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Purpose: Motion correction in placental DW-MRI is challenging due to maternal 
breathing motion, maternal movements, and rapid intensity changes. Parameter esti-
mates are usually obtained using least-squares methods for voxel-wise fitting; how-
ever, they typically give noisy estimates due to low signal-to-noise ratio. We introduce 
a model-driven registration (MDR) technique which incorporates a placenta-specific 
signal model into the registration process, and we present a Bayesian approach for 
Diffusion-rElaxation Combined Imaging for Detailed placental Evaluation model to 
obtain individual and population trends in estimated parameters.
Methods: MDR exploits the fact that a placenta signal model is available and thus 
we incorporate it into the registration to generate a series of target images. The pro-
posed registration method is compared to a pre-existing method used for DCE-MRI 
data making use of principal components analysis. The Bayesian shrinkage prior 
(BSP) method has no user-defined parameters and therefore measures of parameter 
variation in a region of interest are determined by the data alone. The MDR method 
and the Bayesian approach were evaluated on 10 control 4D DW-MRI singleton 
placental data.
Results: MDR method improves the alignment of placenta data compared to the 
pre-existing method. It also shows a further reduction of the residual error between 
the data and the fit. BSP approach showed higher precision leading to more clearly 
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1  |   INTRODUCTION

Quantitative diffusion-weighted magnetic resonance imaging 
(DW-MRI) parameters have been increasingly used to char-
acterize abnormal placental microstructure.1-4 Monitoring 
placental function using MRI may improve the understand-
ing and diagnosis of placental insufficiency, which is a sig-
nificant cause of perinatal morbidity and loss. DW-MRI 
is becoming a powerful tool to obtain placenta perfusion- 
related measures without the administration of a contrast 
agent.5,6 DW-MRI in combination with the intra-voxel in-
coherent motion (IVIM) model provides a non-invasive 
technique to assess tissue properties related to perfusion 
and flow. Another method for assessing placental function 
is T2 relaxometry which provides information on the static 
tissue composition and intrinsic tissue T2 value.7,8 A recent 
study has proposed a joint placental model and acquisition, 
named Diffusion-rElaxation Combined Imaging for Detailed 
placental Evaluation (DECIDE).6 The DECIDE model is a 
three-compartment model of placental perfusion that com-
bines T2 relaxometry and DW imaging.

Placenta diffusion and relaxation imaging are quite sus-
ceptible to low signal-to-noise ratio (SNR) and motion arti-
facts due to maternal breathing and fetal movements.9,10 Such 
movements can cause errors in the analysis of the data and 
image registration is thus required. Image registration of DW-
MRI data is very challenging due to image contrast variation 
dependent on the choice of echo time and diffusion weighting 
between the images.11 As a result, co-registration of all func-
tional images to a single target, eg, b = 0 s.mm−2 image, may 
not be very accurate especially for high b-value images where 
the SNR is very low and signal is significantly attenuated.

Several image registration strategies have been developed 
to overcome the effect of motion and provide well-aligned 
features across the images. Data-driven registration methods 
based on principal component analysis (PCA) have been pro-
posed for registering dynamic contrast-enhanced MRI.12,13 
These methods rely on heuristic assumptions such that the 
contrast changes appear in more significant components and 
motion effects in the less significant components. This does 
not always bear true for all types of motion and structures in 
the image.

Another data-driven PCA-based groupwise method which 
registers quantitative MRI data has recently been proposed.14 
However, this method is only applicable to data from a sim-
plified mono-exponential signal decay rather than data with 
an underlying complex signal decay such as placenta data 
acquired with DECIDE acquisition.15 Other reported regis-
tration methods that use a physical model to drive the reg-
istration process have also been proposed by other research 
groups.15-20 Model-driven methods eliminate the require-
ment to choose a target image and are robust to the inten-
sity changes in the images. Furthermore, these approaches 
depend only on the underlying tissue physiology.

Many different approaches have been developed over the 
years to determine IVIM coefficients including least-squares 
methods, optimal sampling, and Bayesian fitting.21-24 Previous 
research on simulated data and on liver DW-MRI has shown 
that least-squares methods give noisy estimates especially for 
pseudo-diffusion parameters, and fitting is ordinarily indepen-
dent of spatial position which limits its applicability for assess-
ing spatial features and heterogeneity.24 A Bayesian approach 
may reduce estimation uncertainty so that spatial features in 
parameter maps are more clearly apparent. The quantitative 
DECIDE-based analysis of placental DW-MRI allows the sep-
arate scrutiny of placental diffusion and perfusion information, 
without the need for contrast agents which are currently con-
traindicated in pregnancy.6,25 A Bayesian-based fitting method 
has not yet been proposed for the DECIDE model, which is the 
only current tissue-specific model for placental imaging.

Assessing normal placental perfusion with gestational 
age is key to better understand differences linked to placen-
tal insufficiency. A recent study has shown changes in IVIM 
placental parameters, including perfusion and diffusion with 
gestational age.4 However, the variability in the measured pa-
rameters with gestational age has not previously been investi-
gated for the DECIDE model.

Our primary contribution consists of a new framework 
which provides functional information of the placenta and 
study correlations between the DECIDE estimated placenta 
parameters and fetal growth. The aim of this paper is two-
fold. First, we present an iterative model-driven registra-
tion (MDR) strategy which incorporates a placenta signal 
model to account for changes in image contrast. We then 

apparent spatial features in the parameter maps. Placental fetal oxygen saturation 
(FO2) showed a negative linear correlation with gestational age.
Conclusions: The proposed pipeline provides a robust framework for registering 
DW-MRI data and analyzing longitudinal changes of placental function.

K E Y W O R D S
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compare the MDR to a pre-existing registration method 
used for dynamic contrast-enhanced MRI data making use 
of PCA named progressive principal component registration 
(PPCR).12 Second, we extend the Bayesian shrinkage prior 
(BSP) approach originally proposed for the two-compartment 
IVIM model24 to fit the advanced three-compartment model 
DECIDE.

2  |   METHODS

2.1  |  Data

The study involved a cohort of 10 healthy women with a 
singleton pregnancy with no known placenta complica-
tions. Obstetric ultrasound scan confirmed normal fetal 
weight greater than the 10th centile and normal umbili-
cal artery Doppler assessment done within 1 week of the 
MRI scan. The gestational ages ranged between 25+1 to 
34+0 weeks+days with mean of 29+1 and standard devia-
tion (SD) of 2+2. The study was approved by a local re-
search ethics committee and written informed consent was 
obtained from each subject (London-Hampstead Research 
Ethics Committee, REC reference 15/LO/1488).

2.2  |  MR imaging

MRI was performed on a 1.5T Siemens Avanto scanner 
(Siemens, Erlangen, Germany), in combinations from seven 
b-values (b; 0, 50, 100, 150, 200, 400, 600 s.mm−2) and ten 
echo times (TE) (TE; 81, 90, 96, 120, 150, 180, 210, 240, 
270, 300 ms). All TE were acquired at b = 0 s.mm−2 to allow 
T2 fitting and all b-values at TE  =  96 ms. In addition, data 
were acquired at b-value 50 s.mm−2 and 200 s.mm−2 for TE =  
(81, 96, 120, 150, 180, 210, 240 ms), to allow simultaneous 
sampling of diffusivity and relaxivity. Subjects were imaged 
using a pulsed gradient spin-echo with an EPI readout. The 
dynamic series consisted of 41 volumes per subject. Other 
parameter settings were as follows: repetition time  =  3900 ms,  
field of view = 402 × 479 × 437 mm3, reconstructed matrix 

156 × 192 × 26 and temporal resolution 4.1  s. The total 
acquisition time was approximately 20  min. Subjects were 
advised to breathe normally throughout the DW acquisition.

2.3  |  Model-driven registration

The basic framework of the MDR method contains three 
steps which are described in detail below: (a) Fit the DECIDE 
model with linear inversion to the measurement volumes; (b) 
Synthesize target data for each measurement volume from 
the fitted model; (c) Register each measurement volume to 
the corresponding synthetic target volume. This process is 
summarized in Figure 1.

2.3.1  |  Generation of target image volumes

DECIDE signal model
The DECIDE signal model6 is of the form: 

where S is the measured MRI signal and S0 is the signal with 
no diffusion weighting (ie, b = 0). The five independent model 
parameters are the rapid-perfusing volume fraction f , diffu-
sivity d, pseudo-diffusivity d∗, placental fetal blood relaxation 
r

fb
2
= 1∕T

fb
2
, and slow-perfusing blood volume fraction v. As in 

Melbourne et al,6 we used literature-based values for maternal 
blood relaxation rmb

2
 and tissue relaxation rt

2
 of (240 ms)−1 and 

(46 ms)−1 respectively.26-28

DECIDE model fitting
Non-linear least-squares methods are the most commonly 
used algorithms to fit models to MR data. The process is slow 
and it is therefore computationally inefficient for estimation 
of image-wide parameter estimates.

An efficient method to estimate model parameters is the 
use of linear least-squares (LLS) by solving a linear system 
of equations. The LLS method has been used for DCE-MRI 

(1)
S(b, TE) = S0

[
fe−bd∗−TEr

fb
2 + (1− f )e−bd

(
ve−TEr

mb
2 + (1−v)e−TErt

2

)]
,

F I G U R E  1   Diagram illustrating the process of the MDR method
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and positron emission tomography.29,30 In this work, we ad-
opted a similar approach to produce parameter estimates for 
the DECIDE model since it is computationally intensive to 
use the standard method of fitting the solution of Equation (1) 
in the MDR approach.

First, we redefined the parameters in Equation (1) as 
follows: 

where �1 = S0f , �2 = S0(1− f )v and �3 = S0(1− f )(1−v). 
Assuming the parameters d∗ and rfb

2
 are known, Equation (2) is 

a multiple linear regression model. Literature values for d∗ and 
r

fb
2
 were set to 0.073 mm2s−1 and 144.89 ms−1 respectively.6 If 

the data S(b, TE) are measured at N different b-values and echo 
times then Equation (2) leads to a system of N linear equations. 
They can be summarized as a matrix equation S=Ax where 
S = [S(b0, TE0

), … , (bN , TEN
)] is an array holding the mea-

sured signals, x =
[
�1, �2, �3

]
 contains the unknowns and A is 

an N × 3 matrix with the exponential terms. The matrix equa-
tion can be solved using standard methods for LLS problems. 
We then derived the physiological parameters S0, f  and v from 
the given �1, �2 and �3: 

By fitting Equation (2) voxelwise to the data, we thus build up 
a series of synthetic model volumes. These volumes typically 
preserve the structure and the expected signal variations due to 
b−value and TE modulation and are then used as target image 
volumes in the registration process.

2.3.2  |  Registration algorithm

The model-based formulation of the MDR method eliminates 
the requirement of choosing a single target image. Each orig-
inal unregistered image volume in the quantitative imaging 
series is registered to its corresponding target image volume 
generated as described above. The pairwise co-registration is 
performed using a highly optimized C++ implementation of 
free-form deformation (FFD) registration.31

2.3.3  |  Implementation details

The DECIDE linear model fitting procedure was implemented 
in MATLAB (The MathWorks, Natick, Massachusetts) and 
run on a laptop computer with 16 GB memory and 3.1 GHz 
Intel Core i5 processor.

A B-spline transformation has been used where the con-
trol point grid was subjected to a multiresolution scheme. 

The model fitting and registration steps are alternated three 
times with the spacing between the FFD control points de-
creasing at each iteration (10×10×10,5×5×5,2.5×2.5×2.5 
voxels).

2.3.4  |  Evaluation of registration 
performance

Image processing
Quantitative assessment was carried out on regions of inter-
est (ROI) of the placenta. The placenta ROIs were manu-
ally segmented (ITK-SNAP Version 3.6.0, 2017) from 
the unregistered baseline image (lowest TE, no diffusion 
weighting). Voxel-by-voxel fitting was performed with a 
nonlinear DECIDE model fit using a Levenberg–Marquardt 
algorithm (The MathWorks, Natick, Massachusetts) ap-
plied to Equation (1). One should note that in order to lin-
earise Equation (1), we assumed that d∗ and rfb

2
 are known. 

However, for the quantitative analysis d∗ and rfb
2
 parameters 

need to be estimated and therefore the standard nonlinear fit-
ting has been used.

Clinical data
The performance of MDR is compared to PPCR algorithm 
as described in Melbourne et al.12 To facilitate a fair com-
parison between the two registration methods, the FFD 
registration in PPCR was used with the same tuning as 
described in Section 2.3.2. The registration quality in the 
clinical data was assessed qualitatively by visual com-
parison of parameter maps and images before and after 
motion correction. In addition to the qualitative assess-
ment, registration quality was also assessed by computing 
the normalized root mean square error between the data 
and the fit.

Simulated motion
To evaluate how the MDR method performs in a setting with 
known ground truth, we chose a real dataset with minimal 
motion corruption to be used as a point of reference. This 
dataset was then deformed by applying a ground truth mo-
tion derived from a clinical dataset with significant move-
ment corruption. The simulated motion yields an average 
placenta deformation of 2.11 mm in x-direction, 2.54 mm in 
y-direction and 1.56 mm in z-direction.

For each reconstruction pi of a parameter p = f , d, d ∗ , T
fb
2

,  
v, the relative error was determined as: 

MDR quality was also assessed visually by comparing recon-
structed parameter maps against the exact parameter maps.

(2)S(b, TE) = �1e−bd∗−TEr
fb
2 +�2e−bd−TEr

mb
2 +�3e−bd−TErt

2 ,

(3)v =
�2

�2+�3

, f =
�1

�1+�2+�3

, S0 =
1

�1+�2+�3

(4)E(p) =
pi−p

p
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2.4  |  Data-driven Bayesian modelling

2.4.1  |  Least-squares based approach

Voxelwise least-squares (LSQ) parameter estimates were 
obtained using a Levenberg–Marquadt algorithm (The 
MathWorks, Natick, Massachusetts) applied to Equation 
(1). The LSQ fitting routine initialized with parameter esti-
mates from model-fitting results obtained from average pla-
cental ROIs signal curves as done in Melbourne et al.6 To 
stabilize the fitting when computing voxelwise estimates, 
the following constraints were chosen: 0 < f < 1 (no units), 
0 < d < 1 (mm2s−1), 0 < d∗ < 1 (mm2s−1), 0 < T

fb
2
< 500 

(ms), 0 < v < 1 (no units).

2.4.2  |  Bayesian shrinkage prior

We extend24 to iteratively adapt our DECIDE voxelwise fits 
based upon a hierarchical prior distribution generated from 
the placenta ROI-informed statistics. The ROIs contain vox-
els with similar values and therefore a spatial correlation is 
introduced in the prior distribution. If the signal from a voxel 
is dominated by noise, parameter estimation is more heavily 
weighted by the prior distribution; while if SNR is high then 
the data has more influence in the parameter estimation. The 
idea of BSP method as described in Orton et al24 is to maxi-
mize a joint posterior probability of DECIDE parameters, 
given the observed data: 

where �i =
[
fi,di,d

∗
i
,r

fb
2

,vi

]
 for voxel i,  M is the number of vox-

els, � = [�f ,�d,�∗
d
,�

T
fb
2

]T is the ROI mean, Σ� is a 5×5 covari-

ance matrix of �, and Si is the signal at the voxel i. Model 
parameters are modified to ensure their values fall in a sensible 
range. Specifically, the prior distribution is defined over the 
transformed parameter D = log(d) such that d = eD subject to  
d > 0 (similarly for d∗ and rfb

2
), and for f ; the prior distribution 

is defined over the transformed parameter F = log( f )−log(1− f )  
such that f = eF∕(1+eF) subject to 0 <  f  < 1 (similarly for v). 
The likelihood function p(Si|�i) is a multivariate conditional 
probability that takes the form24: 

where g is the expected signal vector normalized by the 
baseline signal S0, and N is the number of measurements 
in DECIDE acquisition.6 The shrinkage prior function 

p(�i,�,Σ�) subjects to a multivariate Gaussian distribution, 
the formulation of which is given by: 

In order to perform inference with the shrinkage priors, we 
used Markov Chain Monte Carlo (MCMC) with Gibbs sam-
pling as in,24,32 allowing us to infer voxelwise parameter values, 
θ, and ROI hyperparameters shared among voxels, � and Σ�. 
MCMC was initialized with the voxelwise LSQ estimates, then 
updated separately as described in the Appendix.

2.4.3  |  Evaluation of estimation methods

For each subject a placenta ROI was drawn as described in 
Section 2.3.4. DECIDE fitting was then performed using 
the LSQ method and with the BSP approach. As well as a 
visual inspection of the parameter maps, summary statistics  
such as the median, 25th and 75th interquartile range were 
computed.

In Orton et al24 has demonstrated that the image filtering 
of the source images did not lead to smoother LSQ estimates 
compared to BSP parameter maps. Based on this observation, 
a Gaussian filter with SD of 1.0 (voxel) was applied to our 
data to smooth the source images prior to the LSQ fitting.

The relationships between DECIDE functional parame-
ters ( f , d, d∗, FO2, v) and GA were evaluated by means of 
regression analysis, with y = bGA + a, where y denotes the 
measured functional parameter. The correlations between 
DECIDE parameters and GA were assessed using Pearson’s 
correlation coefficient. Significance level was set at 5%.

3  |   RESULTS

3.1  |  Registration

Figure 2 shows box-plots for DECIDE parameter estimates 
over the 10 subjects included in this study. Results are pre-
sented for the median voxel value over the placenta ROIs 
and the mean estimates derived from the individual ROI of 
each subject. Analysis showed a reduction of error in regis-
tered data. The interquartile ranges were lower with MDR 
although median errors were similar for the registered and 
unregistered data.

Table 1 gives the mean and SD for DECIDE parameter 
estimates for the motion free data as well as before and after 
registration. The MDR method improves the accuracy and 
precisions of the parameter estimates.

Relative errors with respect to motion free data are pre-
sented in Table 2. Registration resulted in a decrease of error 
in all the parameters.

(5)p(�1:M ,�,Σ�|S1:M)∝

M∏

i= 1

p(Si|�i)p(�i|�,Σ�),

(6)p
(

S|f , d, d∗, r
fb
2

, v
)
∝
[
STS− (STg)2∕(gTg)

]−N∕2
,

(7)�i ∼ (�,Σ�).
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Figure 3 show the effect of the MDR algorithm in original 
data and the data with added simulated nonrigid motion be-
fore and after motion correction with the MDR. Registration 
with MDR shows that misalignment due to motion were 
reduced and produces sharpened parameter maps (see the 
arrows shown on the relevant figure).

Figure 4 illustrates the effect of image registration before and 
after motion correction on fetal blood volume fraction maps. 
PPCR reduces the motion-induced blurring that is visible on 
the uncorrected maps. However, the improvement was limited 
compared to MDR. Registration with MDR shows improvement 
of anatomical delineation and precision of parameter maps.

Figure 5 shows examples of registration in 4 subjects. 
Misalignments due to respiratory motion are visible when 
no registration is applied. However, it is observed that they 
are reduced after applying registration with PPCR and MDR. 
Arrows pointing up on the figure show that after applying 
registration with MDR images were almost perfectly aligned 
where in some cases registration with PPCR showed some 
residuals due to uncorrected motion.

The time taken by the linear LSQ using the linearized 
model in Equation (2) to find the optimum parameters 
and create target imaging volumes is about 250 times 
less than that required for a conventional nonlinear LSQ 
method. The linear LSQ technique reduced the calcula-
tion times for a 156 × 192 × 26 MR volume from 16 min 
to 4 s.

F I G U R E  2   Box-plots summarizing results for DECIDE parameters over 10 subjects. Each plot shows: the median (redline), the 25th and 75th 
percentile (blue box), individual means (pink circle) and the full data extent (black dashedline)

T A B L E  1   Comparison of DECIDE estimated parameters before and after MDR. Results are presented as mean value (SD)

Parameter Unregistered data Data with simulated motion Registered data

f  (no units) 0.225 (0.21) 0.251 (0.28) 0.218 (0.22)

d (mm2s−1) 0.0015 (0.0003) 0.0018 (0.0007) 0.0016 (0.0004)

d∗ (mm2s−1) 0.0385 (0.018) 0.0476 (0.29) 0.0368 (0.020)

T2 Placental Fetal blood (ms) 181.1 (25.7) 142.1 (36.7) 170.4 (26.9)

v (no units) 0.306 (0.051) 0.369 (0.068) 0.325 (0.055)

T A B L E  2   Comparison of the relative error in the DECIDE 
parameters for the data with added simulated motion before and after 
MDR. Relative error was calculated with respect to original data

Parameter
Data with simulated 
motion

Registered 
data

f  (no units) 0.12 0.03

d (mm2s−1) 0.20 0.07

d∗ (mm2s−1) 0.24 0.08

T2 Placental Fetal blood (ms) 0.22 0.06

v (no units) 0.21 0.06



      |  7FLOURI et al.

F I G U R E  3   A, Profile of dynamic image stacks (cuts) of a single column of each image in the dynamic series. Coronal view for anatomical 
reference, a dashed line indicates the location of the cut in unregistered data (no registration), data with added simulated nonrigid motion and data 
registered with MDR. B, Fetal blood volume fraction maps for original data, data with added simulated nonrigid motion and data registered with MDR

F I G U R E  4   A comparison of fetal 
blood volume fraction maps in 3 subjects 
for unregistered, registered with PPRC 
and registered with MDR. The comparison 
shows further reduction of the motion 
artifacts and sharper delineation of organ 
boundaries (see arrows) on maps calculated 
with MDR
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3.2  |  BSP fitting

Figure 6A shows an example of the parameter maps obtained 
with the BSP and LSQ approaches with and without smooth-
ing. All LSQ parameter maps appeared noisy and artifact-
prone, where BSP fitting notably improved all the parameter 
maps. Tfb

2
 map obtained with LSQ gives a visibly noisy image, 

while BSP estimate notably improved the resulting Tfb
2

 pa-
rameter map. d∗ appeared to be the worst affected and is 
consistent with observations previously reported in the lit-
erature.24 The right-hand maps show the root mean-squared 
errors for the three approaches (see the corresponding figure 
in Supporting Information). Figure 6B shows correspond-
ing histograms. The proportions of the LSQ estimates in the 
edge-most bins are 7.5% for d∗, 5.6% for Tfb

2
 and 10.7% for v.

The placenta ROI mean estimated values of the DECIDE 
parameters with respect to gestational age using the LSQ and 
BSP methods are presented in Figures 7 and 8, respectively. 
The mean estimates are broadly consistent between the two 
approaches. However, the BSP method lead to a decrease of 
error in all estimated parameters. Significant linear trends are 

observed for v (p = 0.001) and feto-placental oxygen (FO2) 
saturation measurements (p = 0.0004) which both appeared 
to reduce with increasing gestational age. Measurements of f  
and d are not observed to change significantly with respect to 
gestational age.

4  |   DISCUSSION

We have described a framework for motion correction 
and parametric model fitting applied to quantitative pla-
centa imaging data. We proposed an iterative model-based 
registration method for quantitative imaging series. MDR 
uses pairwise coregistration of source images to the model 
fit results, avoiding the problem of changes in image con-
trast between images of the series affecting motion cor-
rection. In this study, MDR performance was compared to 
PPCR.12 Important methodological differences between 
the two methods lie in the fact that they used different 
approaches to generate target images. The MDR method 
makes use of the physical signal-model DECIDE where the 

F I G U R E  5   Effect of registration in superior-inferior direction in 4 subjects. An axial view is presented for anatomical reference with a 
dashed line indicates an example of location of the cuts. Arrows indicate further alignment with MDR method where registration with PPCR 
showed some residuals
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PPCR is based on PCA. In order to facilitate a fair com-
parison among the two registration methods, we kept the 
FFD control point spacing and transformation model the 
same. Results from simulated motion show that MDR 
can compensate for important misalignments due to sig-
nificant motion corruption. Results from clinical data 
showed that registration with MDR effectively eliminates 
motion-induced blurring, leading to sharp delineation of 
organ boundaries. Moreover, the MDR method allowed 
improved motion correction demonstrated by the reduction 
of the residual bias between the data and the fit. The lin-
ear fitting led to a large overall reduction in computation 
time with a factor of 250. However, the total saving will 
depend on computer hardware and number of dynamic im-
ages in the data. One should note that the linear voxelwise 
DECIDE fitting was used to generate the series of target 
imaging volumes for the registration only. The final quan-
titative parameter estimation was performed nonlinearly 

by minimizing the sum of squared error between the fitted 
signal and acquired signal (see Section 2.3.4).

We further described a Bayesian estimation approach for 
robust estimation of the DECIDE parameters and their sum-
mary statistics in the placenta. Results shown here demon-
strated that ROI mean estimated values for normal placentas 
derived using LSQ approach are comparable to the BSP es-
timates but that the precision of the parameters has been im-
proved. The effect of smoothing the source images has also 
been examined. Similar to24 results demonstrate that while 
isolated voxels with large errors tend to be removed, non-iso-
lated voxels remain and may worsen. Smoothing appears to 
improve the errors on d and d∗ at the cost of a loss in image 
resolution. Our method preserves placental parametric het-
erogeneity but does not implicitly include this in the estima-
tion of the population trends. This enables a more precise 
estimation of population trends in the data with increasing 
gestational age or pathology.

F I G U R E  6   A, DECIDE parameter maps derived from the Bayesian shrinkage prior (BSP) method and least-squares (LSQ) method with and 
without data smoothing. B, Histograms of DECIDE voxel estimates for the same data. Curves are histograms for LSQ parameter estimates (blue) 
and BSP parameter estimates (red)
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The proposed registration method and Bayesian fitting 
approach are essentially tissue independent and therefore ap-
plicable to other organs. A key advantage of the BSP method 
is that there are no user-defined parameters, so heterogene-
ity measures over ROIs are determined by the data alone. 
Therefore BSP method can be applied to other physical mod-
els of quantitative imaging data and help to establish normal 
changes in quantitative imaging parameters.

Another important finding of this study is the linear cor-
relation of the estimated parameters with the gestational 
age. Results from the BSP fitting approach suggest that the 
influence of gestational age on MRI parameters should be 
taken into account. Our results showed linear correlations be-
tween the DECIDE estimated parameters and gestational age, 

although for a wider range of gestational age, non-linear mod-
els may be more appropriate.4 A wider range of gestational 
age would help demonstrate the longitudinal trend between 
the MR parameters during pregnancy which might aid in the 
prediction of obstetric outcomes. Significant negative cor-
relation was found between gestational age and the placental 
fetal oxygen saturation. This is line with results from a previ-
ous invasive study33 that examined ranges of blood gas and 
acid–base measurements over a wide range of gestational age.

It is known that placental saturation values measured 
by cordocentesis or chorionic sampling decrease with in-
creasing gestational age; however, our model makes sev-
eral assumptions about placental function that approximate 
the complexity of the organ which may result in inaccurate 

F I G U R E  7   Changes in measured DECIDE parameters with respect to gestational age (GA) after individual LSQ model fitting. The circles 
indicate the mean values and the error bars represent the SD
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values including the high saturation values seen at earlier 
gestation age. These assumptions include homogenous low-
flow velocity and fixed saturation of the maternal blood 
pool, and rapid capilliary flow in the fetal blood pool. It is 
likely that these represent simplifications of the complex-
ity of blood passage within and around the placental villous 
tissue. We also assumed that maternal blood in the inter-
villous space has a fixed T2 and that saturation does not 
vary throughout the intervillous space. Since the oxygen 
extraction by the fetus will always be greater than zero, a 
concentration gradient is always necessary, depending on 
the blood delivery conditions and blood velocity through the 
intervillous space. Deeper in the intervillous space the T2 of 

blood will be somewhere between arterial and venous satu-
ration level as suggested by T∗

2
-weighted images of the pla-

centa.34 Assuming that fetal oxygen extraction changes with 
gestational age, variations in the gradient of maternal blood 
saturation may influence our estimates of fetal blood satura-
tion. Total blood delivery to the placenta and continued re-
modeling of the spiral arteries will also cause the interaction 
of these blood pools to change dynamically with gestation. It 
is probable that our linear model of changes with gestational 
age is also inaccurate, but nonetheless it is the most reason-
able model to fit with the data that we have. Future studies 
with larger numbers of subjects or highly sampled longitudi-
nal data will allow models with higher degrees of variation 

F I G U R E  8   Changes in measured DECIDE parameters with respect to gestational age (GA) after individual BSP model fitting. The circles 
indicate the mean values and the error bars represent the SD
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to be fitted and allow us to understand placental maturation 
in more detail. Further validation work is also needed to in-
vestigate the precision of these current assumptions.

The BSP fitting algorithm is independent of the size and 
shape of the ROI. In general, ROIs between matched pla-
centa of individuals can be considered comparable and para-
metric distributions can be estimated from the population 
in the same way as described before for an individual. The 
interpretation of the multivariate Gaussian in Equation (7) is 
one formed form the population distributions of parameters 
rather than those from a single subject ROI. This strategy 
will produce robust parameter estimates from a matched 
population and establish a framework for robust longitudinal 
fitting.

In this study, we have described a comprehensive frame-
work for measuring robust longitudinal trends in MR mea-
surement of placenta perfusion and fetal oxygenation in 
normal placentas. The framework consists of a new model- 
based registration method and a Bayesian estimation approach 
for jointly estimating voxelwise DECIDE parameters and 
their summary statistics from DW-MRI data. This may help 
us to refine knowledge of changes in MRI properties with 
increasing gestational age in pregnancies affected by abnor-
mal placentation.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 A, DECIDE parameter maps derived from the 
Bayesian shrinkage prior (BSP) method and least-squares 

(LSQ) method with and without data smoothing. The 
right-hand maps show the root mean squared (RMS) errors 
with the three aproaches. B, Histograms of DECIDE voxel 
estimates for the same data. Curves are histograms for 
LSQ parameter estimates (blue) and BSP parameter esti-
mates (red)
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APPENDIX A
The voxelwise parameter values θ, and the ROI hyperparam-
eters shared among voxels, � and Σ� were updated as follows:

1.	 Update the mean hyperparameter according to 
�j+1 ∼�|Σj

�,y.
2.	 Update the covariance hyperparameter Σj+1

� ∼Σ�|�j,�j, y.
3.	 For each voxel, generate a proposal voxelwise parameter, 

�∗
i
, by sampling �i ∈ ( f , d, d∗, r

fb
2

, v) in turn from N(�i, wi�
2
i
), 

where wi is a proposal variance for parameter i.
4.	 Update �j+1

i
 with this new value if r∼U(0, 1) < 𝛼(𝜃∗

i
, 𝜃i

i
), 

otherwise �j+1

i
= �

j+1

i
.

Proposal variances, wi, are initialized at wi = 0.5 for all i. 
Periodically these are tuned to ensure approximately 25% of 
samples are being accepted per.32 The acceptance probabil-
ity, �, is given by �(�∗, �0) =

p(y|�,Σ� , � = �∗)

p(y|�,Σ� , � = �0)
. That is, � is 

higher when the proposal �∗ better matches the observed data 
than �0.
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