 2
1 T

2
2

35
.

In the simple case where α = 1
2
, we have that G = 1 − T1

3
− T2

3
+ T1T2

6
. The pa-

rametric form of the surface is then {x1, x2, x3} = {G, T1G, T2G}. We can eliminate

T1 and T2 to find that the surface is a graph of a function:

x3 =
2x1(3x2

1 − 3x1 + x2)

x2 − 2x1

. (4.21)

This surface is an exact solution (see Figure 4.5), not an approximation, of our

dynamics. Indeed, it satisfies the PDE derived from our system (4.1):

0 = x1(1− x1 − αx2 − αx3)
∂x3

∂x1

+ x2(1− αx1 − x2 − αx3)
∂x3

∂x2

− x3(1− αx1 − αx2 − x3). (4.22)

As with our other surfaces in the more general case, this gives one third of the

carrying simplex, specifically the region near the axial steady state (1, 0, 0) which is

unaffected by the singularity along x2 = 2x1. To find the other parts, we just rotate

the co-ordinates in the form (4.21) since the system is symmetric.

When α = n
n+1

, n > 1 it is not possible to write the surface as a graph of

a function as there will be terms involving higher powers of x3. Another way of
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Figure 4.5: The carrying simplex of (4.1) where all parameters are equal to 1
2
. The

orange surface is defined by (4.21), and the other two surfaces similarly by rotation.
Using {G, T1G, T2G} instead in these regions gives the same result.
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verifying the surface satisfies the dynamics of our system is by computing its normal

vector

n =
∂

∂T1

{G, T1G, T2G} ×
∂

∂T2

{G, T1G, T2G}. (4.23)

Calculating the dot product of n with the vector field of the system (written in terms

of T1 and T2) gives zero if the surface is tangent to the vector field. This is a simple

way to verify the surface is indeed invariant to the flow of the system. In general,

without specifying n, it is not easy to show this dot product is zero algebraically,

due to the form of ci,j.

In the figures of the previous sections, the plots of the parametric surfaces were

approximations as they were finite versions of an infinite series with seemingly no

analytic form. In this case, we are able to plot the surfaces exactly and it is precisely

the carrying simplex, however it only applies to a small number of competitive cases.

4.4 The structure of cij

In our series solution G (4.6), the coefficients are given by ci,j. When i, j ≥ 1,

ci,j = Ri,jci−1,j + Ui,jci,j−1, (4.24)

where

Ri,j = − [α12 + (i− 1)(α12 − 1) + j(α12 − α32)]

i(1− α21) + j(1− α31) + 1
,

Ui,j = − [α13 + i(α13 − α23) + (j − 1)(α13 − 1)]

i(1− α21) + j(1− α31) + 1
. (4.25)

In this subsection, we explore what the form of ci,j will look like when we iterate it

back towards the explicitly known boundary values ci,0 and c0,j (see (4.8)).
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Consider a rectangular grid of nodes. From the node (i, j), we assign the path

from (i − 1, j) to (i, j) with the value Ri,j (if i > 0) and the path from (i, j − 1) to

(i, j) with Ui,j (if j > 0). For longer paths, the value assigned will be the product of

these.

Remark 4.4.1 We will only consider paths which travel upwards and rightwards,

and not along the boundary where i or j = 0. For example, there will be no such

paths from (0, 0) to any other node.

Definition 4.4.1 Consider the node (i, j) where i, j 6= 0. For each of the boundary

nodes (g, 0), g ≤ i, assign the value cg,0 (from (4.8)). Similarly for the boundary

nodes (0, h), h ≤ j, assign the value c0,h. Consider the value of all possible paths

starting from the boundary nodes, multiplied by the value at that boundary node.

Let Pi,j be the sum of these terms.

For example, from Figure 4.6:

P1,1 = R1,1c0,1 + U1,1c1,0 ,

P2,1 = R2,1R1,1c0,1 +R2,1U1,1c1,0 + U2,1c2,0 ,

P1,2 = R1,2c0,2 + U1,2R1,1c0,1 + U1,2U1,1c1,0 ,

P2,2 = R2,2R1,2c0,2 +R2,2U1,2R1,1c0,1 + U2,2R2,1R1,1c0,1

+R2,2U1,2U1,1c1,0 + U2,2R2,1U1,1c1,0 + U2,2U2,1c2,0 . (4.26)

It will be useful to note that we can also write

P2,2 = U2,2P2,1 +R2,2U1,2P1,1 +R2,2R1,2c0,2 , (4.27)

which considers the interior nodes which lie under and to the left of (2, 2) (i.e. (2,1)

and (1,1)). It also considers the value of the path from the boundary node on the
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Figure 4.6: A 2× 2 grid of nodes, with the path values Ui,j and Ri,j, 1 ≤ i, j ≤ 2.

same row as (2, 2).

At a node, the only option for movement is to move either upwards or rightwards.

From (1, 1) to (i, j), all paths will take i+ j − 2 steps. Since we know i− 1 of these

steps must be towards the right, the number of paths from (1, 1) to (i, j) is given by

(
i+ j − 2

i− 1

)
=

(i+ j − 2)!

(j − 1)! (i− 1)!
. (4.28)

Since the first step from the boundary is unique, to find the number of paths to

(i, j), where i, j > 0, we can sum the number of paths from (1, 1), (1, 2), . . . , (1, j)

and (1, 1), (2, 1), (3, 1), . . . , (i, 1). The node (1,1) is counted twice as it is the only

node with two 1-step paths from the boundary. Thus the number of paths to the

node (i, j) is given by

j−1∑
k=0

(
i+ j − 2− k

i− 1

)
+

i−1∑
k=0

(
i+ j − 2− k

j − 1

)
. (4.29)

For example, the number of paths to (2,2) from the boundary is:

1∑
k=0

(
2− k

1

)
+

1∑
k=0

(
2− k

1

)
= 6. (4.30)

We now prove that the coefficients of G are the terms Pi,j from Definition 4.4.1.

Lemma 4.4.2 cm,n = Pm,n for all m,n ∈ N.
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Proof : We prove this by induction.

There are only two paths to the node (1, 1) from the boundary. We find that P1,1 =

U1,1c1,0 + R1,1c0,1. Comparing this to the definition of c1,1 (4.24), we conclude that

c1,1 = P1,1.

We now assume that cm,n = Pm,n, and that ci,j = Pi,j holds for all (i, j) such that

(i, j) ≤ (m,n) (using our notation from vector ordering).

By definition,

cm,n+1 = Um,n+1cm,n +Rm,n+1cm−1,n+1

= Um,n+1Pm,n +Rm,n+1(Um−1,n+1Pm−1,n +Rm−1,n+1cm−2,n+1)

= Um,n+1Pm,n +Rm,n+1Um−1,n+1Pm−1,n

+Rm,n+1Rm−1,n+1(Um−2,n+1Pm−2,n +Rm−2,n+1cm−3,n+1).

We keep iterating the cm−k,n+1 term (at the end) by increasing k > 0 to m and using

the definition of ci,j and our induction hypothesis. This gives

cm,n+1 = Um,n+1Pm,n +Rm,n+1Um−1,n+1Pm−1,n

+Rm,n+1Rm−1,n+1Um−2,n+1Pm−2,n + . . .

+Rm,n+1Rm−1,n+1 · · ·R2,n+1U1,n+1P1,n

+Rm,n+1Rm−1,n+1 · · ·R2,n+1R1,n+1c0,n+1 . (4.31)

In this form, it is exactly analogous to the example shown in equation (4.27). Indeed,

we are considering the terms Pi,n from the nodes (i, n) for 1 ≤ i ≤ m, and the value of

the horizontal path from (0,n+1) to (m,n+ 1), multiplied by c0,n+1. Recall that Pi,n

contains the values of all paths from the boundary nodes to (i, n). In (4.31), each Pi,n

is multiplied by the value of the path travelling one step upwards (Ui,n+1) and then

m − i steps right-wards (the R terms). With the aforementioned horizontal path,
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this accounts for all possible paths from the boundary to (m,n + 1). We conclude

that cm,n+1 = Pm,n+1.

By swapping U and N , and the order of the indices, we can also conclude that

cm+1,n = Pm+1,n. Thus this lemma is proven by induction. �

Thus we have shown that the coefficients of G, ci,j, can be determined by consi-

dering the values along the paths from the boundary nodes, along with the values at

these boundary nodes which are known, ci,0 and c0,j.

4.5 Asymptotic completeness

In this section, we prove that the balance simplex Σ satisfies the condition of

being asymptotically complete, given by Hirsch for carrying simplices.

Definition 4.5.1 ( [36]) Σ ⊂ R3
≥0 is called asymptotically complete if every non-

zero point x ∈ R3
≥0 is asymptotic with some point y ∈ Σ under the flow, i.e.

limt→∞|ϕt(x)− ϕt(y)|= 0.

In our work thus far, we mentioned how Σ globally (and asymptotically) attracts

all non-zero initial points, x ∈ R3
≥0. In this case, one could pick the ω-limit of x (a

steady state, shown in the upcoming lemma, Lemma 4.5.1) and conclude that the

orbits from these two points satisfy the condition in Definition 4.5.1. However, this is

a trivial case which is not useful if we want to reduce the dynamics of the system to

a hypersurface without losing information (as done by the carrying simplex [35,36]).

We will avoid this case unless the dynamics are truly trivial (discussed at the end of

this section in Corollary 4.5.3).

The assumption we make is that the balance simplex exists as a unique, simply

connected surface which divides R3
≥0 into two distinct regions: one containing points

with the α-limit of the origin, and the other containing points with the α-limit of
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infinity. This holds for systems in the parameter space we have been discussing in

this chapter.

We first establish the following:

Lemma 4.5.1 For the system (4.1) with parameters such that the dynamics are

bounded and steady states are hyperbolic, there are no non-trivial periodic orbits,

thus the ω-limit of every point is a steady state.

Proof : Consider Bomze’s classification of the dynamics of the species proportions on

the u-simplex for 3 species [10, 11]. The only cases where non-trivial periodic orbits

exist implies that there are infinitely many of them. Thus the steady state contained

in them is a centre which is not hyperbolic (it follows that the corresponding steady

state in the x-co-ordinate will also be non-hyperbolic) [31,37]. We also see that in the

cases where all steady states are hyperbolic, all initial frequencies tend to a steady

state and since the N dynamics are taken to be bounded, the ω-limit of every point

x ∈ R3
≥0 is a steady state. �

Now we can prove the following theorem (which also works in the 2-species case

as we have shown there are no non-trivial periodic orbits for that system either,

Chapter 2 Corollary 2.4.4).

Theorem 4.5.2 Consider the system (4.1) with parameters such that the dynamics

are bounded, the steady states are hyperbolic, and the balance simplex Σ exists. Then

Σ is asymptotically complete.

Proof : Consider any initial non-zero point x0 in R3
≥0. This point can be written as

u0N0 where u0 is the vector of species proportions and N0 > 0 is the total population

size. We take a ray from the origin through x0, labelled R0. Let xΣ denote a point

which lies on R0 ∩ Σ, which can be written as u0NΣ, NΣ > 0. Note that xΣ exists

due to Σ existing and being simply connected.

Recall that the dynamics for u ((4.15) and (4.16)) are independent of N . For
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u0, the orbit u(u0, t) asymptotically tends to a steady state, say us, as there are

no non-trivial periodic orbits (Lemma 4.5.1). Now consider the ray from the origin

through a point with the species proportions us, labelled Rs. Recall that we assume

the N dynamics are bounded. On Rs the dynamics are given by:

dN

dt
= 1− uTs AusN. (4.32)

Using boundedness this means that the constant uTs Aus > 0; we find that the N

dynamics has an attracting steady state Ns := (uTs Aus)
−1 (globally attracting on

Rs \ {0}). This means limt→∞ ϕt(u0N0) = usNs and limt→∞ ϕt(u0NΣ) = usNs. The

point usNs is a non-zero steady state thus it lies on Σ.

We have shown that the orbit starting from x0 = u0N0 is asymptotically attracted

to the orbit starting from xΣ = u0NΣ ∈ Σ, which remains on Σ due to its invariance.

�

Corollary 4.5.3 Suppose the dynamics of the 3-species scaled Lotka–Volterra system

(4.1) are bounded, all steady states are hyperbolic, and the balance simplex Σ exists.

Consider any non-zero steady state xs = usNs, where Ns = (uTs Aus)
−1 > 0 and label

the ray from the origin through this steady state by Rs. Then for any non-zero point

on x ∈ Rs, ϕt(x) ∈ Rs for all t ∈ R and limt→∞ ϕt(x) = xs.

Proof : The fact that the ray Rs is invariant to the flow of the system follows from

us being a steady state in the u dynamics. The global attraction of xs along Rs \{0}

follows from the previous proof. �

4.6 Conclusions

In this chapter, we first proved the existence of the balance simplex Σ in a 3-

species scaled Lotka–Volterra system when the dynamics are bounded and the inter-
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specific interaction coefficients satisfy αij < 1 and αijαji < 1, i 6= j, i, j ∈ {1, 2, 3}.

This means that each 2-species subsystem has an interior steady state which is at-

tracting. Physically, it excludes the case where species are strongly competitive or

strongly co-operative. It also excludes the case where one species is heavily predated

on by another.

We were able to find a series solution for the 3-species case which matches exactly

the known 2-species solution (in series form) on the boundaries. Since this series

solution satisfies the dynamics of the system, we were able to prove the existence

of the balance simplex by taking a small extension of this solution from each axial

steady state into R3
>0 and taking the surface formed by evolving the points on this

extension over time.

The series solution {G, T1G, T2G} is based around the axial steady state (1, 0, 0)

and the only restriction used when finding the series G was that the axial steady

state lies on the surface, i.e. G(0, 0) = 1. By rotation, we were able to find the

series solutions for the other two axial steady states. As we have mentioned, the

combined piecewise solution itself is not generally the balance simplex and it does

not always converge on the interior (see Figure 4.1a). Since the boundary condition

of the known 2-species solution was not actually used to find the coefficients of G, we

have not been able to find a series for the other parameter cases, even when starting

a series solution about a different point from (T1, T2) = (0, 0).

In the special case where aij = n
n+1

for any i, j ∈ {1, 2, 3}, n ∈ N, the series G is

finite (i.e. a polynomial), and {G, T1G, T2G} is the exact expression for one third of

the carrying simplex.

In Section 4.5, we prove that when Σ exists for a 3-species scaled Lotka–Volterra

system with hyperbolic steady states and bounded dynamics, Σ is asymptotically

complete (see Definition 4.5.1) in a non-trivial way, the result can also be applied to

the 2-species case. We also show that any ray from the origin to a non-zero steady
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state is invariant to the flow (Corollary 4.5.3).

In the next chapter, we continue to work with the 3-species scaled Lotka–Volterra

system (4.1) and prove the existence of Σ when the interaction matrix A is strictly

copositive.
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In this chapter, we prove the existence of the balance simplex Σ when the in-

teraction matrix A = [αij] of the 3-species scaled Lotka–Volterra system is strictly

copositive. This result will appear in an upcoming paper. Recall that the system is

given by:

dx1

dt
= x1(1− x1 − α12x2 − α13x3),

dx2

dt
= x2(1− α21x1 − x2 − α23x3),

dx3

dt
= x3(1− α31x1 − α32x2 − x3). (5.1)

The real matrix A is called strictly copositive when xTAx > 0 for x 6= 0, x ∈

R3
≥0 [30]. Physically, this means that the average fitness of the whole population is

always positive, regardless of the composition of the population [37]. Since 2xTAx =

xT (A + AT )x, it suffices to discuss whether the symmetric matrix (A+AT )
2

is strictly

copositive when discussing the strict copositivity of A.

5.1 Strict copositivity

Lemma 5.1.1 (Hadeler [30]) The real symmetric matrix B =


1 α β

α 1 γ

β γ 1

 is

strictly copositive if and only if min{α, β, γ} > −1 and at least one of the follo-

wing two conditions hold:

α + β + γ + 1 > 0 (5.2)

1 + 2αβγ − α2 − β2 − γ2 > 0. (5.3)

We denote the 2-dimensional unit probability simplex by ∆ = {u ∈ R3
≥0 |u1 +

u2 + u3 = 1}, the dynamics of the replicator system for 3 strategies and the matrix
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game A is given by [37]:

du1

dt
= u1

(
(Au)1 − uTAu

)
,

du2

dt
= u2

(
(Au)2 − uTAu

)
. (5.4)

Theorem 5.1.2 If (i) the interaction matrix A is strictly copositive, (ii) all steady

states of the system (5.4) are isolated and hyperbolic, then the 3-species scaled Lotka–

Volterra system (5.1) has a balance simplex Σ which is piecewise analytic and there

is a continuous function Ψ : ∆→ [0,∞) such that Σ = {Ψ(u)u |u ∈ ∆}.

Recall the dynamics of the (u1, u2, N) system where u1 and u2 are the proportions

of species 1 and 2 (respectively) and N is the total population size (equations (4.14)-

(4.16) from Chapter 4 which have time rescaled by N). The reason for considering A

to be strictly copositive is because this implies the dynamics remain bounded, indeed

we have that uTAu > 0 thus dN
dt

remains bounded. Along with condition (ii), this

means that there are no non-trivial periodic orbits (see Lemma 4.5.1 from Chapter

4). Thus every orbit of the u-dynamics in ∆ converges (in forwards and backwards

time).

If we consider the (u1, u2, N)-dynamics (Chapter 2, Section 2.2) without rescaling

time t by N yet as we typically have, but instead reversing it (now denoted by s and

with the population density now denoted by M) we have the system

dM

ds
= M(MuTAu− 1), (5.5)

du1

ds
= u1M

(
(Au)1 − uTAu

)
, (5.6)

du2

ds
= u2M

(
(Au)2 − uTAu

)
. (5.7)

With the time reversed, the origin of this system in the x-co-ordinates is an attractor,
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thus we will be discussing the basin of attraction of the origin, B(0), and denote its

boundary relative to R3
≥0 by ∂B(0).

Consider some initial point u0 ∈ ∆ and M0 > 0. We introduce the invertible

function τ : [0,∞) → [0,∞) by τ(s) =
´ s

0
M(u0,M0, σ) dσ. We will be rescaling

time using τ . In the limit of this integral, there are two possibilities:

(a)

ˆ ∞
0

M(u0,M0, σ) dσ <∞, (5.8)

(b)

ˆ ∞
0

M(u0,M0, σ) dσ =∞. (5.9)

In case (a), since M remains positive and smooth for M0 > 0 (the vector field is

analytic), we must have that lims→∞M(u0,M0, s) = 0. Thus in this case, u0M0 ∈

B(0).

We now consider case (b). With the time scaling τ , the system is:

dM

dτ
= M θ − 1, (5.10)

du1

dτ
= u1

(
(Au)1 − θ

)
, (5.11)

du2

dτ
= u2

(
(Au)2 − θ

)
, (5.12)

where θ = u(u0, τ)TAu(u0, τ). Note that u1 and u2 follow the replicator dynamics

(5.4) on ∆. By explicit integration, we find that

M(u0,M0, τ) =

exp

[ˆ τ

0

θ(u0, σ) dσ

](
M0 −

ˆ τ

0

exp

[
−
ˆ ρ

0

θ(u0, σ) dσ

]
dρ

)
. (5.13)

We define ψ : ∆× [0,∞)→ [0,∞) by

ψ(u0, τ) =

ˆ τ

0

exp

[
−
ˆ ρ

0

θ(u0, σ) dσ

]
dρ. (5.14)
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Since A is strictly copositive, θ ≥ δ > 0. Thus for all u0 ∈ ∆,

ψ(u0, τ) ≤
ˆ τ

0

exp

[
−
ˆ ρ

0

δ dσ

]
dρ =

1

δ
(1− exp[−δτ ]) <

1

δ
. (5.15)

For a fixed u0 ∈ ∆, ψ(u0, τ) is an increasing function of τ bounded above by 1
δ

hence

we may pass to the limit

lim
τ→∞

ψ(u0, τ) =

ˆ ∞
0

exp

[
−
ˆ ρ

0

θ(u0, σ) dσ

]
dρ <

1

δ
. (5.16)

We define Ψ : ∆→ [0,∞) by the pointwise limit

Ψ(u0) = lim
τ→∞

ψ(u0, τ), u0 ∈ ∆. (5.17)

For τ2 > τ1,

max
u0∈∆
|ψ(u0, τ2)− ψ(u0, τ1)| = max

u0∈∆

ˆ τ2

τ1

exp

[
−
ˆ ρ

0

θ(u0, σ) dσ

]
dρ

≤ 1

δ
(exp[−δτ1]− exp[−δτ2]) . (5.18)

The right hand side (5.18) can be made arbitrarily small for sufficiently large τ1 and

τ2, say τ2 > τ1 > T independent of u0. In other words, ψ(·, τ) is a uniformly Cauchy

sequence of continuous functions on ∆ which converges uniformly to a continuous

function on ∆ as τ → ∞, thus Ψ is continuous on ∆ [71, Thm 7.12]. Note that

the uniform convergence of ψ(·, τ) also follows from (5.18), consider taking the limit

τ2 →∞ first.

Recall that we are discussing case (b) (5.9) so τ(s) → ∞ as s → ∞. Since

A is strictly copositive, θ > 0 thus
´ τ

0
θ(u0, s) ds → ∞ as τ → ∞. Recalling the

expression for M (5.13), if M0 > Ψ(u0) then M(u0,M0, τ)→∞ as τ →∞ meaning

that u0M0 ∈ B(∞). If M0 < Ψ(u0), we have M(u0,M0, τ)→ −∞ as τ →∞ but we
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know that M ≥ 0. This contradiction means this scenario does not happen in case

(b) but in case (a) instead, meaning u0M0 ∈ B(0).

Recall that basins of attraction (and repulsion) are open [83], thus B(0) and B(∞)

are open in R3
≥0. Now consider a point u0M0 ∈ ∂B(∞), since u0M0 /∈ B(∞) this

implies M0 ≤ Ψ(u0). We can find a sequence of points in B(∞) which converges to

u0M0. We write this sequence in the form {uiMi}i∈N, where all ui ∈ ∆, Mi ∈ R.

It follows that ui converges to u0 and Mi converges to M0 (since all non-zero points

in this form have a unique representation). Every point of this sequence is not in

B(0) and thus satisfies Mi ≥ Ψ(ui). Using the continuity of Ψ, it follows that the

limit point u0M0 ∈ ∂B(∞) satisfies M0 = Ψ(u0). Similarly, we find that any point

u0M0 ∈ ∂B(0) also satisfies M0 = Ψ(u0).

Now consider a point u0M0 which satisfies M0 = Ψ(u0). We can find a sequence

{Mi}i∈N in R which converges to M0 from above (i.e. Mi > M0 = Ψ(u0) for all

i ∈ N), meaning the points u0Mi ∈ B(∞) for all i ∈ N. Similarly, we can find a

sequence {M̃i}i∈N in R which converges to M0 from below (i.e. M̃i < M0 = Ψ(u0)

for all i ∈ N) implying u0M̃i ∈ B(0) for all i ∈ N. Since the basins of attraction are

open in R3
≥0, we can conclude that u0M0 ∈ ∂B(0) and u0M0 ∈ ∂B(∞) both hold.

The results from the previous two paragraphs allow us to conclude that ∂B(0) =

∂B(∞). We denote this set by Σ and by definition it is the balance simplex. Therefore

taking any u0 ∈ ∆ we can find the point u0M0 which is on the balance simplex by

taking:

M0 = Ψ(u0) =

ˆ ∞
0

exp

[
−
ˆ ρ

0

θ(u0, σ) dσ

]
dρ. (5.19)

Note that this point is unique, meaning the balance simplex can be radially projected

1-to-1 and onto the unit simplex ∆.

The replicator dynamics on ∆ have been classified by Bomze [10, 11]. Let E
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denote the set of steady states of the u-dynamics (5.11), (5.12) (which we assume

are hyperbolic). Recall that all orbits in ∆ converge to an equilibrium (Lemma 4.5.1

from Chapter 4), thus we know that

∆ =
⋃
pi∈E

W s(pi), (5.20)

where pi ∈ E is a steady state and W s(pi) is its stable manifold. The vector field on

∆ is analytic, so by the Stable Manifold Theorem [69], each W s(pi) is an analytic

manifold. Mapping each u0 ∈ W s(pi) to u0Ψ(u0) ∈ Σ gives the stable manifold of

piΨ(pi) which is a steady state of the 3-species Lotka–Volterra system. We can con-

clude that each W s(piΨ(pi)) is an analytic manifold, thus Σ is (at least) a piecewise

analytic surface.

The reason for choosing the union of stable manifolds (and not the unstable ma-

nifolds) for ∆ and each non-zero steady state piΨ(pi) of (5.1) follows from Corollary

4.5.3 in Chapter 4. In this context with time reversed, piΨ(pi) is repelling on the

ray from the origin through piΨ(pi). So if we had taken the unstable manifolds, we

would not identify Σ.

Finally, after reversing time (back to t) and considering the basins of repulsions

and unstable manifolds instead, the statement of Theorem 5.1.2 is now proven.

5.2 Comparison with the parameter

space from Chapter 4

Note that the parameter space where A is strictly copositive is not the same space

we have been discussing previously in Chapter 4,

A ={A ∈ R3×3 |αii = 1, αij < 1, αijαji < 1, i 6= j, i, j ∈ {1, 2, 3}
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and the dynamics of (5.1) are bounded}. (5.21)

An example is

A =


1 2 −1

2

1
2

1 −1
2

1
2

1
2

1

 , (5.22)

A+ AT

2
=


1 3

2
0

3
2

1 0

0 0 1

 , (5.23)

which is strictly copositive as it satisfies the first condition in Lemma 5.1.1, however

A /∈ A since a12 > 1. In this case the 2-species subsystem with species 1 and 2

does not have an interior steady state, indeed
(

α12−1
α12α21−1

, α21−1
α12α21−1

)
/∈ R2

≥0. The other

interior steady states of the 2-species subsystems are saddle points.

It is also clear A not contained in the space where A is strictly copositive, consider

A =


1 0.5 0.5

0.6 1 −2.6

0.3 0.5 1

 , (5.24)

A+ AT

2
=


1 0.55 0.4

0.55 1 −1.05

0.4 −1.05 1

 , (5.25)

which is not strictly copositive it does not satisfy Lemma 5.1.1. Indeed

(0, 1, 1)T .A.(0, 1, 1) = −0.1 < 0. However A ∈ A; the dynamics of (5.1) with A

are bounded since the interior steady state x∗ is globally attracting on the interior.

Indeed, the other steady states are repelling with respect to the interior and infinity
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is repelling, we can also conclude this by considering the (u,N) dynamics (where

the corresponding proportion vector steady state u∗ is globally attracting on the

interior of the u-simplex) and recalling Corollary 4.5.3 from Chapter 4 (regarding

the attraction of all non-zero solutions on the ray from the origin through any non-

zero steady state).

The intersection of these two parameter spaces is not empty, consider the co-

operative system from Figure 4.2 in Chapter 4. The interaction matrix from this

system is also strictly copositive:

A =


1 −0.25 −0.18

−0.22 1 −0.14

−0.32 −0.57 1

 , (5.26)

A+ AT

2
=


1 −0.235 −0.25

−0.235 1 −0.355

−0.25 −0.355 1

 , (5.27)

satisfying the first condition in Lemma 5.1.1. From Figure 4.2 it is clear that Σ is

not completely analytic, but is piecewise analytic when considering the fact that it is

composed of the basins of repulsion of the non-zero steady states of a system which

has an analytic vector field.

Note that there are interaction matrices A which are not strictly copositive and

A /∈ A, consider:

A =


1 −2.5 0.2

0.45 1 1.1

0.2 0.4 1

 . (5.28)

A is not strictly copositive since {1, 1, 0}T .A.{1, 1, 0} = −0.05, and α23 > 1 meaning

A /∈ A. Note that the dynamics of the system (5.1) (with this interaction matrix)
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are still bounded. The non-zero steady states are the three axial steady states,

s1 = (0.83, 0, 0.83) and s2 = (1.65, 0.26, 0) (to two decimal places). The steady state

s1 is a stable node, whilst the other steady states are all repelling with respect to

the interior R3
≥0. By considering the (u,N) dynamics, the corresponding species

proportion steady state of s1 is given by us = (0.5, 0, 0.5) which is globally attracting

on the interior of the u-simplex. Again, recalling Corollary 4.5.3 from Chapter 4 and

the fact that the boundary dynamics are bounded, we can conclude s1 is globally

attracting on the interior R3
>0 and the dynamics of the system are bounded.

5.3 Conclusions

In this chapter, we have proved that the balance simplex exists for the 3-species

scaled Lotka–Volterra system (5.1) when the interaction matrix A is strictly coposi-

tive (Theorem 5.1.2), meaning the average fitness in the system is always positive.

In this case, Σ = {Ψ(u)u |u ∈ ∆} for a continuous scalar function Ψ, defined by

(5.17). Thus Σ can be radially projected 1-to-1 and onto the unit simplex ∆. Σ is

also the union of piecewise analytic manifolds which are the unstable manifolds of

all non-zero steady states. Note that Theorem 5.1.2 covers the carrying simplex for

competitive scaled Lotka–Volterra systems (5.1); all the elements A are positive thus

A is strictly copositive.

In the proof of Theorem 5.1.2, we considered the dynamics of the total population

density and the species proportions, however we scaled and reversed time to get the

system (5.10)-(5.12). The reason for reversing time was convenience. When time is

reversed, we know that for any point not on Σ, its forward orbit will tend to the

origin or infinity, regardless of what steady state its backwards orbit was from. So

for this system we were able to discuss the integrals along forward orbits.

In Section 5.2, we compared the parameter space where A is strictly copositive,
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to the space discussed in the previous chapter A (see 5.21). We found that the

intersection of these spaces is not empty, and neither is completely contained in the

other.

In the next chapter, we focus on finding a reliable method for plotting an approx-

imation of the balance simplex in a range of parameter cases.
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124
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In this chapter, we again consider the 3-species scaled Lotka–Volterra system,

namely:

dx1

dt
= x1(1− x1 − α12x2 − α13x3) =: F1,

dx2

dt
= x2(1− α21x1 − x2 − α23x3) =: F2,

dx3

dt
= x3(1− α31x1 − α32x2 − x3) =: F3. (6.1)

We suspect the balance simplex exists in this 3-dimensional system when the dyna-

mics are bounded and steady states are hyperbolic, as we have seen in the 2-species

case. We want to explore how we can visualise the balance simplex in a wide range

of parameter cases. Recall that the balance simplex Σ is a unique, simply connected

surface which divides R3
≥0 into two distinct regions: one containing points with the

α-limit of the origin, and the other containing points with the α-limit of infinity. Σ

is invariant to the flow of (6.1), thus it contains all non-zero steady states.

Whilst one should be able to plot an approximation of Σ using numerical methods

and discretisation [27,93], we focus on a more theoretical approach. In this chapter,

we plot the balance simplex as the zero set of a function φ(x1, x2, x3). The equation it

satisfies will resemble that which is satisfied by a Darboux polynomial [22], however

φ will be a power series.

6.1 Background

Cairó and Llibre [14] have studied the Darboux integrability [22] for the 3-species

Lotka–Volterra equations. By determining whether a system is integrable or not,

one can determine if the system will exhibit chaotic behaviour or if it is possible to

characterise the long-term behaviour of the model. The study of Darboux integra-

bility can help determine the number of invariant algebraic surfaces a system has.
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The following definitions can be found in [14]

Definition 6.1.1 A Darboux polynomial for the 3-species neutral Lotka–Volterra

system is φ(x1, x2, x3), which is not identically zero and satisfies

∂φ

∂x1

F1 +
∂φ

∂x2

F2 +
∂φ

∂x3

F3 = mφ (6.2)

for some polynomial m, called the cofactor of φ.

Since the vector field of (6.1) is quadratic, the cofactor m must be at most of degree

1 in x = (x1, x2, x3).

Definition 6.1.2 For a Darboux polynomial φ(x), its zero set {x ∈ R3
≥0 |φ(x) = 0}

is called an invariant algebraic surface. We refer to this zero set as φ−1(0).

The invariance of φ−1(0) to the flow of the system follows from (6.2); the normal of

φ−1(0) is orthogonal to the vector field, thus the surface φ−1(0) is formed of orbits

of the system. Basic examples of invariant algebraic surfaces for (6.1) would be the

planes x1 = 0, x2 = 0 and x3 = 0. Another reason why Darboux polynomials are

studied is due to being related to the integrability of a system.

Definition 6.1.3 The function H(x1, x2, x3, t) : R3
≥0×R→ R is called an invariant

of the system (6.1) if H is constant on all orbits of the system. If additionally H is

independent of time, it is called a first integral of the system, in this case it is also

a Darboux polynomial for the system with the cofactor 0.

Definition 6.1.4 A 3-dimensional vector field F is called integrable if it has two

independent first integrals, H1 and H2, i.e. the vectors ∇H1 and ∇H2 are linearly

independent in the space where the two first integrals are defined.

If F is integrable with two independent first integrals H1 and H2, then its orbits

are determined by intersecting the invariant sets H1 = h1 and H2 = h2 where h1
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and h2 vary in R [3, 14]. This means the dynamics of an integrable system are well

understood and not chaotic.

There are several papers giving different examples of first integrals for the 3-

species Lotka–Volterra system in specific parameter cases, e.g. [1, 13, 28]. In this

next section we focus on a method for plotting the balance simplex for the 3-species

scaled Lotka–Volterra system which we intend to work in most cases.

6.2 The balance simplex as a zero set

For the 3-species competitive Lotka–Volterra system, Zeeman and LaMar develo-

ped CSimplex [51], a module for the program Geomview, which allowed the carrying

simplex to be plotted. The carrying simplex was computed as the steady solution

u(x1, x2, t) (when it exists) of the quasilinear partial differential equation

∂u

∂t
= F3 − F1

∂u

∂x1

− F2
∂u

∂x2

(6.3)

for (x1, x2, t) ∈ (0, 1)2 × (0,∞), with initial conditions u(x1, x2, 0) = 1− x1 − x2.

For non-competitive systems, we do not expect the balance manifold to always

be a graph of a function; we have seen in the 2-species case where a cusp forms for

co-operating species. We instead consider a function φ(x1, x2, x3, t) : R4
≥0 → R, of

which we examine the zero set, φ−1(0), in the steady case. We consider

dφ

dt
=
∂φ

∂t
+∇φ · F = mφ (6.4)

where F = (F1, F2, F3)T and m is a scalar function, both dependent on

x = (x1, x2, x3)T . For now, we assume m is of degree 1. The initial condition is

φ(x1, x2, x3, 0) = 1− x1 − x2 − x3. Since Σ is invariant to the flow, we want to find
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a steady solution, thus we are left with:

∇φ · F = mφ. (6.5)

The level surface φ−1(0) is a solution to the dynamics ∇φ · F = 0 which means it

is tangent to the vector field F at every point. By choosing a suitable m, we can

identify the balance manifold, formed of heteroclinic orbits connecting the non-zero

steady states.

6.3 The cofactor m

In this subsection we briefly discuss the effect of m has in equation (6.5). If m = 0

then the equation is simply ∇φ · F = 0, the solution of which would be tangent to

the vector field everywhere. However, this does not exclude the trivial solution φ ≡ 0

which will appear if we try to solve this as a series solution.

We consider a basic 1-dimensional PDE where the solution φ is an exact solution,

rather than a polynomial or power series. In this case, m does not need to be of

degree 0 (i.e. a constant). The 1-species scaled Lotka–Volterra system is a logistic

equation (and competitive):

dx

dt
= x(1− x), (6.6)

where x ∈ R≥0. For given m the solution φm(x, t) this gives the PDE:

dφm
dt

=
∂φm
∂t

+ x(1− x)
∂φm
∂x

= mφm (6.7)
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with the initial condition φm(x, 0) = 1− x. If m = 0, the explicit solution is

φ0(x, t) =
et(x− 1)

et(x− 1)− x
. (6.8)

We want to examine the steady solution. As t → ∞, φ0(x, t) converges to the

horizontal line φ0(x) = 1 with a discontinuity at x = 1, where φ0(1) = 0. For finite

t, φ0(x, t) has an asymptote at x = (1 − e−t)−1. The zero set of φ0(x, t) for any t

is x = 1, which is precisely the carrying simplex in this 1-dimensional case. In this

sense, φ0 is fine as the zero set identifies correctly the carrying simplex, however as

a function itself, φ0 has a singularity and the limit function is discontinuous.

We consider different functions for m and write exp := e for readability:

φ−x(x, t) = 1− x, (6.9)

φ−x2(x, t) = (1− x) exp
[(

1 + ((x− 1) exp[t]− x)−1
)
x
]
. (6.10)

The function φ−x(x, t) is steady, analytic and has x = 1 as its zero set. The function

φ−x2(x, t) also identifies x = 1 as the carrying simplex. The limit function as t→∞

is φ−x2(x) = (1− x) exp[x] which is analytic.

In Figure 6.1, we can see a plot of φm for various cofactors m. In all the examples

we have tested, if m = −xn; n > 1, then the limit function is φ−xn(x) = (1 −

x) exp[x+ x2

2
+ . . .+ xn−1

n−1
]. In this sense, we can think of m in this form having the

effect of smoothing out the previous discontinuous limit function into a limit function

which is analytic and has a zero at the same position (x = 1).

6.4 The series solution φ

We now return to discussing the equation∇φ·F = mφ (6.5) where F is the vector

field of the 3-species scaled Lotka–Volterra system (6.1). This equation is the same
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0.5 1.0 1.5 2.0
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-2

-1

1

2

m=-x2

m=-x30

m=-x2-x

Figure 6.1: Plots of the limit set φm(x) with m = −x2,−x30,−x2 − x. Recall that
φ0(x) = 1 (with a discontinuity φ0(1) = 0), and φ−x(x) = 1 − x (both not included
in this plot).

as (6.2) which is satisfied by a Darboux polynomial, however, we do not consider φ

to be a polynomial but instead a power series of the form:

φ(x1, x2, x3) =
∞∑
n=0

φn(x1, x2, x3) (6.11)

where φ0 is a constant, and φn (n ≥ 1) is homogeneous and of degree n.

Lemma 6.4.1 For a homogeneous function φn of degree n, the following holds: ∇φn·

x = nφn.

Proof : By definition, φn(λx) = λnφn(x) for all λ ∈ R and x ∈ R3
≥0. Differentiating

with respect to λ using the chain rule gives:

x1
∂φn
∂x1

+ x2
∂φn
∂x2

+ x3
∂φn
∂x3

= nλn−1φn(x). (6.12)

Setting λ = 1 proves the statement. �

For now, we will assume φ converges so that we can take the gradient operator

inside the sum. Equation (6.5) then becomes:

∞∑
n=0

∇φn · (x− diag[x]Ax) = m
∞∑
n=0

φn, (6.13)
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where A is the 3 × 3 matrix with the interaction coefficients αij, and diag[x] is a

diagonal matrix with entries x (with all other entries 0). Taking m to be degree 1 in

x, there are no terms of degree zero on either side of (6.13), so comparing terms of

degree 1:

∇φ1 · x = mφ0 = φ1, (6.14)

and of degree 2:

∇φ2 · x−∇φ1 · diag[x]Ax = mφ1

⇒ 2φ2 = φ0∇m · diag[x]Ax+ φ0m
2. (6.15)

This pattern continues and we find that (formally):

φ = φ0

(
1 +

∞∑
k=1

1

k!
(m+ diag[x]Ax · ∇)k−1m

)
(6.16)

where the exponent (k−1) means the operator is applied k−1 times. We are looking

for the set φ−1(0) so we can set φ0 = 1. Consider m = −(x1 + x2 + x3) which gives

the first two terms of φ as 1 − x1 − x2 − x3, of which the zero level set is the unit

simplex. Note that with this, we can simplify diag[x]Ax · ∇(mn) = −nmn−1xTAx

but the other terms from applying the operator do not simplify as easily.

First, we examine φ on the x1-axis:

φ(x1, 0, 0) = 1−
∞∑
k=1

1

k!

(
−x1 + x2

1

d

dx1

)k−1

x1

= 1− x1 + x2
1 − x2

1 + 0 + . . .

= 1− x1. (6.17)

We know that the axial steady state (1, 0, 0) always lies on the balance manifold of
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the system (6.1) and we can see that here φ(1, 0, 0) = 0, the same is true for the two

other axial steady states (0, 1, 0) and (0, 0, 1).

Unfortunately, φ does not simplify as easily on the boundary planes x1 = 0, x2 =

0 or x3 = 0. Indeed:

φ(x1, x2, 0)

= 1−
∞∑
k=1

1

k!

(
−x1 − x2 + x1(x1 + α12x2)

∂

∂x1

+ x2(α21x1 + x2)
∂

∂x2

)k−1

(x1 + x2)

=: 1−
∞∑
k=1

φk. (6.18)

We have that:

φ1 = x1 + x2,

φ2 =
1

2!
x1x2(α12 + α21 − 2),

φ3 =
1

3!
x1x2(α12 + α21 − 2)(α21x1 + α12x2),

φ4 =
1

4!
x1x2(α12 + α21 − 2)[(α21x1 + α12x2)2 + α21x

2
1 + 2α12α21x1x2 + α12x

2
2].

After this, the terms become more complex and do not seem to follow a pattern,

however we have the factor of (α12 + α21 − 2) in each φi, i > 1. We know that

this factor can change the convexity of the carrying simplex in 2-species competitive

systems [4], and here it can change the sign of φi. In the case where α12 + α21 = 2,

the set φ−1(0) is 1− x1− x2 = 0. This matches the 2-species balance simplex in this

case, which we have discussed in Chapter 3, Section 3.9.4.

Since we can only plot this surface for finite sums, we set:

φ = 1−
K∑
k=1

1

k!
(−x1 − x2 − x3 + diag[x]Ax · ∇)k−1 (x1 + x2 + x3). (6.19)
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6.5 Plotting the zero set with finite K

At first (for K = 1), we have the unit simplex. This starts to deform as we

increase K to resemble what we expect the balance simplex to be, in the sense that

on the boundary planes it matches very closely to the plot of our known solution

for the 2-species balance simplex. This close resemblance occurs in most cases when

K > 25. However, in some cases the part of the surface outside of R3
≥0 folds in on

itself, giving the appearance of two surfaces in the first orthant, see Figure 6.2.

In the examples we have seen of this case with two surfaces, the lower surface

resembles what we would expect from the balance simplex. The upper ‘folded’ part

does not follow the solution trajectories, meaning it is not invariant under the flow.

Increasing the value of K after 25 does not change the surfaces significantly but does

affect the computation time for the plot greatly. Whilst it seems the upper surface

does move towards the lower surface with larger K, we have not managed to prove

they converge in the limit. This issue can also happen in the 2-species case with this

method.

In Figure 6.3, we examine two competitive systems, in which we know the carrying

simplex exists. Figure 6.3a has two distinct surfaces (with respect to the first orthant)

and took 16 hours to run. Figure 6.3b has only one surface. This example took 4

hours to run with the same value of K, we assume this difference is due to having only

one surface appearing. The parameters are chosen such that the carrying simplex of

both of these systems have a different sign of convexity. For our plots in the convex

case (where all 2-species subsystems satisfy αij + αji − 2 > 0, i 6= j, i, j ∈ {1, 2, 3}),

we have always found only one surface for φ−1(0), e.g. Figure 6.3b. For the concave

case (αij + αji − 2 < 0), we have always found two surfaces for φ−1(0), e.g. Figure

6.3a.

In Figure 6.4, we consider a non-competitive system, with the same parameters as

in Figure 6.2 but with a greater value of K. We can see again there are two surfaces,
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(a) K = 1 (unit simplex) (b) K = 2

(c) K = 6 (d) K = 11

Figure 6.2: Plots of the surface φ−1(0) with different values of K in a non-competitive
system. We have the appearance of two surfaces, with the lower surface resembling
what we would expect from the balance simplex, as it matches closely the dynamics
on the 2-species boundaries. A cusp and loop is formed on the lower plane due to
the co-operating species, we know the 2-species balance simplex is not smooth at
this steady state.
Parameters: α12 = −0.1, α13 = 0.41, α21 = −0.2, α23 = 1.21, α31 = 1.21, α32 = 0.41.
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(a) Concave competitive system: α12 = 0.4, α13 = 0.5, α21 =
0.4, α23 = 0.5, α31 = 0.4, α32 = 0.5.

(b) Convex competitive system: α12 = 1.1, α13 =
2.41, α21 = 2.2, α23 = 2.3, α31 = 1.21, α32 = 2.5

Figure 6.3: Two competitive examples of the surface φ−1(0), K = 81, with different
convexity, the black points are the non-zero steady states.
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Figure 6.4: Different views of the same surface φ−1(0), with K = 81, taking 13 hours
to run.
Parameters: α12 = −0.1, α13 = 0.41, α21 = −0.2, α23 = 1.21, α31 = 1.21, α32 = 0.41.

of which the bottom resembles what we would expect of the balance simplex. Note

the cusp at the interior steady state of the 2-species co-operating subsystem. Part

of a loop also forms near this point (shown more clearly in Figure 6.2d) which gets

smaller as K increases. From this method it is not clear whether the lack of C1-

continuity on the bottom plane continues into R3
>0 or if it is just at this 2-species

(co-operative) boundary.

In Figure 6.5, we see another non-competitive system. In this case, each pair

of species have a predator-prey type relationship (one of the interaction coefficients

is positive whilst the other is negative). The φ−1(0) set gives two surfaces but we

have removed the upper surface in the plot. The lower surface sufficiently matches

the balance simplex on each 2-species boundary, shown in Figure 6.5a. In Figure

6.5b, some solution trajectories are plotted and the surface φ−1(0) seems to lie on

the boundary (relative to R3
≥0) of the basin of repulsion of the origin, ∂R(0).

In Figure 6.6, we can see a fully co-operative 3-species system (which was also

discussed in Chapter 4, Figure 4.2). The φ−1(0) surface has a cusp on each 2-species

plane as well as one in R2
>0 at the interior steady state. The edges of the surface in

R2
>0 are the ‘loops’ (see Figure 6.2d) which are not part balance simplex. Increasing
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(a) The lower surface of φ−1(0)

(b) Solution orbits

Figure 6.5: The surface φ−1(0), K = 26, where we have only kept the lower surface.
The only non-zero steady states are the axial steady states. The system is non-
competitive: α12 = 1.23, α13 = 1.56, α21 = −0.26, α23 = −0.23, α31 = −0.13, α32 =
1.46.



Chapter 6. Plotting Σ in a 3-Species System as a Zero Set 138

Figure 6.6: Different views of the same surface φ−1(0), with K = 22, for a fully
co-operative (and bounded) system. Once again, φ−1(0) matches closely with the
balance simplex in the 2-species subsystems.

K or the PlotPoints in Mathematica can cause the edges and loops of the plot to

become unclear so we have shown this system with a lower K. By following the

analogous 2-species case (and our plot for this system in Chapter 4, Figure 4.2, using

the series solution G), we expect the 3-species balance simplex to be composed of

three smooth slightly curved kite-shaped surfaces, with each edge being a heteroclinic

orbit between two non-zero steady states.

Figure 6.7a shows a competitive case where the carrying simplex has regions

with a relatively strong curvature. Specifically, in the species 1 and 2 subsystem (the

bottom plane) α12 = 3 and α21 = 5, which are much larger than the parameters we

have typically used in our plots. On this plane, the carrying simplex is very curved,

particularly near the axial steady states. Typically, in the other cases, if K = 25

then the lower surface will sufficiently match the boundary dynamics in that none of

the plotted boundary orbits will cross this surface (of course, in theory some orbits

will still cross the surface as it is only an approximation, these just may not be shown

in the Mathematica plot). In this case however, we had to use a higher value of K

(K = 45) before the lower surface was sufficiently accurate. We believe this is due

to the strong curvature in some regions of the carrying simplex.
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(a) K = 51

(b) K = 25

Figure 6.7: Plots of the surface φ−1(0). In subfigure (a), the parameters are
α12 = 3, α13 = 1.3, α21 = 5, α23 = 0.23, α31 = 0.2, α32 = 0.5. In subfigure (b),
the parameters are from matrix A (6.21)
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In Figure 6.7b, we recall a case (the matrix 5.23 from Chapter 5) where A is not

strictly copositive and A /∈ A, the parameter space from Chapter 4:

A ={A ∈ R3×3 |αii = 1, αij < 1, αijαji < 1, i 6= j, i, j ∈ {1, 2, 3}

and the dynamics of (6.1) are bounded}. (6.20)

The interaction matrix A is

A =


1 −2.5 0.2

0.45 1 1.1

0.2 0.4 1

 . (6.21)

This system (6.1) with this matrix A is part of a case where we have not yet proven

the balance simplex exists. From the boundary dynamics and boundedness of the

system (discussed in Chapter 5), we expect the balance simplex to still exist in

this case. The zero set φ−1(0) is shown in Figure 6.7b, there are two surfaces and

some numerical issues appearing. On the boundaries, species 1 and 3 are competing,

species 2 and 3 are also competing, and species 1 and 2 are in a predator-prey type

relationship. This last subsystem represents the bottom plane where the 2-species

balance simplex has a region of strong curvature and an interior steady state which

is globally attracting on the interior of that plane. Near this region, we see folds

starting to form where the surface φ−1(0) is not accurate. This does not improve

with increasing K.

For the plots in Figure 6.8, we consider another case where A /∈ A and A is not

strictly copositive. The interaction matrix A is

A =


1 1.05 −0.9

−0.7 1 −0.8

−0.8 −0.9 1

 . (6.22)
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Note that α12 > 1 and A is not co-positive since {1, 1, 1}T .A.{1, 1, 1} = −0.05. On

the boundaries, species 1 and 3 are co-operating, species 2 and 3 are also co-operating,

and species 1 and 2 are in a predator-prey type relationship. There are 5 non-zero

steady states on the boundaries, and 1 interior steady state. Some orbits starting

from the basin of repulsion of the origin R(0) are shown in Figure 6.8b.

The interior steady state x∗ = (0.25, 7.625, 8.0625) is hyperbolic and attracting,

all other steady states are unstable with respect to the interior R3
>0. We can conclude

that x∗ is globally attracting on the interior by considering the (u,N) dynamics

(where the corresponding proportion vector steady state u∗ is globally attracting on

the interior of the u-simplex) and recalling Corollary 4.5.3 from Chapter 4. From the

boundary dynamics (Figure 6.8a) and the boundedness of orbits, we would expect

the balance simplex to exist.

In Figure 6.8c we can see the surface φ−1(0) with K = 26. The plot of this surface

does not work very well on the interior R3
>0 and does not produce a clearer image with

large K or with more PlotPoints in Mathematica. To improve the clarity of this

plot, we have removed some regions of the surface which has numerical instabilities.

These regions are near where x3 is small, and x1 and x2 are large (thus not close

to R(0)). The issue with this case may be how the 2-species co-operative carrying

simplices resembles a line near their interior steady state, causing the balance simplex

of the full system to be sharp near those regions. Additionally, with how far from

the origin these steady states are (relative to our previous examples), this may cause

problems with the convergence of φ. Figure 6.8d shows the orbits along with φ−1(0).

The orbits intersect the cone-like shapes from φ−1(0).
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(a) Boundary dynamics (zoomed in) (b) Orbits starting from inside R(0)

(c) φ−1(0) with K = 26 (d) φ−1(0) with some orbits

Figure 6.8: The dynamics of a system with parameters given by matrix A (6.22).
Figure (d) uses the same surface φ−1(0) as (c) but has been made lighter for better
visibility. There is an attracting interior steady state at (0.25, 7.625, 8.0625) (near
the top right) which is near one of the 2-species interior steady states.
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6.6 Taking the cofactor m to be degree 2

For a different approach to the system (6.1) with A as in (6.22), we consider

taking the cofactor m with a higher degree. If m is of degree 2 in x1, x2, x3, then

φ1 = 0 meaning there are no degree 1 terms in φ. This may be beneficial in this

case as two of the 2-species carrying simplices are not close to the unit simplex on

the corresponding planes. If m = −x1 − x2 − x3, the zero set φ−1(0) of the first two

terms is the unit simplex (1 − x1 − x2 − x3 = 0), whereas if m = −x2
1 − x2

2 − x2
3,

the zero set of the first two terms is 2 − x2
1 − x2

2 − x2
3 = 0 which will be part of the

sphere centred at the origin with radius
√

2. This lies above the unit simplex. Recall

equation (6.13) where we now take m to be of degree 2 and label φ as Φ in this case:

∞∑
n=0

∇Φn · (x− diag[x]Ax) = m
∞∑
n=0

Φn. (6.23)

Comparing coefficients gives:

Φ1 = 0

Φ2 =
1

2
mΦ0

Φ3 =
1

3
∇Φ2 · diag[x]Ax

Φn =
1

n
(mΦn−2 −∇Φn−1 · diag[x]Ax) ; n ≥ 4. (6.24)

We can set Φ0 = 1, and have chosen m = −x2
1 − x2

2 − x2
3 for the plot in Figure 6.9a.

The plot for this surface also used terms up to Φ26 (K = 26) however it took 13

times longer to produce (70 minutes) than Figure 6.8c, this may be due to numerical

instabilities in the regions we have cut out of the plot, after it was computed. For

this system, it is not clear whether φ−1(0) or Φ−1(0) is more accurate to the balance

simplex (or to what we would expect it to appear like based on the orbits of R(0)).

Figure 6.9b shows Φ−1(0) for the system from Figure 6.4. There is only one
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(a) Φ−1(0) for the system from Figure 6.8 with K = 26

(b) Φ−1(0) for the system from Figure 6.4
with K = 81

(c) Φ−1(0) for the system from Figure 6.7b
with K = 25

Figure 6.9: The surface Φ−1(0) with m = −x2
1 − x2

2 − x3
3 is shown in blue.
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surface in most of R3
>0, however two still appear near the bottom co-operative plane.

This surface is not as accurate on the boundaries as it intersects a few of the plotted

orbits, even for K = 81. This plot took 11 hours to produce, compared to Figure 6.4

which took 13 hours, we suspect this is due to the latter having two surfaces.

In Figure 6.9c, we plot Φ−1(0) for the system from Figure 6.7b. In this case,

we only have one surface appearing but the numerical problems with the folds are

still present and do not improve with larger K. The execution time for this plot is

similar to that for φ−1(0) (3 minutes). Typically when K is small, we do not see a

significant difference in the execution times of φ−1(0) and Φ−1(0).

We now consider an example where we can compare these surfaces to the carrying

simplex when it is explicitly defined. From Chapter 4, an example is the system with

parameters αij = 1
2

for i 6= j (Figure 4.5). We will refer to its carrying simplex as Σ,

part of which is shown as the solid green surface in Figure 6.10. In this case, Φ−1(0)

(Figure 6.10b) only has one surface whereas φ−1(0) has two (Figure 6.10a). For small

K (< 20), the lower surface of φ−1(0) is closer to Σ than Φ−1(0) is. The lower surface

of φ−1(0) rises as K increases, with the upper limit appearing to be Σ. For Φ−1(0) the

opposite is true, it lies above Σ and converges downwards as K increases. In Figure

6.10 (K = 30), Φ−1(0) took 40 minutes to plot whereas φ−1(0) took 61 minutes, this

may be due to it having two surfaces. Ignoring the upper surface herein, both φ−1(0)

and Φ−1(0) converge quickly to Σ around the axial steady states as K increases,

however the convergence near the interior steady state and 2-species interior steady

states is slower. In Figure 6.10c, we see that near the region of the species 1 and 3

interior steady state, Φ−1(0) is closer to Σ than φ−1(0) is. Figure 6.10d shows the

region near the interior steady state, this is where convergence is slowest. Both of

these surfaces are within a distance of 0.02 from Σ, showing that the lower surface

of φ−1(0) and Φ−1(0) are good approximations of the carrying simplex in this case.
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(a) φ−1(0) (K = 30) (b) Φ−1(0) (K = 30)

(c) Comparison near the interior boun-
dary steady state

(d) Comparison near the interior steady
state

Figure 6.10: A competitive system where αij = 1
2

for i 6= j. The carrying simplex
is explicitly known as discussed in Chapter 4, Section 4.3 (a portion is shown as the
solid green surface).
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6.7 Conclusions

We have shown plots of the surface φ−1(0) for finite K (i.e. the zero set of (6.19))

which generally matches well with the balance simplex in the 2-species subsystems.

Since we can only plot φ−1(0) with finite K, we think of the set φ−1(0) as a good

approximation for the balance simplex, rather than the balance simplex itself. They

give us an idea of the shape of the balance simplex, but perhaps not its smoothness in

the interior R3
>0, particularly near any cusps from co-operating species (e.g. Figure

6.4). By using the function φ, this improves on the plots from Chapter 4 with the

parametric series solution which did not always converge on the interior and was

only applicable to the parameter case where A ∈ A (6.20). The methods in this

chapter work outside of this parameter space, however it does not work as well if the

2-species subsystems have regions of strong curvature (e.g. 6.7b) or are co-operative

with the interior steady state is relatively far from the origin (e.g. Figure 6.8).

We have not yet considered the convergence of the series for φ; during its de-

rivation, we took the gradient operator inside the infinite sum to obtain equation

(6.13). The potential lack of convergence may have caused issues with numerical

instabilities greatly increasing the execution time and quality of plots with a large K

(e.g. the system with matrix A as (6.22)). In the cases where two surfaces appear,

the upper surface moves closer to the lower surface as K increases, however, it is not

obvious what happens in the limit as K → ∞. In some cases, using the cofactor

m = −x2
1 − x2

2 − x2
3 instead of −x1 − x2 − x3 removes this upper surface (Figures

6.9b and 6.10b), however this is not true for all cases, we have tested it with the

system from Figure 6.7a and the upper surface on the boundaries still appear. This

choice of m also makes the zero set less accurate on the boundaries (in general) for

small values of K (< 20). For plots to give a quick and decent approximation for

the balance simplex, we would recommend using m = −x1 − x2 − x3 and trying

m = −x2
1 − x2

2 − x2
3 if two surfaces appear.
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In this chapter, we discuss the results from our most recent paper [19] where we fo-

cus on general 2-dimensional Kolmogorov systems rather than scaled Lotka–Volterra

systems. Many biological systems have opposing processes that lead eventually to a

state where the processes are in a state of balance [86] (e.g. the concept of homeo-

stasis). In physical systems, a classic example is a balance of forces which may result

in an equilibrium, e.g. a pendulum at rest at its lowest point.

In ecology, population density changes are due to a multitude of processes that

contribute to population growth and decline [46]. These processes are in turn control-

led by factors such as fecundity, competition, co-operation, predation, environmental

factors and so on. As we have mentioned in Chapter 1, the scaled Lotka–Volterra

systems are limited in how realistic they are to modelling animal populations. By

considering general Kolmogorov models, this will include population models with

different and less basic functions for per-capita growth rates. This chapter will give

some sufficient conditions in these models for a balance manifold to exist, based on

stability analysis and index theory [69]. The balance manifold that we introduce is

similar to the balance simplex we have been discussing thus far, except it may not

project radially 1-to-1 to the unit probability simplex.

7.1 Background

For deterministic continuous-time single-species population models, the conditi-

ons sufficient for the existence of a unique positive environmental carrying capacity

K, at which the population eventually settles, are well-understood [37, 47]: the per-

capita growth rate is a continuous function f : R≥0 → R with f(0) > 0, f(x) < 0 for

x > K and f−1(0) = {K}. The key features behind a unique, attracting carrying

capacity are: (i) the origin is repelling, (ii) infinity is repelling, and (iii) the positive

equilibrium K is unique. At the carrying capacity, there is a balance between the
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growth and decline of the population, meaning all non-zero population densities are

attracted to this state.

An analogous concept of balance exists in higher dimensions. For competitive

systems, Hirsch [35, 36] introduced carrying simplices which are hypersurfaces that

asymptotically attract all non-zero initial population densities and contains all non-

zero steady states. One interesting property of a carrying simplex is that all non-

trivial dynamics, such as periodic orbits, occur on it.

In Chapter 3, we have developed an analytic formula for an analogue of the

carrying simplex which can also be applied to some non-competitive systems, namely

the scaled Lotka–Volterra systems. In this context it is referred to as a balance

simplex, which can still be projected 1-to-1 and onto the unit simplex by radial

projection. However many other properties no longer hold from carrying simplices.

For example, the balance simplex is no longer C1-continuous on the interior, nor

is it the graph of a decreasing function (which both hold for the planar carrying

simplex [4, 36, 63,85]).

7.2 General Kolmogorov population mo-

dels

We examine a general planar Kolmogorov-type system

dx1

dt
= F1(x1, x2) = x1f1(x1, x2),

dx2

dt
= F2(x1, x2) = x2f2(x1, x2), (7.1)

where we only consider (7.1) on the phase space R2
≥0 and the functions f1, f2 : R2

≥0 →

R2
≥0 are C1-continuous on an open set containing R2

≥0. Such a system is often used to

model the ecological dynamics of a closed habitat in which two species interact [47].
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Our standing assumptions for (7.1) are:

A1 The origin 0 and infinity are repellers;

A2 There are unique axial steady states q1 = (x̄1, 0) and q2 = (0, x̄2), x̄1 > 0, x̄2 >

0;

A3 All steady states of (7.1) are hyperbolic, i.e. the eigenvalues of the Jacobian

(see equation (7.10)) at all steady states have non-zero real parts;

A4 Intraspecific competition exists for each species:

∂f1

∂x1

(x) < 0,
∂f2

∂x2

(x) < 0, x = (x1, x2) ∈ R2
≥0. (7.2)

As usual, we denote the flow of the system by ϕ(·, t) : R2
≥0 → R2

≥0 or ϕt(x) when x is

fixed. One important property of this system is that the axes are invariant (forwards

and backwards in time). The interior R2
>0 also remains invariant.

To elucidate what its means to say that infinity is a repeller for (7.1) we make

a co-ordinate change to bring infinity into view. We define the inversion map X =

(X1, X2) : R2
≥0 \ (0, 0)→ R2

≥0 via

X1(x) =
x1

x2
1 + x2

2

, (7.3)

X2(x) =
x2

x2
1 + x2

2

. (7.4)

Then X maps infinity in (x1, x2) co-ordinates to the origin in (X1, X2) co-ordinates.

Infinity is repelling in (7.1) when the origin of the transformed system

dX1

dt
= (X2

2 −X2
1 )F̃1 (X1, X2)− 2X1X2F̃2 (X1, X2) , (7.5)

dX2

dt
= (X2

1 −X2
2 )F̃2 (X1, X2)− 2X1X2F̃1 (X1, X2) , (7.6)
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is unstable, where F̃i (X1, X2) = Fi (x1(X), x2(X)) for i = 1, 2. To obtain the basin

of repulsion of infinity in (7.1) we can alternatively find the basin of repulsion of the

origin in (7.6) and map back to x1, x2 co-ordinates.

Definition 7.2.1 A balance manifold Σ for (7.1) is a globally attracting (on

R2
≥0\{0}), compact, connected set that is equal to the union of the boundaries of the

basins of repulsion of the origin and of infinity, i.e. Σ = ∂R(0) ∪ ∂R(∞).

Remark 7.2.1 Again, we use the term manifold here to keep the terminology con-

sistent with the carrying simplex. However, the balance manifold is generally not

smooth everywhere, but it is composed piecewise of analytic manifolds.

Remark 7.2.2 Note that since the balance manifold is globally attracting on

R2
≥0\{0}, it is invariant for the flow of (7.1) and necessarily contains all non-zero

steady states.

Recall that the balance manifold Σ is analogous to the carrying simplex which

exists in the competitive case where ∂f1

∂x2
< 0 and ∂f2

∂x1
< 0 in R2

≥0 [36]. Similar to

the Lotka–Volterra systems, we want the balance manifold to separate the basins of

repulsion of the origin and of infinity.

A simple, but important, consequence of assumption A4 is:

Lemma 7.2.3 Under the assumption (7.2) there can be no non-trivial interior closed

orbits for (7.1).

Proof : Let C be a closed orbit lying completely in R2
>0. By the Divergence Theorem

[81] with B(x) = 1
x1x2

ˆ
∂C
BF · n dS =

ˆ
C

div(BF ) dV (7.7)

where n denotes the outward pointing unit normal vector of ∂C (taken anticlockwise),



Chapter 7. The Balance Manifold of Planar Kolmogorov Systems 153

dS is a line element and dV is a volume element. Note that for x ∈ R2
>0:

div(B(F1, F2)) =
1

x2

∂f1

∂x1

+
1

x1

∂f2

∂x2

< 0

meaning the right hand side of (7.7) is negative. If C is a non-trivial periodic orbit,

then F ·n = 0 on C, meaning the left hand side of (7.7) is 0, which is a contradiction.

If C is not a non-trivial interior periodic orbit, then it must be a homoclinic orbit

of the interior steady state x∗. We find that F · n = 0 on C \ {x∗}. At x∗, the unit

normal is well defined,

n =
∇F
|∇F |

, (7.8)

∇F (x∗) =

(
x∗1
∂f1

∂x1

(x∗), x∗2
∂f2

∂x2

(x∗)

)T
6= 0. (7.9)

Since x∗ is only one point, the left hand side of (7.7) is still 0, giving another con-

tradiction. �

While this rules out interior homoclinic orbits, it does not rule out homoclinic

orbits from a boundary steady state. For this possibility we have

Lemma 7.2.4 Under the assumptions A1-A4 it is not possible for the unstable orbit

of an axial saddle steady state of (7.1) to be a homoclinic orbit.

Proof : Without loss of generality assume the axial saddle steady state with a

homoclinic orbit is q1 = (x̄1, 0). By assumption A3 and the Stable Manifold Theorem

[69], the saddle q1 has a 1-dimensional unstable manifold W u(q1) and a 1-dimensional

stable manifold W s(q1). Since the dynamics on the axes are bounded, and there is a

unique steady state on each axis, W s(q1) is the x1-axis.

Let x0 = (x0
1, x

0
2) ∈ W u(q1) with x0 > 0. Then if the unstable orbit of q1 is a
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homoclinic orbit, ϕt(x
0) → q1 as t → ∞, so that x0 ∈ W s(q1) = {(x, 0) : x ∈ R>0},

a contradiction to x0
2 > 0. �

It will be useful to note the Jacobian of the system (7.1):

J (x1, x2) =

f1(x1, x2) + x1
∂f1

∂x1
(x1, x2) x1

∂f1

∂x2
(x1, x2)

x2
∂f2

∂x1
(x1, x2) f2(x1, x2) + x2

∂f2

∂x2
(x1, x2)

 . (7.10)

At the origin,

J (0, 0) =

f1(0, 0) 0

0 f2(0, 0)

 , (7.11)

so to satisfy assumption A1 we require f1(0, 0) > 0 and f2(0, 0) > 0 for the origin to

be repelling.

Assumption A2 requires that (7.1) has a unique positive steady state on each

axis, which will be the carrying capacity of each individual species. Consider the

axial state q2 = (0, x̄2) where x̄2 > 0 and f2(q2) = 0. The Jacobian here is

J (q2) =

 f1(q2) 0

x̄2
∂f2

∂x1
(q2) x̄2

∂f2

∂x2
(q2)

 . (7.12)

Assumption A1 ensures that q2 is asymptotically stable on the x1-axis. The invariant

x2-axis has the associated eigenvalue x̄2
∂f2

∂x2
(q2), and so we require ∂f2

∂x2
(q2) < 0. We

also assume f1(q2) 6= 0 to avoid a non-hyperbolic steady state. The sign of f1(q2)

determines whether this axial steady state is a saddle point (positive) or a stable

node (negative).

Similarly, at the other axial steady state, q1 = (x̄1, 0), we require ∂f1

∂x1
(q1) < 0,

and the sign of f2(q1) determines whether q1 is a saddle point or a stable node.

By considering the Poincaré index of steady states (see, for example, [69]), we
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Figure 7.1: Γ = Γ0 ∪ Γ1 ∪ Γa ∪ Γ2 is the closed curve in red traversed anticlockwise,
looping around each axial steady state. Γ0 is sufficiently close to the origin such
that the vector field is pointing away from the origin, and Γa is arbitrarily far from
the origin such that Γ contains all possible interior steady states. Note that the red
arrows are not the flow of the vector field on Γ, but the orientation of Γ.

can determine the possible stability types of the steady state of (7.1).

Definition 7.2.2 ( [31]) Let Γ be a piecewise smooth, closed curve traversed anti-

clockwise and consisting of only ordinary points of the vector field (i.e. no steady

states). Let θ be the angle between the flow of the vector field at a point on Γ and

the positive horizontal axis. Consider a point x0 ∈ Γ. Since the flow is continuous,

as we traverse around Γ, back to x0, the variation of θ will be a multiple of 2π, say

2kπ; k ∈ Z. The index of Γ, denoted IΓ, is k.

We let [θ]γ denote the change in the angle θ as we traverse a curve γ, so that IΓ = [θ]Γ
2π

.

Let Γ be the closed curve orientated anticlockwise as shown in Figure 7.1. There are

different components to Γ = Γ0 ∪ Γ1 ∪ Γa ∪ Γ2. As the origin is an unstable node,

[θ]Γ0 = −π
2
.

To calculate the change in angle along the component Γa, we bring infinity into

view via the inversion map (7.4). Then infinity is repelling in (7.1) when the origin

of the system in X1, X2 co-ordinates is unstable. Thus using continuity, and the fact
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that the dynamics on the axes remain unchanged with this transformation, we find

that [θ]Γa = π
2
.

We first discuss the case where there are no interior steady states, thus IΓ = 0

since it encloses no steady states [31]. If q1 (the axial steady state on the positive

x1-axis) is a saddle, then [θ]Γ1 = +π, whereas if q1 is a stable node, [θ]Γ1 = −π.

The same holds with the other axial steady state q2 and the component Γ2. Suppose

that both q1 and q2 are saddles, then [θ]Γ = −π
2

+ π + π
2

+ π = 2π. Hence it is not

possible that both of q1, q2 are saddles in this case. Similarly q1, q2 cannot both be

stable nodes, since then we would have [θ]Γ = −2π. Thus the only possible case is

when one axial steady state is a saddle and the other is a stable node.

On the other hand, if there are interior steady states, then with Γa chosen so

that all interior steady states lie inside Γ, we find that the sum of the indices of the

interior steady states is the index of Γ [31].

We now discuss the case where there is a unique interior steady state x∗. The

index of Γ is equal to the index of x∗. If both q1, q2 are saddles, then the index

of x∗ is equal to +1. With the assumption of x∗ being hyperbolic and intraspecific

competition (preventing interior closed orbits) it follows that x∗ must be stable and

a node or spiral. If both q1, q2 are stable nodes, then the index of x∗ is equal to

−1, so that x∗ must be a saddle. Lastly, the case where one axial steady state is a

saddle and the other is a stable node is not possible; x∗ would have an index of zero,

contradicting its hyperbolicity.

To summarise

Lemma 7.2.5 For the system (7.1) under the assumptions A1-A4:

1. If there is no interior steady state, one axial steady state must be a saddle and

the other a stable node.

2. If there is a unique interior steady state, then
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(a) If both axial fixed points are saddles, the interior fixed point must be a

stable node or a stable spiral.

(b) If both axial fixed points are stable nodes, the interior fixed point is a

saddle.

(c) It is not possible that one axial fixed point is a saddle if the other is a

stable node.

7.3 Case 1: no interior fixed point

Without loss of generality, let us suppose that q1 is a saddle and q2 a stable node.

Lemma 7.3.1 Consider the system (7.1), under the assumptions A1-A4. Assume

there is no interior steady state. Suppose one of these axial steady states is a saddle

point, and the other is a stable node. Then the balance manifold is formed of the

unique heteroclinic orbit connecting the axial steady states (along with these steady

states).

Proof : Since we are only considering hyperbolic steady states, the saddle q1 has a

1-dimensional unstable manifold W u(q1). Let x0 ∈ W u(q1) in R2
>0 and O+(x0) be

the forward orbit through x0. By assumption A1, O+(x0) is bounded and so by the

Poincaré–Bendixson Theorem [84] ω(x0) contains a steady state, say p. By Lemmas

7.2.3 and 7.2.4, there are no homoclinic orbits, so p 6= q1. Moreover, the origin

(which we will denote by 0 here) is repelling so p 6= 0. This leaves p = q2, and since

q2 is asymptotically stable, we find that ω(x0) = {q2}. Explicitly, since q2 ∈ ω(x0)

there exists, by definition, a tk → ∞ (with k → ∞) such that ϕtk(x
0) → q2. Hence

there also exists a K ′ such that ϕtK′ (x
0) ∈ B(q2) and ϕt(x

0) ∈ B(q2) for all t > tK′ ,

and so ω(x0) = {q2}. This means O+(x0) (the closure of O+(x0)) is a curve that

connects x0 ∈ W u(q1) to q2 and we obtain the existence of a heteroclinic orbit
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H = W u(q1) \ {q1}.

Next we show that H = ∂R(0) = ∂R(∞). H divides R2
≥0 into two disjoint

connected and invariant components, say H− containing the origin and H+ = R2
≥0 \

(H∪H−). Let x0 ∈ H− and consider O−(x0). Since x0 6∈ H = W u(q1)∪{q2}, there is

no subsequence tk → −∞ with ϕtk(x
0)→ q1 and hence q1 6∈ α(x0). By the Poincaré–

Bendixson Theorem we must have 0 ∈ α(x0). Since the origin is an asymptotically

stable node backwards in time (and q2 is an unstable node in backwards time), we

see that α(x0) = {0}. Hence H− = R(0).

Next we map H+ to X(H+) using the inversion (7.4) and consider the transfor-

med dynamics (7.6). Examining these dynamics near the transformed steady states

shows that their stability types remain the same. This gives the same phase portrait

topology as the previous paragraph, and we conclude that H+ = R(∞).

Hence for the case where q1 is a saddle and q2 a stable node, we have the balance

manifold

H = ∂R(0) = ∂R(∞) = W u(q1) ∪ {q2}.

�

To summarise, we have shown:

Theorem 7.3.2 For a balance manifold to exist in the case where (7.1) has no

interior steady state, the following conditions are sufficient:

1. f1(0, 0) > 0, f2(0, 0) > 0; the origin is repelling.

2. Infinity is repelling.

3. There exists a unique axial steady state q2 = (0, x̄2) on the positive x2-axis

satisfying f2(q2) = 0, ∂f2

∂x2
(q2) < 0 and f1(q2) 6= 0.
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4. There exists a unique axial steady state q1 = (x̄1, 0) on the positive x1-axis

satisfying f1(q1) = 0, ∂f1

∂x1
(q1) < 0 and f2(q1) 6= 0.

5. f1(q2)f2(q1) < 0; the axial steady states are of different stability types and are

hyperbolic.

7.4 Case 2: a unique interior fixed point

We now consider the case where there is a unique interior steady state x∗ =

(x∗1, x
∗
2). The first four conditions from Theorem 7.3.2 are still required. The Jacobian

at the interior steady state is:

J (x∗) =

x
∗
1

∂f1

∂x1

(x∗) x∗1
∂f1

∂x2

(x∗)

x∗2
∂f2

∂x1

(x∗) x∗2
∂f2

∂x2

(x∗)

 . (7.13)

By assumption x∗ is hyperbolic and it may be (asymptotically) stable or a saddle.

Lemma 7.4.1 Suppose the system (7.1) under the assumptions A1-A4 has a unique

interior fixed point x∗. Suppose additionally that both axial steady states are saddle

points. Then x∗ is stable and the balance manifold is formed of the two heteroclinic

orbits connecting the axial steady states to x∗ (along with these steady states).

Proof : That x∗ is stable follows from 2(a) in Lemma 7.2.5. Each axial steady state

is a hyperbolic saddle with 1-dimensional stable and unstable manifolds, recall that

its stable manifold is the axis it lies on. Let W u(q1) be the unstable manifold of q1

and choose x0 ∈ W u(q1) in R2
>0. By the Poincaré–Bendixson Theorem, ω(x0) must

contain a steady state p, and p 6= 0 since the origin is repelling and p 6= q1 by Lemma

7.2.4. Moreover p 6= q2.

To see this, note that if q2 ∈ ω(x0) there exists tk → ∞ (with k → ∞) such

that ϕtk(x
0)→ q2. Recall that W s(q2) is precisely the invariant x2-axis. Noting the
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Hartman–Grobman [69] theorem, the local dynamics around q2 are known and it

follows that ϕtk(x
0) 6→ q2, a contradiction. Hence we are left with p = x∗, which is

asymptotically stable thus there is a heteroclinic orbit H2 = W u(q1) \ {q1} between

q1 and x∗. Similarly there is a heteroclinic orbit H3 = W u(q2) \ {q2} linking q2 and

x∗.

Let H = H2∪H3. Next we show that ∂R(0) = H = W u(q1) ∪W u(q2). We know

that H divides R2
≥0 into two disjoint connected and invariant components, say H−

containing the origin and H+ = R2
≥0 \ (H ∪H−). Let x0 ∈ H−. We will show that

α(x0) = {0}. By the Poincaré–Bendixson Theorem, α(x0) contains a steady state p

and as x∗ is attracting, p 6= x∗. Moreover, p 6∈ {q1, q2} since x0 6∈ W u(q1) ∪W u(q2).

Hence p = 0 and since the origin is an unstable node, α(x) = {0} and H− = R(0),

H = ∂R(0). As in Lemma 7.3.1, we may use the inversion map (7.4) to establish

that H+ = R(∞) and H = ∂R(∞).

We conclude that in this case the balance manifold

H = ∂R(0) = ∂R(∞) = W u(q1) ∪W u(q2).

�

Lemma 7.4.2 Suppose the system (7.1), under assumptions A1-A4 has a unique

interior fixed point x∗. Suppose additionally that both axial steady states are stable

nodes. Then x∗ is a saddle point and the two unstable orbits of x∗ have different

ω-limits, each equal to exactly one of the axial steady states.

Proof : That x∗ is a saddle follows from 2(b) in Lemma 7.2.5. By the Poincaré-

Bendixson Theorem each unstable orbit of x∗ has a ω-limit set that contains a steady

state, which in neither case can be the origin, since the origin is an unstable node,

nor x∗, since there are no interior homoclinic orbits by Lemma 7.2.3.

Consider one of the unstable orbits of x∗, denoted by γ1. Since q1 and q2 are
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asymptotically stable, γ1 has its ω-limit in {q1, q2}, i.e. γ1 is a heteroclinic orbit

connecting x∗ to either q1 or q2. The same is true other unstable orbit of x∗, γ2.

Suppose that γ1 and γ2 connect to the same ω-limit, say q1. These two heteroclinic

orbits γ1, γ2 enclose a bounded and invariant region R∗ and x∗ ∈ R∗. Since x∗ is a

hyperbolic saddle, W s(x∗) ∩ R∗ 6= ∅. Choose x0 ∈ W s(x∗) ∩ R∗. By the Poincaré–

Bendixson Theorem, α(x0) contains a steady state, say p. We know that p 6= x∗ since

there are no interior closed orbits, and p 6= q2 because R∗ is invariant and disjoint

from the x2-axis. Hence we must have p = q1. But this is not possible because q1 is

a stable node. Thus γ1 and γ2 are heteroclinic orbits which do not share the same

ω-limit.

Let H = γ1 ∪ γ2. Next we show that ∂R(0) = H = W u(x∗). We know that H

divides R2
≥0 into two disjoint connected and invariant components, sayH− containing

the origin and H+ = R2
≥0 \ (H∪H−). Let x0 ∈ H−. We will show that α(x0) = {0}.

By the Poincaré-Bendixson Theorem, α(x0) contains a steady state p and as q1, q2

are stable nodes p 6∈ {q1, q2}. Moreover, p 6= x∗ since x0 6∈ W u(x∗). Hence p = 0.

The remainder of the proof is similar to that of Lemma 7.4.1.

In this case the balance manifold

H = ∂R(0) = ∂R(∞) = W u(x∗).

�

To summarise, we have shown:

Theorem 7.4.3 For a balance manifold (connecting all non-zero steady states) to

exist for the system (7.1) in the case where there is a unique interior steady state x∗,

the following conditions are sufficient:

1. f1(0, 0) > 0, f2(0, 0) > 0; the origin is repelling.
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2. Infinity is repelling.

3. There exists a unique axial steady state q2 on the x2-axis satisfying

f2(q2) = 0, ∂f2

∂x2
(q2) < 0 and f1(q2) 6= 0.

4. There exists a unique axial steady state q1 on the x1-axis satisfying

f1(q1) = 0, ∂f1

∂x1
(q1) < 0 and f2(q1) 6= 0.

5. f1(q2)f2(q1) > 0; both axial steady states are of the same stability-type and are

hyperbolic.

6. There is intraspecific competition for each species; ∂f1

∂x1
< 0, ∂f2

∂x2
< 0 in R2

>0.

7.5 Structural stability

For dynamical systems, it is important to ask whether they are structurally sta-

ble [75], especially those which are used to model real systems [94]. A system is

structurally stable if it remains topologically unchanged when the system (i.e. its

vector field) is affected by a small perturbation. Consider two systems for x ∈ R2 in

some compact region Ω ⊂ R2

dx

dt
= F (x), (7.14)

dx

dt
= G(x). (7.15)

The ‘distance’ between these two systems can be measured by the following metric

[50,76]:

Definition 7.5.1 The distance between systems (7.14) and (7.15) in a compact

region Ω ⊂ R2 is given by:

d1 = sup
x∈Ω
{‖F (x)−G(x)‖+ ‖J (F )− J (G)‖} (7.16)
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where J is the Jacobian matrix and the norm is the Frobenius norm in the relevant

dimension. The systems are ε-close in Ω if d1 ≤ ε; in which case (7.15) is considered

a small perturbation of (7.14).

Theorem 7.5.1 (Andronov and Pontryagin [50,76]) A smooth dynamical sy-

stem (7.14) is structurally stable in a compact region Ω ⊂ R2 if and only if:

1. it has a finite number of equilibria and limit cycles in Ω, all of which are

hyperbolic,

2. there are no saddle points with a homoclinic orbit and there are no heteroclinic

orbits connecting two saddle points in Ω.

The system (7.1) we consider with conditions from Theorems 7.3.2 or 7.4.3 is therefore

structurally stable as it satisfies the conditions of Theorem 7.5.1. In the case where

two steady states are saddle points, we know there must be three non-zero steady

states total. In Theorem 7.4.3 we imposed conditions to ensure both axial steady

states will be the saddle points in this scenario. In the proof of Lemma 7.4.1, we

showed there is no heteroclinic orbit between these saddle points. Lemmas 7.2.3 and

7.2.4 show there are no saddle points with homoclinic orbits.

Therefore the balance manifold we have found (composed of heteroclinic orbits)

is also structurally stable in the sense that it still exists when the system is affected

by a small perturbation. This means the balance manifold is not a rare or atypical

structure, but occurs in a range of systems, some of which are characterised by the

conditions in Theorems 7.3.2 and 7.4.3.

7.6 Example models

In Chapter 3 we found an explicit, analytic solution for the balance manifold in

scaled Lotka–Volterra systems (the intrinsic growth rates and intraspecfic interaction
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coefficients are all equal to 1 for both species). Now we show some (numerical) plots

of the balance manifold for different Kolomogorov-type systems.

7.6.1 Higher order polynomial per-capita growth

rates

We can consider higher order polynomial functions for the per-capita growth rates

f and g. This enables the nullclines f = 0 and g = 0 to be slightly more complex,

affecting the shape of the orbits in the phase plane. In Figure 7.2, we have the

system:

dx1

dt
= x1f1(x1, x2)

= x1

[
−x2

1 + x1 − 10(x2 − 1)(2x2 − 6)(2x2 − 1)
]
,

dx2

dt
= x2f2(x1, x2)

= x2

[
14− 0.2x2

1 − 3x2
2

]
. (7.17)

This system satisfies the conditions of Theorem 7.4.3 apart from the final one re-

quiring intraspecific competition. In this model, ∂f1

∂x1
= 1 − 2x1 which is not always

negative in R2
>0. From Figure 7.2, we can see that there are no periodic orbits and x∗

is a stable node. This demonstrates that our requirement of intraspecific competition

(assumption A4 and condition 7 of Theorem 7.4.3) is not necessary for the existence

of a balance manifold.

7.6.2 Facultative mutualism

In co-operative Lotka–Volterra models, if the interspecific interaction rates are too

large, population densities can become unbounded which goes against our assumption

that infinity is repelling. Wolin [95] introduced facultative mutualism models for
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Figure 7.2: The phase plane of the system (7.17) with a close-up of the interior
steady state in the right figure. The balance manifold is the solid red curve and the
black points are steady states. In this system, there is a unique interior steady state
and species 1 does not experience intraspecific competition in R2

>0.

which the orbits are always bounded. A facultative mutualist is a species which can

exist without the presence of its mutualistic partner species. We consider a model

where both species have a per-capita birth rate which is increased by high recipient

densities through a hyperbolic functional response:

dx1

dt
= x1

(
r1 −

b1x1

1 + α12x2

− d1x1

)
,

dx2

dt
= x1

(
r2 −

b2x2

1 + α21x1

− d2x2

)
, (7.18)

where all the parameters are positive. There is a unique interior steady state x∗

which always exists and is stable. This model satisfies our assumptions for the case

with one interior steady state. An example of this system, along with its balance

manifold, is shown in Figure 7.3.
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Figure 7.3: The phase plane of the co-operative system (7.18), with the balance
manifold shown in red.

7.6.3 Holling type-II predator-prey interaction

Consider the system

dx1

dt
= x1

[
ρ
(

1− x1

K

)
− γx2

A+ x1

]
,

dx2

dt
= x2

[
σx1

A+ x1

+ µ− αx2

]
. (7.19)

Here, x1 is the prey and x2 is the predator density, and all parameters are positive.

The equation for the prey shows a type-II Holling functional response [38], where

there is a maximal feeding rate γ for the predator. The model has been modified from

the classic predator-prey model as the predator has an alternative food source that

supports logistic growth to carrying capacity µ
α

in the absence of prey. An example

of this is if the predator is omnivorous [48].

There is a unique axial steady state on each axis; (K, 0) and
(
0, µ

α

)
. There is also

intraspecific competition for both species and at most one interior steady state x∗.

In this model, infinity is repelling. Note that dx1

dt
< 0 for any x1 > K and x2 ≥ 0.

This means there exists some time T ≥ 0 such that x1(t) ∈ [0, K] for all t > T . In
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Figure 7.4: The phase plane and balance manifold of the system (7.19) with a close-
up of the interior steady state in the right figure. In this model of predator-prey
dynamics, there is no possibility of periodic orbits since both species always expe-
rience intraspecific competition.

this case, note that

dx2

dt
≤ x2

(
σK

A+K
+ µ− αx2

)
for all t > T. (7.20)

The expression on the right hand side is negative when

x2 >
1

α

(
σK

A+K
+ µ

)
. (7.21)

This means that for any initial condition, there is some time TB such that for all t >

TB the solution (x1(t), x2(t)) lies in the compact box B = [0, K]×
[
0, 1

α

(
σK
A+K

+ µ
)]

.

Thus infinity is indeed repelling in this model.

When the parameters of (7.19) are all positive, the model satisfies our conditions

of the existence of a balance manifold in both of the cases where x∗ does and does

not exist. An example of the former case, with the balance manifold depicted, is

shown in Figure 7.4.
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Figure 7.5: The phase plane and balance manifold of a system from [103] with varying
interspecific interactions. In this case the boundary of the basin of repulsion of the
origin and of infinity are not equal.

7.7 Conclusions

We have provided several computable conditions in Theorems 7.3.2 and 7.4.3

which lead to the existence of what we have called the balance manifold in planar

Kolmogorov systems, where solutions that are growing from the origin, with those

declining from infinity are balanced. We have discussed the cases where there is

at most one interior steady state x∗. The next logical step would be to consider

systems where there is more than one interior steady state. For example, Zhang et

al. [103] considered a two-species model with transitions between types of population

interactions; the interspecific interactions can change sign with species density. In

their model they found up to three interior steady states, an example of which is

shown in Figure 7.5. Unlike our previous examples, in this case the boundary of the

basin of repulsion of the origin and of infinity are not equal, but ∂R(0) ⊂ ∂R(∞)

and the balance manifold is equal to ∂R(∞). This is why we use the union of these

boundaries in Definition 7.2.1 instead of being equal to both of these boundaries.

Some of the conditions we have provided are necessary for a balance manifold



Chapter 7. The Balance Manifold of Planar Kolmogorov Systems 169

to exist. For example, the requirement that there is exactly one axial steady state

on each axis. This condition is equivalent to requiring the existence of the balance

manifold in all the 1-dimensional subcases of the system. Some of our conditions

are sufficient but not necessary for the existence of a balance manifold, such as

intraspecific competition in R2
>0 (see system (7.17)).

The balance manifold differs from the competitive carrying simplex as some pro-

perties of the carrying simplex no longer hold. For example, in non-competitive cases

where there is an interior steady state, the balance manifold may no longer be C1

at this point. The balance manifold can also have a curvature which changes sign,

and may not project radially 1-to-1 on the line joining both axial steady states. An

example of these can be found in Figure 7.4 where we consider a predator-prey type

model.

The planar balance manifold is an important part of understanding similar ma-

nifolds in higher-dimensional Kolmogorov models. For example, where there are 3

species, in seeking to define a balance manifold we need a balance manifold to exist

when one of the species is absent, i.e. in a planar model of the kind studied here.
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In this thesis, we have extended the concept of a carrying simplex to non-

competitive systems, with the focus being on scaled Lotka–Volterra systems. We

have not seen this extension being explored in the literature before, and we refer

to the manifold as the balance simplex Σ, or balance manifold when it is does not

radially project 1-to-1 to the unit simplex.

In Chapter 2, we proved the existence of Σ in some non-competitive 2-species

scaled Lotka–Volterra systems, namely those where the interspecific interaction coef-

ficients satisfy α12, α21 < 2, α12, α21 6= 1 (ensuring the steady states are hyperbolic)

and the system is not co-operative. This parameter space includes cases where species

are weakly competitive, or where there is a predator-prey type relationship between

the species and predation is not very strong. The work in this chapter was based

on the Hadamard graph transform method [29] used by Baigent in [4, 5], showing

that Σ attracted all non-zero solution orbits and was invariant to the flow of the

system. Our calculations involved transforming the system into (u,N)-co-ordinates,

where u is the proportion of species 1, and N is the total number of individuals in

the system. Despite not being to extend these methods for any α12 or α21 ≥ 2, in

Chapter 3 we found explicit expressions for the balance simplex in any parameter

case (where the system is bounded), proving its existence as the manifold formed of

heteroclinic orbits, separating solutions which grow from the origin and those which

decline from infinity.

By transforming the 2-species system into polar co-ordinates in Chapter 3, we

were able to solve the equations using an integrating factor. This gave the general

solution to the system, for which we were able to identify the balance simplex by

setting the constant of integration to 0. The solution contained an integral which we

could write in the form of a Gaussian hypergeometric function, greatly simplifying the

parametric form of the solution (Section 3.7). We also had a second solution based

on an equivalent system which was used to avoid complex terms in the integrand of
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the first solution. If the interior steady state exists, both solutions are needed and

each defines the unique heteroclinic orbit from one of the axial steady states to the

interior steady state, thus in this case Σ is defined piecewise. If the interior steady

state does not exist, only one of the solutions is needed. We also gave the explicit

solutions for Σ in some special cases (Section 3.9), for example if α12 or α21 = 1.

Thus the explicit form of Σ is now known in any parameter case of the 2-species

scale Lotka–Volterra system as long as the dynamics remain bounded.

With the explicit expression of Σ now known for the 2-species system, the curva-

ture of Σ can now be explicitly analysed. We know that the curvature of the carrying

simplex has been an area of interest (e.g. [4, 5, 99, 100]) thus this can be a topic for

future research. We were not able to simplify the expression for the curvature of Σ

algebraically but there may be particular parameter cases which can be analysed.

We have already seen that if α12 + α21 = 2, even in non-competitive systems, the

balance simplex is the line x2 = 1− x1.

In Chapters 4, 5 and 6 we explored the balance simplex in 3-species scaled Lotka–

Volterra systems. There are analogous, higher dimensional versions of the Gaussian

hypergeometric function, called Appell hypergeometric functions [2, 6], however we

were not able to find an exact solution for the 3-species system. In Chapter 4, we

found a series solution in the form {x1, x2, x3} = {G, T1G, T2G}, where T1 = x2

x1

and T2 = x3

x1
are the variables of the infinite series G. We can plot this solution

as a surface. By only using the condition that G(0, 0) = 1, i.e. the point (1, 0, 0)

lies on this surface, the solution matches exactly on the boundary with one of our

2-species solution, in the hypergeometric series form. However, our 3-species series

solution was only valid for the parameter case A where the dynamics of the system

are bounded and all αij < 1 and αijαji < 1 for i 6= j, i, j ∈ {1, 2, 3}. Biologically, this

excludes the case where species are strongly competitive or strongly co-operative. It

also excludes the case where one species is heavily predated on by another. The
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solution is defined piecewise, with each part associated to one of the three axial

steady states. We saw that this solution was not an effective way to plot the balance

simplex in general since the series is not guaranteed to converge in the whole of R3
>0

(e.g. Figure 4.1a), however, by taking the solution in a neighbourhood of each axial

steady state, we were able to use it to prove the existence of the balance simplex in

this parameter case. Additionally, in the special case where every αij = n
n+1

; n ∈ N,

the series G is finite and our solution gives the exact form of the balance simplex,

still defined piecewise (Section 4.3). A topic for future research is finding a similar

series solution in the remaining parameter cases. This will likely involve a different

relationship between the variables (i.e. a different T1 and T2).

In Chapter 5, we prove the existence of the balance simplex for 3-species scaled

Lotka–Volterra systems where the interaction matrix A is strictly copositive, meaning

the average fitness of the population is always positive. Since the diagonal entries of

A are always 1 and we only consider systems with bounded dynamics, we believe the

parameter space where A is strictly copositive covers many different types of systems.

In the future, it would be interesting to explore the size of this parameter space, and

compare it to A. We have seen that these parameter spaces are not subsets of each

other and their intersection is non-empty.

In Chapter 6, we find a more accurate and reliable way of plotting Σ in the 3-

species case, compared to the parametric series solution in Chapter 4. The method

resembles finding a Darboux polynomial [22] for the system, except we look for an

infinite series φ. Using the cofactor m = −x1−x2−x3, we solve for φ and plot its zero

set (for the finite version, up to degree K) to get an approximation of Σ, denoted

φ−1(0). Even with K = 25, in most cases φ−1(0) matches well to the boundary

dynamics and 2-species balance simplex and typically takes 3 minutes to produce.

The plots typically improve with increasing K, however for some cases numerical

instabilities occur. In the future, it is worth exploring these issues and perhaps
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considering an alternate method of plotting an approximation of Σ in these cases

(e.g. Figure 6.8). Our research does not focus directly on numerical methods, but a

numerical solution to Σ should be possible. The advantage of the methods conducted

in this thesis, however, is the insight gained.

Some of the φ−1(0) plots showed two surfaces, of which the lower surface matches

what we expect of Σ. By using the cofactor m = −x2
1 − x2

2 − x2
3 instead, the upper

surface no longer appeared in most of these examples (e.g. Figure 6.10), however this

does not help with numerical instabilities (see Figure 6.9b). It would be interesting

to explore the effects of different cofactors m, in particular we have not yet explored

cofactors which are not homogeneous in degree.

In Chapter 7, we discussed the balance manifold (which may not radially project

1-to-1 to the unit simplex) for planar Kolmogorov models where the per-capita gro-

wth rates are C1-continuous. This covers a wide range of ecological systems, some

examples of which are shown in Section 7.6. We found sufficient conditions for the

existence of a balance manifold when there is at most one interior steady state for

the system (Theorems 7.3.2 and 7.4.3). These conditions were derived by considering

the stability and Poincaré index [69] of all the steady states.

The next stage would be to consider systems with more than one interior steady

state. We saw in Figure 7.5 that ∂R(0) 6= ∂R(∞) which is why in this chapter we

defined the balance manifold to be Σ = ∂R(0)∪ ∂R(∞). If applying the Hadamard

graph transform method we discussed in Chapter 2, we would find that the limit of

the sequence of functions from above and below would not be the equal. It would be

interesting to explore if one limit set will always be contained in the other or if this

requires additional conditions on the parameters.

A vital part of the scaled Lotka–Volterra model is that the intrinsic growth rates

for all species are equal. This feature means the dynamics of the species proportions

u can be decoupled from the dynamics of the total population size N . The qualitative
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behaviour of the u-dynamics can be determined through Jacobian analysis or Bomze’s

classification [10,11] (in the 3-species case), meaning we can solve for N(u(t), t). This

was particularly important in Chapters 2 and 5. Finding an explicit solution for Σ

in Chapter 3 was made easier due to the intrinsic growth rates and intraspecific

interaction coefficients being equal to 1 for all species. If these values were different

for all species, we expect this to be more challenging. We believe the methods

discussed for plotting Σ in Chapter 6 will work in higher dimensions, or more general

Kolmogorov models.

Our work in this thesis has extended the study of the carrying simplex to non-

competitive systems. Despite some properties of carrying simplices no longer holding,

we believe the balance simplex and balance manifold are worth studying. In par-

ticular, we have shown for the 2- and 3-species scaled Lotka–Volterra system, Σ is

asymptotically complete meaning the dynamics of the system can still be reduced to

a hypersurface. We hope the results and methods we have discussed will be useful

to other researchers in the near future.
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[66] M. Ò Searcòid. Metric spaces. Springer Science & Business Media, 2006.

[67] K. M. Page and M. A. Nowak. Unifying evolutionary dynamics. Journal of

Theoretical Biology, 219(1):93–98, 2002.
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