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Abstract. 3D sensors provides valuable information for mobile robotic
tasks like scene classi�cation or object recognition, but these sensors of-
ten produce noisy data that makes impossible applying classical keypoint
detection and feature extraction techniques. Therefore, noise removal and
downsampling have become essential steps in 3D data processing. In this
work, we propose the use of a 3D �ltering and down-sampling technique
based on a Growing Neural Gas (GNG) network. GNG method is able
to deal with outliers presents in the input data. These features allows
to represent 3D spaces, obtaining an induced Delaunay Triangulation of
the input space. Experiments show how the state-of-the-art keypoint de-
tectors improve their performance using GNG output representation as
input data. Descriptors extracted on improved keypoints perform better
matching in robotics applications as 3D scene registration.
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1 Introduction

Historically, humans have the ability to recognize an environment they had visit
before based on the 3D model we unconsciously build in our heads based on
the di�erent perspectives of the scene. This 3D model is built with some extra
information so that humans can extract relevant features [1] that will help in fu-
ture experiences to recognize the environment and even possible objects presents
there. This learning method has been transferred to mobile robotics �eld over
the years. So, most current approaches in scene understanding and visual recog-
nition are based on the same principle: keypoint detection and feature extraction
on the perceived environment. Over the years most e�orts in this area have been
made towards feature extraction and keypoint detection on information obtained
by traditional image sensors [2], existing a gap in feature-based approaches that
use 3D sensors as input devices. However, in recent years, the number of jobs
concerned with 3D data processing has increased considerably due to the emer-
gence of cheap 3D sensors capable of providing a real time data stream and
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therefore enabling feature-based computation of three dimensional environment
properties like curvature, getting closer to human learning processes.

The Kinect device3, the time-of-�ight camera SR40004 or the LMS-200 Sick
laser5 are examples of these devices. Besides, providing 3D information, some
of these devices like the Kinect sensor can also provide color information of
the observed scene. However, using 3D information in order to perform visual
recognition and scene understanding is not an easy task. The data provided by
these devices is often noisy and therefore classical approaches extended from
2D to 3D space do not work correctly. The same occurs to 3D methods applied
historically on synthetic and noise-free data. Applying these methods to partial
views that contains noisy data and outliers produces bad keypoint detection and
hence computed features does not contain e�ective descriptions.

Classical �ltering techniques like median or mean have been used widely to
�lter noisy point clouds [3] obtained from 3D sensors like the ones mentioned
above. The median �lter is one of the simplest and wide-spread �lters that has
been applied. It is simple to implement and e�cient but can remove noise only if
the noisy pixels occupy less than one half of the neighbourhood area. Moreover,
it removes noise but at the expense of removing detail of the input data.

Another �ltering technique frequently used in point cloud noise removal is
the Voxel Grid method. The Voxel Grid �ltering technique is based on the input
space sampling using a grid of 3D voxels to reduce the number of points. This
technique has been used traditionally in the area of computer graphics to subdi-
vide the input space and reduce the number of points [4]. The Voxel Grid method
presents some drawbacks: geometric information loss due to the reduction of the
points inside a voxel and sensitivity to noisy input spaces.

Based on the Growing Neural Gas [5] network several authors proposed re-
lated approaches for surface reconstruction applications [6]. However, most of
these contributions do not take in account noisy data obtained from RGB-D
cameras using instead noise-free CAD models.

In this paper, we propose the use of a 3D �ltering and down-sampling tech-
nique based on the GNG [5] network. By means of a competitive learning, it
makes an adaptation of the reference vectors of the neurons as well as the inter-
connection network among them; obtaining a mapping that tries to preserve the
topology of an input space. Besides, GNG method is able to deal with outliers
presents in the input data. These features allows to represent 3D spaces, obtain-
ing an induced Delaunay Triangulation of the input space very useful to easily
obtain features like corners, edges and so on. Filtered point cloud produced by
the GNG method is used as an input of many state-of-the-art 3D keypoint de-
tectors in order to show how the �ltered and down sampled point cloud improves
keypoint detection and hence feature extraction and matching in 3D registration
methods.

3 Kinect for XBox 360: http://www.xbox.com/kinect Microsoft
4 Time-of-Flight camera SR4000 http://www.mesa-imaging.ch/prodview4k.php
5 LMS-200 Sick laser: http://robots.mobilerobots.com/wiki/SICK_LMS-
200_Laser_Range�nder
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In this work we focus on the processing of 3D information provided by the
Kinect sensor. Because the Kinect is essentially a stereo camera, the expected
error on its depth measurements is proportional to the squared distance to the
scene.

The rest of the paper is organized as follows: �rst, a section describing brie�y
the GNG algorithm is presented. In section 3 the state-of-the-art 3D keypoint
detectors are explained. In section 4 we present some experiments and discuss
results obtained using our novel approach. Finally, in section 5 we give our
conclusions and directions for future work.

2 GNG Algorithm

With Growing Neural Gas (GNG) [5] method a growth process takes place from
minimal network size and new units are inserted successively using a particular
type of vector quantization. To determine where to insert new units, local error
measures are gathered during the adaptation process and each new unit is in-
serted near the unit which has the highest accumulated error. At each adaptation
step a connection between the winner and the second-nearest unit is created as
dictated by the competitive Hebbian learning algorithm. This is continued until
an ending condition is ful�lled, as for example evaluation of the optimal network
topology or �xed number of neurons. The network is speci�ed as:

� A set N of nodes (neurons). Each neuron c ∈ N has its associated reference
vector wc ∈ Rd. The reference vectors can be regarded as positions in the
input space of their corresponding neurons.

� A set of edges (connections) between pairs of neurons. These connections
are not weighted and its purpose is to de�ne the topological structure. An
edge aging scheme is used to remove connections that are invalid due to the
motion of the neuron during the adaptation process.

This method o�ers further bene�ts over simple noise removal and downsampling
algorithms: due to the incremental adaptation of the GNG, input space denoising
and �ltering is performed in such a way that only concise properties of the point
cloud are re�ected in the output representation.

3 Applying Keypoint Detection Algorithms to Filtered

Point Clouds

In this section, we present the state-of-the-art 3D keypoint detectors used to
test and measure the improvement achieved using GNG method to �lter and
downsample the input data. In addition, we explain main 3D descriptors and
feature correspondence matching methods that we use in our experiments.

First keypoint detector used is the widely known SIFT (Scale Invariant Fea-
ture Transform) [7] method. It performs a local pixel appearance analysis at
di�erent scales. SIFT features are designed to be invariant to image scale and
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rotation. SIFT detector has been traditionally used in 2D image but it has been
extended to 3D space. 3D implementation of SIFT di�ers from original in the
use of depth as the intensity value.

Another keypoint detector used is based on a classical HARRIS 2D keypoint
detector. In [8] a re�ned HARRIS detector is presented in order to detect key-
points invariable to a�ne transformations. keypoints. 3D implementations of
these HARRIS detectors use surface normals of 3D points instead of 2D gradi-
ent images. Harris detector and its variants (Tomasi3D and Noble3D) have been
tested in Section 4.

Once keypoints have been detected, it is necessary to extract a description
over these points. In the last few years some descriptors that take advantage of
3D information have been presented. In [9] a pure 3D descriptor is presented.
It is called Fast Point Feature Histograms (FPFH) and is based on a histogram
of the di�erences of angles between the normals of the neighbour points. This
method is a fast re�nement of the Point Feature Histogram (PFH) that computes
its own normal directions and it represents all the pair point normal diferences
instead of the subset of these pairs which includes the keypoint. Moreover, we
used another descriptor called CSHOT [10] that is a histogram that represents
the shape and the texture of the keypoint. It uses the EVD of the scattered
matrix using neighborhood for each point and a spherical grid to encode spatial
information.

Correspondence between features or feature matching methods are commonly
based on the euclidean distances between feature descriptors. One of the most
used method to �nd the transformation between pairs of matched correspon-
dences is based on the RANSAC (RANdom SAmple Consensus) algorithm [11].
It is an iterative method that estimates the parameters of a mathematical model
from a set of observed data which contains outliers. In our case, we have used
this method to search a 3D transformation (our model) which best explain the
data (matches between 3D features). At each iteration of the algorithm, a subset
of data elements (matches) is randomly selected. These elements are considered
as inliers; a model (3D transformation) is �tted to those elements, the rest of the
data is then tested against the �tted model and included as inliers if its error
is below a threshold; if the estimated model is reasonably good (its error is low
enough and it has enough matches), it is considered as a good solution. This
process is repeated a number of iterations and the best solution is returned.

4 Experimentation

We performed di�erent experiments on real data to evaluate the e�ectiveness
and robustness of the proposed method. First, a normal estimation method is
computed in order to show how estimated normals are considerably a�ected by
noisy data. Finally, the proposed method is applied to 3D scene registration to
show how keypoint detection methods are improved obtaining more accurate
transformations. To validate our approach, experiments were performed on a
dataset comprised of 90 overlapped partial views of a room. Partial views are
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rotated 4 degrees in order to cover 360 degrees of the scene. Partial views were
captured using the Kinect device mounted in a robotic arm with the aim of
knowing the ground truth transformation. Experiments implementation, 3D data
management (data structures) and their visualization have been done using the
PCL6 library.

4.1 Improving normal estimation

In the �rst experiment, we computed normals on raw and �ltered point clouds
using the proposed method. Since normal estimation methods based on the anal-
ysis of the eigenvectors and eigenvalues of a covariance matrix created from the
nearest neighbours are very sensitive to noisy data. This experiment is performed
in order to show how a simple 3D feature like normal or curvature estimation
can be a�ected by the presence of noise. In Figure 1 it is visually explained the
e�ect caused by normal estimation on noisy data.

Fig. 1. Noise causes error in the estimated normal

Normal estimation is computed on the original and �ltered point cloud using
the same radius search: rs = 0.1 (meters). In Figure 2 can be observed how more
stable normals are estimated using �ltered point cloud produced by the GNG
method. 20, 000 neurons and 1, 000 patterns are used as con�guration parameters
for the GNG method in the �ltered point cloud showed in Figure 2 (Right).

4.2 Improving 3D keypoint detectors performance

In the second experiment, we used some keypoint detectors introduced in sec-
tion 3 in order to test noise reduction capabilities of the GNG method. RMS
deviation measure calculates the average di�erence between two a�ne transfor-
mations: the ground truth and the estimated one. Furthermore, we used a �xed
number of neurons and patterns to obtain a downsampled and �ltered repre-
sentation of the input space. Di�erent con�gurations have been tested, ranging
from 5,000 to 30,000 neurons and 250 to 2,000 patterns per epoch. Figure 3

6 The Point Cloud Library (or PCL) is a large scale, open project [12] for 2D/3D
image and point cloud processing.
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Fig. 2. Normal estimation comparison. Left: Normal estimation on raw point cloud.
Right: Normal estimation on �ltered point cloud produced by the GNG method

shows correspondences matching calculated over �ltered point clouds using the
proposed method.

In Table 1 we can see how using GNG output representation as input cloud for
the registration step, lower RMS errors are obtained in most detector-descriptor
combinations.

Fig. 3. Registration example done with the HARRIS3D detector and the FPFH de-
scriptor using a GNG representation with 20000 neurons.

Experiments are performed using di�erent search radius for keypoint detec-
tion and feature extraction methods. Search radius in�uences directly on the
size of the extracted features, making methods more robust against occlusions.
A balance between large and small values must be found depending on the size
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Keypoint detector search radius = 0.1; Feature extractor search radius = 0.2
SIFT3D/FPFH SIFT3D/SHOTRGB HARRIS3D/FPFH HARRIS3D/SHOTRGB

Raw point cloud 0.1568 0.0359 0.3074 0.0490
GNG 20000n 1000p 0.1842 0.0310 0.1158 0.0687
GNG 10000n 500p 0.1553 0.0677 0.1526 0.0466
GNG 5000n 250p 0.0435 0.0957 0.1549 0.0566

Tomasi3D/FPFH Tomasi3D/SHOTRGB Noble3D/FPFH Noble3D/SHOTRGB

Raw point cloud 0.3604 0.0764 0.3074 0.0655
GNG 20000n 1000p 2.2816 0.0416 0.1095 0.0653
GNG 10000n 500p 0.1783 0.0349 0.1526 0.0790
GNG 5000n 250p 0.1808 0.0730 0.3438 0.0925

Keypoint detector search radius = 0.05; Feature extractor search radius = 0.2
SIFT3D/FPFH SIFT3D/SHOTRGB HARRIS3D/FPFH HARRIS3D/SHOTRGB

Raw point cloud 0.1568 0.0359 0.0329 0.0362
GNG 20000n 1000p 0.1842 0.0310 0.1170 0.0415
GNG 10000n 500p 0.1553 0.0677 0.0769 0.0626
GNG 5000n 250p 0.0435 0.0957 0.1549 0.0566

Tomasi3D/FPFH Tomasi3D/SHOTRGB Noble3D/FPFH Noble3D/SHOTRGB

Raw point cloud 0.1482 0.0532 0.1059 0.0991
GNG 20000n 1000p 0.0702 0.0666 0.2234 0.0518
GNG 10000n 500p 0.1027 0.0257 0.0323 0.0196
GNG 5000n 250p 0.1110 0.0446 0.0600 0.0327

Table 1. RMS deviation error in meters obtained using di�erent detector-descriptor
combinations. Di�erent combinations are computed on the original point cloud (raw),
and three di�erent �ltered point clouds using the proposed method. GNG output rep-
resentation produces lower RMS errors in most detector-descriptor combinations.

of the presents objects in the scene and the size of the features we want to ex-
tract. For the used dataset, the best estimated transformations are found using
keypoint detector search radius 0.1 and 0.05 and feature extractor search radius
0.2.

Experiments shown in Table 1 demonstrate how the proposed method achieves
lower RMS deviation errors in the computed transformation between di�erent
3D scene views. For example, the computed transformation is improved using
the GNG representation as input for the Noble3D detector and SHOTRGB fea-
ture descriptor combination, obtaining a more accurate transformation. For the
same combination, the proposed method obtains less than 2 centimetres error
whereas original point cloud produces almost 9 centimetres error in the registra-
tion process.

5 Conclusions and future work

In this paper we have presented a method which is able to deal with noisy
3D data captured using low cost sensors like the Kinect Device. The proposed
method calculates a GNG network over the raw point cloud, providing a 3D
structure which has less information than the original 3D data, but keeping
the 3D topology. It is shown how state-of-the-art keypoint detection algorithms
perform better on �ltered point clouds using the proposed method. Improved
keypoint detectors are tested in a 3D scene registration process, obtaining lower
RMS errors in most detector-descriptor combinations. Future work includes the
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integration of the proposed �ltering method in a indoor mobile robot localization
application.
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