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Abstract 

 

There is substantial debate around the nature of letter position coding in reading. 

Research on a variety of Indo-European languages suggests uncertainty in position 

coding; for example, readers perceive transposed-letter stimuli (jugde) as similar to 

their base words (judge). However, these effects are not apparent for all languages. 

We developed a powerful new method to delineate how specific properties of a 

writing system shape the representation of letter position. Two groups of 24 adults 

learned to read novel words printed in artificial scripts. One group learned a dense 

orthography (i.e. with many anagrams) and one group learned a sparse orthography 

(i.e. no anagrams). Following four days of training, participants showed a larger 

transposed-letter effect in the sparse orthography than in the dense orthography. 

These results challenge existing models of orthographic processing in reading, and 

support the claim that orthographic representations are shaped by the nature of the 

writing system. 
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There is a broad consensus that printed words in alphabetic languages are 

recognized through the analysis of letters. Information about letter identity helps 

readers to distinguish words like SLAT and SPAT that differ by a single letter, while 

information about letter position permits readers to distinguish anagrams like SLAT 

and SALT that consist of the same letters in different positions. The nature of position 

coding in visual word recognition has become a point of major theoretical debate over 

the past decade (e.g. Davis, 2010; Grainger & Whitney, 2004; Gomez, Ratcliff & 

Perea, 2008).  

Substantial evidence suggests that readers of Indo-European languages are 

tolerant of transposed letters in word identification (e.g., ‘jugde’ activates ‘judge’; 

Perea & Lupker, 2003). In standard visual lexical decision, nonwords that are 

transposed-letter anagrams of words (e.g. silimar) are harder to reject than nonwords 

that are not (e.g. sitinar; Andrews, 1996; Chambers, 1979; Lupker, Perea & Davis, 

2008; Perea & Lupker, 2004). Similarly, masked priming studies show that 

recognition of a target word is speeded by prior presentation of a transposed-letter 

prime (e.g. sevrice-SERVICE), relative to a substitution prime (e.g. sedlice-

SERVICE; Schoonbaert & Grainger, 2004). This transposed-letter effect extends to 

cases in which the transposition crosses a syllable boundary (e.g. caniso-CASINO 

versus caviro-CASINO; Perea & Lupker, 2003) and to more extreme modifications 

(e.g. snawdcih-SANDWICH versus skuvgpah-SANDWICH; Guerrera & Forster, 

2008). These findings all suggest that there is a high degree of perceptual similarity 

between stimuli that comprise the same letters in different positions.  

These results highlight a fundamental problem in word recognition. Clearly, 

we can distinguish snawdcih and sandwich, so letters must be coded for position. 
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However, this coding must comprise some degree of uncertainty or flexibility; 

otherwise, these stimuli would not be treated as perceptually similar. This insight has 

inspired a variety of competing theories that propose to solve this problem, including 

the SOLAR model (Davis, 2010), the Open Bigram model (Grainger & Whitney, 

2004), the Noisy Channel model (Norris & Kinoshita, 2012), and the Overlap model 

(Gomez et al., 2008). Though these models have important differences, they all assert 

that letter position is coded in a way that leads to perceptual uncertainty. Further, 

uncertainty in letter position coding is argued to be a general property of the cognitive 

system (Perea & Carreiras, 2012), and caused by low-level visual (e.g. crowding, 

acuity; Grainger, Dufau & Ziegler, 2016) and neurobiological factors (e.g. noisy 

retinotopic firing, nature of the receptive field structure; e.g. Dehaene et al., 2005). 

However, recent evidence suggests that letter position uncertainty does not 

extend to all writing systems. In a series of studies in Hebrew, Velan and Frost (2007, 

2011) showed that word recognition is not facilitated by prior presentation of a 

transposed-letter prime relative to a substitution control. Frost (2012) argued that the 

reason for this can be traced to properties of the writing system. Specifically, Hebrew 

is very dense orthographically, with many anagrams. Hebrew readers must therefore 

develop precise orthographic position coding, as tolerance to disruptions of letter 

order would often result in accessing the meaning of the wrong word. Evidence for 

precise orthographic representations has also been provided in Korean (Lee & Taft, 

2011; Rastle, Lally & Lee, 2019) – another language with a dense orthography, but 

which otherwise shares little similarity with Hebrew. Frost (2012) emphasized that 

reading is a learned skill, and that while this process will necessarily be constrained 

by low-level visual and neurobiological processes, flexibility will emerge only where 

it maximises the efficiency of word recognition. This conclusion is supported by 



SHAPING PRECISION OF POSITION CODING 

5 
 

simulations showing that distributed-connectionist networks trained on artificial 

languages yield more flexible position coding for sparse orthographies compared to 

dense orthographies (Lerner, Armstrong & Frost, 2014). 

Though Frost (2012) presents a compelling argument that orthographic density 

is a major constraint on letter-position coding, it is difficult to draw this conclusion 

definitively from cross-linguistic comparisons since there are substantial differences 

across languages over and above orthographic density. Hebrew is characterised by a 

non-concatenative morphological system comprising tri-consonantal roots, which 

modify properties of the verb such as person, gender and tense. Similarly, Korean is 

characterised by physically-demarcated syllable blocks with a rigid consonant-vowel-

consonant structure. In addition, readers of these languages almost certainly differ in a 

myriad of ways (e.g. method of reading instruction, language and reading experience). 

In light of these differences, it is difficult to draw strong conclusions about the 

specific impact of density on the development of orthographic representations.  

Our work brings a new dimension to this debate by using an innovative 

approach that has the potential to reveal how flexibility in position coding is 

influenced by specific properties of writing systems. We use a laboratory analogue of 

reading acquisition in which adults are trained on novel words in unfamiliar scripts 

(Taylor et al., 2011, 2017). This approach allows precise control over what 

participants learn and how they learn in a way that could never be achieved using 

natural language comparisons. We trained participants on novel words from artificial 

writing systems designed to be orthographically sparse or dense, but which otherwise 

were identical in factors relevant to word perception (e.g. syllable structure, 

morphological structure, positional letter frequency). We then used the transposed-

letter effect to assess the precision of participants’ emerging letter position coding. On 
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the basis of Frost (2012), we predicted that participants who had learned the 

orthographically dense writing system would show a smaller transposed-letter effect, 

indicating greater precision in letter position coding, than those trained on the sparse 

writing system. 

Method 

Participants.  

Forty-eight monolingual English speakers completed the experiment at Royal 

Holloway University of London, in exchange for £60. All participants were aged 18-

25 years old and had no history of language or reading difficulties. Participants were 

assigned to one of the two writing systems.  

Stimuli.  

Trained items. Two artificial writing systems were constructed, each 

comprising 24 pseudowords printed in an unfamiliar script. In both writing systems, 

each novel word consisted of five letters and two syllables, and had a CVCVC 

structure. These novel words were constructed from 17 letters (12 consonants, 5 

vowels), and the spelling-to-sound relationship in both languages was consistent, i.e. 

each letter had one sound. Critically, both the overall frequency and positional 

frequency of individual symbols was equated across writing systems, with consonants 

appearing 6 times and vowels appearing 8-10 times in the trained novel words. 

However, one writing system was sparse (i.e. no anagrams) while the other writing 

system was dense (i.e. each word was an anagram of another word in the orthography, 

created by switching the initial and final consonant or by switching the initial and 

middle consonant). Figure 1 presents an example of the trained stimuli from the 
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sparse and dense writing systems and their pronunciations. A full list of stimuli can be 

found in the Open Science Framework storage for this project. 

--Insert Figure 1 about here – 

 Test items. In addition to the trained items, test tasks (conducted on the fifth 

day) required development of five sets of 24 untrained novel words for each writing 

system. Untrained words all comprised the same CVCVC structure as trained words, 

and each set was group-wise matched to trained words on letter frequency. The first 

four sets of untrained words were created for the visual lexical decision test task. The 

first set comprised novel words that transposed the second and third consonants of a 

trained word (TL-C), while the second set comprised novel words that replaced the 

second and third consonants of a trained word with different consonants from the 

alphabet (RL-C). The third set comprised novel words that transposed the first and 

second vowels of a trained word (TL-V), while the fourth set comprised novel words 

that replaced the first and second vowels with different vowels from the alphabet (RL-

V).1 The fifth set of untrained words was used to assess generalisation performance in 

reading aloud.  

 In designing the stimuli, we took great care to make sure that the similarity 

between test stimuli and trained stimuli was equivalent across sparse and dense 

orthographies. We used the Match Calculator (Davis, 1999) to assess the degree of 

similarity between trained and test items on a number of different input coding 

schemes. Each comparison generated a number between 0 and 1, where 0 indicated 

                                                             
1 We used non-adjacent transpositions of consonants and vowels for the reason that in our 
alphabets, the symbols associated with consonants and vowels only occur in certain positions 
(e.g. vowel symbols do not occur in the third position). We had no predictions about consonant-
vowel status on the transposed-letter effect, and note that this comparison in any case is 
confounded with position of disrupted letters.  
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total dissimilarity and 1 indicated a perfect match. It is evident from the average 

match scores provided in Table 1 that there were no differences in trained–test item 

similarity across the two orthographies. This tight control was essential so that any 

differences in lexical decision performance could be attributed to orthographic 

density, rather than low-level differences in discrimination difficulty across sparse 

and dense orthographies as a result of higher orthographic overlap with trained and 

untrained items.  

--Insert Table 1 about here – 

Procedure.  

 Each participant was trained on the novel words from one writing system over 

four days and tested on the fifth day. The correct response was given as feedback on 

each trial for training tasks; no feedback was given on test tasks.  

During Day 1, participants completed three tasks, with each task comprising 

three runs. The first task was phonic training. For two runs, participants were exposed 

to individual letters and their sounds and asked to repeat each sound aloud. In the 

third run, participants were presented with the letter and had to produce the sound. 

The second task was reading aloud; participants saw each novel word and were asked 

to read it aloud. The third task was orthographic search; participants heard a novel 

word and selected its visual form from a grid of all 24 novel words. During Days 2-4, 

participants completed three blocks of training each day. Blocks consisted of three 

repetitions of reading aloud and one repetition of orthographic search. Training on 

each day took approximately 75 minutes.  

 On the fifth day, participants completed four test tasks in a fixed order. These 

included tasks similar to the reading aloud and orthographic search tasks practiced in 
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training; however, each stimulus was presented once per task, and participants 

received no feedback on the correct response. In addition, participants completed 

visual lexical decision and generalisation. In the lexical decision task, participants 

were presented with letter strings and asked to decide whether they were words that 

they had learned.2 The letter strings included trained words, and the four sets of 

untrained novel words (TL-C, RL-C, TL-V, RL-V). Trained words were repeated four 

times, so that ‘yes’ and ‘no’ responses were balanced. Trained items were included as 

fillers in order to provide a correct ‘yes’ response, and also to measure participants’ 

overall recognition of trained items. Untrained items were included to measure the 

transposed letter effect (shown by the difference in performance for TL and RL foils), 

reflecting the degree of position uncertainty in each orthography. In the generalisation 

task, participants were asked to read the fifth set of untrained novel words aloud. This 

allowed us to assess the extent to which participants had extracted underlying 

spelling–sound regularities from training on the novel words.  

Results 

Data from one participant were removed from all analyses due to poor 

learning of the trained items (63% correct on reading aloud test; 49% correct on ‘yes’ 

response in lexical decision test). Data were analysed using analyses of variance 

(ANOVA) on accuracy and response times (RTs), although we note that previous 

studies in which adults have learned to read in an artificial script have typically 

focused only on accuracy (e.g. Taylor et al., 2011, 2017). Spoken responses were 

                                                             
2 We chose to investigate transposed letter phenomena using standard lexical decision rather 
than masked priming because we judged that this would be more suitable for use with an 
artificial orthography training paradigm. Though there is ample evidence that participants can 
discriminate trained from untrained stimuli in such paradigms (e.g. Taylor et al., 2017), we are 
unaware of any evidence suggesting that trained items would yield masked repetition priming 
effects.  
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hand-marked for accuracy and RT by a research assistant naïve to the purpose of the 

study using CheckVocal software (Protopapas, 2007). Analyses were conducted on 

by-subject (F1) and by-item (F2) means. Results were interpreted as significant when 

effects held across both F1 and F2 analyses. Data and analysis scripts are available in 

the OSF storage for this project.  

Training Data (Days 1-4).  

Phonic Training (Day 1). The analysis of phonic training data considered 

performance in the third run of phonic training, and included Orthography (sparse vs 

dense) as a factor. The analysis of accuracy data revealed no difference between 

sparse (M = 0.47, SE = 0.04) and dense (M = 0.42, SE = 0.04) writing systems, F1(1, 

45) = 0.62, p = 0.43; F2(1, 32) = 0.71, p = 0.40. Similarly, there was no difference in 

RTs between sparse (M = 2177ms), and dense (M = 1957ms) writing systems, F1(1, 

45) = 1.37, p = 0.25; F2(1, 32) = 1.76, p = 0.19. These data provide confidence that 

there were no initial differences between the language groups on ability to learn the 

artificial alphabets. 

Reading Aloud (Days 1-4). The analysis of reading aloud training data 

considered Orthography (sparse vs dense) and Day as factors. Figure 2 provides a 

visual representation of the data.  

For accuracy, there was a main effect of Day, F1(3, 135) = 212.53, p < .001; 

F2(3, 138) = 1531.50, p < .001, with performance becoming more accurate over time. 

Although Figure 2 suggests slightly higher accuracy for the dense group, neither the 

effect of Orthography, F1(1, 45) = 3.17, p =.08; F2(1, 46) = 16.29, p < .001, nor the 

interaction between Day and Orthography, F1(3, 135) =0.98, p =.41; F2(3, 138) = 

6.14, p < .001, was reliable across by-subject and by-item analyses.  
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 For RTs, there was a main effect of Day, F1(3, 135) = 150.42, p < .001; F2(3, 

138) = 881.99, p < .001, with faster responses emerging over time. The RT data 

showed no effect of Orthography, F1(1, 45) = 0.24, p = .63; F2(1, 46) = 3.53, p = .07, 

and no interaction between Day and Orthography, F1(1, 135) = 0.28, p = .84; F2(1, 

138) = 5.09, p < .01. 

-- Insert Figure 2 about here – 

Orthographic Search (Days 1-4). The analysis of orthographic search training 

data considered Orthography (sparse vs dense) and Day as factors. Figure 3 provides 

a visual representation of the data. The accuracy analysis revealed an effect of Day, 

F1(3, 133) = 16.62, p < .001; F2(3, 138) = 105.26, p < .001, as accuracy increased 

over time. Although Figure 3 again suggests slightly higher accuracy for the dense 

group, there was no effect of Orthography, F1(1, 43) = 0.54, p = .47; F2(1, 46) = 6.95, 

p < .05, and no interaction between Day and Orthography, F1(3, 133) = 0.49, p = .69; 

F2(1, 138) = 3.40, p < .05, that was reliable across by-subject and by-item analyses. 

For RTs, there was a main effect of Day, F1(3, 133) = 100.50, p < .001; F2(3, 

138) = 391.89, p < .001, as latencies decreased over time. The RT data showed no 

effect of Orthography, F1(1, 43) = 0.65, p = 0.43; F2(1, 46) = 1.16, p = 0.29, and no 

interaction between Day and Orthography, F1(3, 133) = 0.77, p = 0.51; F2(3, 138) = 

2.12, p = 0.10. 

--Insert Figure 3 about here – 

 Overall, training data suggest that trained words were learned to a high degree 

of accuracy, with no reliable differences across sparse and dense orthographies.3  

                                                             
3 We note that there was some indication from by-item analyses that the dense 

orthography may have been easier to learn for some of the participants (although 
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Testing Data (Day 5).  

 Reading aloud. The analysis of reading aloud test data included Orthography 

(sparse vs dense) and Lexical Status (trained vs untrained) as factors. Figure 4 

provides a visual representation of the data.  

The analysis of accuracy revealed a significant effect of Lexical Status, F1(1, 

45) = 139.97, p < .001; F2(1, 92) = 450.67, p < .001, with trained items read aloud 

more accurately than untrained items. There was also a significant effect of 

Orthography, F1(1, 45) = 12.17, p < .01; F2(1, 92) = 50.96, p < .001, with higher 

accuracy in the dense orthography. However, these main effects were qualified by an 

interaction, F1(1, 45) = 11.63, p < .01; F2(1, 92) = 37.02, p < .001. This interaction 

revealed that whilst performance on trained items did not differ as a function of 

Orthography, F1(1, 45) = 0.75, p = .39; F2(1, 46) = 1.54, p = .22, performance on 

untrained items was more accurate for the dense than the sparse orthography, F1(1, 

45) = 13.19, p < .001; F2(1, 46) = 53.32, p < .001.  

The analysis of RT revealed an effect of Lexical Status, F1(1, 44) = 160.38, p 

< .001, F2(1, 92) = 331.67, p < .001, with longer latencies for untrained than trained 

items. However, there was no effect of Orthography, F1(1, 44) = 0.03, p = .87; F2(1, 

92) = 0.001, p = 0.98, and no interaction between these factors, F1(1, 44) = 0.01, p = 

.94; F2(1, 92) = 0.20, p = 0.66. 

--Insert Figure 4 about here— 

                                                             
performance converged by the end of training). This may suggest that there are 

meaningful individual differences in how these types of writing systems are learned. 

Future higher-powered studies may wish to investigate this possibility.  
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 Orthographic search. The analysis of orthographic search test data included 

Orthography (sparse vs dense) as a factor. The analysis of accuracy revealed no 

significant difference between sparse (M = 0.97, SE = 0.07) and dense (M = 0.98, SE 

= 0.05) orthographies, F1(1, 45) = 0.17, p = .69; F2(1, 46) = 0.47, p = 0.50). Similarly, 

the analysis of RT revealed no significant difference between sparse (M=6851) and 

dense (M=7131) orthographies, F1(1, 45) = 0.28, p = .60; F2(1, 46) = 0.61, p = 0.44. 

 Lexical decision. Analysis of the ‘YES’ response included Orthography 

(sparse vs dense) as a factor. The analysis of accuracy revealed no difference in 

recognition of targets learned in sparse (M = 0.95, SE = 0.01) and dense (M = 0.94, SE 

= 0.02) orthographies, F1(1, 45) = 0.21, p = 0.65; F2(1, 46) = 1.07, p = 0.31. 

Similarly, the analysis of RT revealed no difference in the speed with which targets 

learned in sparse (M = 3502ms) and dense (M = 3635ms) orthographies were 

accepted, F1(1, 45) = 0.14, p = 0.72; F2(1, 46) = 0.83, p = 0.37. 

Analysis of the ‘NO’ response included Orthography and TL status (TL vs 

RL) as factors. Figure 5 provides a visual representation of the data. The analysis of 

accuracy revealed an impact of TL status, with lower accuracy in rejecting TL foils 

than RL foils, F1(1, 45) = 50.29, p < .001; F2(1, 46) = 31.29, p < .001. There was also 

a main effect of Orthography, F1(1, 45) = 5.63, p < .05; F2(1, 46) = 58.72, p < .001, 

with accuracy in the dense orthography higher than in the sparse orthography. 

Critically, however, these main effects were qualified by a significant interaction, 

F1(1, 45) = 8.33, p < .01; F2(1, 46) = 5.09, p < .05, which indicated a larger TL effect 

in the sparse orthography than in the dense orthography.  

The analysis of RT revealed no effect of TL status, F1(1, 45) = 8.11, p < .01; 

F2(1, 46) = 3.32, p = .07, no effect of Orthography, F1(1, 45) = 0.001, p = 0.98; F2(1, 
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46) = 0.001, p = 0.99, and no interaction between TL status and Orthography, F1(1, 

45) = 0.41, p = 0.53; F2(1, 46) = 0.09, p = 0.77.  

  -- Insert Figure 5 about here – 

 

Discussion 

 

Substantial research suggests that letter position is represented flexibly in 

skilled reading (e.g. Perea & Lupker, 2004; Schoonbaert & Grainger, 2004). 

However, recent research in Hebrew (Frost, 2012; Velan & Frost, 2011) and Korean 

(Rastle et al., 2019) suggests that this may not be a universal property of reading, but 

rather may depend on the orthographic density of a writing system. We sought to 

investigate the impact of orthographic density on the emergence of letter position 

coding using an artificial language learning paradigm. Over four days, participants 

learned to read novel words printed in an artificial orthography that was sparse (no 

anagrams) or dense (many anagrams). On the fifth day, they were tested in a variety 

of ways for their knowledge of the artificial orthographies. We assessed the precision 

of letter position coding through a lexical decision task, in which participants were 

required to accept trained words but to reject transposed-letter and replaced-letter 

foils. We took the size of the transposed-letter effect on rejection decisions as an 

index of flexibility in position coding (e.g. Andrews, 1996), and expected this to be 

larger in the sparse orthography than in the dense orthography.  

Results revealed the predicted difference in the size of the transposed-letter 

effect on rejection decisions across sparse and dense orthographies. Though 

participants across the two writing systems learned trained words to the same high 

degree of accuracy, the underpinning orthographic representations clearly differed. 
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Critically, participants who learned the sparse orthography were more likely to accept 

the transposed-letter foils as trained words (relative to a replaced-letter control) than 

participants who learned the dense orthography. This result indicates that participants’ 

emerging orthographic representations were more precisely coded for letter position 

when they learned to read the dense orthography than the sparse orthography. We 

note that these findings arose on accuracy rather than RT. It is not surprising that 

findings should be confined to accuracy given the low level of experience that 

participants had with the novel alphabets. Indeed, the fact that ‘no’ decisions in the 

lexical decision task hovered around 5000 ms suggests that reading of these alphabets 

was not fully automatized. The critical point is that there is no evidence of a speed-

for-accuracy trade-off that would undermine the result on accuracy. If anything, the 

RT data go in the same direction as the accuracy data (i.e. larger transposed-letter 

effect in the sparse orthography).  

These results are consistent with previous cross-linguistic studies 

demonstrating reductions in transposed-letter effects in orthographically-dense scripts 

such as Hebrew (Velan & Frost, 2007, 2011) and Korean (Lee & Taft, 2011; Rastle et 

al., 2019). However, our findings are particularly powerful because the impact of 

orthographic density on letter position coding cannot be attributed to other 

confounding language characteristics or to variations in participant groups across 

languages. These results support Frost’s (2012) claim that the flexibility of letter 

position coding in reading arises as a consequence of the statistical structure of a 

writing system. However, a deeper question relates to how theories of reading 

acquisition might account for the impact of orthographic density on flexibility of 

letter position coding.  
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Several theories of reading acquisition highlight the linguistic environment as 

a key factor in forming optimal word representations. The amalgamation theory (Ehri 

& Wilce, 1980) and the lexical tuning hypothesis (Castles et al, 2001) both propose 

that readers develop more precise representations of words with a high neighbourhood 

density, due to the increased risk of confusability. This prediction has been supported 

in masked-priming studies showing that words in dense neighbourhoods show 

reduced substituted letter priming and transposed letter priming than words in sparser 

neighbourhoods (Castles et al., 2007; Forster et al., 1987; Kinoshita, Castles & Davis, 

2009; Perea & Rosa, 2000). Our work suggests that the proposals of these theories 

regarding flexible tuning within a language might also be invoked to understand 

cross-linguistic differences. Readers of dense orthographies may require more precise 

tuning of word representations than readers of sparse orthographies, resulting in lower 

tolerance to transpositions. 

 Similarly, while our findings are inconsistent with the proposal that letter 

position flexibility arises solely as a result of low-level visual or neurobiological 

phenomena, we can envisage ways in which these theories might accommodate an 

influence of orthographic density. For example, the local combination detector model 

(Dehaene et al, 2005) proposes that detector sizes are larger for writing systems in 

which the reader is reliant on larger orthographic units (e.g. languages with low 

grapheme-phoneme transparency). This proposal offers a potential way forward for 

thinking about the impact of orthographic density on position flexibility, as in dense 

orthographies the reader may need to consider positional information from a larger 

window of letters in the word in order to reliably differentiate between anagrams.  

However, we believe that the full range of the results observed are most 

compatible with the dual-pathway model of Grainger and Ziegler (2011). This model 
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proposes that skilled readers use coarse- and fine-grained codes in parallel in order to 

decode written words. The coarse-grained route identifies letter combinations in the 

absence of precise positional information to provide a fast-track to semantic 

information. In contrast, the fine-grained route is more sensitive to the precise 

ordering of letters. The precision of orthographic information along the fine-grained 

pathway permits mapping onto phonological information as well as chunking of 

frequently-occurring contiguous letter combinations, such as morphemes. It seems 

plausible that during reading acquisition, learned representations of words are tuned 

to reflect an optimal balance of coarse-grained and fine-grained processing. If so, then 

readers of dense orthographies may be less able to utilise coarse-grained information, 

as the lack of position specificity would be inefficient for identifying words with 

many orthographic neighbours. Rather, they would need to develop greater reliance 

on the fine-grained pathway. In contrast, readers of sparse orthographies with few 

orthographic neighbours would have more weight assigned to less precise 

representations as there is a much lower chance of identifying a transposed-letter 

neighbour in error. The reliance on less precise representations in orthographies with 

fewer orthographic neighbours would result in larger transposed-letter effects in 

sparse orthographies, as observed in the current work.  

This account suggests that reading acquisition is characterised by a process of 

learning the degree of precision that is required for efficient word recognition. The 

optimal degree of precision may vary locally across different types of words, and may 

vary cross-linguistically based on orthographic density, as the present results suggest. 

This interpretation is supported by research suggesting that the magnitude of the 

transposed-letter effect increases through the period of reading acquisition (Ziegler et 

al., 2014 in French; Colombo, Sulpizio & Peressotti, 2017 in Italian). This evidence 
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stands in contrast to the predictions of the lexical quality hypothesis (Perfetti, 2007), 

stating that the process of reading acquisition is characterised by increased fine-tuning 

of representations (i.e. greater precision) through the accumulation of print 

experience.  

One problem with this account based on the dual-pathway model (Grainger & 

Ziegler, 2011) is that seems to allow too many degrees of freedom. That is, one might 

argue that the model allows the researcher to explain any number of effects simply by 

suggesting posthoc that coarse-grained or fine-grained processing dominated. The 

account would be more persuasive if we had additional, independent evidence that 

participants in our dense orthography condition were more reliant on fine-grained 

processing. Remarkably, data from the generalisation test task provides this 

independent evidence. Results indicated that the trained words were learned to the 

same high degree of accuracy across writing systems. Yet, when participants were 

asked to read aloud untrained words using the same symbols, participants who learned 

the dense script showed a substantial advantage. This suggests that participants who 

learned the dense orthography developed more componential representations, 

reflecting greater fine-grained letter-to-sound knowledge, than participants who 

learned the sparse orthography. Once again, the evidence indicates that the nature of 

the writing system impacted on how the words were learned. 

The introduction of the artificial orthography training paradigm has allowed us 

to study the unique impact of orthographic density on the acquisition of orthographic 

representations. Due to associations between orthographic density and other factors in 

existing writing systems, this type of highly-controlled study is only possible in a 

simulated environment. However, there are clearly limitations of these paradigms, 

introduced largely due to constraints on what participants are able to learn over a 
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reasonable time period. Further, we have simplified our vocabularies in many ways to 

facilitate the learning task (e.g. use of a strict syllabic structure for all items), and to 

ensure perfect matching across orthographies. These simplifications may have had 

unintended consequences. For example, while participants across orthographies 

differed substantially in their treatment of untrained items in the lexical decision and 

reading aloud tasks, we observed no differences across orthographies in the speed or 

accuracy with which trained items were processed. We believe that the data from 

untrained items indicates that the writing systems were learned in different ways, but 

we would not like to speculate that writing system has no bearing on the speed or 

accuracy with which words are processed once learned. It may be that the null effect 

of orthography on the processing of trained items reflected the very tight, artificial 

matching across orthographies, or that our tasks were insufficiently sensitive to detect 

effects on trained items (see also Footnote 3).  These arguments suggest that while 

artificial language studies of this nature form an important part of the evidence base, 

they must be interpreted as complementary to studies of existing languages and 

writing systems. 

  Overall, our results provide a strong demonstration of the impact of the 

orthographic density of a writing system on the precision of orthographic 

representations. Using an artificial language approach, we varied orthographic density 

across two artificial writing systems, while controlling all other stimulus and 

participant factors that confound this comparison in studies using natural languages. 

Our results challenge existing cognitive and neurobiological models of position 

coding in reading, and support the argument put forward by Frost (2012) that 

orthographic representations are shaped by the statistical structure of the writing 

system one learns to read (see also Lerner et al., 2014). We look forward to using this 
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method to delineate how the complex associations between orthographic, 

phonological and semantic information across the world’s writing systems shape the 

acquisition of the reading skill.   
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Table 1 

 

 Match Calculator (Davis, 1999) statistics displaying mean orthographic overlap between trained and untrained items.

Orthography 

 

Absolute 

 

SOLAR 

(Spatial Coding) 

Overlap 

Open Bigram 

SERIOL 

Open Bigram 

Binary 

Open Bigram 

Dense 0.13 0.19 0.04 0.04 0.04 

Sparse 

 

0.13 

 

0.19 

 

0.04 

 

0.03 

 

0.04 
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Figure 1. Examples of stimuli in dense and sparse orthographies. 
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Figure 2. Mean accuracy and response times for each day of the reading aloud 

training task. Error bars display one standard error from the mean, calculated for 

between-subjects designs. Data are averaged across three repetitions of the task on 

Day 1 and nine repetitions of the task on Days 2-4. 
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Figure 3. Mean accuracy and response times for each day of the orthographic search 

training task. Error bars display one standard error from the mean, calculated for 

between-subjects designs. The data for each day are averaged across three 

repetitions. 
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Figure 4. Mean accuracy and response times for reading aloud trained and untrained 

stimuli on Day 5. Error bars display one standard error from the mean, calculated for 

between-subjects designs. 

 

 

 

 

 



SHAPING PRECISION OF POSITION CODING 

32 
 

 

Figure 5. Mean accuracy and response times for the visual lexical decision test task 

on Day 5. Error bars display one standard error from the mean, calculated for within-

subject designs (Loftus & Masson, 1994). Error bars display within-subject variability 

because the comparison of interest is the size of the transposed-letter effect within 

each orthography.  

 

  


