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A Physical Effort-Based Model for Pedestrian Movement in 1 

Topographic Urban Environment 2 

Abstract This paper presents a topography-sensitive cognitive model for analysis and 3 

prediction of pedestrian movement in urban settings. Topography affects visibility and 4 

therefore the spatial awareness of pedestrians. It also accentuates the role of physical effort 5 

during travel and route selection. The existing models fall short in their reference to these 6 

issues. 7 

A thorough description of the proposed model is followed by a validation - the model was 8 

tested against two existing models in three case studies in Haifa and Jerusalem, Israel. The 9 

proposed model outperformed the others in the steeper parts of the case studies. Future model 10 

development is discussed. 11 

Keywords: topography, physical effort, axial map, pedestrian movement, spatial analysis. 12 

1. Introduction 13 

This paper presents a novel cognitive model for the analysis of pedestrian movement 14 

in an urban setting. The model incorporates both mutual visibility and physical effort 15 

as cognitive bases. Both apply to any pedestrian movement and are greatly affected by 16 

steep topography, where the role of physical effort is especially accentuated. This type 17 

of environment and its influence on cognitive perception impede the effectiveness of 18 

cognitive models that do not consider both factors. The objective of this work is the 19 

development of a topography-sensitive cognitive model that can help planners make 20 

more informed decisions. 21 

The need for such a model arises from a gap between the terms in which the built 22 

environment is described by users and the tools professionals use to create it. While 23 

human experience is extensively discussed, the way places make people feel and the 24 

atmosphere they possess, there are only a few robust qualitative methods that rely on 25 

human cognition to translate this discussion into concrete spatial terms. It can be 26 

argued that experience and intuition can offer a limited solution to this problem, 27 

especially in smaller projects, but this solution is often inadequate. This is especially 28 

true since the design of complex projects is a difficult task that only gets harder the 29 

more the project’s size and complexity increase (Karimi, 2012). 30 
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2. Background 1 

2.1. Cognitive mapping techniques 2 

2.1.1. Motivation and overview 3 

Cognitive mapping techniques and simulations were created to address the 4 

abovementioned issues. They are intended to present information about spatial 5 

arrangements and their usage that cannot be easily derived from conventional spatial 6 

representations, such as plans and sections. This is achieved by representing space 7 

using methods derived from human cognitive perception, or at least, some aspect of 8 

this complex phenomenon. 9 

 Producing mapping methods based on cognition requires understanding some 10 

principals of human spatial perception and navigation. It has been found that the more 11 

junctions (decision points) there are along a path, the longer it is perceived to be 12 

(Sadalla and Staplin, 1980). The number of turns along a path has the same effect on 13 

the perception of its length (Sadalla and Magel, 1980). Similar effects are observed 14 

when referring to maps rather than to the environment itself (Thorndyke, 1981). The 15 

angularity of paths affects spatial orientation, right angles are generally less confusing 16 

than oblique ones and there is a bias towards judging angles to be closer to a right 17 

angle than they really are (Montello, 1991; Sadalla and Montello 1989; Moar and 18 

Bower, 1983). This can cause descriptions of both locations and paths to defy the 19 

Euclidian properties of space (Moar and Bower, 1983). The importance of orientation 20 

(the direction one faces) for performing tasks where one is required to locate elements 21 

in space is found to be inconsistent for relatively short distances but significant for 22 

large-scale geographic knowledge (Montello, 1991; Sholl, 1987). When people learn 23 

new environments, they quickly remember the locations of a few landmarks and paths 24 

between them, and over time their knowledge of the place is expanded with more paths 25 

and junctions, but not additional landmarks (Evans, Marrero and Butler, 1981). These 26 

findings are supported by Montello’s claim that the acquisition of environmental 27 

knowledge is done in a process of quantitative accumulation and refinement of metric 28 

and non-metric, global and local knowledge simultaneously (Montello, 1998). This, 29 

combined with the difficulty of mapping landmarks, might explain why, despite much 30 
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work on landmarks in the field of cognitive mapping, they are generally absent from 1 

the analytical cognitive-based models this paper examines. 2 

Mutual visibility has thus far been the most common cognitive basis for mapping and 3 

analysis techniques. Some techniques designed to describe space like the Isovist 4 

(Benedikt, 1979). Others are concerned with the perception of space. For example, the 5 

work regarding perceived density which produces progressively complex models 6 

(Fisher-Gewirtzman, 2017; Fisher Gewirtzman and Wagner, 2003). Some techniques, 7 

like the Visibility Graph Analysis (VGA) analyse the functioning of spaces (Turner et 8 

al, 2001). There are other works that are concerned with movement in larger systems, 9 

analysing streets and junctions to predict movement (Jiang 2006, 2005; Jiang and 10 

Claramunt 2004, 2002). Moreover, there are yet others that attempt to model 11 

movement in a different manner from those top-down approaches by introducing so-12 

called ‘agents’ that represent discreet entities (like a person or a car) into an 13 

environment and observing their behaviour. Each agent acts according to a limited set 14 

of rules and the collective behaviour of the agents emerges in a bottom-up process, 15 

modelling anticipated movement (Koutsolampros and Varoudis, 2017; Penn and 16 

Turner, 2004; Turner and Penn, 2002; Batty, 2001). 17 

2.1.2. Cognitive mapping of movement in urban systems 18 

This work is concerned with the analysis of street networks and the associated 19 

pedestrian movement. The planning of street networks is a long- term affair as many 20 

systems around the world remain virtually unchanged for centuries. As such, the 21 

design should deal with the most general characteristics of a network, like its structure 22 

and spatial relations. These characteristics imbue street networks with the quality, 23 

flexibility and longevity of a robust urban fabric; a fabric that supports the creation of 24 

opportunity that cities are so cherished for, while leaving more detailed design to be 25 

determined according to changing needs. A group of techniques, collectively known 26 

as Space Syntax, presents a compatible candidate for a mapping and analysis technique 27 

of street networks - the Axial Map (Hiller and Hanson, 1984). In general, an Axial 28 

Map is created from a plan of the environment by dividing the space of the entire 29 

system into a minimal number of discreet spaces with convex shapes in a plan and then 30 

connecting all those spaces with a minimal number of axes, representing lines of sight. 31 

The intersecting axes should cover the entire system. These maps can be displayed in 32 
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a graph where every axis is represented by a node and every intersection is represented 1 

by an edge (Figure 1). 2 

 3 

Figure 1. The stages of axial map construction. 4 

The angular segment model is an attempt to improve on the traditional topological 5 

axial map (Conroy Dalton, 2003; Dalton, 2001; Turner, 2001). This is a model that 6 

takes into account incident angles between axes to determine the weights assigned to 7 

different edges in a graph when calculating centrality measures: the sharper the turn 8 

the higher the weight, with right angles having a weight of 1. The graph representation 9 

of this model is weighed, meaning that the cost of traveling along an edge varies 10 

between edges, which affects the lengths of shortest paths and therefore also centrality 11 

measure calculations. This model is considered by many to provide more accurate 12 

predictions of pedestrian movement than the traditional axial map (Conroy Dalton, 13 

Hölscher and Turner, 2012). 14 

2.1.3. From graphs to quantitative measures 15 

The graph that represents an axial map can be analysed for various centrality measures 16 

that correspond to a wide variety of social phenomena (Hillier, 1996a; Hillier et al, 17 

1993). One such important centrality measure is Integration, or Closeness, as it is 18 
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called in some publications. It is defined as the inverse of the mean shortest distance 1 

from the space in question to all other spaces in the system (Hillier and Hanson, 1984). 2 

Distance is calculated according to the relevant model: topological distance for axial 3 

maps, angular distance for segment maps, etc. It represents how easy it is to navigate 4 

to a space from all other spaces (Hillier, 1996b). Equation 1 describes the way 5 

integration is calculated.  6 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛 𝑎𝑥𝑖𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑥𝑒𝑠 − 1

𝑠𝑢𝑚 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑎𝑥𝑖𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑎𝑥𝑒𝑠
  (1) 7 

The abovementioned calculation describes global integration; global in the sense that 8 

this measure is calculated relative to the entire system in question. It is possible to 9 

calculate centrality measures, including integration, on a more local scale. The 10 

calculation itself is identical, the only difference is that the sum of the shortest paths 11 

incorporates paths only up to a certain distance. This distance is referred to as a radius. 12 

Some specific radii have been demonstrated to be more useful than others when 13 

describing certain things. There have also been suggestions for more complex 14 

methods, such as decay functions, for local indices calculation to describe complex 15 

phenomena (Conroy Dalton and Dalton, 2007). 16 

2.2. The Challenge of Topography 17 

The model proposed in this paper is meant to overcome the challenges presented to 18 

the pedestrian by steep topography. Topography, or a sloped walking surface, has a 19 

substantial effect on human perception and behaviour in an urban context. It can be 20 

summed in two main ways: 21 

1) Topography can potentially block lines of sight and limit the spatial 22 

awareness of pedestrians. 23 

2) The added effort of walking on steep slopes can serve as a consideration for 24 

pedestrians when deciding which path to choose (or whether to walk at all). 25 

An example of limited visibility was demonstrated when Jiang and Claramunt’s model 26 

of mutually visible junctions as nodes in a graph (2002) was applied to a 27 

neighbourhood in Haifa built on hilly topography. The visibility of junctions as 28 
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described by three methods, junctions as nodes, line of sight analysis (Fisher-1 

Gewirtzman, 2012) and voxel-based analysis (Fisher-Gewirtzman, Shashkov and 2 

Doytsher, 2013), was compared. The study showed that when a junction was located 3 

at the edge of a hill, Jiang and Claramunt’s method overestimated the visibility of 4 

junctions because it ignored the blocking effect of topography on visibility, while the 5 

other two methods were more consistent because they were based on 3D visual 6 

information on the environment (Fisher-Gewirtzman and Natapov, 2014). 7 

The effect of physical effort is discussed in chapters 2.2.1 and 2.2.2. 8 

A cognitive mapping model that takes these issues into account is required to better 9 

represent urban environments built on steep topography. 10 

2.2.1. The effects of physical effort 11 

The effects of physical effort, especially the increased effort of walking on inclined 12 

surfaces, plays a major role in human cognitive interpretation of the environment. 13 

Physical effort can be an organizing element in the perception of space (Proffitt et al, 14 

2003) but it is also closely related to visual information (Zadra and Proffitt, 2016). The 15 

perception of geometrical traits, like distance, is affected by the effort needed to 16 

traverse it (Witt, Proffitt and Epstein, 2010). The perception of distance is also scaled 17 

in energetic terms, rather than visual ones (Zadra, Weltman and Proffitt, 2016), 18 

meaning that people perceive things as near or far according to their own ability to 19 

reach them. This, combined with the fact that climbing a slope is harder than walking 20 

on a flat plane might explain why humans consistently estimate distances on slopes to 21 

be greater than they really are (Stefanucci et al, 2005). Although the decision to take a 22 

sloped path is made in advance based on visual cues, the incentives for and against 23 

travelling the path also depend on physical effort. Humans can visually judge the 24 

accessibility of sloped surfaces fairly well and can predict their own ability of 25 

traversing a slope (Kinsella-Shaw, Shaw and Turvey, 1992). Although city streets are 26 

unlikely to be steep enough to prevent human travel, they might still discourage it or 27 

shorten the distance people are willing to walk (Sun et al, 2015). 28 

2.2.2. Existing topography-sensitive models  29 

For all of its successes, the axial map and its derivatives are still 2D representations 30 

derived from 2D information that depict the structure of a 3D environment perceived 31 
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through 3D vision. However, it has representative clarity, flexibility and a robust logic 1 

making it suitable for modification. For these reasons, the axial map was chosen as the 2 

basis for a new model that enables a more accurate mapping of environments built on 3 

slopes. 4 

Asami et al. (2003) successfully addressed the issue of visibility limited by topography 5 

in axial maps by dividing the axial lines at peak points in the topography. Yet, this 6 

model only deals with visibility limitations and does not consider physical effort as a 7 

factor. The weight system used in this model differs from the one used in angular 8 

segment analysis but is still based on mutual visibility, rather than physical effort. 9 

Asami et al. tested their model against the axial map in the old city of Istanbul. They 10 

found their model to offer some improvement in predicting the location of commercial 11 

centres over the traditional method, despite taking into account only the visual effects 12 

of topography. 13 

An attempt to integrate physical effort as a factor in shortest-path choice in axial maps 14 

was done by Nourian et al. (2015). The model they proposed translated many factors, 15 

including physical effort, into time measured in seconds. The shortest path was that 16 

which required the shortest time to traverse. Although such a method considers many 17 

factors and offers a coherent measuring scale, namely time, it has limitations: physical 18 

effort is modelled only by the effect slope has on movement speed. This can be treated 19 

as an inaccuracy from a cognitive standpoint as it was shown that distance is scaled in 20 

energetic terms (Zadra, Weltman and Proffitt, 2016). Only uphill paths are modelled 21 

as having special considerations of movement, while downhill slopes were treated as 22 

flat. Another weakness is the use of time as the measure of shortest path, because the 23 

angularity of paths has been found to correlate with distance estimation but not travel 24 

time estimation (Sadalla and Magel, 1980). 25 

This research is aimed at developing a model based on the axial map, dealing with 26 

both problems described above: limited visibility and additional physical effort in 27 

movement. First, a topography-sensitive model that tackles both problems was 28 

developed. In order to evaluate the validity and accuracy of the proposed model, it was 29 

compared to other methods of integration analysis in axial maps, namely the 30 

traditional topological approach described by Hillier and Hanson (1984), as well as a 31 
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variant of analysis based on the angle of incident (Asami et al, 2003). The comparison 1 

is done using 3D models representing existing urban environments built on steep 2 

topography in Haifa and Jerusalem, Israel. 3 

3. The Physical Effort Model (PEM) 4 

The proposed model has a two-stage operation: the first stage overcomes the 5 

limitations on visibility caused by topography and the second one deals with 6 

representing the relative physical effort of traveling up and down slopes. First, the 7 

model redraws the input axial map in a way that represents actual lines of sight, making 8 

sure topography does not block them. Then, the axes in the processed map are assigned 9 

weights based on their slopes that represent the relative difficulty of travel along them. 10 

These weights, in turn, affect centrality measure calculations derived from this map to 11 

better represent actual pedestrian movement. 12 

For technical reasons that concern the way the model conducts calculations, all models 13 

discussed in this paper are axial segment models rather than axial line models (Dalton, 14 

2001; Turner, 2001). The logic behind this decision, what it implies and how the model 15 

deals with those implications are described in section 3.2. An axial segment map is 16 

created with the axial lines broken at intersections with other axial lines, creating axial 17 

segments. Redundant segments can then be omitted. This means that any space that 18 

requires more than a single axial line to map will require more axial segments than 19 

axial lines for this purpose. For example, a simple T-shaped space can be mapped 20 

using two axial lines, but will require three axial segments; the larger and more 21 

complex the space the greater the difference in number. 22 

The PEM needs to receive an axial segment map of an assessment area as input, 23 

together with an axial segment map of a ‘buffer’ area around it. The buffer area and 24 

its’ purpose are explained in section 4. The PEM can work without the buffer area 25 

segments, but this will adversely affect the accuracy of the analysis. Thus the initial 26 

axial segment map is input into the model in four groups: segments from the test area, 27 

segments from the test area that represent flights of stairs, segments from the buffer 28 

area and segments from the buffer area that represent stairs. 29 

The segments that represent stairs should be drawn in a different colour from other 30 

segments because the model identifies types of segments by that trait. Segments 31 
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representing stairs are treated slightly differently from other segments in both stages 1 

of the model. 2 

The model can also conduct analyses as the topological and angular models would. 3 

One should select the desired type of analysis when running the model: Topological, 4 

angular or physical. Only the physical analysis type is explained in length in this 5 

section. The two other types of analysis were developed by others and therefore 6 

described in the introduction. 7 

The PEM is a CAD based model, executed in Grasshopper for Rhino with Python 8 

scripting. 9 

3.1. Problem 1: Limited visibility 10 

Axial segments, just like axial lines, represent lines of sight that can be blocked by 11 

topography. Therefore, the 2D axial segment map must be redrawn according to the 12 

topography to represents actual lines of sight. In order to do so, the PEM requires as 13 

input a 3D model of the topography and a corresponding 2D axial segment map. 14 

Whatever the format the topographic information is in, be it a digital topographic 15 

model (DTM), topography lines in CAD or any other format, it must be converted into 16 

a surface (or mesh) before being input into the PEM. 17 

The PEM divides the axial lines into short, equal, segments. The length of the segments 18 

is controllable and should be set according to the resolution of the available 19 

topographic data. For example, if the topographic information is available as a DTM 20 

with a 5 meters by 5 meters raster resolution the length of the segments should 21 

preferably be somewhat smaller than 5 meters. The division points are then projected 22 

onto the topographic model. As shown in Figure 2, only the peak points, the points at 23 

the edges of a plateau and the end points of original segments are retained to draw the 24 

new 3D segments (Greenberg et al, 2017). 25 
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 1 

Figure 2. A section view. Only the dark points are retained for future processing in the model, others are 2 

discarded. 3 

This process allows one to draw the 3D segments in a topography-sensitive way, but 4 

might still be excessive. In such a process, any variation in height is enough to break 5 

an axial segment in two. This, of course, provides exaggerated sensitivity to terrain 6 

that can both damage the accuracy of the analysis as well as slow down calculations. 7 

To avoid these problems, a way to determine which features actually affect spatial 8 

awareness is needed. For this, typical human eye height is used. This metric varies in 9 

different populations, so the exact height can be set according to the geographic 10 

location of the case study and statistical information regarding the average height of 11 

the population there. 12 

The points received from the previous stage are tested to eliminate ‘bumps’ along the 13 

3D segments that are deemed insignificant. The PEM checks if the point after the point 14 

on the ‘bump’ along the 3D segment can be seen from human eye height above the 15 

point on the other side of the ‘bump’, and vice versa. If both points, the one before the 16 

‘bump’ and the one after it, can be seen in this manner the point on the ‘bump’ is 17 

eliminated (Figure 3). Only the remaining points are then connected to create new 3D 18 

segments. The resulting 3D segments are then input into the next stage of the analysis. 19 
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 1 

Figure 3. A section view. 2 

Segments representing stairs are treated differently from other types of segments. They 3 

are not divided into smaller parts prior to projection onto the topographic model and 4 

therefore are not tested to eliminate redundant ‘bumps’, either (Figure 4). The 5 

projection is merely used to determine the slope of the stairs, which is important for 6 

the next stage. The reason for this is that stairs are used to connect different levels over 7 

shorter distance than is otherwise possible and are, therefore, unlikely to go first up 8 

and then down in a manner that will block a line of sight.  9 

 10 
Figure 4. A section view. With stairs, only the average slope of the entire staircase is considered. 11 
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Winding staircases that are meant to bridge large differences in elevation over a short 1 

distance are a special case in which a staircase is regarded as a single segment only if 2 

the ends of the entire staircase (not just one flight) are mutually visible. 3 

3.2. Problem 2: Physical effort 4 

Integrating the effect of physical effort into the model requires a breakaway from the 5 

exclusivity of mutual visibility as the cognitive basis for axial maps (Bafna, 2003). 6 

The PEM suggests differentiating between walking downhill or uphill and walking in 7 

plane in physical - rather than visual - terms. 8 

3.2.1. Weights of physical effort 9 

Integrating physical effort into the PEM is done by attaching weights, or costs, to every 10 

3D segment. Since it is easier to walk downhill than uphill, each 3D segment gets two 11 

different weights attached to it – one for each direction. However, the manner in which 12 

these weights are determined is open to debate. Unfortunately, most studies that deal 13 

with the parameters that affect pedestrian path selection ignore slope as a contributing 14 

factor (Golledge, 1995; Seneviratne and Morral, 1985). The effects of slope were 15 

modelled indirectly in studies that sought to optimize path selection to the shortest 16 

travel time parameter by using an inverse of the Hiking Function described by Tobler 17 

(1993; Equation 3) multiplied by some constant (Whitley and Hicks, 2003). In another 18 

study, an attempt was made to improve the accuracy of this method by normalizing 19 

this function according to paths in nature, as they are thought to represent an evolution 20 

of human movement free of the constraints of the built environment which can be 21 

arbitrary and force certain paths (Pingel, 2010). However, it is argued in this article 22 

that methods that take only the effects of slope on walking speed to determine costs 23 

are insufficient since they show almost similar costs for traveling a steep slope uphill 24 

and downhill. Downhill travel indeed requires careful movement and therefore slows 25 

down speed, but such a model ignores the fact that downhill travel is done when the 26 

traveller works together with planetary gravity toward a common goal, instead of 27 

against it. This difference is deemed significant and the costs of travel should represent 28 

that. Therefore, the model developed in this work takes physical effort itself into 29 

account. This variable is represented by metabolic power which describes the amount 30 

of metabolic energy required to walk on a given slope for a given length of time (the 31 
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energy itself required to traverse the entire sloped path depends on the length of the 1 

path as well). The weights used for the PEM in this paper are derived from the value 2 

of metabolic power calculated using a quadratic equation for power as a function of 3 

walking velocity (see Equation 2; Al-Widyan et al., 2017). 4 

  𝑃 = 𝐴𝑣2 + 𝐵𝑣 + 𝐶  (2) 5 

  𝐴 = 1.5𝜇(𝑊 + 𝑋)  (2a) 6 

  𝐵 = 0.35𝜇 (𝑊 + 𝑋) tan 𝛼 (2b) 7 

  𝐶 = 1.5W + 2(W + X)(X/W)2
   (2c) 8 

P – power, v – walking speed in m/sec, W – individual weight in kg, X – load carried in kg, 9 

α – the slope in degrees, μ - terrain factor, defined as 1 for free walking. 10 

Walking velocity is derived from the slope of the axis using an equation described by 11 

Tobler (1993; Equation 3). 12 

 𝑣 = 6𝑒(−3.5|tan 𝛼+0.05|)  (3) 13 

v – walking speed in km/h, α – the slope in degrees. The walking speed units must be turned 14 

into m/sec (by dividing v by 3.6) before being input into equations 2 or 4. 15 

The values derived from equation 2 are used as an extra cognitive weight in addition 16 

to a turn and should therefore be in a range between 0 and 1. For this reason, the 17 

absolute values in the equation are not important, only its behaviour. This enables a 18 

stripping of component C of the equation as it is not affected by slope and does not 19 

alter the behaviour of the function. Both components A and B contain some expression 20 

multiplied by 𝜇(𝑊 + 𝑋)  which means it does not affect the relationship between those 21 

two components and can be discarded as well. This results in the much simplified 22 

equation 4.  23 

 24 

  𝑃 = 1.5𝑣2 + 0.35𝑣 tan 𝛼 (4) 25 
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Equation 2 was derived from cases where walking speed was constant and only the 1 

other variables changed. This makes it only partly suitable for our case because speed 2 

is not predetermined but may be dependent on slope. The simplified equation 4 will 3 

be adapted for this purpose. As it stands, inputting equation 3 into equation 4 results 4 

in an absurd case: the steeper the slope – the lower the metabolic power. This 5 

contradicts common sense as climbing steep slopes is not physically easier than 6 

walking on plane or downhill. Equation 4 has the exact opposite behaviour from 7 

reality. To overcome this contradiction the equation must be inversed, just like 8 

equation 3 was inversed when used as a basis for cost calculation (Pingel, 2010; 9 

Whitley and Hicks, 2003). This is possible because equation 3 is used as input for 10 

equation 2 to create equation 4. Dividing 0.1 by the result of equation 4 results in a 11 

value range of roughly 0 to 1 in a range of realistic inclination between 0 and 30 12 

degrees (50% slope). The weight for uphill walking will be 1+0.1/P and the weight 13 

for downhill walking 1-0.1/P, to represent the difference in effort according to the 14 

direction of travel. This also inverts the equation in a way that is consistent with reality, 15 

at least in the sense that climbing steeper slopes requires higher energy expenditures. 16 

The weighting method described above is an experimental one. Other methods that 17 

take physical effort as a direct source of the weights assigned to segments can be 18 

considered, be it Pingel’s (2010) method or any other that might be conceived. 19 

Two main types of paths are considered: regular paths and stairs. Staircases are often 20 

built in the urban context to bridge height differences over a shorter distance compared 21 

to a ramp or sidewalk. The downside in the use of stairs is that they are generally less 22 

accessible than flat inclined surfaces as they are very hard (or impossible) to use for 23 

people whose mobility is limited for whatever reason, whether temporarily or 24 

permanently: physical fitness, old age, injury, disease, driving a cart or a stroller, 25 

carrying cumbersome weight – any of these cases can make using a staircase very 26 

difficult. Thus, 3D segments that represent staircases receive additional penalties to 27 

their weights, making them higher, to account for the reduced accessibility of such 28 

paths to certain groups. This penalty can be set by the operator according to the specific 29 

parameters of the analysis but should be compatible with the range of possible 30 

integration scores. 31 
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3.2.2. Graph representation and analysis 1 

The graph for the 3D segment map in this model is weighted and directional. The 2 

weights are used when calculating the shortest path in the graph utilizing a realization 3 

of a greedy shortest path algorithm (Dijkstra, 1959). The algorithm varies from the 4 

original in being implemented on a directional graph; therefore, it must be decided 5 

which weights to use in each specific path. Making this decision requires the direction 6 

of travel to be known. The weight to be used is determined by comparing the height 7 

of the point of intersection of axial segments, which is an end point of both segments, 8 

to the second end point of the next axial segment along the path. If the intersection 9 

point is higher than the other point, the weight for downhill travel is used and vice 10 

versa (Figure 5). In the PEM, a 3D segment in a valley will have different integration, 11 

for example, than the same segment in an identical system on a ridge (Figure 6). 12 

 13 

 14 

Figure 5. Two shortest paths in section. The path from A to B is "longer" than the reverse path. 15 

 16 
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 1 

Figure 6. Identical systems – different integration. The road that goes along the watershed is less integrated than 2 
the road that runs through the valley. 3 

Axial segments rather than axial lines are used as an input for the PEM because there 4 

is a very likely possibility that upon projection of the axial line unto the topographic 5 

model two axial lines that intersect in 2D will no longer intersect in 3D creating an 6 

artificial disconnection (Figure 7). This further division generates two problems. The 7 

first problem is that going along what is essentially a single axial line might now be 8 

treated as a turn. This is solved by checking whether two segments along a path are 9 

continuous and assigning no weight to the continuing segment in this specific path 10 

calculation. The second problem occurs when calculating indices in the graph, as the 11 

number of axial lines (now segments) in the system is artificially inflated. This 12 

problem is solved by considering all continuous axial segments as a single line for the 13 

purpose of calculating indices. 14 
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 1 

Figure 7. When transitioning from 2D to 3D by projection unto a topographic model two lines that used to 2 
intersect might now be disjoint, but it cannot be seen in top view. Such cases would result in grave 3 

misrepresentations. 4 

The analytic rigor sought in this method can be, under certain circumstances, a 5 

weakness. The issue results from a conflict between the perfect accuracy of an 6 

analytical model and the limited accuracy of human cognition and perception (Dutta, 7 

1988). It was shown that the absolute accuracy of analytical mapping can sometimes 8 

highlight differences in the environment that are small and insignificant or 9 

misrepresent the human interpretation of it, which can result in faulty representation 10 

of phenomena (Ratti, 2004). One such problem relates to the question whether two 11 

axial lines are continuous. A case of perfect geometrical continuity is obvious enough, 12 

but what about very subtle incidents? It can be argued that from a pedestrian’s 13 

perspective a turn of only a few degrees or a small change in slope makes no difference 14 

at all and is not even registered as such (Frith, 2017; Sun et al, 2015; Montello and 15 

Frank, 1996). For this reason, the model has an angular tolerance feature that enables 16 

one to set a maximum angle (in degrees) between two 3D segments below which the 17 

two lines would be considered continuous. 18 
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3.3. PEM Summary 1 

To sum up, the PEM needs the following input data to run an analysis: an axial segment 2 

map, a corresponding topographic model, an analysis mode (topological, angular or 3 

physical), a radius for analysis (set at 0 for a global calculation), a segment length for 4 

initial division of axial segments, an angular tolerance value, a list of colors 5 

corresponding to the list of axial segments, the color of the axial segments representing 6 

staircases, the value of the weight penalty for stairs. A general flowchart of the model 7 

is shown in Figure 8. 8 

 9 

Figure 8. A general flowchart of the model’s operation, inputs and outputs. Rectangular shapes indicate geometric 10 

data, like CAD drawings. Elliptical shapes indicate numbers, strings or data structures containing them. 11 

4. PEM Assessment  12 

In order to assess the performance of the PEM it was compared to the other two axial 13 

segment models described above: The topological model and the angular model. All 14 

models go through the first stage of the PEM (redrawing segments according to 15 

topography) so the comparison is only between the analysis modes. The reason it is 16 

important for a cognitive model based on mutual visibility to have its’ lines actually 17 

represent lines of sight is self-evident and hard to argue against. The second stage of 18 

the model is much more open to scrutiny and therefore is the one to be evaluated.  19 
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For the assessment, three real urban environments with significant topography were 1 

selected as case-studies. Each case study was mapped and analyzed for integration 2 

using all three models. The integration values were compared to the density of 3 

businesses along the corresponding segments to see if and how well they correlate. 4 

Business-density is the number of businesses along a segment divided by the length of 5 

that segment. This measure, rather than a simple business count, is used to negate the 6 

advantage longer segments have in their ability to accommodate more businesses 7 

compared to shorter ones. The use of businesses-density as an approximation of 8 

pedestrian movement is based on the mutual reinforcement between spatial 9 

configuration, pedestrian movement and commerce (Hillier 1999; Hillier et al. 1993).  10 

This method has some disadvantages. First, it is less accurate than the direct approach 11 

- pedestrian counts. Another problem is that a small business and a large business 12 

register as equal in the count despite the different volumes of pedestrian flows that 13 

sustain them. 14 

The case studies for the validation of the PEM should be roughly neighbourhood-15 

seized, because it is best suited for analysis at this scale. As the PEM bases itself on 16 

human perception of the immediate environment and spatial memory it can be applied 17 

at any scale, but on larger scales radii should be applied to get meaningful results. 18 

Although street network analysis can be done on a metropolitan scale (or even larger), 19 

it is not as relevant for pedestrian movement analysis - movement on foot on these 20 

scales is a very different phenomenon and is not as restricted spatially as pedestrian 21 

movement in urban environments. There is a body of work that deals with spatial 22 

memory and orientation, perception of distance and physical effort in natural settings 23 

(Egorova, 2018; Pingel, 2010; Okabe, Aoki and Hamamoto, 1987). 24 

4.1. Parameters and Important Considerations 25 

The evaluation included global, radius 3 and radius 4 integration analysis, with an 26 

angular tolerance value of 1° and a weight penalty of 0.1 for staircases (only applicable 27 

in the ‘physical effort’ mode). Radius 3 was included as it was found to often correlate 28 

well with pedestrian movement volumes in axial maps. Radius 4 was included because 29 

weights above 1 are common in both the PEM and the angular model of Asami et al 30 

(2003). 31 
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It was previously demonstrated that incomplete data about the routes available to 1 

pedestrians can distort the analysis of pedestrian networks (Chin et al, 2007). To avoid 2 

this, pedestrian paths were completed using OpenStreetMap as well as site 3 

observations to create a comprehensive documentation of a pedestrian network. 4 

Another problem for any analysis of a real-world network is the ‘edge effect’. As street 5 

networks in reality are not strictly discreet systems, the borders of the area of analysis 6 

are defined somewhat arbitrarily. Yet the world outside the area of analysis still affects 7 

the world inside it and the movement patterns within. In such cases, centrality 8 

measures in the analysis area are somewhat distorted because they disregard the effects 9 

of elements outside it. This effect gets more pronounced the closer a certain node (a 10 

3D segment, in this case) is to the edge of the area of analysis (Okabe and Sugihara, 11 

2012). In order to mitigate distortions to centrality measure calculations stemming 12 

from proximity to the edges of area of analysis, additional axes outside the test areas 13 

are included in the analysis, but their measures are not analysed (as they are not reliable 14 

enough) and they serve as an inert ‘buffer’ for the actual test area (Gil, 2017; Penn et 15 

al, 1998; Hillier et al 1993). This is not a definitive solution, but it diminishes the ‘edge 16 

effect’ significantly. The buffer size in the analysis is set at 5, which means that five 17 

topological steps are added to the axial segment map beyond the boundary of the 18 

assessment area (Figure 10, where the ‘buffer’ segments can be seen around the 19 

assessment areas of the case studies). 20 

4.2. The Case Studies  21 

The assessment environments for the comparison that was selected are the Hadar 22 

neighborhood in the city of Haifa and the City Center and Nahlaot neighborhoods in 23 

Jerusalem (Figure 9). 24 

Hadar is a Garden-City neighbourhood built on a steep continuous slope and many 25 

staircases connecting different levels in the neighbourhood. 26 

Jerusalem City Center serves as the central business district (CBD) of Jerusalem and 27 

is built mostly in traditional European city blocks without many courtyards or much 28 

vegetation. 29 
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Nahlaot is a conglomeration of small sub-neighborhoods, each comprised of just a few 1 

streets or blocks. Most buildings are low-rise stone structures that are either 2 

concentrated around courtyards or along narrow alleys. 3 

4 
Figure 9. Case study plans, from left to right: Hadar, City Centre, Nahlaot. Assessment areas are outlined. 5 

A summary of different physical and functional attributes of the case studies has been 6 

compiled in table 1. 7 

Parameter 
Haifa Jerusalem 

1 – Hadar 2 – City Center 3 – Nahlaot 

Regular segments 404 266 396 

Stair segments 53 11 35 

Regular buffer segments 695 1714 1617 

Stair buffer segments 61 82 73 

Total segments 1213 2073 2121 

Avg. segment length 52.75 m 43.69 m 35.62 m 

Average slope 6.12% 3.69% 4.07% 

No. of businesses 2168 1295 497 

Business/segment 4.74 4.68 1.15 

Avg. business density 0.09 0.11 0.03 

Table 1. A summary of different parameters of the case studies. 8 

All case studies were chosen based on their pre-modern, non-hierarchical, street-based 9 

planning to avoid the inconsistencies in relations between centrality measures, 10 

pedestrian movement volumes and retail locations that often occur in modernist 11 

planned neighbourhoods (Omer, Rofè and Lerman, 2015). 12 
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 1 

Figure 10. Case study segment maps, including the ‘buffer’ (outside the black line): Hadar, City Centre and 2 
Nahlaot. 3 

5. Results 4 

The case studies were analysed for integration and the results were correlated against 5 

business density. Table 2 sums up the results of this analysis and contains average 6 

integration scores for the cases, in search of a global pattern. Maps of global 7 

integration analysis for all cases appear in Figure 11. 8 

All models performed reasonably well in global integration analysis, except for the 9 

angular model in case 3. 10 

Model 
Topological Angular PEM 

r Avg. int. r Avg. int. r Avg. int. 

1 - Hadar 

global 0.486 0.076 0.488 0.116 0.49 0.074 

r=3 -0.27 0.446 -0.143 0.536 -0.201 0.579 

r=4 -0.174 0.337 0.071 0.381 -0.268 0.406 

2 – City Centre 

global 0.469 0.067 0.444 0.1 0.468 0.066 

r=3 -0.05 0.44 -0.095 0.53 -0.157 0.565 

r=4 0.082 0.334 0.152 0.38 -0.052 0.398 

3 - Nahlaot 

global 0.425 0.068 0.153 0.095 0.424 0.067 

r=3 -0.032 0.438 -0.041 0.549 -0.043 0.555 

r=4 0.022 0.336 0.048 0.384 0.009 0.395 

Table 2. Correlation of integration values and business density and average integration values. 11 

The radius analyses were less productive. Radius 3 and 4 were either meaningless or 12 

had weak, often negative, correlations. Radius 3 and 4 had weak negative correlations 13 

in case 1 (except radius 4 with the angular model) and no correlation in case 3 with all 14 

models. In case 2, radius 4 in the angular model had a weak positive correlation and 15 

radius 3 with the PEM had a weak negative correlation. In light of these insignificant 16 

results, only global integration analysis is discussed in chapter 6. 17 
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The PEM performed best in case 1, followed by the angular model. In case 2, the 1 

topological model had the highest correlation, followed very closely by the PEM. Case 2 

3 saw results roughly similar to case 2, albeit with slightly lesser correlation. 3 

The average global integration for the PEM was always lower than that of the other 4 

models, whereas the average integration in radius 3 and 4 analysis was higher. The 5 

topological model, however, had the lowest average integration in analyses with radii. 6 

The angular model had expectedly the highest average global integration, because it 7 

tends to have lower weights for turns in systems with many oblique segments. 8 

 9 

Figure 11. Global integration analysis maps. 10 
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6. Discussion 1 

The good performance of the PEM in case 1, Hadar, can be explained by the fact that 2 

it is the steepest of all cases and therefore potentially presents the PEM with a better 3 

platform to distinguish itself as its weighting system is based on slope. 4 

All models performed generally better in cases 1 and 2, where the number of 5 

businesses and especially their density was the highest. Although all cases were 6 

sufficiently commercial to produce good results, this points at a possible weakness in 7 

the methodology and its limited applicability in less commercial areas. 8 

Cases 2 and 3, City Centre and Nahlaot respectively, saw almost equal performance 9 

from the PEM and the Topological model, with the topological model having a slight 10 

edge. The relative similarity in performance suggests at least one of several options: 11 

1) Basing of the PEM’s weighting system on the Topological model has been over 12 

emphasized - giving insufficient emphasis to the effort-based weight. 13 

2) The slope in some of the selected studies has not been significant enough to create 14 

a great divergence in results. This point is supported by a study by Sun et al (2015) 15 

where participants reported slopes of 5% and greater to be perceived as barriers to 16 

walking. The average slopes in cases 2 and 3 fall below that number. 17 

Possibility 2 might be reinforced further by the fact that the topological model 18 

performed slightly better than the PEM in cases 2 and 3, since the addition of weights 19 

to insignificant slopes can degrade the performance of the model. 20 

A possible explanation for the surprisingly bad performance of the angular model in 21 

case 3 might lie in the special geometric traits of Nahlaot: large parts of the test area 22 

are very dense with many narrow and winded alleys. This may cause retail and public 23 

functions to concentrate more in the larger main streets because they are the only ones 24 

that can support the required pedestrian volumes and supply vehicles. The angles 25 

between those streets and the neighbouring patches of dense alleys become less 26 

important in this context. 27 

The consistently lower average global integration for the PEM might represent the 28 

general relative difficulty of walking on sloped terrain. The higher average integration 29 
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in radius 3 and 4 analysis, on the other hand, is just the expected result of the weights 1 

causing a fewer number of segments to be added to the local systems compared to the 2 

other models. 3 

As a concluding remark, it should be remembered that a fundamental feature of the 4 

PEM, the combination of two cognitive bases in one framework, is also the source of 5 

a unique challenge. While it was shown that both visibility and physical effort affect 6 

pedestrian movement decisions, the relationship between these two factors still 7 

remains unclear (Montello, 1997). Answering questions about the dynamics of 8 

different consideration and their relative importance will provide the PEM with better 9 

accuracy and theoretical grounding. This problem is complex enough to justify a 10 

separate research and calls for further empirical studies. 11 

7. Conclusions 12 

In this article, a novel analytical cognitive mapping method for pedestrian movement 13 

in sloped urban environment was presented. 14 

Topography causes two important effects on pedestrian movement. First, topography 15 

can potentially block lines of sight and limit the spatial awareness of pedestrians. 16 

Second, the added effort of walking on steep slopes which can serve as a consideration 17 

for pedestrians when deciding which path to choose (or whether to walk at all). 18 

A new model was developed to turn a 2D axial map into a 3D segment map that 19 

represents the topographic aspect of the environment. The suggested model is a hybrid 20 

in the sense that it combines two cognitive bases in one model: visibility and physical 21 

effort. The PEM deals with the problem of visual constraints stemming from 22 

topographic form by finding the points along a segment that block lines of sight and 23 

breaking the segment into shorter 3D segments. The problem of integrating the extra 24 

physical effort required to traverse a slope is tackled by attaching weights for ascent 25 

and descent to each 3D segment. One possible way of calculating the weights is 26 

proposed, but others that take physical effort into account directly are potentially valid. 27 

These two refinements provide a terrain-sensitive version of the axial segment map. 28 

The initial assessment of the PEM was done by comparing it to two traditional models 29 

of the axial segment map, the topological model and the angular model. These methods 30 
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are, however, two-dimensional and do not incorporate topographic information in their 1 

calculations. 2 

The PEM proved its mettle in steep environments thus vindicating its own basic logic 3 

and proving the need for such a tool. However, further work is required in several 4 

directions. The weighting function of the PEM requires more adjustments. The 5 

problem of integrating two cognitive bases in a single framework also remains 6 

unsolved. A future validation study will include counts of actual pedestrian volumes 7 

and the construction of a pedestrian movement model. The results also make a case 8 

for the development of a PEM variant that will combine the traits of the physical and 9 

angular models, hopefully retaining the strengths of both models while negating the 10 

weaknesses.  11 

The cognitive logic behind the PEM can also be implemented in models other than an 12 

axial segment map. For example, it can be used as a guideline in agent behavior in a 13 

future agent-based model. 14 

Physical effort as a cognitive factor in pedestrian behavior is not limited to path 15 

selection. Other effects, such as variation in attention (Hutchinson & Tenenbaum, 16 

2006), can serve as a basis for other types of cognitive models. 17 

The PEM can improve the ability of planners and designers to make informed 18 

decisions regarding the design of movement systems, public space and land-use 19 

allocation. Such a model will improve our understanding of pedestrian movement in 20 

urban environments and facilitate better human-centered design. 21 
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