
Participatory Design to Lower the Threshold for
Authoring Intelligent Support

First Author, Second Author, Third Author, and Fourth Author

No Institute Given

Abstract. One of the fundamental aims of authoring tools is to provide
teachers who have low level of technical expertise with opportunities to
adapt and appropriate content and pedagogical strategies of intelligent
systems. However, there are still many challenges that affect teachers′ ef-
fective engagement with such authoring systems and there is a need for
systems that have lower thresholds in terms of the users′ technical exper-
tise. Here, we demonstrate that reducing the entry barrier for authoring
tools can potentially be achieved through co-design activities of such sys-
tems with non-programmers and carefully observing novices. Following
an iterative participatory co-design cycle with teachers who have little or
no programming expertise, we reflect on their proposed enhancements.
Our investigations focus on an authoring tool that has been designed pri-
marily for Exploratory Learning Objects but we conclude the paper by
providing transferable lessons for other authoring tools, particularly the
strong preference for visual interfaces and high-level pedagogical predi-
cates for authoring analysis and feedback rules.

Keywords: Intelligent systems · authoring tools · participatory design

1 Introduction

The aspirational goal behind the development of authoring tools for many years
has been to enable users with low technical expertise to create and modify con-
tent, including ideally their adaptive features according to their own pedagogical
strategies [3, 2, 5]. However, the usability of such tools and particularly the time
required to invest in learning them, are factors that affect teachers′ adoption and
engagement in the design process of authoring [4]. It is important to understand
that teachers have different expertise, needs and motivations and authoring tools
should aim to meet those. In this paper, we present our approach to better ap-
propriate authoring tools for teachers through participatory co-design activities.

Our case study is an AuthoringTool1 that has been specifically designed
for authoring automated support for Exploratory Learning Objects (ELOs). In-
spired by the example-tracing approach [1], AuthoringTool encourages the au-
thor to develop feedback by executing the activity like a student. This provides
the author with data in a log window that represent the various states of the

1 The name AuthoringTool is used throughout the paper to adhere to the blind review



2 F. Author et al.

student throughout the learning activity. Based on this evidence, the author can
then set up rules for the generation of formative and summative feedback (see
Fig ?? for more details). See also our previous work (ref blinded).

This paper reflects on a participatory design study aiming to inform fur-
ther development of the AuthoringTool towards lowering the entry threshold for
teachers who have little or no programming expertise.

Fig. 1. Part of the interface of the AuthoringTool. After configuring the ’logging’ in
the corresponding tab, authors can start doing the activity like a student. That will
immediately start generating data in the log and can used to author rules as in this
example. The owl is the chosen feedback agent and here it is being tested.

2 Participatory design of authoring UI

For the purposes of this study participation of teachers in the design process was
of paramount importance since the main aim is to lower the entry barrier. This
is a clear case for participatory design, a well-accepted method for attempting to
solve a complicated design problem with the active involvement of people from
different backgrounds and different expertise (Bdker and Kyng, 2018).

Based on a non-random sampling strategy and a design-thinking approach,
we carefully selected 6 newly qualified teachers who were studying Educational
Technology masters and had a range of expertise in using technology in pre-
school and primary education settings, but no programming background (non-
programmers group). We also selected 3 more experienced computing teachers
with enough programming background to teach computing but not necessarily
professional programmers to develop applications. They are all skilled in basic
JavaScript (novice group). The six non-programmers were divided into two focus
groups that were facilitated by one of the authors (EP) going through ideation,



Lowering the threshold for Intelligent Support Authoring 3

sketching brainstorming, and thinking aloud around the interaction with a pro-
totype. In parallel, the novice AuthoringTool users were supported to develop 15
different learning scenarios in the AuthoringTool. We recorded the support that
one of the authors (SK) had to provide. The objective was to see how authoring
is used and identify difficulties commonalities and patterns in their solutions
that can provide the basis of a higher-level more expressive languages. These
solutions were then analysed and we managed to reduce the code into a very
small set of functions that seem to be a common requirement in all the activities.

3 Key findings and discussion

Due to space limitations, we focus on two themes that emerged from the brain-
storming phase.

The influence of block coding One of the participants of the first group
(familiar with block coding user interfaces) spontaneously proposed to introduce
blocks of code with pre-defined “variables already written on, so we can drag and
drop the blocks and connect them”. Building on this idea, another participant
drew a sketch with custom select lists “from where you can click on to see
all the variables and choose one”. Ensuing a conversation and brainstorming,
the group sketched their final idea that involved use four custom select lists
as shown in Figure 3. They named the first list ‘condition’, and from this list,
they could pick the words ‘if’, ‘then’ and ‘others. The second one was named
‘situation’, and when clicked all the previously set variables would appear on
the list so they are able to pick the one that they need. The participants named
the third list ‘action’, and with this list, they set what the variable should do,
e.g. ‘display’, ‘do’, ‘play sound’. The rest of the discussion was pragmatic and
involved including a list that the participants named ’type’ to choose from the
list of resources that should be displayed and other aspects such as a delete
button. The key contribution here was the idea that the interaction would result
with the constructed rule clearly visibly below that would be added in the list
of rules.

The second focus group, led by a one member of the group who volunteered
to sketch their thoughts, steered towards an idea of ‘board’ with a standard
structure where the words ‘if’, ‘then’, ‘else’, ‘or’ were written i.e. a custom select
list for the various conditional statements (called ‘conditions’). This idea became
the centrepiece around which two other boards were proposed (’actions’ and
’reactions’) as well as a ’construction’ area for dragging and dropping the various
choices to make the feedback rules.

3.1 Situation and actions as predicates

Analysing the brainstorming of the non-programmer groups, a dominant theme
was their concern on how to trigger feedback — something that they came



4 F. Author et al.

Fig. 2. Low fidelity paper prototype proposed by the non-programmers group

up with unprompted. Without any prior knowledge in authoring rules or func-
tional programming, they referred to ’situations’ or ‘actions’ in a similar way to
predicates in programming. Generalising even from a simple task they had, the
participants referred to ”all previously set variables to appear on the list so they
are able to pick the one that they need”.

Analysing the support we had to provide to the novice users, the majority also
revolved around the type of actions seen. Some of the high level constructs used
in analysis and feedback involved: 1) Number of actions since a particular trigger
point (e.g. the start of the activity, or a particular event such as enabling the
camera view), 2) The number of actions of a particular type (e.g. the number
of times a button was clicked), 3) A list of actions of a particular type and
references mostly to the first and last of those. Furthermore, other high-level
constructs were the time elapsed from the beginning of the activity, a pre-defined
expected duration of the activity and a way to refer to the potential feedback
messages and their types directly in a simplified way.

4 Conclusions

In this paper, we described our co-design approach to potentially lower the
threshold for intelligent support authoring. We have incorporated the high-level
constructs that emerged here in the design of the AuthoringTool to enable au-
thoring declarative statements. Although, the results are from a small sample
studied here, we think that the designs proposed here can reduce significant
the amount of initial knowledge required from an author, reduce the complex-
ity, increase readability, testability and maintainability of the code generated,
allow the analysis to be communicated easier between authors in collaborative



Lowering the threshold for Intelligent Support Authoring 5

projects, and allow the focus to be directed to things that matter most like rules
and feedback. The work described here also paves the way for a new user inter-
face that take advantage of the prevalence of block coding among teachers. All
of these potential improvements can eventually lead to wider spread adoption of
authoring tools among teachers who have low technical expertise.

References

1. Aleven, V., McLaren, B.M., Sewall, J., van Velsen, M., Popescu, O., Demi, S.,
Ringenberg, M., Koedinger, K.R.: Example-Tracing Tutors: Intelligent Tutor De-
velopment for Non-programmers. International Journal of Artificial Intelligence in
Education 26(1), 224–269 (Mar 2016). https://doi.org/10.1007/s40593-015-0088-2,
https://doi.org/10.1007/s40593-015-0088-2

2. Da, F., Durdu, L., Gerdan, S.: Evaluation of Educational Au-
thoring Tools for Teachers Stressing of Perceived Usability Fea-
tures. Procedia - Social and Behavioral Sciences 116, 888 – 901
(2014). https://doi.org/https://doi.org/10.1016/j.sbspro.2014.01.316,
http://www.sciencedirect.com/science/article/pii/S1877042814003334

3. Gaffney, C., Wade, V.P., Dagger, D.: Authoring and Delivering Personalised Sim-
ulations an Innovative Approach to Adaptive eLearning for Soft Skills (2010),
http://www.tara.tcd.ie/handle/2262/67212

4. Karoui, A., Marfisi-Schottman, I., George, S.: Mobile Learning Game Authoring
Tools: Assessment, Synthesis and Proposals. In: Bottino, R., Jeuring, J., Veltkamp,
R.C. (eds.) Games and Learning Alliance. pp. 281–291. Springer International Pub-
lishing, Cham (2016)

5. Murray, T.: Coordinating the complexity of tools, tasks, and users: On
theory-based approaches to authoring tool usability. I. J. Artificial Intelligence
in Education 26(1), 37–71 (2016). https://doi.org/10.1007/s40593-015-0076-6,
https://doi.org/10.1007/s40593-015-0076-6


