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Abstract

Human decisions can be habitual or goal-directed, also known as model-free (MF) or

model-based (MB) control. Previous work suggests that the balance between the two deci-

sion systems is impaired in psychiatric disorders such as compulsion and addiction, via

overreliance on MF control. However, little is known whether the balance can be altered

through task training. Here, 20 healthy participants performed a well-established two-step

task that differentiates MB from MF control, across five training sessions. We used compu-

tational modelling and functional near-infrared spectroscopy to assess changes in decision-

making and brain hemodynamic over time. Mixed-effects modelling revealed overall no sub-

stantial changes in MF and MB behavior across training. Although our behavioral and brain

findings show task-induced changes in learning rates, these parameters have no direct rela-

tion to either MF or MB control or the balance between the two systems, and thus do not

support the assumption of training effects on MF or MB strategies. Our findings indicate that

training on the two-step paradigm in its current form does not support a shift in the balance

between MF and MB control. We discuss these results with respect to implications for

restoring the balance between MF and MB control in psychiatric conditions.

Author summary

Psychiatric conditions such as compulsion or addiction are associated with an overreli-

ance on habitual, or model-free, decision-making. Goal-directed, or model-based, deci-

sion-making may protect against such overreliance. We therefore asked whether model-

free control could be reduced, and model-based control strengthened, via task training.

We used the well-characterized two-step task that differentiates model-based from model-

free actions. Our results suggest that training on the current form of the two-step task

does not support a shift in the balance between model-free and model-based strategies.

Factors such as devaluation, demotivation or automatization during training may play a
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role in the missing emergence of a training effect. Future studies could adapt the two-step

task so as to separate such factors from decision-making strategies.

Introduction

Decision-making is suggested to rely on at least two parallel and distinct systems; a retrospec-

tively-driven system based on acquired habits, and a prospective goal-directed system based

on deliberate planning [1–7]. Since these two systems sometimes promote different choices,

it’s possible to differentiate their relative contribution to decision-making when action-out-

come contingencies change; although in reality additional systems may guide decision-making

[8] such that increasing reliance on one system does not always decrease reliance on the other

[9]. Habits allow performing routines under consistent circumstances with little effort, which

can be acquired through reinforcement learning where decisions rewarded in the past are

more likely to be repeated in the future [10]. In contrast, goal-directed behavior requires the

consideration of potential future outcomes of alternative actions based on the implementation

of planned actions and outcomes. In computational terms, these two strategies are described

as model-free (MF) and model-based (MB) decision control [1,2,11], respectively. These two

strategies are often thought to be employed in parallel but the arbitration between them as

determined by situations, actions and outcomes, has to be learned by exploration of the state-

transition prediction error [12].

A wealth of evidence suggests that the two systems are implemented in partly dissociable

but overlapping cortico-striatal circuits in the brain [13]. Neuroimaging studies using func-

tional magnetic resonance imaging (fMRI) showed contributions of dorsolateral striatum

(DLS), dorsomedial striatum (DMS) and prefrontal cortex (PFC) [14–17]. DLS appears to be

predominantly involved in the formation of MF decisions [18–20] with connections to premo-

tor cortex (PMC). These areas encode stimulus-response pairs but without representation of

decision outcomes [20]. In contrast, DMS encodes MB decisions [21–25] reflected in an exten-

sive level of connections with orbitofrontal, ventromedial (vmPFC) and dorsolateral PFC

(dlPFC) [26]. These areas encode the relationship between states, actions and outcomes [20].

Finally, inferior lateral PFC (ilPFC) has been suggested to represent the neural signature of an

arbitrator responsible for the balance between the two strategies [12,27].

An imbalance between the two systems in favor of the MF system has been related to mal-

adaptive choices in psychiatric disorders [28,29]. For example, excessive overreliance on habit-

ual control has been shown in obsessive-compulsive disorder (OCD) [24,25] when rigid habits

result in inadequate, repetitive and self-deleterious compulsive actions. Behavioral control

may then become insensitive towards negative long-term consequences [30], the latter has

been shown to correlate with altered prefrontal signals [31]. Beyond OCD, deficits in goal-

directed behavior have also been reported in patients with addiction [24,32–35], social anxiety

[36,37] and schizophrenia [38–40]. The finding of similar MB deficits across different psychi-

atric disorders enforces the idea of a trans-diagnostic symptom approach [41].

Based on the assumption that overreliance on MF control can result in harmful habits and

that MB learning is protective against the formation of those habits [42], the question arises of

whether MB strategies can be strengthened by training. The well-characterized two-step task

[1] (Fig 1) that promises to differentiate MB from MF learning through the implementation of

parametric decision variables [43], is a likely candidate for such a training approach. The two-

step task requires continuously updating action values for optimal behaviour under randomly

fluctuating reward probabilities. It may therefore encourage goal-directed learning [1] and
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does not induce overtraining, which in animals has been shown to encourage MF strategies

[44]. Indeed, a previous study by Economides et al. [9] suggested that short-term training on

the two-step paradigm (768 trials across three consecutive days) improves MB control while

leaving MF control unaffected, however only when participants were placed under additional

cognitive load via a secondary task. The present work hypothesized that more intensive train-

ing (1005 trials across five sessions, each separated by a week) on the same task [1] may both

reduce MF and strengthen MB control in the long-term. In addition, we aimed to evaluate

whether behavioral training effects would be accompanied by changes in prefrontal brain acti-

vations. In order to facilitate future clinical studies, we utilized functional near infrared spec-

troscopy (fNIRS), which is more readily available and easier to integrate into clinical settings

than, for example, fMRI.

Material and methods

Ethics statement

All participants gave written informed consent. The study was approved by the governmental

ethics committee (KEK Zurich) and conducted in accordance with the Declaration of

Helsinki.

Participants

Thirty-three healthy participants (age 25.5 ± 4.4 mean ± STD, 17 females) were recruited at

the University of Zurich. Exclusion criteria were psychiatric or neurological disorders or cur-

rent medication.

Experimental protocol

We used the two-step task by Daw et al. [1] (Fig 1) programmed in MATLAB (The Math-

Works, MA) [45] with the Psychophysics Toolbox [46]. The task consisted of 201 trials, each

comprising two stages. In the 1st stage, participants chose between two options (‘states’) repre-

sented by geometrical coloured shapes. In the 2nd stage, participants were presented with either

of two more states which were rewarded with money (0.2 Swiss Francs) or not (zero). Which

2nd stage state was presented depended probabilistically on the 1st stage choice according to a

fixed common (70% of trials) and uncommon (30% of trials) transition scheme. In order to

encourage learning, reward probability for each 2nd stage stimulus fluctuated slowly and inde-

pendently by adding independent Gaussian noise (mean 0, SD .025), with reflecting bound-

aries at .25 and .75 [1].

Trials were separated by an inter-trial-interval of random duration between 5–11 seconds.

If participants failed to make choices within 2 seconds, the trial was excluded from analysis.

The goal of the task for the participants was to identify the rewarding 2nd stage state and

make the 1st stage choice accordingly. To achieve this, participants were required to build an

internal model of both 1st stage transitions and of 2nd stage reward probabilities.

Prior to the first training session, participants underwent extensive self-paced computer-

based instructions and performed 50 practice trials (approx. 20 minutes). Instructions gave

detailed information about the task structure, the fixed transition probabilities between 1st and

2nd stage and the varying reward probabilities at the 2nd stage. Participants were instructed to

win as much reward as they could and that they would be paid depending on their cumulative

performance across a randomly drawn one-third of all trials in each session. Each participant

performed five training sessions on five days (total of 1005 trials) separated by a week.

Training model-free and model-based control
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fNIRS instrumentation

A NIRSport instrument (LLC NIRx Medical Technologies) was used to record cortical hemo-

dynamic responses during task performance in each session. Regions of interest were selected

to correspond to the vmPFC (Fpz, Fp1, Fp2, AFz) and dlPFC (FC5, FC6, FFC5h, FFC6h, FC4,

FC3) which have both been suggested to represent pure MB strategies [27], and the ilPFC (F7,

F8, FFC7h, FFC8h, F5, F6) that is thought to encode the arbitrator between the MF and the

MB system [27] (Fig 2, S1 Table). Regions corresponding to the MF system, such as DLS [27],

were not recorded because fNIRS has a limited depth of tissue penetration and can therefore

not record subcortical areas.

The fNIRSport system utilizes time-multiplexed dual-wavelength light-emitting diodes (wave-

lengths 760 nm and 850 nm) with photo-electrical detectors (Siemens, Germany). Sources and

detectors were placed in a head cap providing a source-detector distance of approximately 30

Fig 1. (Left) Two-step task. Each 1st stage led to a 2nd stage in 70% of trials (common transition) and in 30% of trials to another 2nd stage (uncommon transition).

Reward probabilities (p(reward)) for each 2nd stage fluctuated across trials between 25% and 75% according to Gaussian random walks [1]. (Right) Model predictions.

Predictions on MF versus MB learning for the probability to repeat the choice from the previous trial (p(stay)) as a function of reward (R+ = rewarded vs. R- =

unrewarded) and transition (C = common vs. U = uncommon) at the previous trial. MF predicts a main effect of ‘reward’ and no effect of ‘transition’, whereas MB

predicts an interaction effect of ‘reward � transition’. Mixed effects of both MB and MF are typically identified in the two-step task [1]. Figure adapted from [67].

https://doi.org/10.1371/journal.pcbi.1007443.g001
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mm. Custom made short channels (approx. 10 mm) were used to remove superficial tissue contri-

butions. Functional recordings acquisitioned using LabVIEW (National Instruments, Austin, TX,

USA) were pre-processed including baseline correction, detrending and band-pass filtering [47].

Data were visually inspected for motion artifacts (“steps” and “spikes”) that were removed in 15

participants using NIRSlab [48]. Concentration changes of oxy- (Δ[O2Hb]) and deoxy- (Δ[HHb])

hemoglobin were calculated by use of the Beer-Lambert Law (absorption coefficients (μa) for

O2Hb: μa(760 nm) = 1486, μa(850 nm) = 2526, for HHb: μa(760 nm) = 3843, μa(850 nm) = 1798;

differential pathlength factor (DPF): DPF(760 nm) = 7.25, DPF(850nm) = 6.38). Total hemoglo-

bin Δ[tHb], computed as the sum of Δ[O2Hb] and Δ[HHb], was chosen as primary parameter of

interest because it is thought to be more specific for mapping cerebral activity [49,50]. Trial-by-

trial estimates of Δ[tHb] were derived using the general linear model (GLM) approach [51,52] by

convolving a stick function at actual choice with a hemodynamic response function for NIRS data

[53]. We only modelled 1st stage choices because hemodynamic responses to 1st and 2nd stage

choices could not be unambiguously separated due to the short inter-trial-interval [52,54].

Data analysis

Data analysis was performed to assess overall training outcomes (response times and reward

rates) followed by analyses based on logistic and linear mixed-effects (LME) (behavioral choice

and hemodynamic responses) and computational modelling (behavioral choice) as well as a

simulation to relate LME and modelling.

Response times and reward rates

Training effects on response times and reward rates were assessed using repeated measures

ANOVA with Bonferroni correction. In case of significant main effects, polynomial contrasts

were assessed.

Fig 2. fNIRS setup. Regions of interest corresponding to the MB system in vmPFC (Fpz, Fp1, Fp2, AFz) and dlPFC

(FC5, FC6, FFC5h, FFC6h, FC4, FC3) and the arbitrator in ilPFC (red, F7, F8, FFC7h, FFC8h, F5, F6) following

previous work [27] (S1 Table).

https://doi.org/10.1371/journal.pcbi.1007443.g002
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LME regression

We first analyzed stay-versus-switch behavior on 1st stage choices of each trial to dissociate the

relative influence of MF and MB control. As mentioned above, MF learning predicts that

rewarded choices will lead to a repetition of that choice irrespective of a following common or

uncommon transition, because the transition structure is not considered (Fig 1); a reward

after a uncommon transition would therefore adversely increase the value of the chosen 1st

stage state without updating the value of the unchosen state. By contrast, MB strategy predicts

an interaction between transition and reward, because an uncommon transition inverts the

effect of a subsequent reward (Fig 1); a reward after an uncommon transition would therefore

increase the probability to choose the previously unchosen 1st stage state. Hence, MF behavior

has been suggest to be quantifiable as main effect of ‘reward’ and no effect of ‘transition’,

whereas MB behavior may be quantified as interaction effect of ‘reward � transition’ [55].

LME regression was fitted using the glmer function from the lme4 package [56] in R [57]

for the effects of ‘reward’ (coded as rewarded 1, unrewarded -1), ‘transition’ (coded as common
1, uncommon -1) and their interaction ‘reward � transition’ (choice ~ reward � transition + (1

+ reward � transition | subject)) in predicting each trial’s choice (coded as switch 0 and stay 1,

relative to the previous trial) with states being treated independently [58]. Following previous

work [43], we also included an additional random ‘correct’ predictor capturing the tendency

of the agent to repeat correct choices, in order to prevent differences in action values at the

start of the trial from appearing as a spurious loading on the transition-outcome interaction

predictor [43]; the inclusion of this predictor only marginally affected results. The function

anova from the lme4 package was used to extract F-stats and p-values. To graphically demon-

strate training effects on the balance between MF and MB control, the LME coefficients index-

ing MF (effect of ‘reward’) and MB (interaction of ‘reward � transition’) control were

illustrated following previous work [9,55].

Analogous to the behavioral choice data, the scaled hemodynamic responses in vmPFC,

dlPFC and ilPFC were fitted using linear mixed-effects (LME) regression based on the lmer

function from the lme4 package [56] in R [57]. The relation between the behavioral and brain

LME coefficients was assessed using Pearson product moment correlation.

Computational model

Since LME one-step effects reflect not only expression of MF and MB strategies but also

parametric changes within the two systems and may therefore mislead interpretations [59], we

compared the LME results with computational modelling of the two-step task [1,60].

Based on the original hybrid model by Daw et al. [1], we compared eight different model

variants as implemented in the Emfit toolbox (https://www.quentinhuys.com/pub/emfit/) in

MATLAB (MathWorks, MA) [61] using priori Bayesian model comparison. The model with

the best fit to the data was a variant of the original model which has two separate betas, one for

the MB system and one for the MF system, rather than a weight explicitly trading off the two

components as the weighting parameter (ω) in Daw et al. [1] (S2 Table). Model selection was

based on the lowest integrated Bayesian information criterion (iBIC) score which is the sum of

integrals over the individual parameters [60].

For details on the models see Huys et al. [60]. In brief, the MF strategy is computed using

the SARSA (λ) temporal difference (TD) model, which learns the task by strengthening or

weakening associations between 1st stage states and 1st stage actions depending on whether the

action is followed by a reward or not [62]. It simply predicts that 1st stage actions that resulted

in a reward are more likely to be repeated in the next trial with the same initial state [1]. This is

quantified by calculating the value for each state-action pair at each stage of each trial with the
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model allowing different learning rates α1 and α2 for 1st and 2nd stages, respectively. The rein-

forcement eligibility parameter (λ) determines the update of 1st stage actions by the 2nd stage

prediction error (QTD), with λ = 1 being the case of Fig 1 (MF) in which only the final reward

is important, and λ = 0 being the purest case of the TD algorithm in which only the 2nd stage

value plays a role. On the other hand, MB strategy uses an internal model of the task structure

to determine 1st stage choices that will most likely result in a reward [1]. It thus considers

which 2nd stages are most frequently rewarded in recent trials and selects 1st stage actions that

most likely led there. This is quantified by mapping state-action pairs to the transition func-

tion, the common or the uncommon transition. The action value (QMB) is thus computed at

each trial from the estimates of the rewards and transition probabilities (Fig 1, MB). Choice

randomness is reflected in the softmax inverse temperature parameter at the 2nd stage (β2) that

controls how deterministic choices are and p captures perseveration (p> 0) or switching

(p< 0) in 1st stage choices. Finally, contrary to the original model [1] that uses a weighted sum

(QNET) of MF and MB strategies (weighting parameter, ω) at the 1st stage, the model variant

has two separate betas, one for the MB system and one for the MF system. The model variant

thus tests whether the assumption of the original model [1] that the two approaches coincide

at the 2nd stage (i.e., that QMB = QTD, QNET = QMB = QTD at the 2nd stage) holds true.

Taken together, the hybrid model variant outputs seven free parameters: bMB and bMF,

the betas governing the tradeoff between MB and MF actions; the inverse temperature parame-

ter at the 2nd stage (β2); the 1st (α1) and 2nd (α2) stage learning rates; the reinforcement eligibil-

ity parameter (λ); and p, which captures first-order perseveration. All five training sessions

across participants (N = 100) were fitted simultaneously with all data treated as derived from

the same prior distribution.

The bounded model parameters were transformed to an unconstrained scale via exponen-

tial transformation for parameters bMB, bMF, β2 according to Eq 1 and via sigmoid transfor-

mation for parameters α1, α2, and λ according to Eq 2:

x ¼ expðxÞ ð1Þ

x ¼
1

1þ expð� xÞ
ð2Þ

To assess training effects on the seven model parameters one-way repeated measures

ANOVA with Bonferroni correction was performed; in accordance with the assumption of the

fitting procedure that sessions were drawn from the same Gaussian prior distribution. In case

of significant main effects, polynomial contrasts were assessed. To validate the goodness of fit,

the subject-specific BIC [63] was compared between sessions using repeated measures

ANOVA.

To assess test-retest reliability of the model parameters, the Intraclass Correlation Coeffi-

cient (ICC) was used. ICC were computed as type ICC(2,k) according to the Shrout and Fleiss

convention [64], i.e., a two-way random-effects model with absolute agreement. P-values of

the hypothesis test ICC = 0 based on alpha level p< 0.05 were reported. ICC < 0.4, 0.4–0.75,

> 0.75 are considered poor, moderate and excellent reliability, respectively [65].

To assess test-retest repeatability, the Coefficient of Variation (CV), defined as the ratio of

the standard deviation to the absolute mean, was calculated [66]. CV is a measure of precision

with higher values indicating greater level of dispersion expressed in percentage (%) and there-

fore allows for comparison between model parameters independent of their units (in contrast

to the ICC that is based on units).

Training model-free and model-based control
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Simulating the relation between LME and modelling

To evaluate the relation between LME and modelling, simulation was conducted to assess how

LME regression captures the seven parameters (bMB, bMF, β2, α1, α2, λ, p). For this purpose,

data were generated for 1000 subjects with each 201 trials by independently changing each of

the seven parameters within the distribution of the untransformed values obtained from the

actual data (5th, 25th, 50th, 75th, 95th percentile, across sessions S1-S5) while keeping the

remaining parameters constant at the median (S4 Table). Based on the simulation, we esti-

mated the relative parameter-specific changes in LME coefficients for MF control (‘reward’

effect) and MB control (‘reward � transition’ interaction) for each parameter. This was done by

computing the correlation between the independent parameter changes and the induced

changes in LME coefficients and describing them as parameter-specific correlation indices

(MFCI and MBCI).

Results

Twenty participants (mean ± STD = 24.9 ± 3.1 age, 9 females) completed five training sessions

(mean duration 51.8 minutes, repeated measures ANOVA F4,76 = 1.82, p = 0.133). 13 addi-

tional participants were excluded because of non-adherence to at least one training session

(n = 12) or due to technical problems (n = 1, failure of data synchronization).

Response times and reward rates

Response times in the 2nd stage (repeated measures ANOVA F4,76 = 10.90, p< 0.001), but not

in the 1st stage (F4,76 = 2.01, p = 0.101), revealed significant change over time, with S1 RTs lon-

ger than in any of S2-S5. Reward rates revealed no training effects (repeated measures

ANOVA F4,76 = 0.13, p = 0.971), in line with previous work [43,67] (Table 1, Fig 3).

LME regression

Across sessions, LME regression of behavioral choice showed effects of ‘reward’ (ANOVA

F1,19758 = 32.50, p< 0.001) and a ‘reward � transition’ interaction (F1,19758 = 40.80, p< 0.001)

(Table 2, Fig 4). Both were affected by training. We observed a ‘reward � session’ interaction

(F4,19758 = 15.30, p = 0.004), which was mainly due to a decrease from S1 to S5 (post-hoc tests:

S1 vs. S3 p = 0.006, S1 vs. S4 p = 0.019, S1 vs. S5 p = 0.028). Furthermore, there was a ‘reward �

transition � session’ interaction (F4,19758 = 13.26, p = 0.010), mainly due to an increase in S2

Table 1. Response times and reward rates. Repeated measures ANOVA assessing training effects on response times

(RT) and reward rates. Significant results on an alpha level p< 0.05 are highlighted (bold). See Fig 3 for illustration.

1st stage RT 2nd stage RT Reward

Main effect F4,76 2.01 10.90 0.13

p-value 0.101 0.000 0.971

Post-hoc S1 vs. S2 1.000 0.012 1.000

S1 vs. S3 0.125 0.000 1.000

S1 vs. S4 0.320 0.000 1.000

S1 vs. S5 1.000 0.000 1.000

S2 vs. S3 1.000 1.000 1.000

S2 vs. S4 1.000 0.086 1.000

S2 vs. S5 1.000 1.000 1.000

S3 vs. S4 1.000 1.000 1.000

S3 vs. S5 1.000 1.000 1.000

S4 vs. S5 1.000 1.000 1.000

https://doi.org/10.1371/journal.pcbi.1007443.t001
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only (‘S2 vs S3 p = 0.005). We also found a main effect on ‘transition � session’ (F4,19758 = 9.70,

p = 0.046), which was however less pronounced than the other effects.

Across sessions, LME regression of ilPFC response showed an effect of ‘reward’ (F1,19758 =

12.84, p< 0.001) but no ‘reward � transition’ interaction (F1,19758 = 1.18, p = 0.278). Both were

not affected by training (‘reward � session’ F4,19758 = 3.94, p = 0.414; ‘reward � transition � ses-

sion’ F4,19758 = 5.18 p = 0.269) (Table 2, Fig 4). The resulting ilPFC LME regression coeffi-

cients correlated significantly with those obtained for behavioral choice (r = 0.83, p = 0.003),

supporting a correspondence between behavioral choice and ilPFC which has been thought to

encode an arbitrator between the MF and MB system [27]. The two other regions, vmPFC and

dlPFC, both thought to reflect MB control [27], revealed no relevant effects and correlated less

with behavioral choice (vmPFC r = 0.58, p = 0.081, dlPFC r = 0.43, p = 0.210).

Computational model

We then fitted the seven model parameters (bMB, bMF, β2, α1, α2, λ, p) of the model variant

[60] to the behavioral choice data and found the best fitting parameters to be reasonably

Fig 3. Response times and reward rates. Training effects were observed on 2nd stage (but not 1st stage) response

times, which were longer in S1 compared to any of S2-S5. No training effect was observed on overall reward rates.

Error bars represent standard error of the mean. Dashed horizontal line indicates chance level. See Table 1 for

statistics.

https://doi.org/10.1371/journal.pcbi.1007443.g003
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consistent (i.e., within the 25th-75th percentiles) with those obtained by Daw et al. [1] (S3

Table).

No training effects were observed on MB control (bmB) and MF control (bMF) indicating

no support for our main hypothesis that task training changes the relative strength between

the two systems. MB control (bMB) was slightly stronger compared to MF control (bMF)

across all sessions (t-test F1,98 = 2.13, p = 0.036), supporting the assumption that participants

slightly more relied on MB strategies (Table 3, Fig 5).

The remaining parameters also did not sufficiently argue for a shift between MB and MF

control. While the parameters β2, λ, and p revealed no training effects, significant training

effects were found on α1 and α2 learning rates, which decreased across sessions (repeated mea-

sures ANOVA: α1 F4,76 = 2.52, p = 0.048; α2 F4,76 = 5.27, p = 0.001). Hence, even if changes in

learning rates may indicate some changes within the MF or within the MB system, they cannot

be assigned to the balance or the relative expression between them. For example, increases in

α1/ α2 might represent some change in the MF/MB system, and might indicate that partici-

pants consider more MF/MB strategies in the LME regression, yet it does not provide

Table 2. LME. Top. ANOVA (F-stats and p-values) of the logistic and linear mixed-effects regression on behavioral choice, vmPFC, dlPFC and ilPFC. Degrees of freedom

(DF). Bottom. LME coefficients (COEF with standard error, SE, and p-values) are shown in comparison with the reference session S1. For post-hoc comparisons see Fig 4.

CHOICE vmPFC dlPFC ilPFC

DF1, 2 F p F p F p F P

LME ANOVA Intercept 1, 19758 82.41 0.000 15.30 0.000 75.72 0.000 140.01 0.000

Reward 1, 19758 32.50 0.000 2.07 0.150 1.07 0.300 12.84 0.000

Transition 1, 19758 22.14 0.000 0.85 0.357 0.56 0.456 0.03 0.868

Session 4, 19758 30.87 0.000 2.87 0.580 6.78 0.148 2.29 0.683

Reward � Transition 1, 19758 40.80 0.000 0.16 0.689 0.00 0.968 1.18 0.278

Reward � Session 4, 19758 15.30 0.004 3.77 0.438 1.43 0.839 3.94 0.414

Transition � Session 4, 19758 9.70 0.046 6.16 0.187 4.66 0.324 0.51 0.972

Reward � Transition � Session 4, 19758 13.26 0.010 2.85 0.583 1.08 0.898 5.18 0.269

COEF (SE) p COEF (SE) p COEF (SE) p COEF (SE) P

LME COEFFICIENTS Intercept 1.46 (0.16) 0.000 0.07 (0.02) 0.000 0.15 (0.02) 0.000 0.21 (0.02) 0.000

Reward 0.65 (0.11) 0.000 0.03 (0.02) 0.152 0.02 (0.02) 0.301 0.06 (0.02) 0.000

Transition 0.26 (0.06) 0.000 -0.02 (0.02) 0.358 -0.01 (0.02) 0.457 0 (0.02) 0.868

Session2 0.01 (0.06) 0.860 0.03 (0.02) 0.277 -0.02 (0.02) 0.456 -0.02 (0.02) 0.364

Session3 -0.27 (0.06) 0.000 0.03 (0.02) 0.257 -0.03 (0.02) 0.180 -0.02 (0.02) 0.416

Session4 -0.01 (0.06) 0.930 0.04 (0.02) 0.108 0.03 (0.02) 0.254 -0.04 (0.02) 0.136

Session5 -0.01 (0.06) 0.844 0.03 (0.02) 0.235 -0.01 (0.02) 0.718 -0.02 (0.02) 0.502

Reward � Transition 0.41 (0.06) 0.000 0.01 (0.02) 0.689 0 (0.02) 0.968 0.02 (0.02) 0.278

Reward � Session2 -0.11 (0.06) 0.090 -0.03 (0.02) 0.181 -0.02 (0.02) 0.497 -0.04 (0.02) 0.125

Reward � Session3 -0.21 (0.06) 0.001 -0.03 (0.02) 0.207 -0.02 (0.02) 0.530 -0.03 (0.02) 0.181

Reward � Session4 -0.19 (0.06) 0.002 -0.05 (0.02) 0.063 -0.01 (0.02) 0.597 -0.03 (0.02) 0.199

Reward � Session5 -0.18 (0.06) 0.003 -0.03 (0.02) 0.246 0.01 (0.02) 0.788 -0.04 (0.02) 0.068

Transition � Session2 -0.08 (0.06) 0.199 -0.03 (0.02) 0.194 0 (0.02) 0.948 -0.01 (0.02) 0.834

Transition � Session3 -0.14 (0.06) 0.026 0.02 (0.02) 0.331 0.03 (0.02) 0.265 0.01 (0.02) 0.738

Transition � Session4 -0.17 (0.06) 0.006 0 (0.02) 0.949 -0.03 (0.02) 0.298 0.01 (0.02) 0.714

Transition � Session5 -0.05 (0.06) 0.451 0.02 (0.02) 0.480 0.01 (0.02) 0.801 0.01 (0.02) 0.759

Reward � Transition � Session2 0.12 (0.06) 0.067 -0.02 (0.02) 0.314 0.01 (0.02) 0.675 0.05 (0.02) 0.063

Reward � Transition � Session3 -0.1 (0.06) 0.119 -0.01 (0.02) 0.637 0.01 (0.02) 0.626 0.02 (0.02) 0.347

Reward � Transition � Session4 -0.05 (0.06) 0.388 0.01 (0.02) 0.668 0.01 (0.02) 0.586 0 (0.02) 0.939

Reward � Transition � Session5 0.01 (0.06) 0.821 0.01 (0.02) 0.731 -0.01 (0.02) 0.761 0 (0.02) 0.938

https://doi.org/10.1371/journal.pcbi.1007443.t002
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sufficient evidence to conclude that there is a change in the expression of MF relative to MB,

or vice versa. Goodness of model fit was also not affected by training as evidenced by the sub-

ject-specific BIC per session (F4,76 = 1.39, p = 0.247) (Table 3, Fig 5), suggesting that there was

no evidence of training-induced systematic changes in decision-making strategies not cap-

tured by the model. Across sessions, some of the parameters correlated weakly with the

changes in 1st and 2nd stage response times as expected from the training patterns (Table 4).

There were no significant correlations between the model parameters and NIRS responses to

any of the critical trial conditions (those that were preceded by a rare/common trial, those that

were rewarded/unrewarded, all p> 0.05, S5 Table), indicating that that NIRS responses did

not inform on the behavioral changes captured by the model.

Test-retest reliability was moderate to high for all parameters, bMB (ICC = 0.83), bMB

(ICC = 0.85), β2 (ICC = 0.71), α1 (ICC = 0.83), α2 (ICC = 0.73), λ (ICC = 0.89), p (ICC = 0.90),

whereas test-retest repeatability was low for all parameters, bMB (CV = 71%), bMF

(CV = 47%), β2 (CV = 33%), α1 (CV = 49%), α2 (CV = 47%), λ (CV = 36%), p (CV = 59%)

(Table 5, Fig 6). The ICC results suggest that the two-step task has potential as behavioral

marker for individual variation in performance, whereas the low degree of precision indicates

that inter-subject variation was similar compared to intra-subject variation.

Simulating the relation between LME and modelling

To better understand how the LME results (suggesting training effects on MF and MB control)

related to results from the computational model (suggesting no training effects on MF and MB

control), we speculated that even if the computational model fully captures the learning sys-

tem, choices are not only influenced by the balance between MF-MB control, but also by other

model parameters. We simulated choice data with different parameter values, to understand

each parameter’s independent impact on the LME. This suggested that the LME is capturing

Fig 4. LME main effects (Left). Each bar represents the stay probability (p(stay)) or mean tHb response across all participants and all sessions. Error bars

represent standard error of the mean. Behavioral choice revealed ‘reward’ effects (R+ = rewarded vs. R- = unrewarded) (solid line with significance asterisks)

and ‘reward � transition’ interactions (C = common vs. U = uncommon) (dashed line with significance asterisks), while ilPFC revealed a ‘reward’ effect (solid

line with significance asterisks). See S1 Fig for details. LME coefficients (Right). Between sessions, behavioral choice revealed ‘reward � session’ and ‘reward �

transition � session’ interactions, whereas no such effects were found on vmPFC, dlPFC and ilPFC. Error bars represent standard error of the estimate.

Significant post-hoc comparisons on the interaction effects are Bonferroni corrected and highlighted (�). See Table 2 for statistics.

https://doi.org/10.1371/journal.pcbi.1007443.g004

Table 3. Model parameters. Training effects on the seven parameters (bMB, bMF, β2, α1, α2, λ, p) and BIC assessed using repeated measures ANOVA. See Fig 5 for

illustration.

bMB bMF β2 α1 α2 Λ P BIC

Main effects F4,76 0.47 1.17 0.94 2.52 5.27 1.24 0.93 1.39

p-value 0.755 0.331 0.448 0.048 0.001 0.300 0.450 0.247

Post-hoc S1 vs. S2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S1 vs. S3 1.000 1.000 1.000 1.000 0.002 0.357 0.777 0.633

S1 vs. S4 1.000 1.000 1.000 0.857 0.009 1.000 1.000 1.000

S1 vs. S5 1.000 1.000 0.651 0.024 0.095 1.000 1.000 1.000

S2 vs. S3 1.000 0.897 1.000 1.000 0.089 1.000 1.000 0.799

S2 vs. S4 1.000 1.000 1.000 1.000 0.320 1.000 1.000 1.000

S2 vs. S5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S3 vs. S4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.926

S3 vs. S5 1.000 0.725 1.000 0.739 1.000 1.000 1.000 0.480

S4 vs. S5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pcbi.1007443.t003
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Fig 5. Model parameters. Estimates of the seven parameters (bMB, bMF, β2, α1, α2, λ, and p) per session (S1-S5). Error bars represent standard error

of the mean. The only convincing training effects were found on α1 and α2 learning rates as assessed using repeated measures ANOVA. BIC.
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changes in all seven parameters differently (S1 and S2 Figs, S6 Table). Effects of ‘reward’ were

primarily positively correlated with changes in the parameters bMF (correlation index MFCI =

0.992), α1 (MFCI = 1.000), λ (MFCI = 0.970) and p (MFCCI = -0.742), i.e., a decrease in any of

these parameter values results in decreasing LME coefficients for MF control; while ‘reward �

transition’ interactions seemed to be primarily positively correlated with changes in the

parameters bMB (MBCI = 0.983), β2 (MBCI = 0.995) and α2 (MBCI = 0.996), i.e., a decrease in

any of these parameter values results in decreasing LME coefficients for MB. Note that magni-

tudes of these indices should only be interpreted in the context of the simulation. In summary,

these findings indicate that even under the assumption that the model fully captures the cogni-

tive system mediating learning in this task, then LME one-step effects not only reflect contri-

bution of the MF and MB systems, but also parametric changes within the two systems. This

means that interpreting the ‘reward’ and ‘reward � transition’ coefficients as directly indexing

MF and MB control may be misleading. One interpretation of our discrepant results therefore

is that the LME results capture changes in α1 and α2, which did change between sessions.

Because these two parameters have no direct relation to either MF or MB control or the bal-

ance between the two systems, this not support an assumption of training effects on MF or MB

strategies. To corroborate these conclusions, we provide an illustration that the regression

coefficients based on our simulations allow reconstructing the actual LME pattern that we

observe from our fitted computational model coefficients (S3 Fig). It should however be noted

that the method presented here designed to assess how LME regression captures the seven

model parameters, cannot be reversed, i.e., it the model parameters itself cannot be recovered.

The method can therefore only be applied and interpreted in the context of the LME.

Power analysis

Since the presented results are negative findings, we performed a post-hoc power analysis

using a previously published distribution of the parameters bMF and bMB [68]. Under the

assumption that our training changes parameters linearly over the five sessions, that it does

not change the variance in the parameters over individuals, and that the test-retest-reliability

of the parameters is zero (i.e., that between-subject variation in the parameters is not due to

stable traits), then our sample size of N = 20 would have been sufficient to detect an at least

80% change in bMF and an at least 120% change in bMB with 80% power at an alpha level of

5%. Assuming a test-retest reliability of 0.5, we had sufficient power to detect a 60% change in

bMF and an 85% change in bMB; and at a test-retest reliability of 0.8, these values were 35%

change in bMF and a 55% change in bMB.

Goodness of model fit as evidenced by the subject-specific BIC was not affected by training; the smaller the BIC the better the fit. See Table 3 for

statistics.

https://doi.org/10.1371/journal.pcbi.1007443.g005

Table 4. Correlation between model parameters with response times and reward rates. Shown are the correlations between the seven parameters (bMB, bMF, β2, α1,

α2, λ, p) with 1st and 2nd stage response times (RT) and reward rates as assessed using Pearson product moment correlation.

bMB bMF β2 α1 α2 Λ P

1st stage RT r -0.142 -0.355 -0.266 0.313 0.086 0.046 -0.244

p-value 0.159 0.000 0.007 0.002 0.397 0.647 0.015

1st stage RT r -0.156 -0.214 -0.323 0.381 0.341 0.183 -0.177

p-value 0.122 0.033 0.001 0.000 0.001 0.068 0.077

Reward r 0.126 0.302 0.285 -0.087 0.002 0.032 0.159

p-value 0.212 0.002 0.004 0.387 0.987 0.752 0.113

https://doi.org/10.1371/journal.pcbi.1007443.t004
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Discussion

In this paper, we tested a hypothesis that training humans on a two-step task reduces the influ-

ence of MF control whilst strengthening the influence of MB control. Such training may be rel-

evant for assessing psychiatric conditions including compulsion or addiction, because of their

reported association with an overreliance on habits [24]. Our results show that the two-step

Table 5. Test-retest reliability and repeatability of model parameters. Intraclass Correlation Coefficients (ICC) assessing reliability and Coefficients of Variation (CV)

assessing repeatability of the seven parameters (bMB, bMF, β2, α1, α2, λ, p). Upper (UB) and lower bounds (LB) of confidence intervals (CI). See Fig 6 for illustration.

bMB bMF β2 α1 α2 Λ P All

ICC UB 0.92 0.93 0.87 0.92 0.88 0.95 0.96 0.96

ICC 0.83 0.85 0.71 0.83 0.73 0.89 0.90 0.95

LB 0.67 0.71 0.45 0.67 0.48 0.79 0.81 0.93

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CV UB 100% 68% 48% 71% 68% 52% 85% 154%

CV 71% 47% 33% 49% 47% 36% 59% 106%

LB 39% 26% 19% 27% 26% 20% 33% 59%

https://doi.org/10.1371/journal.pcbi.1007443.t005

Fig 6. Test-retest reliability and repeatability of model parameters. Intraclass Correlation Coefficients (ICC< 0.4,

0.4–0.75,> 0.75 reflecting poor, moderate and excellent reliability [65]) and Coefficients of Variation (CV) of the

seven parameters (bMB, bMF, β2, α1, α2, λ, p). See Table 5 for statistics.

https://doi.org/10.1371/journal.pcbi.1007443.g006
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task reliably assesses individual MF and MB behavior but that training on the two-step task in

its current form does not support a shift in the balance between the two systems. Training on

the two-step task may thus require further adaptations in order to reduce MF control or com-

pensate for deficits in goal-directed choice. Although the current study was conducted in

healthy subjects and may therefore not be directly generalizable to psychiatric populations

with premorbid, i.e., pre-training, deficits in MB control, our results may contribute to the cur-

rent debate how the two-step could be adjusted to be used as training tool and to advance its

application in the trans-diagnostic evaluation of psychiatric conditions [43,67].

Reliability of MF or MB control

Results of the behavioral model indicated higher test-retest reliability for the two-step task

(overall ICC = 0.95, Table 5, Fig 6) than previously reported in a literature review (approx.

mean ICC = 0.7) [69]. Although the purpose of the present study was the evaluation of training

that was supposed to change behavior and thus requires caution in the interpretation of reli-

ability, our findings suggest that the two-step task has potential as a behavioral marker to char-

acterize individual behavior. The high reliability was associated with low precision (overall

CV = 106%, Table 5, Fig 6) indicating that the standard deviation exceeded the mean value, in

other words, that inter-subject variation was similar compared to intra-subject variation.

Together, this suggests that the model does reflect individual variation but is not precise.

No substantial change in MF or MB control via training

Results of the behavioral model suggest that training on the two-step task in its current form

does not affect the balance between MF and MB control, as exemplified by a relatively stable

pattern of the bMF and bMB parameters across sessions (Table 3, Fig 5). The only convincing

training effects were reflected in decreasing α1 and α2 learning rates. This indicates that the

degree to which participants incorporated new information decreased as task training pro-

gressed. Considering these modeling results and our simulations on the relation of model

parameters and choice behaviors, the LME effects on behavioral data and the brain data

(Table 2, Fig 4) most likely do not reflect changes in the balance between MF and MB control,

nor in the individual systems, but merely capture changes in α1 and α2 based on the parametric

mapping on LME (S1 Fig, S4 Table). Together, these findings suggest that training on the

two-step task induced no substantial changes in decision strategies besides affecting learning

rates. Although the results support some correspondence between behavioral choice and

ilPFC, our results do not support a previous hypothesis that ilPFC arbitrates between the MF

and MB system [27]. As a limitation, our power analysis indicates that a larger sample would

be required to find small training effects (e.g. parameter change smaller than 50% at a parame-

ter test-retest reliability of r = 0.8).

Comparison with previous training study

A previous training study utilizing the same two-step task by Economides et al. [9] reported

evidence of training effects. Training increased MB control (as evidenced by an increased α
learning rate, an increased weighting parameter ω and increased ‘reward � transition’ interac-

tions), while leaving MF control unaffected (as evidenced by unchanged ‘reward’ effects).

These behavioral changes were however observed following the concurrent introduction of a

secondary load task, and the authors conjectured that the addition of load may have been nec-

essary to expose training-induced changes in behavior in the two-step task. There are also sev-

eral other possible explanations for this disparity. One likely candidate is the difference in

training intervals. Economides et al. [9] trained subjects over three consecutive days, whereas

Training model-free and model-based control
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the present study trained subjects over five days separated by a week. Another reason might be

the difference in training intensity. Economides et al. [9] trained subjects on 768 trials, whereas

we trained subjects on 1005 trials, almost one-third more trials. A third reason might be differ-

ences in statistical analysis methodology. Economides et al. [9] did not test for interactions

between reward, transition and session in the LME and made use of an additional slope

parameter sigma (σ) that allowed the weighting parameter ω to shift across training sessions

when fitting data across all sessions; notably an implementation of the sigma (σ) parameter in

our model did not change overall results (analysis not included in this article).

Interpreting the lack of changes in MF and MB control

Within each session of the present study, participants followed slightly more MB strategies, as

indicated by a median ratio between bMB and bMF of 1.07 (p = 0.041) (compared to a median

weighting parameter ω of 0.39 indicating more reliance on MF strategy reported by Daw et al.

[1], S3 Table). Hence, participants were able to establish an internal model of the task by con-

sidering the dynamic interactions between rewards and transitions, although training did not

strengthen that internal model.

The missing training effect might be due to a natural re-equilibration of the balance to its

default setting, i.e., the MF system, which is less computationally demanding. The arbitrator

responsible for inhibiting the default habitual control and deliberating the MB system [27]

may have become weaker towards the end of training due to habituation. Additional cofound-

ers like tiredness and monotony induced by the high number of repetitions may have favored

less effortful MF strategies, as supported by the progressively faster response times observed

across sessions (Table 1, Fig 3). Demotivation or devaluation may also be justified by the miss-

ing trade-off between performance accuracy and reward rates (Table 1, Fig 3). It is well-estab-

lished that payoffs in the two-step task do not differ between performance of strictly MF versus

strictly MB agents or even agents who chose randomly [43,67]. These findings suggest that the

stochasticity of the two-step task imposes a low ceiling on achievable performance, preventing

MB control from outperforming simple MF strategies [43]. It might have therefore been ratio-

nal for participants to not invest in the higher cognitive costs of MB strategies, as they did not

pay off.

The missing training effect might also point to the employment of a third decision-making

strategy, namely sophisticated automatization, that is distinct from pure MF and MB learning

[43]. Previous simulations suggested that the two-step paradigm may or even should promote

such a third control system [43]. Faced with recurrent transitions there might be an increased

incentive to deconstruct the task and identify stimuli for automatized responses. This may pro-

duce a behavior that mimics goal-directed planning but in fact arises as a fixed mapping of

limited states matched with habitual response and automatable strategies [13,43]. This kind of

automatization could indeed be beneficial as it may render MB control less susceptible to dis-

traction [9]. Arguments for automatization may thus that it reduces the computational cost

associated with MB planning, making MB reasoning more efficient, although not explicitly

impacting the balance between MF and MB decision processes.

To enable training effects on MB learning while also allowing for some degree of automati-

zation, several task adaptations have been proposed, such as increasing payoff attractiveness by

enhancing the trade-off been performance accuracy and reward, sharpening contrasts between

transition and reward probabilities, increasing complexity of decision trees while compensat-

ing with simpler transitions, masking high frequent repetitions by alternated task settings to

reduce the burden of automatization [43,67]. Using such incentives to boost model-based
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control has also been suggested to be a useful intervention in a range of personality traits and

latent psychiatric symptom constructs [70].

Conclusion

Previous evidence suggests that an imbalance between MF and MB control may be a common

mechanism in various psychiatric disorders. The potential to rebalance such decision strategies

through task training therefore remains a promising therapeutic approach. The present study

suggests that training on the two-step task in its current form does not change the balance

between MF and MB control. An evaluation in psychiatric populations is required to assess

whether the present results can be translated into a trans-diagnostic framework [50].
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original model by Daw et al. [1]. Note that the parameter p has a different scale in the model

variant.

(DOCX)

S4 Table. Distribution of Simulated parameter values. Simulation data were generated for

each of the seven parameters (untransformed values) within the distribution of the untrans-

formed values obtained from the actual data (5th, 25th, 50th, 75th, 95th percentile, across sessions

S1-S5) while keeping the remaining parameters constant at the median.

(DOCX)

S5 Table. Correlation between model parameters and NIRS responses. Listed are the Pear-

son correlations between the model parameters (bMB, bMF, β2, α1, α2, λ, p) with the averaged

NIRS responses within critical trials (those that were preceded by a rare/common trial, those

that were rewarded/unrewarded) on the single subject level across all sessions. The results indi-

cated no significant correlations.

(DOCX)
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S6 Table. Simulated correlation indices. Listed are the inferred MF and MB correlation indi-

ces (MFCI and MBCI) for each parameter (bMB, bMF, β2, α1, α2, λ, p) approximating the

parameter-specific change in LME coefficients for MF control (‘reward’ effect) and MB control

(‘reward � transition’ interaction). Positive versus negative correlation indices indicate that

parameters are positively versus negatively correlated with LME coefficients. Note that the

magnitudes of these indices should only be interpreted in the context of the simulation.

(DOCX)

S1 Fig. LME main effects per session. Each bar represents the stay probability (p(stay)) or

mean tHb response across all participants for each session. For each session, bars from left to

right represent R+C, R+U, R-C, R-U (R+ = rewarded vs. R- = unrewarded, C = common vs.

U = uncommon, as detailed in Fig 4) Error bars represent standard error of the mean. See

Table 2 for statistics.

(TIF)

S2 Fig. Effects of independent parameter changes on LME. Results of the simulation assess-

ing independent changes of the parameters (bMB, bMF, β2, α1, α2, λ, p) on LME. (Top)

Inferred LME regression main effects. For each percentage change, bars from left to right rep-

resent R+C, R+U, R-C, R-U (R+ = rewarded vs. R- = unrewarded, C = common vs.

U = uncommon, as detailed in Fig 4) (Bottom) Inferred LME coefficients representing param-

eter-specific changes in LME coefficients for MF control (‘reward’ effect) and MB control

(‘reward � transition’ interaction).

(TIF)

S3 Fig. Correlation indices used to reconstruct LME coefficients. Illustration of a simple

approximation to reconstruct the patterns of the MF (‘reward’ effect) and MB (‘reward � tran-

sition’ interaction) coefficients for comparison with the actual LME. Reconstruction was done

by multiplying the correlation indices (MFCI and MBCI, S6 Table) with the actual parameter

values (bMB, bMF, β2, α1, α2, λ, p). (Left) To reconstruct the MF coefficients, the mean values

of the parameters primarily affecting MF control (bMF, α1, and λ) multiplied with the corre-

sponding MFCI per session were summed for illustration. (Right) To reconstruct the MB coef-

ficients, the mean values of the parameters primarily affecting MB control (bMB, β2, and α2,)

multiplied with the corresponding MBCI per session were summed for illustration. According

to the actual LME results, data are shown in comparison with the reference session S1.

(TIF)
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45. Schad DJ, Jünger E, Sebold M, Garbusow M, Bernhardt N, Javadi A-H, et al. Processing speed

enhances model-based over model-free reinforcement learning in the presence of high working mem-

ory functioning. Front Psychol. 2014; 5: 1450. https://doi.org/10.3389/fpsyg.2014.01450 PMID:

25566131

46. Brainard D. The Psychophysics Toolbox. Spat Vis. 1997; 10: 433–436. PMID: 9176952

47. Xu Y, Graber H, Barbour R. nirsLAB: A Computing Environment for fNIRS Neuroimaging Data Analysis.

Biomedical Optics. Miami, FL; 2014.

48. Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, et al. Motion artifacts in functional

near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive

data. Celebr 20 Years Funct Infrared Spectrosc FNIRS. 2014; 85, Part 1: 181–191.

49. Grubb R, Raichle M, Eichling J, Ter-Pogossian M. The effects of changes in PaCO2 cerebral blood vol-

ume, blood flow, and vascular mean transit time. Stroke. 1974; 5: 630–639. https://doi.org/10.1161/01.

str.5.5.630 PMID: 4472361
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