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Abstract

The Barkas effect in the electronic stopping power for dressed projectiles moving in a free electron

gas is studied for a wide range of velocities v. The interaction of the projectile with the target is

described using screened interaction potentials, which take into account the self screening due to

the projectile bound electrons and the external screening produced by the target electron gas. The

projectile trajectories are calculated using a classical simulation method, and the Barkas factor is

obtained from the scattering of the target electrons in the potential of the projectile and that of

its antiparticle, following the transport cross section model. A large set of numerical simulations

were made for different projectiles, degrees of ionization and velocities. We find that the Barkas

factor increases at high energies with the number of projectile bound electrons, whereas its velocity

dependence changes from the v−3 behavior for bare projectiles to a v−2 behavior for neutral ones.

Interesting effects of curve crossings in the Barkas factor at different degrees of ionization as a

function of the projectile velocity are observed. A simple scaling law for neutral and fully ionized

projectiles is also derived.
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I. INTRODUCTION

During the last decades many theoretical studies have been published to explain the de-

viation of the electronic stopping power from the quadratic dependence on projectile charge

Z1 predicted by the Bethe theory [1] in the context of the plane wave Born approximation

for bare ions. This deviation, called Barkas effect, was first experimentally observed in 1956

by Barkas and co-workers, who found a difference in the penetration ranges of positive and

negative pions in matter [2]. After Barkas measurements, several other experimental studies

have confirmed these deviations. Andersen et al. [3] explained differences between the stop-

ping cross-sections measured for MeV alpha particles, protons and deuterons in Al, Cu, Ag

and Au targets, considering a Z3
1 contribution to the energy loss. More than a decade later,

experiments by the Aarhus-CERN collaboration [4, 5] revealed very large differences between

the stopping of protons and anti-protons in a silicon target. Detailed comparisons between

theoretical predictions and experimental results have been reported by Bichsel [6, 7], who

provided a set of quantitative analyses taking into account the influence of other relevant

contributions to the stopping power, such as inner-shell and Bloch corrections, which may

mask or distort the analysis of the pure Barkas effect. Further experiments by the group of

Porto Alegre [8, 9] have provided valuable data on the Barkas effect for heavier ions (He,

Li, Be and B) in channeling conditions.

From the theoretical point of view, one of the first descriptions of the Barkas effect was

made by Ashley, Ritchie and Brandt [10], who extended to second-order terms the analysis

of the electronic stopping power in a classical treatment similar to the Bohr model [11].

They argued that only distant collisions were relevant for contributions to higher order

in Z1, because in close collisions the electrons behave as if they were essentially free and

their contribution to the Z3
1 effect becomes small since the Rutherford cross section for free

electrons is exactly proportional to Z2
1 .

Later on, Lindhard [12] showed that the effect of close collisions was about as important

as the part corresponding to distant collisions. He considered a particle moving in a free

electron gas and showed that an additional Z3
1 term appears as a consequence of the screening

of the electron gas around the projectile, which affects the dynamics of the scattering process.

After Lindhard’s estimation [12], the contribution of close collisions to the Barkas effect

was calculated by different approaches: using second-order quantum scattering theory [13],
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by a non-linear response theory for quantum oscillators [14], using binary theory with a

screening potential [15], by many-body theory [16], and by a classical scattering treatment

for heavy ions interacting with a free electron gas [17].

In a more general picture, the analysis extended to Z3
1 order has some limitations since

the Bloch expression for the stopping power [12] produces an additional Z4
1 term that in most

cases becomes comparable in magnitude to the Z3
1 term. It is also well known that, for heavy

projectiles, the analysis based only on the Z3
1 Barkas term is not enough to calculate all the

non-linear effects in the stopping power, and a more complete expansion in powers of Z1 is

needed for this purpose. Other methods, such as the quantum scattering calculations based

on the extended Friedel sum rule [18–20], the classical dynamics treatment [17], the binary

theory model [15], the continuum-distorted-wave method [21–23], and the semiclassical WKB

approximation [24] have also been employed to evaluate all the non-linear contributions to

the stopping for heavy projectiles.

Most of these analyses were made assuming bare projectiles. As it is well known, the

degree of ionization of a projectile moving in a target depends on its velocity. So at low and

intermediate velocities the effect of the projectile bound electrons in the stopping power must

be considered. In a phenomenological description, the stopping power may be assumed to be

proportional to the square of an effective charge (in fact, the effective charge is empirically

defined in this way). However the treatment based on the effective charge may be quite mis-

leading [25]. A more systematic analysis of the effective-charge problem has been performed

by Brandt and Kitagawa (BK) [26] using a dielectric response approximation. Their formu-

lation uses a variational method considering a statistical model for the projectile in which

the charge density is represented by a simple analytical expression. Other approximations

for the interaction potential of moving ions have been used in various computer codes, such

as the CASP, HISTOP and PASS. A recent survey and references on these codes can be

found in Ref.[27]. In the present study we describe the electronic structure of the projectile

by means of two different approaches: (i) for heavy ions we employ the BK model, because

it allows the analytical treatment, in a statistical manner, of the electronic charge density

for ions with many bound electrons, and (ii) for light ions, with few bound electrons, we use

the model developed by Kaneko [28], which provides useful analytical expressions for the

projectile electronic density taking into account the electronic shell structure by means of

modified hydrogenic orbitals.
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The purpose of this paper is to perform a detailed analysis of the Barkas effect in the

stopping power for ions with different ionization degrees, at intermediate and high velocities,

traversing a free electron gas corresponding to a metallic Al target. The study is based on

a classical dynamics treatment and the transport cross section approach [17]. The present

energy loss model has also some features in common with binary theory from Ref.[15]. The

main difference is that our model is based on the hypothesis of collisions with a free electron

gas, while the binary theory of Ref.[15] calculates collisions with bound electrons assuming

a uniformly moving ion interacting with classical harmonic oscillators.

The interaction between the ionized projectiles and the target electrons is studied by

numerical simulations of the electron trajectories, where the projectile is described using

two different models [26, 28] and the target is modeled by a free electron gas. The approach

is fully non-perturbative, so that a whole development in powers of Z1 is implicitly included.

Since the purpose of this work is to analyse the effects of the projectile’s ionization degree

on the Barkas effect, we will not consider hydrogen projectiles in our study. Low velocities

are also excluded from our work, because our methodology is only applicable to velocities

larger than the Fermi velocity of the target.

The paper is organized as follows. In Sect. II the theoretical approach of the transport

cross section is described and the simulation procedure is explained. In Sect. III our calcu-

lations of the Barkas factor are presented for projectiles with different degree of ionization

and velocities moving in an electron gas, represented by an aluminum target; a comparison

with previous bare-ion descriptions is made. Finally, in Sect. IV the main conclusions of

this work are summarized.

II. TRANSPORT CROSS SECTION AND SIMULATION METHOD

We consider an ion with velocity v and nuclear charge Z1e, carrying N bound electrons,

moving through a free electron gas with a plasmon frequency ωp. To describe the charge

density of the ions two different approaches are used: (i) the statistical Brandt-Kitagawa

model [26] for heavy ions, and (ii) the individual few-electron model from Kaneko [28] for

light ions.

The charge density of the projectile ρtot(r, t), screened by the medium, is given by
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ρtot(r, t) = ρq(r − vt) + ρe(r − vt), (1)

where ρq represents the charge density of the projectile with charge q = (Z1−N)e screened

by the electron gas whereas the second term ρe accounts for the N bound electrons of the

projectile.

According to the BK model, ρe can be expressed as:

ρe(r) = − Ne

4πΛ3

Λ

r
exp (−r/Λ) (2)

where Λ is the screening length of the bound electrons, given by [26]

Λ =
0.48(N/Z1)

2/3a0

Z
1/3
1

[
1− 1

7
(N/Z1)

] , (3)

where a0 is the Bohr atomic radius.

Considering that the ion charge q = (Z1 − N)e is screened by the electron gas, the

following expression for ρq(r) can be proposed:

ρq(r) = −(Z1 −N)eα2

4πr
exp(−αr). (4)

Then, the differential equation for the interaction potential V (r), given by

∇2V (r) = 4πeρtot(r), (5)

is solved, obtaining a sum of two Yukawa potentials

V (r) = −(Z1 −N)e2

r
exp(−αr)− Ne2

r
exp(−γr). (6)

The first term corresponds to the potential of the ion charge q = (Z1−N)e, screened by the

target electrons, with a screening length λ = 1/α, where α = πωp/2v [12], which depends on

the projectile velocity v, and where ωp is the plasmon frequency of the target. The second

term in equation (6) takes into account the internal screening due to the bound electrons of

the projectile, where the screening length Λ = 1/γ is given by Eq.(3). Notice that in this

description both terms of the interaction potential are spherically symmetric. For a bare

projectile the expression (6) reduces to the conventional Yukawa potential with a screening
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length λ = 2v/πωp; on the other hand, if the projectile is a neutral atom the potential also

reduces to a Yukawa term but with a different (smaller) screening length, Λ.

For light projectiles such as He or Li, where the use of the BK model is not appropriate

due to its statistical assumptions, we have used individual ionic potentials for each projectile

charge state, which were built from hydrogenic-like wavefunctions following the approach

developed by Kaneko [28].

The trajectories of the electrons relative to the moving ion were calculated by means of

a simulation method, where for practical purposes, we invert the problem and consider the

scattering of electrons on a fixed screened ion, placing its center of mass at the position of the

nucleus. Since we assume that the electrons were initially at rest in the target system (note

that the present study is restricted to projectile velocities larger than the Fermi velocity

of the metal target) and the projectile was moving with a velocity v, in the new frame of

reference the electrons will start moving with an initial velocity −v.

Then, Newton’s equation is numerically integrated following the algorithm of Euler-

Cauchy [29] with a force given by the negative value of the gradient of the potential V (r).

In this manner, the trajectories of the incident electrons are calculated at different impact

parameters b. Taking into account that the electron velocity changes appreciably during

the collision and its trajectory becomes very sensitive to small changes in its position and

velocity when it passes close to the (now static) projectile, a variable time step is used in the

simulation which depends on the electron instantaneous velocity and on the distance to the

projectile nucleus. The simulation of the electron trajectories allows to obtain the scattering

angles θ(b, v), through the expression θ(b, v) = arccos(ux/uf ), where uf is the electron final

velocity in the scattering plane and ux is its component along the initial direction of v.

Next, following the transport cross section method (TCS) of Ref.[17], we calculate the

transport cross section,

σtr =
∫

[1− cos θ(b, v)] 2πb db. (7)

Despite the fact that the contribution to the above integral from large values of the impact

parameter b becomes almost negligible, to solve it numerically with accuracy, we extend the

range of our simulations to values of b much larger than 10 a.u. for He and Li projectiles,

and to 30 a.u. for Ne and Ar by means of an exponential extrapolation.

In order to determine the Barkas effect, which measures the asymmetry in the stopping
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of particles and their corresponding antiparticles, the scattering problem for the image ion

potential is solved with the same numerical procedure, where the new potential is obtained

by simply changing the sign of the total potential of the ion. Finally, using the relation

between the mean energy loss per unit path length S = −dE/dx and the transport cross

section for swift ions, S = nmev
2σtr [30] (where n is the electron density of the target and

me is the electron mass), we obtain the Barkas factor from the simulations of the scattering

of target electrons in the potential of the projectile (Z1) and its image (−Z1), namely

RBarkas =
σtr(Z1)− σtr(−Z1)

σtr(Z1) + σtr(−Z1)
, (8)

where σtr is calculated according to Eq.(7). Note that the Barkas factor depends also on the

degree of ionization q = (Z1 −N)e of the projectile, which affects the interaction potential,

Eq.(6), and therefore the scattering angle θ(b, v). Therefore, in this work the Barkas effect

is quantified by the Barkas factor.

III. RESULTS

Using the previously described method, we have performed a large set of simulations for

many impact parameters b, assuming different projectiles velocities v, atomic numbers Z1,

and number of bound electrons N , in a free electron gas target with the plasma frequency

of aluminum (ωp=0.551 a.u. = 14.99 eV), which is representative of a free electron gas.

First of all we check the values of the projectile interaction potentials obtained from

individual ionic potentials from Kaneko’s model [28] or from the Brandt-Kitagawa model

[26] for light projectiles such as He and Li. We show in Fig. 1 the interaction potential

V (r) versus the distance r for (a) He0,1+ and (b) Li0,1+,2+, impinging with velocity v = 2

a.u. on an Al target. Even though the statistical Brandt-Kitagawa model is suitable only

for heavy projectiles, we find a remarkable similarity between the BK values (lines) and the

individual ionic potentials (symbols) also in the case of light ions such as He1+, Li1+ and

Li2+. However for neutral projectiles (He0 and Li0) the discrepancies between both potential

models are larger and increase with the distance. This may be attributed to a failure of

the statistical BK model for these cases. The dependence of the interaction potential with

the velocity of the projectile is also analyzed in Fig. 1, where panel (c) corresponds to He+

and (d) to Li2+ with velocities v = 2 a.u. and 6 a.u. We note in these latter panels that
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the interaction potential increases with the projectile velocity (which corresponds actually

to weaker screening conditions) due to the larger values of the dynamical screening length

λ = 2v/πωp.

In Fig. 2 we show the integrand of the transport cross section, Eq.(7), f(b) = 2πb[1 −
cos θ(b, v)] as a function of the impact parameter b for He projectiles with velocity v = 2 a.u.

moving in an Al free electron gas. We compare, in panels (a) to (c), the function f(b) for

different degrees of ionization of the He projectiles as well as its corresponding anti-particles

He. These calculations show that a large contribution to the transport cross section comes

from small impact parameters, which explain why the charge state effects are important

in σtr. Also, it is interesting to notice that when the projectile loses its bound electrons

(panel c) the range of impact parameters that contribute to σtr increases, as a consequence

of the larger spread in the screening produced by the free electrons (as compared with that

of bound electrons). It is also clear from this comparison that the case of neutral projectiles

(panel a) shows a more compact spatial distribution and a larger difference in the areas

under the solid and the dashed curves (i.e., a larger Barkas effect).

The calculated Barkas factor RBarkas, obtained from Eq.(8), is shown in Fig. 3 as a

function of the projectile velocity for several projectiles (He, Li, Ne and Ar) with different

degrees of ionization moving in an aluminum target. The main feature is that the value of

Barkas factor increases with the number of bound electrons at intermediate or high velocities,

depending on the ion. The physical reason of this effect is that the screening of bound

electrons occurs at shorter distances and hence the deviations from the Rutherford scattering

are stronger. This behavior is in agreement with results obtained using a semiclassical

approach [24].

Additionally, we note that for a given projectile, there is a crossing at low or intermediate

velocities between the Barkas factor curves corresponding to different degrees of ionization.

This feature is clear in Fig. 3 for heavy projectiles such as Ne and Ar, and it also occurs for

light projectiles at lower energies (not shown in the figure). Note that we restrict our analysis

here to intermediate and high energies since the present approach fails at low energies.

The reason of this behavior is that the screening length λ = 2v/πωp in the first term of

the interaction potential (see Eq.(6)) decreases at low velocities, producing a competition

between the two Yukawa terms of the interaction potential.

Hence, whereas at high velocities the first term of the potential dominates the Barkas
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effect (since γ is constant while λ increases), at lower velocities λ decreases significantly and

the second Yukawa term becomes also important. This fact explains why the Barkas factor

curves show different behavior depending on the degree of ionization of the projectile and

a crossing between different curves may eventually appear. We have additionally confirmed

the occurrence of such curve crossings using analytical expressions for the Barkas factor

derived from simpler potentials such as the Mensing potential [17] and considering different

screening lengths.

Also, we note that the Barkas factor increases with the atomic number of the projectile as

shown in Fig.3 (see the different scales in the panels). For light projectiles (He and Li), we

have also included in Fig. 3 the Barkas factor obtained from individual ionic potentials from

Kaneko’s model (dashed lines) and from the Brandt-Kitagawa model (solid lines). Another

remarkable difference observed in Fig. 3 is the change in the slope of the various curves at

high energies. In particular, we find a dependence of the Barkas factor of the type ∝ v−2 for

neutral projectiles, quite different from the ∝ v−3 behavior characteristic of bare ions [12].

For bare ions, the basic parameter in the Lindhard formulation [12] is the scaling pa-

rameter ς = πZ1e
2ωp/mev

3 which is obtained as the ratio between the collision radius

(Z1e
2/mev

2) and the screening length (λ = 1/α). In the case of neutral projectiles (N = Z1),

the interaction potential given by Eq.(6) also reduces to a standard Yukawa potential, hence

the scaling parameter should be replaced (following the arguments proposed by Lindhard

[12]) by ς ′ = 2Nγ/mev
2, as explained in the Appendix. Notice that both scaling parameters

are dimensionless but they have different characteristics; for bare projectiles, the dependence

of ς on Z1 is linear, while for neutral projectiles the scaling parameter ς ′ is not linear on the

number of bound electrons N , since the screening parameter γ = 1/Λ, given by Eq.(3), also

depends on N . The dependence of the scaling parameter with the projectile velocity is also

different for bare or neutral projectiles: for bare ions ς ∝ v−3 whereas for neutrals ς ′ ∝ v−2.

To illustrate the scaling property, the Barkas factor RBarkas is shown in Fig. 4 as a function

of the scaling parameter Z1/βv2 for bare projectiles He2+, Li3+, Ne10+, and for neutrals He0,

Li0, Ne0, where β = 1/2α for bare projectiles and β = 1/2γ for neutral ones. We obtain

a close coincidence of the simulated Barkas factor for all the projectiles, in agreement with

the scaling prediction. However, at intermediate degrees of ionization (0 < N < Z1) no such

simple scaling law was found. Notice that for all projectiles there is a saturation effect in

the Barkas factor for Z1/βv2 ∼ 5, so that an additional increase in the value of Z1 produces
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a decrease of the Barkas effect. This effect, not predicted by the usual Z3
1 term analysis,

has also been observed in previous calculations and measurements [8, 9, 20] and is due to

the contribution of higher order terms of the expansion in powers of Z1. Since the present

method includes all order terms in the interaction strength, the saturation effect is clearly

observed. Finally, we note that in particular this analysis also explains the change from the

∝ v−3 to the ∝ v−2 behavior at high energies (for bare and neutral projectiles) discussed in

the previous paragraph.

In a more realistic analysis, the effective number of bound electrons N depends on the

nature and velocity of the projectile and on the target. Experimentally the mean ion charge

q in all materials increases with the projectile velocity, and at high velocities tends to

the atomic number Z1. Therefore, we define the velocity dependent average Barkas factor

〈RBarkas〉 as

〈RBarkas〉(v) =
Z1∑

q=0

φq(v)RBarkas(q, v), (9)

where RBarkas(q, v) represents the value of the Barkas factor (see Eq.(8)) for a projectile

with a degree of ionization q and velocity v, and φq(v) are the charge-state fractions of

the projectile, which depend on the target, the projectile and its velocity. Here we used

the equilibrium charge-state fractions obtained by a parameterization of experimental data

[31]. The results corresponding to the average Barkas factor is presented in Fig. 5 by solid

lines for He, Li, Ne and Ar projectiles moving in an aluminum target, as a function of the

projectile energy. For comparison purposes, results corresponding to bare projectiles are

also been depicted by dotted lines. We observe that 〈RBarkas〉 diminishes with the projectile

energy for intermediate and high energies. This behavior has two reasons: the first is the

”normal behavior” predicted by the Lindhard analysis for bare projectiles, which predicts

the approach to the Rutherford (Z2
1) limit at high energies; the second reason is that as the

energy increases the effective number of bound electrons decreases, and, as it was shown

before, the weakening of the screening by bound electrons also produces a decrease of the

Barkas effect. At high energies, the results for 〈RBarkas〉 approach those for bare ions.

Finally, we note that for heavier projectiles such as Ne and Ar, the average Barkas factor

〈RBarkas〉 shows a crossing with the curves corresponding to bare projectiles at intermediate

energies. These crossings are a consequence of the behavior observed in Fig. 3 for these
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projectiles, since the values of 〈RBarkas〉 were calculated using the corresponding percentages

of the results for ionized projectiles shown in that figure. Hence, the reason for these

crossings is also a consequence of the competition between the two terms with different

screening lengths in the potential of Eq.(6). This shows that the normal behavior observed

at high energies may be reversed for heavy projectiles at lower energies.

IV. CONCLUSIONS

We have performed a large series of classical simulations of electron scattering by ions

moving through a free electron gas considering various cases of light and heavy ions with

different charge states and for a wide range of velocities. From these numerical simulations

we have obtained a set of new results that provide useful information on the form of the

Barkas factor at intermediate and high velocities.

As a general conclusion, the analysis of our results shows that at large projectile velocities,

the Barkas factor increases with the number of bound electrons (for the same element), in

agreement with previous results obtained with a semiclassical treatment [24]. We show that

this effect is due to the more effective screening produced by bound electrons.

The velocity dependence of the Barkas factor at high velocities shows a significant change,

decreasing as v−3 in the case of bare ions and as v−2 in the case of neutral projectiles.

In addition, we find a change of behavior of the Barkas factor for heavy ions at inter-

mediate velocities, where a crossing of curves corresponding to different ionization degrees

is obtained. This effect is due to changes in the screening conditions represented by two

different screening length, one of short range which accounts for the projectile core, and an-

other of long range corresponding to the collective screening by the target electrons, which

depends on the projectile velocity.

Finally, the scaling analysis performed here (see Appendix) reveals a unified behavior

of bare and neutral projectiles when the Barkas factors are represented in terms of the

appropriate scaling parameters.

Because of the simplifying free-electron-gas assumption we did not include here com-

parisons with experimental results, which may be the subject of a much more extended

study.
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V. APPENDIX: LINDHARD’S SCALING ARGUMENT

The interaction potential for bare projectiles with atomic number Z1 and velocity v,

moving through a free electron gas with plasma frequency ωp, can be approximated by the

well known Yukawa potential for a screened point charge, that is

Vbare(r) = −Z1e
2

r
exp(−αr), (10)

where α = πωp/2v. Applying Lindhard’s argument [12], an expansion for r → 0 is made,

giving

Vbare(r)
∼= −Z1e

2

r
(1− αr) = −Z1e

2

r
+ V1, (11)

where V1 = Z1e
2α. This correspond to the following shift in the electron kinetic energy

1

2
mev

∗2 =
1

2
mev

2 − V1 =
1

2
mev

2(1− 2V1

mev2
) =

1

2
mev

2(1− ς), (12)

where ς = 2V1/mev
2 = πZ1e

2ωp/mev
3 is Lindhard’s scaling factor.

On the other hand, for neutral projectiles the interaction potential V (r), given by eq.(6),

reduces to another Yukawa potential with the following form

Vneutral(r) = −Ne2

r
exp(−γr), (13)

where

γ =
N1/3

0.48

6

7

1

a0

, (14)

where a0 = 0.529 Å is the Bohr radius. The shift in the electron kinetic energy is now given

by

1

2
mev

∗2 =
1

2
mev

2 − V2 =
1

2
mev

2(1− ς ′), (15)

where V2 = Ne2γ and with ς ′ = 2V2/mev
2 = 2Nγ/mev

2 the new scaling factor for neutral

projectiles.
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FIG. 1: (Color online) Interaction potential V (r) versus the distance r for (a) He0 and He+, (b)

Li0, Li+ and Li2+ moving with v = 2 a.u. in an electron gas of aluminum. The symbols show V (r)

for individual ionic potentials for light ions from Kaneko’s model [28] whereas the lines correspond

to the Brandt-Kitagawa potential [26]. V (r) is shown in panel (c) for He+ and (d) Li2+ projectiles

moving in aluminum with velocities v = 2 a.u. and 6 a.u.
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FIG. 2: (Color online) Function f(b) = 2πb[1− cos θ(b, v)] of Eq.(7) versus the impact parameter

b for He projectiles with velocity v = 2 a.u. moving in an Al free electron gas for the three charge

states of He. The curves of f(b) for particles are shown by solid lines and those of the corresponding

anti-particles by dashed lines.
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FIG. 3: (Color online) Velocity dependence of the Barkas factor RBarkas for (a) He, (b) Li, (c) Ne and

(d) Ar projectiles impinging on an electron gas of aluminum at different degrees of ionization. Solid

lines represent the results for the Brandt-Kitagawa potential [26], whereas dashed lines correspond

to individual ionic potentials for light ions from Kaneko’s model [28].
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FIG. 4: (Color online) Calculations of the Barkas factor RBarkas versus the screening parameter

Z1/βv2 for He, Li, Ne bare projectiles (lines) and for neutral projectiles (symbols) impinging on

an aluminum target. See the text for more details.
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dotted lines represent the Barkas factor for bare projectiles.
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