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Although an input distribution may not majorize a target distribution, it may majorize a distri-
bution which is close to the target. Here we consider a notion of approximate majorization. For
any distribution, and given a distance δ, we find the approximate distributions which majorize (are
majorized by) all other distributions within the distance δ. We call these the steepest and flattest
approximation. This enables one to compute how close one can get to a given target distribution
under a process governed by majorization. We show that the flattest and steepest approximations
preserve ordering under majorization. Furthermore, we give a notion of majorization distance. This
has applications ranging from thermodynamics, entanglement theory, and economics.

INTRODUCTION

The theory of majorization [1, 2] has important applications in topics as diverse as matrix theory, geometry,
combinatorics, statistics, thermodynamics, coherence [3] and entanglement theory, uncertainty relations [4, 5], and
economics. It defines a partial ordering over vectors of real numbers, as follow. For two vectors a, b ∈ Rk, one define
a↓, b↓ as the same vectors whose elements are non-increasingly ordered. Then, one says that a weakly majorizes b
from below, a �w b, iff

l∑
i=1

a↓i ≥
l∑
i=1

b↓i , ∀ l = 1, . . . , k. (1)

When the sums of all k elements of the two vectors are equal, one says that a majorizes b, a � b. Hardy, Littlewood, and
Polya [6] showed that a � b iff b = Da, where D is a doubly-stochastic matrix (alternatively a probabilistic mixture of
permutations), i.e. a stochastic matrix that preserves the uniform distribution. Here, we consider discrete probability
distributions, represented by k-dimensional vectors with non-negative elements whose sum adds to 1. In many physical
situations, a system can be described by a discrete probability distributions p, and the process the system is subjected
to can be represented by a doubly-stochastic matrix D. Examples of these situations, especially relevant for the field of
quantum information theory, concern entanglement theory, purity theory, quantum thermodynamics, and asymmetry
theory.

For instance, in entanglement theory we have that a pure entangled state can be transformed into another, by means
of Local Operations and Classical Communication [7], iff the vector of squared Schmidt coefficients of the final state
can be mapped into the vector of squared Schmidt coefficients of the initial one by a doubly-stochastic matrix [2]. In
purity theory, instead, a quantum state can be transformed into another, using Noisy Operations [8], iff the vector of
the eigenvalues of the initial state can be mapped into the vector of eigenvalues of the final one by a doubly-stochastic
matrix [9]. Similarly for quantum thermodynamics, a semi-classical state (diagonal in the energy eigenbasis) can be
transformed into another semi-classical state, with Thermal Operations [10], iff the vector of the eigenvalues of the
initial state can be mapped into the vector of eigenvalues of the final one by a Gibbs-preserving stochastic matrix,
i.e. a stochastic matrix that preserves the Gibbs distribution instead of the uniform distribution. This latter result
can be extended to any quantum state if a coherence reservoir [11] is used. In all these examples, except for quantum
thermodynamics, majorization determines whether there exists a process mapping a quantum state into another. For
quantum thermodynamics, the relevant order is given by β-majorization, a generalisation of majorization (see the
concept of “d-majorization” in Ref. [1]).

In all the above-mentioned examples, exact transformations between discrete distributions p and q are considered.
However, in physics we are very often more interested in the question of whether a process gets us “close” (under
some physical distance) to the target distribution. Indeed, in the laboratory an experimentalist can only perform this
kind on approximate transformations over a physical system. In the context of single-shot information theory, and
of certain entropic functions, finding an approximation to the target distribution which minimises resources has been
termed smoothing [12]. In this paper, we are interested in a different notion of smoothing which can be applied to
finding the optimal approximation of the output or input state for the purposes of majorization. Namely, we consider
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the set of probability distributions which are δ-close (under a given distance) to a given distribution, and we find the
extremal distributions of this set with respect to the majorization order. The distance we use throughout the paper
is the one induced by the `1-norm, due to its clear operational meaning in terms of the degree of distinguishability

between two probability distributions. For a real vector of k elements a, the `1-norm is defined as ‖a‖ :=
∑k
i=1 |ai|.

The same notion of approximate majorization we use, involving real vectors and probability distributions δ-close to
a given one, can be found in the literature, see for instance Refs. [13, 14]. Furthermore, in Ref. [15] a generalisation of
majorization called “relative submajorization” is given, and from it a more general notion of approximate majorization
is derived. While the notion of approximate majorization we use in this paper is not novel, our contribution consists in
the analysis of the properties of the extremal elements, with respect to majorization order, of the set of distributions
δ-close to a give probability distribution. Finally, the reader should notice that the term approximate majorization
has also been used in other contexts with a slightly different mathematical meaning. For example, in Ref. [16] the
authors introduce a different notion of approximate majorization from ours, which is linked to the “fairness” of a
resource-allocating protocol.

In the following we first introduce two smoothed versions of a given probability distribution, namely, the steepest and
flattest δ-approximation of this distribution. Then, we show that the steepest approximation majorizes any probability
distribution whose distance from the original distribution is less or equal than δ, while the flattest approximation
is majorized by all these distributions. We also show that smoothing preserves monotonicity under majorization,
for both the steepest and flattest approximation. Finally, we apply our findings to the analysis of the smooth
version of Schur concave/convex functions. The present work1 has recently found application in the context of
thermodynamics [17, 18], and the extremal elements that we find have been independently rediscovered in the context
of convex optimisation [19].

RESULTS

As we anticipated, our main tool consists in two specific approximations of a given probability distribution p, each
of them δ-close to the original distribution. These approximations are (i) the flattest δ-approximation of p, and (ii)
the steepest δ-approximation of p. In the following we will assume the elements of the probability distribution p to be
non-increasingly ordered.

The steepest δ-approximation of p, which we denote by p̄(δ), is constructed as follows. If ‖p − e1‖ ≤ δ, where e1

is the distribution whose first element is equal to 1, then we take p̄(δ) = e1. Otherwise, we maximally increase the
largest element of p, and we cut the tail. More precisely, we first add δ

2 to the largest element of p (which is possible,
since ‖p− e1‖ > δ). This procedure returns a non-normalized distribution which we will denote by r, whose elements
are defined as

ri =

{
p1 + δ

2 for i = 1,
pi for i 6= 1.

(2)

Then we cut δ
2 from the tail of this distribution. Formally, we take the integer l∗ ∈ {1, . . . , k} such that

l∗∑
i=1

ri ≤ 1 and

l∗+1∑
i=1

ri > 1, (3)

and we define the steepest δ-approximation of p as

p̄
(δ)
i =

 ri for i < l∗ + 1,
1− x for i = l∗ + 1,
0 for i > l∗ + 1.

(4)

where x =
∑l∗

i=1 ri. In Fig. 1, the process of steepening a probability distribution p is shown, together with the

resulting steepest δ-approximation p̄(δ). It is worth noting that the steepening process always maximally reduces the
distance between the initial distribution p and the distribution e1. Indeed, for ‖p − e1‖ ≥ δ, it is easy to show that
‖p̄(δ) − e1‖ = ‖p− e1‖ − δ.

1 whose initial draft circulated in 2013.
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The flattest δ-approximation of p, denoted by p(δ), is constructed in the following way. If ‖p − η‖ ≤ δ, where η

is the uniform distribution, then we define p(δ) = η. Otherwise, we proceed as follows. For a given x, y ∈ [0, 1], we
define the following subsets,

Ix = {i ∈ {1, . . . , k} | pi ≥ x} , (5)

Jy = {i ∈ {1, . . . , k} | pi ≤ y} . (6)

In the following we will drop the subscripts of these two sets, as the context should make them clear. Let us now
introduce the functions

ε(x) =
∑
i∈I

(pi − x), (7)

γ(y) =
∑
i∈J

(y − pi). (8)

Then, we choose x∗ ∈ [0, 1] such that ε(x∗) = δ
2 , and y∗ ∈ [0, 1] such that γ(y∗) = δ

2 . It is worth noting that,
since ‖p − η‖ > δ, both x∗ and y∗ exist and are unique, and moreover x∗ > y∗. We can now define the flattest
δ-approximation of p as

p(δ)
i

=

 x∗ for i ∈ I,
y∗ for i ∈ J,
pi else.

(9)

In Fig. 1, the process of flattening a probability distribution p is shown, together with the resulting flattest δ-
approximation p(δ). In analogous fashion with the steepening process, the flattening one always maximally reduces
the distance between the initial distribution p and the uniform distribution η. Indeed, for ‖p − η‖ ≥ δ, it is easy to
show that ‖p(δ) − η‖ = ‖p− η‖ − δ.

Remark. Let us note that the above constructions preserve the order of the elements, i.e., if the probability
distribution p is non-increasingly ordered, then the same applies to both p̄(δ) and p(δ).

FIG. 1. The procedure of flattening and steepening the probability distribution p. The added portion is green, while the
removed one is red. The two portions have the same area equal to δ

2
. (a) The original distribution p. (b) The procedure

of flattening the probability distribution p. (c) The flattest δ-approximation of p, p(δ). (d) The procedure of steepening the

distribution p. (e) The steepest δ-approximation of p, p̄(δ).

The following lemma, concerning the majorization properties of p̄(δ) and p(δ), singles out these two distributions
among all the other distributions which are δ-close to p.

Lemma 1. For a given probability distribution p of k elements, the distributions p̄(δ) and p(δ) are extremal δ-
approximations of p in the sense of majorization order,

(i) The steepest δ-approximation p̄(δ) of p majorizes any arbitrary distribution p′ satisfying ‖p− p′‖ ≤ δ,

p̄(δ) � p′. (10)

(ii) The flattest δ-approximation p(δ) of p is majorized by every arbitrary distribution p′ satisfying ‖p− p′‖ ≤ δ,

p′ � p(δ). (11)
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Thus, the above lemma (whose proof can be found in the appendix) shows that the steepest and flattest δ-
approximations of p are extremal points (with respect to the majorization order) of the set of all probability dis-
tributions which are δ-close to p.

Let us now consider the Lorenz curves of the steepest and flattest approximations. Lorenz curves are useful tools for
studying majorization in a visual way, and they have been utilised in the context of the resource theory of purity and
thermodynamics [9, 10]. For this reason, in the following we provide a description of the two extremal distributions
we have found in terms of their Lorenz curves, see Fig. 2. Consider a probability distribution p of k elements, where
we take the elements to be non-increasingly ordered. We define the Lorenz curve of p as the continuous curve Lp
from the real interval [0, k] to the real interval [0, 1], such that Lp(l) =

∑l
i=1 pi for l = 1, . . . , k, and Lp(0) = 0; for

non-integer values of l, the curve is a straight line. In the following, we refer to the points of contact between these

straight lines,
{(
l,
∑l
i=1 pi

)}k−1

l=1
, as the elbows of the curve. Lorenz curves are concave functions, and can be used

to study majorization as well as to extend its scope [15, 20]. Indeed, given two probability distributions p and q, such
that p � q, we have that the Lorenz curve of p, Lp, always lays above the Lorenz curve of q, Lq.

The Lorenz curve of p̄(δ) is obtained from Lp by shifting all its elbows upward by δ
2 , until we reach the normalisation

threshold equal to 1. Then, the curve is concluded by an horizontal segment. Formally, the Lorenz curve of the steepest
δ-approximation is defined as

Lp̄(δ)(l) =

l∑
i=1

p̄
(δ)
i =

{ ∑l
i=1 pi + δ

2 for l ≤ l∗,
1 for l > l∗.

(12)

The Lorenz curve of p(δ) begins as a straight segment connecting the origin of the axes with the elbow
(
lI ,
∑
i∈I pi −

δ
2

)
,

where lI is the maximum index of the set I. The final part of the curve is also a straight segment, connecting the
elbow

(
lJ − 1, 1−

(∑
i∈J pi + δ

2

))
, where lJ is the minimum index of the set J , with the point (k, 1). Finally, the other

elbows of the curve are simply shifted downward by δ
2 . More formally, the Lorenz curve of the flattest δ-approximation

is

Lp(δ)(l) =

l∑
i=1

p(δ)
i

=


l x∗ for l ∈ I,∑l
i=1 pi −

δ
2 for l 6∈ I ∪ J,

1− (k − l) y∗ for l ∈ J.
(13)

Then, from Lemma 1 it follows that the Lorenz curve of any probability distribution p′ (such that ‖p − p′‖ ≤ δ)
entirely lies above the Lorenz curve of p(δ), and below the Lorenz curve of p̄(δ).

FIG. 2. The Lorenz curve of the probability distribution p = (0.6, 0.3, 0.1) is shown in blue. For δ = 0.4, we find that the

steepest δ-approximation of p is p̄(δ) = (0.8, 0.2, 0), and its Lorenz curve is shown in orange. The flattest δ-approximation of p

is p(δ) = (0.4, 0.3, 0.3), and its Lorenz curve is shown in green.

Now, let us come back to the analysis of the steepest and flattest approximations. An additional property of the
processes of steepening and flattening a probability distribution consists in the fact that they preserve the majorization
order.

Lemma 2. Given two probability distributions of k elements, p and q, which satisfy p � q, we have

p(δ) � q(δ), (14)

p̄(δ) � q̄(δ). (15)
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The above lemma (whose proof can be found in the appendix), together with Lemma 1, has implications for the
smooth versions of Schur convex/concave functions, i.e. functions from the space of probability distribution to R that
are, respectively, monotonic increasing/decreasing in the majorization order. For any function f from the space of
probability distribution to R, let us define the following two smooth versions,

f̄ (δ)(p) = max
‖q−p‖≤δ

f(q), (16)

f (δ)(p) = min
‖q−p‖≤δ

f(q). (17)

Then, we have the following proposition, which allows for explicitly computing the smoothed entropies for a given
value of δ,

Proposition 3. Let f be Schur-convex function, and p a probability distribution of k elements. Then

f̄ (δ)(p) = f(p̄(δ)), f (δ)(p) = f(p(δ)). (18)

If f is a Schur-concave function, then

f̄ (δ)(p) = f(p(δ)), f (δ)(p) = f(p̄(δ)). (19)

Proof. For f being Schur-convex we have that p � q implies

f(p) ≥ f(q). (20)

Thus the function preserves majorization order, hence on the set of δ-approximations of p it is maximal on p̄(δ) and

minimal on p(δ). Thus from definition of f̄ (δ) and f (δ) we obtain Eq. (18). An analogous argument applies when f is
Schur-concave.

The above result has applications in several resource theories, some of which were considered in the introduction,
when approximate transformations are applied on a single copy of the system. For example, with Proposition 3
one can explicitly evaluate the smoothed versions of the min- and max-entropies (both of which are Schur-concave
functions), used in the theory of purity. These Rényi entropies are associated, respectively, with the single-shot non-
uniformity of formation and the single-shot distillable non-uniformity of a given state [9]. Similar quantities exists
in thermodynamics, known as the smoothed single-shot work of formation and smoothed single-shot extractable
work [10]. These quantities are associated with, respectively, the ∞-order and the 0-order Rényi-divergence from a
given thermal state, that is, a Gibbs state with fixed inverse temperature β and given Hamiltonian H. It is in the
thermodynamic setting that our result has found a first application, see Refs. [17, 18]. There, the authors use the
property of Schur-concave functions shown in Proposition 3 to explicitly evaluate the smooth version of a family of
Rényi-divergences associated with the generalised free energies introduced in Ref. [21]. In order to explicitly evaluate
these quantities, the authors of Ref. [18] find the equivalent of the steepest and flattest distributions we have derived,
but in the context of β-majorization. For this setting, they show that the flattest distribution can always be explicitly
defined, while this is not the case for the steepest one.

From Lemma 2 and Proposition 3 it directly follows that

Corollary 4. The smoothed versions of a Schur-convex function, f̄ (δ) and f (δ), are monotonic under majorization
order, i.e., given two probability distributions of k elements, p and q, where p � q, we have

f̄ (δ)(p) ≥ f̄ (δ)(q), f (δ)(p) ≥ f (δ)(q). (21)

We close the paper with a result about the minimum distance δ which allows the δ-approximation of p to majorize
q (and the δ-approximation of q to be majorized by p), when p 6� q.

Proposition 5. Consider two probability distributions of k elements, p and q, such that p 6� q. Let δ1 be the minimal
δ such that p̄(δ) � q, and δ2 the minimal δ such that p � q(δ). Then we have

δ1 = δ2 = δ∗ ≡ 2 max
l∈{1,...,k}

l∑
i=1

(qi − pi) . (22)
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The above proposition (whose proof can be found in the appendix) provides a measure of how much a distribution
p majorizes a distribution q, in the sense that it tells us how much we have to distort q in order for p to majorize
it, or equally how much we have to distort p in order for q to be majorized by it. By proving the statement of
Proposition 5 we have shown that this measure is given by δ∗, which is the minimal distance that allows the steepest
approximation of p to majorize q, and the flattest approximation of q to be majorized by p. Other measures of
majorization distance include the mixing character/distance [22, 23], the information/work distance [21, 24, 25], and
the maximum probability of transition [26].

CONCLUSIONS

In this paper, we study a notion of approximate majorization for discrete probability distributions. In particular,
we consider the set of probability distributions which are δ-close, in the `1-distance, to a given distribution p, and
we identify the extremal elements of this set under majorization order. These extremal distributions are the steepest
and flattest δ-approximations of p, and in Lem. 1 we show that they majorize/are majorized by all the other δ-
apporximations, respectively. We then show, in Lem. 2, that taking the steepest (or the flattest) δ-approximation of
two probability distributions preserves their majorization order. In Prop. 3, we use the properties of the steepest and
flattest approximations to explicitly compute the smoothed versions of Schur-convex (concave) functions. This is a non-
trivial task, since to compute these quantities one needs to perform an optimisation over the set of δ-approximations
of a given probability distribution. In Cor. 4 we show that the smoothed versions of Schur-convex (concave) functions
are monotonic under majorization order. Finally, in Prop. 5 we provide a new measure for quantifying how much a
probability distribution majorizes another one, using the notion of extremal distributions here introduced.

Appendix A: Steepest and flattest approximations

Lemma 1 (restatement). For a given probability distribution p of k elements, the distributions p̄(δ) and p(δ) are
extremal δ-approximations of p in the sense of majorization order,

(i) The steepest δ-approximation p̄(δ) of p majorizes any arbitrary distribution p′ satisfying ‖p− p′‖ ≤ δ,

p̄(δ) � p′. (A1)

(ii) The flattest δ-approximation p(δ) of p is majorized by every arbitrary distribution p′ satisfying ‖p− p′‖ ≤ δ,

p′ � p(δ). (A2)

Proof. Let p be in non-increasing order. Let p̃ be an arbitrary δ-approximation of p, satisfying ‖p̃ − p‖ ≤ δ. Then

we can obtain p̃ as p̃i = pi + δi, where
∑k
i=1 |δi| ≤ δ. Notice that the obtained probability distribution might be not

ordered, and therefore we define p̃↓ as the non-increasingly ordered probability distribution obtained from p̃. Also,

notice that for all m, l = 1, . . . , k, with m ≤ l, we have that
∑l
i=m δi ∈

[
− δ2 ,

δ
2

]
. We can now prove the Lemma.

Proof of part (i). We will exploit the distribution r, see Eq. (2), used in the definition of p̄(δ) (which is equal to p
with the largest element increased by δ

2 , before the tail is cut by the same amount). Clearly, for any l

l∑
i=1

p̃↓i ≤
l∑
i=1

pi +
δ

2
=

l∑
i=1

ri. (A3)

Now, the procedure of cutting the tail only affects sums that are larger than 1, and makes them to be equal to 1.
Since in p̃ all sums are no greater than 1, this does not affect the majorization conditions. Thus, we find that p̄(δ)

majorizes p̃.
Proof of part (ii). Note that, over the interval I, the elements of p(δ) are all equal, see Eq. (9). The same is true for

elements of p(δ) with indices in J . Those that are neither in I nor in J are the same as in the original distribution p.
Since p is in non-increasing order, we have that I = {1, . . . , lI}, and J = {lJ , . . . , k}. Let us first consider sums up to l

elements for l ≤ lI . As we noticed, over the interval I the distribution p(δ) is flat, and its norm is equal to
∑lI
i=1 pi−

δ
2

due to the definition of ε(x∗), see Eq. (7). Let us now consider p̃, and its non-increasingly ordered version p̃↓. Then it

is clear that
∑lI
i=1 p̃

↓
i ≥

∑lI
i=1 p̃i ≥

∑lI
i=1 pi −

δ
2 , since the most we can diminish the first lI largest elements of p is by
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subtracting all δ
2 from them. Therefore, we have two distributions over I, one is flat, and the second has larger total

sum. Since all distributions majorize the flat one, we get that for all l ≤ lI ,
l∑
i=1

p̃↓i ≥
l∑
i=1

p(δ)
i
. (A4)

For l 6∈ I ∪ J we have that, according to its definition, p(δ)
i

= pi, and therefore the conditions of Eq. (A4) are still
satisfied. To deal with the set of indices J , we rewrite the related majorization inequalities which we need to prove as

k∑
i=l

p(δ)
i
≥

k∑
i=l

p̃↓i , ∀ l > lJ . (A5)

As a first step, we consider these sums for l = lJ . We have that,

k∑
i=lJ

p̃↓i ≤
k∑

i=lJ

p̃i =

k∑
i=lJ

(pi + δi) ≤
k∑

i=lJ

pi +
δ

2
=

k∑
i=lJ

p(δ)
i
, (A6)

where the last equality follows from the definitions of p(δ) and γ(y∗), see Eq. (8). To prove Eq. (A5), note that for

l ≥ lJ we have p(δ)
i

= y∗, where y∗ is some positive number defined in the course of the construction of p(δ), see

Eq. (9). For now, the value of y∗ is not important, and what we need is that all p(δ)
i

are constant for i ∈ J . Then, we
have to prove that

k∑
i=l

p̃↓i ≤ (k + 1− l) y∗, (A7)

for l > lJ . But this is a consequence of the following easy-to-prove observation. Consider non-negative numbers

{ai}ni=1 put in increasing order. Let
∑n
i=1 ai ≤ nλ, where λ ≥ 0 is some constant. Then

∑l
i=1 ai ≤ l λ. This

observation ends the proof.

Lemma 2 (restatement). Given two probability distributions of k elements, p and q, which satisfy p � q, we have

p(δ) � q(δ), (A8)

p̄(δ) � q̄(δ). (A9)

Proof. Let us first prove that the steepest δ-approximation preserves the majorization order. Let l∗ and m∗ be the
indices defined as in Eq. (3) for, respectively, p̄(δ) and q̄(δ). Note that l∗ ≤ m∗. Indeed, from the construction of p̄(δ)

it follows that l∗ is the largest l such that
∑l
i=1 pi + δ

2 ≤ 1. Then, from the fact that p � q, we get that l∗ ≤ m∗.
Now, for l ≤ l∗ we have

l∑
i=1

p̄
(δ)
i =

l∑
i=1

pi +
δ

2
,

l∑
i=1

q̄
(δ)
i =

l∑
i=1

qi +
δ

2
, (A10)

hence p � q implies

l∑
i=1

p̄
(δ)
i ≥

l∑
i=1

q̄
(δ)
i , ∀ l ≤ l∗. (A11)

For l > l∗, instead, we have
∑l
i=1 p̄

(δ)
i = 1, hence the rest of the majorization conditions is automatically satisfied.

Now we will prove that the flattest approximation preserves the majorization order. Following the definition of
Eq. (9), let us denote x = x∗(p), x′ = x∗(q) and y = y∗(p), y′ = y∗(q), where x∗, y∗ are defined in the course of
constructing the flattest approximation; x∗ is the level at which the first largest elements are cut, and y∗ is the level
to which the smallest elements are enlarged. Similarly, let us denote lI ≡ lI(p), l′I ≡ lI(q) and lJ ≡ lJ(p), l′J ≡ lJ(q).
Recall that the interval I = {1, . . . , lI} labels the elements that are cut (and have become equal to x∗), while the
interval J = {lJ , . . . , k} labels the elements that are enlarged (and have become equal to y∗). In the following, we
will frequently use the result of Lemma 6, that x ≥ x′, and y ≤ y′. In fact, these inequalities are necessary conditions
for majorization (indeed, x and x′ are the largest elements, while y and y′ are the smallest elements of p(δ) and q(δ),
respectively).
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We will divide the range l = 1, . . . , k into five intervals; (i) [1, lI ], (ii) [lI + 1, l′I ], (iii) [lJ , k], (iv) [l′J , lJ − 1], and (v)
(max {lI , l′I} ,min {lJ , l′J}). Notice that the intervals (ii) and (iv) may be empty. For each interval we will prove that

l∑
i=1

p(δ)
i
≥

l∑
i=1

q(δ)
i
, (A12)

for l belonging to the specific interval.

(i) [1, lI ]: This case is immediate. For all i ≤ lI , and independently of whether lI > l′I or vice versa, we have

p(δ)
i

= x ≥ x′ ≥ q(δ)
i
, (A13)

where the first inequality follows from Lemma 6, and the second one from the fact that x′ is largest element of
q(δ). Notice that the second inequality is saturated for all i ≤ l′I . Summing up we obtain Eq. (A12) for l ≤ lI .

(ii) [lI + 1, l′I ]: This case is trivial if the set is empty. When the set is not empty, instead, we start by considering
the case of l = l′I . In this situation we have

l′I∑
i=1

q(δ)
i

=

l′I∑
i=1

qi −
δ

2
,

l′I∑
i=1

p(δ)
i
≥

l′I∑
i=1

pi −
δ

2
, (A14)

which follows from the definition of ε(x) and ε(x′), see Eq. (7), and the fact that lI ≤ l′I . Thus, due to the fact
that p � q, we obtain

l′I∑
i=1

p(δ)
i
≥

l′I∑
i=1

q(δ)
i
. (A15)

Then, since p(δ) has no smaller norm than q(δ) on this interval, and moreover q(δ) is flat on the interval, we have

that p(δ) (as well as any other distribution with no smaller norm) majorizes q(δ) on the interval. This proves
Eq. (A12) for this interval.

(iii) [lJ , k]: In this interval we will prove equivalent relation to the one of Eq. (A12), namely

k∑
i=l

p(δ)
i
≤

k∑
i=l

q(δ)
i
, (A16)

for l > lJ . For all i ≥ lJ , and independently of whether lJ < l′J or vice versa, we have

p(δ)
i

= y ≤ y′ ≤ q(δ)
i
, (A17)

where the first inequality follows from Lemma 6, and the second one from the fact that y′ is the smallest element
of q(δ). Summing up, we obtain Eq. (A16) for l ≥ lJ .

(iv) [l′J , lJ − 1]: This case is trivial if the set is empty. When the set is not empty, instead, we start by considering
the case of l = l′J . We have that

k∑
i=l′J

q(δ)
i

=

k∑
i=l′J

qi +
δ

2
,

k∑
i=l′J

p(δ)
i
≤

k∑
i=l′J

pi +
δ

2
, (A18)

which follows from the definition of γ(y) and γ(y′), see Eq. (8), and the fact that lJ ≥ l′J . Therefore, by p � q
we obtain that

k∑
i=l′J

p(δ)
i
≤

k∑
i=l′J

q(δ)
i
. (A19)
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Thus, on this interval q(δ) has no smaller norm than p(δ), and moreover q(δ) is flat. If the norms were equal

to each other, p(δ) would majorize q(δ) on the interval, since any distribution majorizes the flat distribution.
Therefore the conditions

k∑
i=l

p(δ)
i
≤

k∑
i=l

q(δ)
i
, (A20)

would be satisfied for l > l′J . Since norm of q(δ) may only be larger, the above inequalities still hold.

(v) max{lI , l′I} < l < min{lJ , l′J}: Note that for l in such interval we have

l∑
i=1

p(δ)
i

=

l∑
i=1

pi −
δ

2
,

l∑
i=1

q(δ)
i

=

l∑
i=1

qi −
δ

2
, (A21)

which follows from the definition of ε(x) and ε(x′), see Eq. (7). So, by p � q we obtain for the considered interval

l∑
i=1

p(δ)
i
≥

l∑
i=1

q(δ)
i
. (A22)

This concludes the proof of the majorization relations for all l.

Lemma 6. Let us consider two probability distributions of k elements, p and q, where p � q. We denote x = x∗(p),
x′ = x∗(q) and y = y∗(p), y′ = y∗(q), where x∗, y∗ are defined in the course of constructing the flattest approximation;
x∗ is the level at which first largest elements are cut, and y∗ is the level to which the smallest elements are enlarged.
Then

x ≥ x′, y ≤ y′. (A23)

Proof. Let us first denote lI ≡ lI(p), l
′
I ≡ lI(q), and lJ ≡ lJ(p), l′J ≡ lJ(q). Recall that the interval I = {1, . . . , lI}

labels the elements that are cut (and have become equal to x∗), while the interval J = {lJ , . . . , k} labels the elements
that are enlarged (and have become equal to y∗).

To prove that x ≥ x′, notice first that for any l = 1, . . . , k we have

l∑
i=1

pi ≤ l x+
δ

2
, (A24)

Indeed, for l ≤ lI we have

l∑
i=1

pi =

l∑
i=1

(x+ δi) ≤ l x+
δ

2
, (A25)

where δi ≡ pi − p(δ)
i

satisfy
∑lI
i=1 δi = δ

2 and
∑l
i=1 δi ≥ 0 for any l, which follows from the construction of p(δ). For

l > lI , instead, we have

l∑
i=1

pi =

lI∑
i=1

pi +

l∑
i=lI+1

pi = lI x+
δ

2
+

l∑
i=lI+1

pi ≤ lI x+
δ

2
+ (l − lI)x = l x+

δ

2
, (A26)

where the inequality follows from the definition of the interval I, see Eq. (5). Now we use Eq. (A24) for l = l′I , in
conjunction with the majorization condition p � q, to get x ≥ x′. We write

l′I x+
δ

2
≥

l′I∑
i=1

pi ≥
l′I∑
i=1

qi = l′I x
′ +

δ

2
, (A27)

which implies x ≥ x′, since l′I ≥ 1 by definition.
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The relation y ≤ y′ is proved in an analogous way. First, for any l = 1, . . . , k we have

k∑
i=l

pi ≥ (k − l + 1) y − δ

2
. (A28)

Indeed, for l ≥ lJ we have

k∑
i=l

pi =

k∑
i=l

(y − εi) ≥ (k − l + 1) y − δ

2
, (A29)

where εi ≡ p(δ)
i
− pi satisfy

∑k
i=lJ

εi = δ
2 and

∑k
i=l εi ≥ 0 for any l, which follows from the construction of p(δ). For

l < lJ , instead, we have

k∑
i=l

pi =

lJ−1∑
i=l

pi +

k∑
i=lJ

pi =

lJ−1∑
i=l

pi + (k − lJ + 1) y − δ

2
≥ (k − l + 1) y − δ

2
, (A30)

where the inequality follows from the definition of the interval J , see Eq. (6). Now we use Eq. (A28) for l = l′J , in
conjunction with the majorization condition p � q, to show that y ≤ y′. We write

(k − l′J + 1) y − δ

2
≤

k∑
i=l′J

pi ≤
k∑

i=l′J

qi = (k − l′J + 1) y′ − δ

2
, (A31)

which implies y ≤ y′.

Proposition 5 (restatement). Consider two probability distributions of k elements, p and q, such that p 6� q. Let
δ1 be the minimal δ such that p̄(δ) � q, and δ2 the minimal δ such that p � q(δ). Then we have

δ1 = δ2 = δ∗ ≡ 2 max
l∈{1,...,k}

l∑
i=1

(qi − pi) . (A32)

Proof. Let us begin by showing that δ∗ is the minimum distance δ such that p̄(δ) � q. As a first step, we want to
show that p̄(δ∗) majorizes q. To this aim, consider the non-normalised distribution r obtained from p by adding δ∗

2 to
its first element, Eq. (2). Then, for all l ≤ l∗, we have

l∑
i=1

p̄
(δ∗)
i =

l∑
i=1

ri =

l∑
i=1

pi +
δ∗

2
≥

l∑
i=1

pi +

(
l∑
i=1

(qi − pi)

)
=

l∑
i=1

qi, (A33)

where the inequality follows from the definition of δ∗. When l > l∗, instead, we have that
∑l
i=1 p̄

(δ∗)
i = 1, and due to

the normalisation condition on q we have that
∑l
i=1 p̄

(δ∗)
i ≥

∑l
i=1 qi. Then, p̄(δ∗) � q.

To show that δ∗ is minimum, we consider δ̄ < δ∗, and we show that p̄(δ̄) 6� q. In this case, it exists an l̄ such that

δ̄

2
<

l̄∑
i=1

(qi − pi) . (A34)

Then,

l̄∑
i=1

p̄
(δ̄)
i ≤

l̄∑
i=1

pi +
δ̄

2
<

l̄∑
i=1

pi +

l̄∑
i=1

(qi − pi) =

l̄∑
i=1

qi, (A35)

where the first inequality is saturated for l̄ ≤ l∗, and the second inequality follows from Eq. (A34). Thus, we have

that p̄(δ̄) 6� q for all δ̄ < δ∗.
Now, we show that δ∗ is the distance δ such that p � q(δ). In particular, we initially want to show that p � q(δ∗).

As a first step, we consider the interval I = {1, . . . , lI} in which q(δ∗) is flat, and all its elements are equal to x∗. In
particular, we have that

lI∑
i=1

q(δ∗)
i

=

lI∑
i=1

x∗i =

lI∑
i=1

qi −
δ∗

2
≤

lI∑
i=1

qi −

(
lI∑
i=1

(qi − pi)

)
=

lI∑
i=1

pi, (A36)
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where the second equality directly follows from Eq. (7) and from the fact that ε(x∗) = δ∗

2 , while the inequality follows

from the definition of δ∗. The above equation proves that, on the interval I, the norm of q(δ∗) is smaller or equal to

the one of p. Then, since q(δ∗) is flat over the interval I, we have that p majorizes it, that is,

l∑
i=1

pi ≥
l∑
i=1

q(δ∗)
i

, ∀ l ≤ lI . (A37)

We can now consider the interval in between I and J , where J = {lJ , . . . , k}. For all l in this interval, lI < l < lJ , we
have

l∑
i=1

q(δ∗)
i

=

lI∑
i=1

x∗ +

l∑
i=lI+1

qi =

l∑
i=1

qi −
δ∗

2
≤

l∑
i=1

qi −

(
l∑
i=1

(qi − pi)

)
=

l∑
i=1

pi, (A38)

which, again, follows from the definition of ε(x∗) and the one of δ∗. Thus, we find that

l∑
i=1

pi ≥
l∑
i=1

q(δ∗)
i

, ∀ l ∈ {lI + 1, . . . , lJ − 1} . (A39)

Finally, we consider the interval J . In this case, we will prove that

k∑
i=l

pi ≤
k∑
i=l

q(δ∗)
i

, ∀ l > lJ . (A40)

To do so, let us consider the case l = lJ , where we have

k∑
i=lJ

q(δ∗)
i

=

k∑
i=lJ

y∗ =

k∑
i=lJ

qi +
δ∗

2
≥

k∑
i=lJ

qi +

(
k∑

i=lJ

(pi − qi)

)
=

k∑
i=lJ

pi, (A41)

which follows from the definition of γ(y∗) and the one of δ∗. Thus, we have that, over the interval J , q(δ∗) has bigger

norm than p. Then, following the same argument used in the proof of Lemma 2 (iv), we have that since q(δ∗) is flat

over J , then it is majorized by p, which proves Eq. (A40). Therefore, we have that p � q(δ∗).

To conclude the proof, we need to show that δ∗ is minimum, that is, for all δ̄ < δ∗, we have that p 6� q(δ̄). When δ̄

is considered, we have seen that an l̄ exists such that Eq. (A34) is satisfied. Then, for l = l̄,

l̄∑
i=1

q(δ̄)
i
≥

l̄∑
i=1

qi −
δ̄

2
>

l̄∑
i=1

qi −
l̄∑
i=1

(qi − pi) =

l̄∑
i=1

pi, (A42)

where the first inequality is saturated when lI ≤ l̄ < lJ , and the second one follows from Eq. (A34). Thus, we have

that p 6� q(δ̄) for all δ̄ < δ∗.

Acknowledgements We thank Fernando Brandão, Nelly Ng and Stephanie Wehner for discussions. MH is partially
supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of
the authors and do not necessarily reflect the views of the John Templeton Foundation. JO thanks the Royal Society
and an EPSRC Established Career Fellowship for their support. CS is supported by the EPSRC [grant number
EP/L015242/1].

[1] Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities: Theory of Majorization and Its Applications.
Springer Series in Statistics. Springer New York, New York, NY, 2011.
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[11] Johan Åberg. Catalytic Coherence. Physical Review Letters, 113(15):150402, 2014.
[12] Renato Renner. Security of Quantum Key Distribution. arXiv:quant-ph/0512258, 2005.
[13] Erik Nikolai Torgersen. Comparison of experiments when the parameter space is finite. Zeitschrift für Wahrscheinlichkeit-

stheorie und Verwandte Gebiete, 16(3):219–249, 1970.
[14] Erik Nikolai Torgersen. Comparison of Statistical Experiments. Cambridge University Press, Cambridge, 1991.
[15] Joseph M. Renes. Relative submajorization and its use in quantum resource theories. Journal of Mathematical Physics,

57(12):122202, 2016.
[16] Rishi Bhargava, Ashish Goel, and Adam Meyerson. Using approximate majorization to characterize protocol fairness. In

SIGMETRICS ’01 Proceedings of the 2001 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 330–331, New York, NY, USA, 2001. ACM.

[17] Remco van der Meer. The Properties of Thermodynamical Operations. PhD thesis, Delft University of Technology, 2016.
[18] Remco van der Meer, Nelly Huei Ying Ng, and Stephanie Wehner. Smoothed generalized free energies for thermodynamics.

arXiv:1706.03193 [quant-ph], 2017.
[19] Eric P. Hanson and Nilanjana Datta. Maximum and minimum entropy states yielding local continuity bounds.

arXiv:1706.02212 [math-ph, physics:quant-ph], 2017.
[20] Francesco Buscemi and Gilad Gour. Quantum relative Lorenz curves. Physical Review A, 95(1):012110, 2017.
[21] Fernando Brandão, Micha l Horodecki, Nelly Ng, Jonathan Oppenheim, and Stephanie Wehner. The second laws of quantum

thermodynamics. Proceedings of the National Academy of Sciences, 112(11):3275–3279, 2015.
[22] Ernst Ruch and Alden Mead. The principle of increasing mixing character and some of its consequences. Theoretical

Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 41(2):95–117, 1976.
[23] Ernst Ruch, Rudolf Schranner, and Thomas H. Seligman. The mixing distance. Journal of Chemical Physics, 69(1):386–392,

1978.
[24] Micha l Horodecki and Jonathan Oppenheim. Fundamental limitations for quantum and nano thermodynamics. Nature

Communications, 4(2059), 2013.
[25] Philippe Faist, Frédéric Dupuis, Jonathan Oppenheim, and Renato Renner. The minimal work cost of information pro-

cessing. Nature Communications, 6:7669, 2015.
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