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Abstract. A heuristic-based, multineural network (MNN) image analysis as a solution to the problematical diag-
nosis of hydatidiform mole (HM) is presented. HM presents as tumors in placental cell structures, many of which
exhibit premalignant phenotypes (choriocarcinoma and other conditions). HM is commonly found in women
under age 17 or over 35 and can be partial HM or complete HM. Appropriate treatment is determined by correct
categorization into PHM or CHM, a difficult task even for expert pathologists. Image analysis combined with
pattern recognition techniques has been applied to the problem, based on 15 or 17 image features. The use
of limited data for training and validation set was optimized using a k -fold validation technique allowing perfor-
mance measurement of different MNN configurations. The MNN technique performed better than human
experts at the categorization for both the 15- and 17-feature data, promising greater diagnostic consistency,
and further improvements with the availability of larger datasets. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.4.044501]
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1 Introduction
Molar pregnancy occurs with the formation of hydatidiform
moles (HM) in their partial (PHM) or complete (CHM) form
on the placenta and are abnormal products of conception.
With CHM, there is no fetal development, and with PHM, there
is only partial development, resulting in malformations and
an unviable fetus. Therefore, the distinction between PHM
and CHM is important in determining the management of the
condition (with CHM having a greater malignant potential).
Although moles can be identified from placental cells using
clinical, ultrasonographic, gross morphological, histological and
genetic criteria, and given each type has a different prognosis,
the final diagnosis must be confirmed by pathologists.1,2 Many
experienced pathologists have confirmed the difficulties in dis-
tinguishing these moles.3 Typically, misclassification is due to
the absence of unambiguous morphological criteria to differen-
tiate HM (PHM or CHM) and normal placenta, and some
atypical cases are not easy to detect using morphological criteria
alone. Misclassifications can also occur if no recent tissue sam-
ples are available and also if abundant tissue of maternal origin
is present.4 Figure 1 shows an example of nonmolar villi, PHM,
and CHM. Distinguishing these moles on the basis of morpho-
logical features alone is both challenging and is affected by
interobserver variability.3

The identification of cell morphology information can be
extracted from digital images of the microscope slides used
by pathologists in the diagnosis of HM. In this paper, expert
pathologist knowledge has been modeled using morphological
image processing techniques to produce an artificially

intelligent system to classify digital images of placental cells
into normal, PHM, or CHM categories, with the aim of produc-
ing a system either capable of making reliable diagnoses or
assisting pathologists in diagnosis. Rendering the diagnostic
problem as a pattern recognition task uses a standard method-
ology involving three stages: image preprocessing, which
removes irrelevant information and enhances relevant informa-
tion; image segmentation which partitions the image into
regions of interest (relevant cell structures); the extraction and
identification of relevant features (numerical measurements);
and finally, classification. This paper focuses on the classifica-
tion stage, as the earlier steps have been reported by Palee et al.5

The remainder of the paper is arranged as follows. Section 2
reviews the recent study of various types of cancer image analy-
sis. The proposed heuristic-based multineural network (MNN)
to classify anomalous villi of normal, PHM, and CHM images is
explained in Sec. 3. Section 4 describe the experiments, which
are followed by a discussion and conclusion.

2 Related Work
Pattern classification is the process of categorizing or classifying
the objects of interest, and the inherent difficulties involved
depend on the properties of the data used to make the classifi-
cation decisions. Statistically, the data should be “well-behaved”
(minimum dimensionality, minimum correlation, and rich in
statistical information content). The approaches to categoriza-
tion are all statistical in nature, and some are based on machine
learning (ML) approaches, where properties of the data are
“learned” from a “training set” and used to make the categori-
zation decisions. The traditional statistical classification
approaches include Bayesian decision rule,6 k-nearest
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neighbor (kNN),7 k-means,6,7 and Gaussian mixture model6

based systems. ML uses fuzzy set,8 artificial neural network
(ANN),7,9 support vector machine (SVM),9 case-based reason-
ing,10 and extreme learning machine (ELM)11 algorithms.

2.1 Traditional Statistical Classification

This approach is followed widely in cancer diagnosis using
many image types. Waheed et al. used multiclass Bayesian
decision rules to differentiate between benign and malignant
renal cell carcinoma on pathological images.12 Qi and Head
applied the k-means classifier to identify breast cancer regions
from thermal infrared images,13 and Hamdi et al. applied used
Fisher’s linear discriminant to categorize the normal and abnor-
mal microcalcifications on digital mammograms.14 In addition,
the quadratic discriminant analysis method was used to classify
the features of colon cancer in histological images, resulting
in better classification than those based on techniques using
Fisher’s score.15 Meng et al. applied a classifier based on sim-
ilarity measurements (city block metric) to compute similarity
between data values for ovarian cancer samples.16 This method
was selected because the data values extracted from samples are
binary values. Zheng et al. developed a breast cancer classifica-
tion application by combining k-means classification with a
multilayer perceptron (MLP) neural network using the backpro-
pagation algorithm to train and classify a dataset of benign and
malignant regions in ultrasound images.17 A kNN classifier was
applied by Niwas et al.18 to classify cancerous and noncancerous
cells on cytological images and by Petroudi et al.19 for breast
cancer classification. Li et al. used a classification method based
on Gaussian mixture models to classify breast tumor mammo-
graphic images.20

The requirement for the statistical features to be well-
behaved is often an assumption in much of the statistical work,
but many of the diagnostic features often correlate (i.e., they are
not statistically independent).21 To find the best classifier for
breast cancer diagnosis, Filipczuk et al. compared the classifi-
cation performance of statistical based kNN classifier with ML-
based classifiers: naive Bayes (NB), decision tree, and SVMs
showed that these performed better than the kNN approach.22

Other classifiers include the use of NB to classify cervical
cancer cells from colposcopy images,23 case-based reasoning
to classify breast cancer cells in digital mammograms,24

ELM algorithm to classify the malignant masses in digital mam-
mograms,25 and particle swarm optimization to classify anoma-
lous areas in digital mammograms of breast cancer26 and
analyze skin cancer diagnosis based on dermoscopic images for
feature optimization.27 Yaguchi et al. apply linear discriminant
analysis (LDA) to classify biopsy images of stomach cancer28

while Torrent et al. proposed the GentleBoost algorithm based
on the concept that the sum of weak classifiers can deliver a

strong classifier to improve the robustness of their system.29

Wei et al. compared the performance of classifiers, such as
SVM, kernel Fisher discriminant (KFD), relevance vector
machine (RVM), and committer machines based on the adaptive
boosting algorithm.30 They showed that SVM, KFD, and RVM
yielded the best performance for microcalcification classifica-
tion in digital mammograms. George et al. compared four
ML-based classifiers, namely, MLP, probabilistic neural net-
work (PNN), learning vector quantization, and SVM for a breast
cancer cytological image classification application, and showed
that the two best classifiers of this image type are PNN and
SVM.31 Shahare and Giri32 have recently carried out a compar-
ative study on SVM with different kernels for breast cancer
detection and reported that SVM outperformed ANN.

2.2 Machine Learning Classification Approaches

ML classification uses a training set to learn how to classify
data. The training set associates a class with each element in
the set so that the performance of an ML classification can
be assessed during the learning process. An ML system is said
to have learned when its errors in classifying the training set
reach a minimum (ideally zero). Having learned the ML system
is then expected to “generalizes” or “recall,” correctly classify
data not included in the training set.21 The SVM is a common
supervised ML approach applied to cancer applications. It was
used by Lahmiri and Boukadoum.33 and Hassanien and Kim34 to
classify cancerous breast cells, by Allwin et al.35 to study cer-
vical cancer and by Han et al.36 and Naik et al.37 in prostate
cancer. Xu et al.38 and Doyle et al.39,40 have also applied
SVM to classify histology image slides while Yuan et al.41 have
used SVM based on texture only to detect skin cancer with
acceptable results, though they recommend adding more fea-
tures to improve the classification. Deepa and Bharathi42 and
Kim et al.43 use SVM to distinguish between benign and malig-
nant regions in digital mammogram images, whereas Torheim
et al.44 applied SVMs to classify MR images of cervical cancer.

To solve the unclassifiable region problems in SVM and to
improve its classification performance, Bai and Qian45 proposed
fuzzy SVMs to classify the different noise levels of digital
mammograms of breast cancer. The experiments yielded better
results and decreased the computational cost. Furthermore,
Alolfe et al.46 used four classifiers (SVM, kNN, neural network,
and fuzzy classifiers) with microcalcification data from digital
mammography. The classification results of the four classifiers
were unsatisfactory due to the small number of benign and
malignant samples used in training and testing. To improve
the classification, Alolfe et al.47 combined SVM with LDA.
Kounelakis et al.48 however, showed that the application of
SVM, embedded with the Relief-F filter method under a recur-
sive feature elimination manner, provided greater accuracy

Fig. 1 Hydatidiform moles: (a) nonmolar villi, (b) PHM villi, and (c) CHM villi.
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compared to Relief-F on Weka software in classifying statistical
and biological features of brain gliomas. To extract significant
statistical and morphological features from pulmonary nodules
in computed tomography images of the lung and to determine
whether the nodule is cancerous or healthy. Farahani et al.49

employed an ensemble of three classifiers comprising MLP,
kNN, and SVM.

ANNs are much used in cancer applications. Niwas et al.50

classified images of breast tissue samples with them, and Karnan
and Gandhi51 used them to study digital mammograms. Moradi
et al.52 have applied MLP neural networks based on the back-
propagation algorithm to classify cancerous and noncancerous
regions, while Mini53 applied PNNs to classify breast cancer in
digital mammograms. To improve the performance of the clas-
sification results of ANNs, Neofytou et al.54 combined PNN
with SVM while Zheng et al.17 applied a MLP network and the
k-means classification method to classify ultrasound images of
tumors. Naghdy et al.55 also applied ANN and neurofuzzy clas-
sifiers to a real-time brain cancer classification application. Tiu
et al.56 combined a self-organizing map neural network with a
fuzzy criterion classifier to classify microcalcification on digital
mammograms, whereas Elizabeth et al.57 applied a radial basis
function neural network (RBFNN) to classify lung cancer
tomography images. The experimental results show that the pro-
posed method yields 94.44% accuracy. Wan et al.58 developed a
multiple level feature set, including pixel, object, and semantic
level features derived from convolutional neural networks
(CNNs) to distinguish low, intermediate, and high grades of
breast cancer in digitized histopathology images and achieved
an overall accuracy of 69%. Recently, Anaraki et al.59 combined
CNNs and genetic algorithm to classify different grades of
Glioma using magnetic resonance imaging. Sajjad et al.60 devel-
oped a deep learning framework to segment and classify brain
tumor into four different grades using a fine-tuned CNN model.

A decision tree classifier has also been used by Peng et al.61

to classify cervical nuclei on microscope images. They claim
that their proposed method yields a promising accuracy
(97.8%). To improve the classification of cervical nuclei on
microscope images, Peng et al.62 used C4.5 decision tree as a
classifier and F-score as a feature selection algorithm to mini-
mize the computational cost.

Although the literature review reveals a high level of research
activity, most applications tend to be limited to the study of breast,
lung, skin, cervical and prostate cancers. The study of HMs or
molar pregnancy cancer is confined to the management and care
of patients (Gul et al.;63 Khaskheli et al.;64 and Sebire65). The lit-
erature review also shows that knowledge and expert heuristics
are still unexplored, yet such expertise has the potential of
improving the accuracy in classifying cancerous cells.

3 Integrated Heuristic Approach to Analyze
and Classify Molar Pregnancy Slides

Our research project has developed an MNN configuration,
which integrates experts’ heuristic-based approaches to classify
images taken from stained slides of HM. The aim of this MNN
configuration is to capture expert knowledge used in identifying
the most critical features for distinguishing nonmolar placenta
from PHM and CHM and PHM from CHM. In the development
of this approach, there have been challenges. Many expert strat-
egies are based on expert “tacit knowledge” and are difficult
to communicate. Also, experts differ in their approaches so it
becomes difficult to reach a common consensus. The percentage

of correct classification of villi on the basis of morphology can
vary from 55% to 75% for an individual pathologist and may
reach up to 75% if the consensus view of several pathologists
is used (Vang et al.3). To simulate expert pathologists’ heuristics,
we have adopted a task analysis approach and divided each task
into subtasks, which are further explored as a set of experiments,
in order to manage complexity and rank the information-bearing
features. The pathologists’ approach to the detection of anoma-
lies begins by first separating normal villi from non-normal villi,
then focusing on the non-normal villi and separate PHM from
CHM. This approach is reflected in our MNN configuration.

3.1 Feature Selection

The initial test data for the experiment consisted of 939 images
of villi are divided into 294 normal, 455 PHM, and 190 CHM, in
which each image contained intact and complete villi with clear
contours. This enabled the identification of features within the
image, which consisted of numerical descriptors of specific mor-
phological anomalies associated with the trophoblast, stroma,
and red blood cells of PHM and CHM (Fig. 2). Numerical
descriptors of other important characteristics such as the shape
and the perimeter of the villi, the villous scalloping aspect,
trophoblastic hyperplasia, and the ratio between the stroma and
villi were also used. In total, 15 numerical features were
extracted and applied to the MNN configuration. A summary
of these features and associated anomalies is given in Table 1.

3.2 Experimental Study Based on 15 Features

In the first experiment, the MNN (consisting of NN1, NN2, and
NN3) is configured so that it closely models the process used by
pathologists in determining the diagnosis discussed above, and
illustrated in Fig. 3. NN1 performs the initial categorization into
two groups: “possible-normal” and “abnormal.” Abnormal villi
are trained by NN2 to distinguish between PHM and CHM.
Possible-normal villi are further trained by NN3 to classify
normal villi from PHM. The primary settings of NN1, NN2, and
NN3 consist of 15 input nodes representing the 15 features,
1 hidden layer, a set of hidden nodes varying from 1 to 15, and
2 output nodes.

The neural network training method used here is the back-
propagation multilayer perceptron (MLP) model,7 which can be
seen as a “matrix-fitting” approach to solving the problem. The
initial matrices consist of random weights, whose values are
changed and over the training process so as to minimize an error
function. The error function is a measure of the difference

Fig. 2 Villous features.
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between the answer produced by the network, and the answers
given in the training set expressed as a function of the network
weights. The technique is based on gradient descent (similar to
Newton’s method) and, since its discovery in 1985, has been
proven effective in problems, where there is no clear solution
(such as the diagnosis of molar pregnancy). The error function
to be minimized is assumed to have a global minimum—a
setting of the matrix values in which the error cannot go any

lower, however, the behavior of the error function is entirely
unpredictable and so there is a high likelihood (almost a cer-
tainty in most difficult problems) of local minima existing,
which can confound the training process (as the gradient at
these points is zero), implying no change is possible. The effect
of local minima is managed by setting parameters within the
network and regularly randomizing the order in which training
data is presented.

Table 1 Elicited morphological features and associated anomalies.

Morphological features given by
expert pathologists Proposed features Types of anomalies

RBC factor: density and distribution
within a given villi

Percentage of red blood cells inside stroma regions Point anomaly

Villi: shape and size Villi size Morphological anomaly

Number of villi boundary corner points Morphological anomaly

Different area between villi’s bounding box and villi area Morphological anomaly

Major axis Morphological anomaly

Minor axis Morphological anomaly

Elongation ratio Morphological anomaly

Ratio between number of villi boundary corner points
and all pixels belonging to villi perimeter

Morphological anomaly

The notion of four quadrants Morphological anomaly

Stroma’s morphological characteristics Percentage of stroma regions inside villi Contextual anomaly

Stroma’s textural characteristics Percentage of edge inside stroma regions Contextual anomaly

Variance of gray scale of stroma regions Point anomaly

Trophoblast thickness and proliferation Percentage of trophoblast inside villi Contextual anomaly

Trophoblast skeleton per trophoblast perimeter ratio Density anomaly

Trophoblast analysis Morphological anomaly

Fig. 3 MNN architecture.
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In this experiment, a k-fold cross-validation66 was applied to
provide data for results evaluation. The precise amount of data
required to train an MLP is dependent on the number of weights
in the network. As the neural network technique is innately stat-
istical, the number of training samples should be a substantial
multiple of the number of weights,9 however, there is no agree-
ment as to what this multiple should be. The use of the k-fold
cross-validation technique is therefore designed to function in a
manner similar (but not identical) to bootstrapping in situations
where data availability is limited to make the best use of the
resource. In any supervised ML algorithm, such as a neural net-
work, there is a requirement that the training data and the test
data conform to the same distribution as the original data. The
available training data is divided into k equal sized segments,
where membership of the segments is taken at random from the
available data. The algorithm for training and validating the data
is as follows (illustrated in Fig. 4).

1. Divide the available data into K segments,
labeled i ¼ 1; : : : ; K.

2. Train the neural network K times, as follows.

3. Remove one data segment to serve as a validation set.

4. Train the network with the remaining K − 1 segments.

5. Record the performance statistics, and select the next
validation segment. Repeat from 2.

This technique serves to validate the number of hidden nodes
in the neural network, as K repetitions of the training enable
the determination of the consistency of the performance over
the K iterations, as neural networks are known to be sensitive
to starting conditions and local minima. In cases where suffi-
cient data exist so that 10% of samples are likely to provide
a similar distribution to the training set, K is usually set to 10.
In cases where fewer data are available, a smaller number is
selected.

This is an established, informed estimation method to
determine the consistency and performance of supervised ML
algorithms (such as MNNs) operating under different training
conditions. The composition of each partition should reflect
the statistical distribution of the categories in the whole dataset
(i.e., normal, CHM, and PHM).66 The repetition of the training
and validation process with different datasets yields insights
(after analysis), as to the applicability of the technique to the
problem, given the recognized sensitivities of neural networks
to starting conditions and local minima (see above).

Fig. 4 Ten-fold cross validation.

Fig. 5 Dark regions inside the stroma (e.g., N101-22 denotes normal placenta slide 1 consisting of
22 villi).
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The results of the k-fold cross-validation are then used with a
confusion matrix (Table 2) to compare predicted results against
actual diagnoses. Additionally, recall and precision determined
as a function of true/false and positives/negatives are used and
defined as follows:

EQ-TARGET;temp:intralink-;sec3.2;63;200Precision ¼ TP

TPþ FP
;

EQ-TARGET;temp:intralink-;sec3.2;63;147Recall ¼ TP

TPþ FN
;

where TP is true positive, FP is false positive, TN is true neg-
ative, and FN is false negative.

This experiment was repeated with several configurations of
MNN with results shown in Table 3, with the best results
achieved with six hidden nodes and 93.1% average accuracy for
NN1, three hidden nodes with 89.0% average accuracy for NN2,

and five hidden nodes with 91.4% average accuracy for NN3
(Table 4).

The precision achieved for normal, PHM, and CHM villi is
82.7%, 81.3%, and 80.8%, respectively, whereas the recall for
normal and PHM villi is 83.0% and 87.1%, respectively, which
are higher than the CHM villi (Table 5).

3.3 Experimental Study Based on 17 Features

Further consultation with expert diagnosticians led to the iden-
tification of two additional characteristics: dark regions within
the stroma and the trophoblast. The dark regions inside the
stroma are high in normal placental and low in PHM and
CHM villi samples (Fig. 5). In nonmolar villi, the structure
of the stroma is net-like, whereas, in PHM, it is scalloped and
dentate, and in CHM, it is enlarged, irregular, and karyorrhectic.
Within the initial HM dataset, these characteristics were
observed: with “dark” regions within the trophoblast being more
pronounced in normal placentas than in PHM and with great
variation among the CHM villi samples (Fig. 6). Numerical
features based on image analysis were identified, which repre-
sented these morphological features and which were then used
in the MNN in order to classify the image data.”

These two additional features are added to the previous 15
features and used to train the MNN. In this experiment, the

Table 2 A confusion matrix.67

Actual

Positive Negative

Predicted Positive TP FP

Negative FN TN

Table 3 Comparative performance of NN with different numbers of
hidden nodes with 15 features.

Number
of hidden
nodes

Average accuracy Standard deviation

Training
set

Validation
set

Training
set

Validation
set

1 92.7 90.1 0.3 0.7

2 92.1 89.4 1.6 1.7

3 92.7 90.3 0.1 1.3

4 92.9 90.0 0.6 1.2

5 92.9 90.2 0.5 1.2

6 93.0 90.3 0.7 0.5

7 93.5 90.2 0.7 1.1

8 93.9 90.1 0.4 1.4

9 93.9 89.3 0.3 1.0

10 94.5 90.8 0.4 1.0

11 94.3 90.0 0.3 0.8

12 94.4 90.1 0.3 0.4

13 94.6 90.8 0.3 0.4

14 94.6 91.0 0.2 1.3

15 94.6 89.6 0.6 1.6

Table 4 Average accuracy of MNN based on 15 features.

Sampling set

Average accuracy of validation set

NN1 = 6 NN2 = 3 NN3 = 5
Overall
accuracy

1 93.3 88.5 92.2 80.4

2 93.2 89.1 91.4 81.4

3 93.2 89.4 90.6 80.4

4 93.5 89.0 90.9 81.3

5 93.6 88.8 91.4 80.2

6 92.8 89.2 91.2 81.1

7 92.4 88.9 91.2 80.5

8 93.3 88.1 92.1 83.2

9 93.3 89.2 90.8 82.4

10 92.6 89.7 92.1 81.4

Average 93.1 89.0 91.4 81.2

Standard deviation 0.4 0.5 0.6 1.0

Table 5 Precision and recall based on 15 features.

MNN

Precision Recall
Average
accuracyNormal PHM CHM Normal PHM CHM

Experiment 1 82.7 81.3 80.8 83.0 87.1 64.3 81.2
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number of input nodes is configured to 17 to represent the new
features and the number of hidden nodes ranges from 1 to 17
nodes (Table 6). The results of the MNNs show that the best
number of hidden nodes for NN1, NN2, and NN3 hidden nodes
is 5 with 96.7% average accuracy, 8 with 92.8% average accu-
racy, and 14 with 94.9% average accuracy, respectively. The
repeated 10-fold cross-validation is reapplied and shows that
the average accuracy is 86.1% (Table 7).

Furthermore, the precision of the second experiment has
increased from 82.7% to 89.5% for the normal villi class, from

81.3% to 84.7% for PHM villi class, and from 80.8% to 86% for
CHM villi class. Similarly, the recall has improved from 83.0%
to 87.7% for the normal villi class, from 87.1% to 90.3% for the
PHM villi class, and from 64.3% to 73.5% for the CHM villi
class (Table 5).

4 Discussion and Concluding Remarks
In terms of accuracy, the performance of the MNN in the task
compares favorably with the accuracy reportedly achieved by
diagnosticians.3 Figures do not appear to be available for
the precision and recall of clinicians in order to make a more
detailed comparison. This remains as further work.

The role of the system as a whole is under consideration, so
as to determine whether it represents a complete, self-contained
diagnostic tool, or as a means of obtaining objective evidence to
assist a pathologist in making a diagnosis (i.e., decision sup-
port). In either case, the risks of misdiagnosis need to be factored
into the system, based on the confusion matrix statistics of false
positives/negatives.

Fig. 6 Dark regions inside the trophoblast.

Table 6 Comparative performance of NN with different numbers of
hidden nodes with 17 features.

Number
of hidden
nodes

Average accuracy Standard deviation

Training
set

Validation
set

Training
set

Validation
set

1 70.4 69.5 1.6 1.8

2 85.4 82.9 2.6 2.7

3 87.1 84.3 1.3 1.2

4 87.8 84.3 0.3 0.6

5 88.1 85.1 0.4 0.6

6 88.3 84.4 0.3 0.6

7 88.6 84.2 0.2 0.6

8 88.7 84.9 0.4 0.9

9 88.9 85.2 0.6 0.5

10 89.3 85.1 0.6 0.6

11 89.9 84.7 0.6 0.7

12 89.8 85.3 0.4 0.8

13 89.6 84.7 0.4 0.7

14 90.2 85.2 0.5 0.6

15 90.2 85.0 0.5 0.9

16 90.4 85.6 0.4 0.7

17 90.7 85.6 0.3 0.7

Table 7 Average accuracy of MNN based on 17 features.

Sampling set

Average accuracy of validation set

NN1 = 5 NN2 = 8 NN3 = 14
Overall
accuracy

1 96.9 92.4 94.9 85.0

2 96.5 92.7 95.2 86.7

3 96.5 93.0 94.7 85.5

4 96.6 92.7 94.1 86.8

5 96.9 93.2 94.9 85.9

6 97.1 93.5 94.9 86.1

7 96.7 92.8 94.6 86.4

8 96.0 92.8 95.4 85.9

9 96.6 92.6 95.0 85.7

10 96.8 92.5 95.4 87.0

Average 96.7 92.8 94.9 86.1

Standard deviation 0.3 0.3 0.4 0.6
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The experimental studies have identified 17 critical features,
which can be used to distinguish between PHM and CHM.
As the difficulties faced by pathologists in achieving correct
classification on the basis of morphology vary significantly, our
MNN configuration is able to achieve over 80% in terms of pre-
cision and recall for both PHM and CHM. The study has also
helped elicit tacit critical features employed by expert patholo-
gists. While the experts suggest that the most important features
are the size and shape of villi, our experimental studies have
shown that texture features are more important. One major
difficulty is the availability of well-characterized samples to
improve the training of the MNN, which is currently limited
to a total of 939 villi, and a larger dataset is expected to improve
understanding of the diagnostic problem as well as the issues of
training and classification.

Further work will require the acquisition of more cell images,
better to characterize the statistical behavior of the data and to
explore different architectures of the MNN for better perfor-
mance. For example, it is proposed to enhance the developed
heuristic MNN configuration by integrating fuzzy criteria into
the hidden layers to address the issue of the fuzziness of villi
characteristics. The current research is based on normal placen-
tal, PHM and CHM villi; other types of abnormal villi, such as
persistent gestational trophoblastic and choriocarcinoma, are to
be investigated to support pathologists in their complex and
challenging classification of HM.
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