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Abstract:  The predictive hotspot mapping of sparse spatio-temporal events (e.g., crime and traffic 

accidents) aims to forecast areas or locations with higher average risk of event occurrence, which is 

important to offer insight for preventative strategies. Although a network-based structure can better 

capture the micro-level variation of spatio-temporal events, existing deep learning methods of sparse 

events forecasting are either based on area or grid units due to the data sparsity in both space and 

time, and the complex network topology. To overcome these challenges, this paper develops the first 

deep learning (DL) model for network-based predictive mapping of sparse spatio-temporal events. 

Leveraging a graph-based representation of the network-structured data, a gated localised diffusion 

network (GLDNet) is introduced, which integrating a gated network to model the temporal 

propagation and a novel localised diffusion network to model the spatial propagation confined by the 

network topology. To deal with the sparsity issue, we reformulate the research problem as an 

imbalance regression task and employ a weighted loss function to train the DL model. The framework 

is validated on a crime forecasting case of South Chicago, USA, which outperforms the state-of-the-

art benchmark by 12% and 25% in terms of the mean hit rate at 10% and 20% coverage level, 

respectively.  
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1 Introduction 

Hotspot mapping highlights areas/locations that have higher than average incidence of events, 

sparsely distributing in space and time. Early efforts on hotspot mapping are primarily retrospective, 

aiming to measure and detect space-time clusters of historical sparse spatio-temporal data, including 

public safety (Miaou et al., 2003), earthquake occurrences (Vere-Jones, 2009), crimes (Davies and 

Marchione, 2015, Ratcliffe, 2010), epidemiology (Ugarte et al., 2014), and environmental science (Apte 

et al., 2017), among others. Recently, there has been an increasing interest in using historical data to 

produce hotspot maps for predictive purpose owing to its prospective benefits. For instance, accurate 

crime forecasting can help police enforcements to prevent criminal behaviours, and traffic accident 

prediction is useful for road safety interventions and traffic reengineering.  
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Predictive hotspot mapping aims to generate a prospective risk surface, which is a graphical 

representation of the estimated probabilities of an event, or series of events, occurring at each of the 

geographic units within an area of interest (Bowers et al., 2004). According to the spatial scales of the 

geographic units, existing predictive hotspot mapping algorithms are categorised into two groups: 

area-level methods and network-level methods.  

1.1 Area-Level Predictive Hotspot Mapping and Limitations 

Most previous efforts have been devoted to the statistical predictive mapping of hotspots based 

on area units, including grids (Mohler et al., 2011, Chainey et al., 2008) and administrative districts 

(Kleinman et al., 2005, Santini and Valentini, 2011). They usually divided an area of interest into 

regular grids, and then aggregated historical crime data within each grid. Commonly used statistical 

approaches include prospective hot spotting (Bowers et al., 2004), prospective space-time scan 

statistics (Takahashi et al., 2008), the self-exciting point process (SEPP) (Mohler et al., 2011), and 

temporally weighted kernel density estimate (KDE) (Porter and Reich, 2012). These methods aim to 

generate an expected probability surface to indicate where events are likely to occur in a particular 

period (e.g., the next day). For instance, series of studies (Mohler et al., 2011, Mohler, 2014) have 

investigated to use the SEPP for predictive crime hotspot mapping and they have shown that SEPP 

outperforms many other statistical approaches. However, statistical models require large efforts on 

parameter inference and empirical studies have reported several non-functional scenarios of these 

approaches (Adepeju, 2017, Rosser and Cheng, 2016).  

Alternatively, deep learning (DL), a cutting-edge machine learning method, has been used for 

spatio-temporal events modelling and prediction using the grid-based data representation. The 

success of DL models, such as convolution neural network (CNN) and recurrent neural network 

(RNN), is owing to their powerful capability of spatial or temporal feature representation without 

prior knowledge. For example, a spatio-temporal residual CNN model was employed to predict the 

crimes in cities (Wang et al. (2017b). Lin et al. (2018) proposed a deep neural network by incorporating 

the criminal environmental information with spatio-temporal crime features for grid-based crime 

forecasting. Similarly, Ke et al. (2017) developed an ‘end-to-end’ CNN-based DL model for on-demand 

ride services (car-hailing events) prediction. Similar works include (Cheng et al., 2018, Liu et al., 2018, 

Liao et al., 2018, Ren et al., 2019a). 

All abovementioned approaches, however, are area-level predictive hotspots mapping methods, 

which have several limitations. First, the size of the area units is often empirically and arbitrarily 

determined by the planners. The level of prediction precision changes in response to different spatial 

scales, which is referred to as the modifiable areal unit problem (Levin and Peres, 2017, Cheng and 

Adepeju, 2014). Second, the level of spatial correlation between adjacent area units may vary across 

the region of interest due to the underlying physical structures, which is referred to as the spatial 

heterogeneity (Cheng et al., 2014). For example, the concentration pattern of crimes in cities might be 



affected by natural or artificial geographic features (e.g., lakes, parks and street network), but the 

area-level data representation omits the geographical information, which is likely to decrease the 

prediction accuracy (Rosser and Cheng, 2016). 

1.2 Network-Level Predictive Hotspot Mapping and Motivations 

In the real world, many events naturally reside in a network structure, such as many urban crimes 

(Rosser et al., 2017), road traffic accidents (Yannis et al., 2017, Xie and Yan, 2008), and taxis’ pick-up 

events (Tang et al., 2016). The network structure might fundamentally influence the distribution 

patterns of hotspots. Hence, network-based data representation is necessary to better capture the 

micro-level variation of events over space and time (Sullivan and Feinn, 2012, Zhu et al., 2017). In 

addition, the use of network-based predictive hotspot mapping is also well-motivated considering its 

practical utility. For instance, street-network-based crime prediction could effectively guide the police 

patrolling in cities (Chen et al., 2018, Chen et al., 2017). Traffic demand (e.g., taxi-hailing) forecasting 

alongside the road network contributes to optimising the urban transportation resources allocation 

and improving traffic efficiency (Tang et al., 2016). 

Recent attention has been shifting from macroscale area-level predictive mapping to microscale 

network-level hotspot forecasting. Several works pioneered to extend some conventional statistical 

models to a network-based version. For examples, network-based space-time scan statistics has been 

proposed for retrospective crime hotspot mapping (Shiode and Shiode, 2014) and traffic congestion 

detection (Anbaroglu et al., 2014). Similarly, Tang et al. (2016) developed a network KDE method to 

analyse the distribution characteristics of taxi’s pick-up events over the street network space. For the 

purpose of predictive mapping, Rosser et al. (2017) presented the first attempt of a prospective 

network-time KDE (NTKDE) model for crime forecasting, which is the state-of-the-art network-based 

predictive hotspot mapping method. However, the NTKDE draws various parameter assumptions 

about the latent dynamics governing the generation of the observed hotspot patterns. In addition, it 

also suffered from time-consuming parameter inference issue. 

Lately, standard DL models have been extended to deal with network-structured (i.e., graph-

structured) data (Defferrard et al., 2016, Henaff et al., 2015), and latest studies have focused on 

developing DL models for graph-structured spatio-temporal data modelling and prediction. For 

instance, Li et al. (2017) introduced a diffusion convolutional recurrent neural network to predict road 

network traffic flow. The model used graph convolution with weight sharing strategy to capture 

spatial dependency and leveraged recurrent neural networks to model temporal dependency. (Yu et 

al., 2017) proposed a spatio-temporal graph convolution networks to predict the traffic flow at turning 

junction networks. Similar works can be referred to (Zhang et al., 2019, Ren et al., 2019b). However, 

these studies focused on dense space-time process with flow data (e.g., traffic flow or population flow), 

which differs from the sparse events data (e.g., crimes). Therefore, DL methods for predictive hotspot 

mapping of sparse spatio-temporal events at a network level are still a research gap. 



1.3 Challenges and Aims 

The key challenge of DL for predictive hotspots mapping lies in how to model the complex spatio-

temporal dependencies of sparse events along the network. The sparsity means that counting the 

events over space and time results in many zero counts of some segments/links of the network. The 

difficulties are in three aspects. 

First, in temporal domain, the sequence of event counts over time is far from a continuous 

function that can be approximated in conventional DL models (Mhaskar and Poggio, 2016). In addition, 

predictive mapping requires sufficient events being included in the input, so that the input length is 

usually much longer than that in classical time series predictions. In this scenario, RNN-based DL 

model for temporal modelling suffers from time-consuming iterations and slow response to dynamic 

changes.  

Second, in spatial domain, commonly-used graph-based DL models learn spatial dependencies 

using weight sharing strategy. Directly applying such DL models to spatially sparse event data will 

lead to all zero weights (Wang et al., 2017a), and then fail to generate a predictive mapping.  

Third, predictive mapping is not a trivial regression task. At a chosen prediction time, most spatial 

units have zero event counts, which leads to the creation of an imbalanced regression learning 

scenario (Krawczyk, 2016). In this scenario, the direct use of the standard regression loss function for 

parameter learning will make the DL model prone to overfitting or lead to all zero predictions.   

In this paper, we aim to develop a novel and effective graph-based DL framework, named gated 

localised diffusion network (GLDNet), to generate predictive hotspot mapping of spatio-temporal 

events in network space. As many events occurred due to the human activities (e.g. crime and traffic 

accidents), here, we consider the street-network-based events without loss of generality. Here the 

street network is represented as a weighted and undirected graph, where event counts are defined as 

the values on the vertex set of the graph. In GLDNet, the temporal propagation of historical events is 

modelled by a gated network and the associated spatial propagation is captured via a localised 

diffusion network in terms of the network distance and topology, which overcomes the spatial 

heterogeneity. In the model training process, a weighted regression loss function is employed to solve 

the issue of many zero observations. The proposed model is evaluated using crime data from the City 

of Chicago, Illinois, USA to prove its feasibility and effectiveness. To our best knowledge, this is the 

first attempt to develop graph-based DL approaches for predictive hotspot mapping of sparse spatio-

temporal data on networks.  

The remainder of this paper is organised as follows. Section 2 formulises the research problem of 

the network-based predictive hotspot mapping. Section 3 presents the proposed novel GLDNet 

approach. Sections 4 describes the crime forecasting case study to demonstrate the effectiveness of 

the proposed model. Finally, concluding remarks are given in Section 5. 



2 Problem Formulation 

The goal of this is to generate a probability distribution on the street network to indicate where 

events (e.g. crimes) are likely to occur at a particular period (e.g., the next day). This section first 

discusses the network-based data representation as a graph, and then the network-based predictive 

hotspot mapping problem is formulised. 

2.1 Network-Structured Data Representation 

In real world, many events occur and present a spatial distribution on the road network, such as 

urban crime, traffic accidents and taxis’ pick-up on street segments. To perform spatio-temporal 

modelling on the network, it is essential to represent the network-based data in formal mathematical 

terms. This can be done using terminology from graph theory and graph signal processing (Shuman 

et al., 2013).  

First, a dual approach is adopted to express a street network structure as a graph 𝐺 = (𝑉, 𝐸, 𝑊), 

where 𝑉 , 𝐸 , and 𝑊  are the graph nodes set, edge set and weight matrix, respectively. The dual 

approach represents the street segment as a set of graph nodes 𝑉, while each intersection between 

any pair of adjacent street segments 𝑖  and 𝑗  is turned into one edge 𝑒𝑖𝑗 ∈ 𝐸 . The weight 𝑤𝑖𝑗 

associated with each graph edge 𝑒𝑖𝑗 often indicates the similarity between the two vertices it connects. 

According to the First Law of Geography (Tobler, 1970), the spatial dependency of adjacent 

geographic units decays with the increase of distance. As this law is also applicable for sparse spatio-

temporal events (Leitner et al., 2018, Weisburd et al., 2009), this paper defines the edge weight to be 

inversely proportional to the network distance between the midpoints of two adjacent street segments. 

A common way to calculate the edge weight is via a Gaussian kernel weighting function: 

 
𝑤𝑖𝑗 = {

exp (−
[𝑑𝑖𝑠𝑡(𝑖, 𝑗)]2

2𝛼2 )    if 𝑒𝑖𝑗 is an edge

0                                         otherwise,

 (1) 

for some parameter 𝛼. The 𝑑𝑖𝑠𝑡(𝑖, 𝑗) represents the distance between the two midpoints of street 

segments 𝑖 and 𝑗. 

Second, events are matched to the nearest street segments and they are then aggregated at a 

chosen time scale (e.g., one day interval), as the values at the associated graph nodes. Supposing a 

graph has N nodes, the values at the N nodes at a certain time t are collectively referred to as a graph 

signal 𝒙𝑡 ∈ ℝ𝑁. Figure 1 presents a graphical example to illustrate the representation approach. This 

representation allows for a network-oriented computational analysis regarding the network topology. 

 



 

Figure 1. Represent the network-structured data as a graph signal. 

 

2.2 Network-based Predictive Hotspot Mapping Problem  

Network-based predictive hotspot mapping aims to learn a mapping function F, which uses 

historical observations in previous M time steps (referred to as the time window) to forecast where 

events are likely to occur in the next time step given the topology of a graph 𝐺. Thus, this problem 

can be formulated as: 

 𝒚𝑡 = 𝐹(𝒙𝑡−1, ⋯ , 𝒙𝑡−𝑀|𝐺) (2) 

where 𝒙𝑖 ∈ ℝ𝑁 is a signal on a graph with N nodes at time step i. Each entry of 𝒙𝑖 is the historical 

event counts at a graph node. 𝒚𝑡 ∈ ℝ𝑁  is the estimated graph signal, indicating the predicted 

occurrence probability at time step t.  

3 Graph-based Deep Learning Method 

The aim of the predictive hotspot mapping is to develop methods to model the spatio-temporal 

propagation of the events. This section presents the methodological details of the proposed gated 

localised diffusion network (GLDNet) model, which enables to carry out predictive mapping of sparse 

events in the space-time dimension whose spatial propagation is confined by a network structure.  

3.1 Modelling the Temporal Spread of Events 

Many types of events exhibit temporal dependency which suggests these events are not 

independent but are instead related in predictable ways over time. Among DL models, RNN and its 

variants (e.g., long short-term memory), which utilise a gating mechanism and a recurrent structure, 

become widespread in temporal dependency learning. However, event sequences are much 

temporally sparser than traditional time series. This raises two issues. First, DL models poorly 

approximate the discrete point process. Second, DL models require sufficient historical observations 

to learn unseen patterns for forecasting. Thus, the input sequence is usually much longer for 

predictive hotspot mapping than that for time series forecasting. In this circumstance, RNN-based 

models suffer from time-consuming iterations and a slow response to dynamic changes. 



To solve these two issues, we consider data smoothing to boost the performance of a gated 

network for temporal dependency modelling of sparse data. The smooth technique augments the data 

in temporal domain and the proposed gated network enables an effective long-range temporal 

dependency modelling. 

3.1.1 Data smoothing 

This paper proposes to use the simple exponential smoothing (SES) technique to construct an 

augmented data sequence serving as the input features. SES is a rule of thumb technique for 

smoothing time-tagged data using the exponential window function, which assigns exponentially 

decreasing weights over time to the past observations. Supposing the raw data sequence is denoted 

as {𝑥𝑡} beginning at time 𝑡 = 0, a simple form of SE is given by the formulas: 

 
𝑠0 = 𝑥0 

𝑠𝑡 = 𝛼𝑠𝑥𝑡 + (1 − 𝛼𝑠)𝑠𝑡−1, 𝑡 > 0 
(3) 

where 𝑠𝑡 is the output of the SES algorithm, 𝛼𝑠 is the smoothing factor, and 0 < 𝛼𝑠 < 1. Figure 2 

displays an example of the SES with 𝛼𝑠 = 0.1 . A smaller smoother factor leads to a smoother 

augumented data sequence. The data smoothing scheme allows the DL model to learn the latent 

temporal patterns from temporally sparse data.  

 

Figure 2. A simple exponential smoothing example with 𝛼𝑠 = 0.1 

3.1.2 Gated Network  

An effective way to achieve a temporal dependency modelling of a very long sequence is to use 

the gating mechanism (Dauphin and Grangier, 2015) without recurrent structure. The gating 

mechanism allows the network to control what temporal influence can be propagated through a gate 

structure.  

This article utilises a gated network (GNet) to model the temporal propagation of events. 

Comparing with RNN or LSTM, the gated network has only one gate, which greatly speed up the 

model training process. The GNet consists of ℎ0,…,ℎ𝐿 hidden layers, which is formulated as: 

 𝑿𝑙+1 = ℎ𝑙(𝑿𝑙) = 𝑅𝑒𝐿𝑈(𝑿𝑙𝑾𝑙 + 𝒃𝑙) ⊙ 𝜎(𝑿𝑙𝑽𝑙 + 𝒄𝑙) + 𝒅𝑙 (4) 



Let N represents the number of graph nodes, and 𝑛𝑙 denote the dimension of the node features of the 

l-th hidden layer (referred to as the hidden units). Then, 𝑿𝑙 ∈ ℝ𝑁×𝑛𝑙−1
 is the input of the layer ℎ𝑙, 

𝑿𝑙+1 ∈ ℝ𝑁×𝑛𝑙
 is the output. 𝑾𝑙 , 𝑽𝑙 ∈ ℝ𝑛𝑙−1×𝑛𝑙

, 𝒃𝑙 , 𝒄𝑙 ∈ ℝ𝑛𝑙
, 𝒅𝑙 ∈ ℝ𝑁  are learnable parameters. 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) is the Rectified Linear Unit (ReLU) function, which allows the gradient to 

easily propagate through a deep structure (Britz, 2015). 𝜎(𝑥) =
1

1+𝑒−𝒙 is the sigmoid function and ⊙ 

is the element-wise product. In this paper, the hidden layer is termed as the gated ReLU layer (GRL).  

More specifically, 𝜎(𝑿𝑙𝑽𝑙 + 𝒄𝑙) is termed as a gate, which modulates the non-linear projection 

𝑅𝑒𝐿𝑈(𝑿𝑙𝑾𝑙 + 𝒃𝑙) to control the information passed on in this layer and model the accumulative 

influence of the past events on the current status. In addition, 𝒅𝑙 gives a base probability level for the 

occurrence of the future event at each graph node. The base probability is analogous to the 

background intensity of event occurrence in the self-exciting point process model for predictive 

hotspot mapping (Mohler et al., 2011). The proposed gated network is then constructed by stacking 

multiple GRLs, written as: 

 𝐺𝑁𝑒𝑡(𝑿) = ℎ𝐿 (ℎ𝐿−1(⋯ ℎ2(ℎ1(𝑿)) ⋯ )) (5) 

3.2 Modelling the Spatial Spread of Events 

Empirical studies have confirmed the tendency for some events to concentrate on a range of 

street segments (Rosser et al., 2017, Braga et al., 2011). However, modelling the spatial propagation of 

network-structured events is difficult because the spread is constrained by the associated graph 

topology. Additionally, the event counts are extremely spatially sparse. Traditional DL models adopt 

either a ‘fully-connected structure without weight sharing’ or a ‘global parameter-sharing scheme’. 

The former easily overfits while the latter leads to all zero parameters to fit the extreme sparse data.  

To solve these issues, this paper develops a localised diffusion network (LDN). The network-

based spatial propagation is modelled as an information diffusion process on a graph, which adopts a 

novel localised parameter sharing scheme as a trade-off between the ‘no weight sharing scheme’ and 

the ‘global weight sharing scheme’. 

3.2.1 Information Diffusion Process 

We consider the spread of sparse events as an information diffusion process (Zhou and Schölkopf, 

2004). A basic information diffusion process is characterised by random walks on a graph G with a 

transition matrix P, defined as: 

 𝑷 = 𝐷−1𝑊 (6) 

where 𝑊 ∈ ℝ𝑁×𝑁 is the weight matrix of the graph, 𝐷 ∈ ℝ𝑁×𝑁 is the diagonal matrix with 𝐷𝑖𝑖 =

∑ 𝑤𝑖𝑗𝑗 , and the element 𝑝𝑖𝑗 in 𝑷 ∈ ℝ𝑁×𝑁 denotes the probability of the event influence propagating 

from the i-th node to a successive j-th node. Suppose a graph signal 𝒙 ∈ ℝ𝑁 is a column vector where 



the i-th entry 𝒙(i) indicates the value at the i-th graph node. The values at all graph nodes after one-

step random walk 𝒙′ is written as: 

 𝒙′ = 𝑷𝒙 (7) 

Specifically, the i-th row of 𝒙′ in Eq. (7) satisfies: 

 𝒙′(𝑖) = (𝑷𝒙)(𝑖) =
∑ 𝑤𝑖𝑗𝒙(𝑖)𝑗∈𝜘𝑖

∑ 𝑤𝑖𝑗𝑗∈𝜘𝑖

 (8) 

where the neighbourhood 𝜘𝑖 is the set of vertices connected to the i-th vertex by a weighted edge. 

According to Eq. (8), each node can receive the information from its first-order adjacent neighbours 

after one step random walk. Therefore, a one-step random walk essentially serves the purpose of 

measuring to what extent a graph node is affected by its nearby vertices. The information diffusion 

process can be regarded as a sequence of random walks on the graph and the states of graph nodes 

will achieve a stationary distribution after infinite random walks. 

3.2.2 Localised Diffusion Network  

In practice, a stational distribution of a diffusion process can be approximated as a weighted 

combination of finite K-step random walks on a graph (Teng, 2016). This paper proposes a novel LDN 

to model a K-step truncated diffusion process for spatial modelling. The LDN consists of K LDN layers, 

denoted as 𝑔0,…,𝑔𝐾. Let 𝑿𝑘 ∈ ℝ𝑁×𝑚𝑘−1
 be the input of the k-th layer 𝑔𝑘, where N is the number of 

graph nodes, and 𝑚𝑘−1 is the dimension of the output features of the (k-1)-th layer (referred to as the 

hidden units). The k-th layer is formulated as: 

 𝑿𝑘+1 = 𝑔𝑘(𝑿𝑘) = 𝑅𝑒𝐿𝑈(𝑿𝑘 ∗ 𝜽𝑘 + (𝑷𝑿𝑘) ∗ 𝜼𝑘) (9) 

where 𝜽𝑘, 𝜼𝑘 ∈ ℝ𝑁×𝑚𝑘−1×𝑚𝑘
 are learnable parameters in the k-th layer, 𝑿𝑘+1 ∈ ℝ𝑁×𝑚𝑘

 is the output 

of the k-th layer, ReLU is the activation function, and ∗ is multidimensional array operator. For any 

arrays 𝑨 ∈ ℝ𝐷1×𝐷2, 𝑩 ∈ ℝ𝐷1×𝐷2×𝐷3, the operation 𝑪 = 𝑨 ∗ 𝑩 ∈ ℝ𝐷1×𝐷3 satisfies that  

 𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘

𝐷2

𝑘=1

𝑏𝑖𝑘𝑗 , 0 ≤ 𝑖 < 𝐷1 and 0 ≤ 𝑗 < 𝐷3  (10) 

In Eq. (9), the first term 𝑿𝑘 ∗ 𝜽𝑘 ∈ ℝ𝑁×𝑚𝑘
 models the dependency of each node itself, because 

each node is its own zeroth-order neighbour. In the second component, 𝑷𝑿𝑘  models the one-step 

random walk and the transition matrix P captures the static spatial similarity considering the network 

distance between nodes. However, the influence propagation over space might be heterogeneous. 

Thus, the learnable parameter 𝜼𝑘 is employed to adaptively learn the spatial dependency between 

each node and its first-order adjacent neighbours.  

Traditionally, a classical deep neural network has no weight-sharing scheme (Figure 3a), which 

means the connections between two successive layers have totally different learnable parameters (Ren 

et al., 2019b). For a large graph, the number of learnable parameters in one layer equals the number 



of graph edges. The over-parameterised structure substantially slows down the model training 

procedure and it would be easy to get overfitting (Louizos et al., 2017). A way to address both issues 

is using the global parameter-sharing scheme (Figure 3b). It means all nodes in the same layer use the 

same learnable parameter. It relies on the assumption of the homogeneity of the spatial dependency 

over the entire space, such as an image. However, this assumption is not suitable for the 

heterogeneous sparse network. For example, in Figure 3a, most of the segments have no observed 

events, but they are adjacent to several segments with non-zero event counts. The global weight 

sharing scheme will make the learnable parameters to be all zeros.  

Here we propose to adopt a localised parameter-sharing scheme. In this scheme, the learnable 

parameters are only shared within the local neighbourhood of each node. For example, in Figure 3d, 

the first-order adjacent neighbours (nodes 2, 3, 7, 10, and 11) of node 6 in the LDN layer share the 

parameter, visualised using the blue lines with the same darkness. The localised parameter-sharing 

scheme allows the model to account for spatial heterogeneity and it is suitable for spatially sparse 

data. 

 

 

Figure 3. Inner structure of parameter sharing schemes. Connections with the same colour share the 
same learnable parameter. (a) Road network (b) ‘no parameter sharing scheme’ (c) ‘global parameter 

sharing scheme’ and (d) ‘localised parameter sharing scheme’.  

 

LDN is constructed by stacking multiple LDN layers. As any high-order neighbours can be 

derived from the first-order neighbours, the proposed LDN can capture the spatial dependencies 

between a node and its, at most, K-th-order adjacent neighbours by successively stacking K hidden 

layers. The proposed LDN structure consisting of K hidden layers with an initial input 𝑿 is formulated 

as: 

 𝐿𝐷𝑁(𝑿) = 𝑔𝐾 (𝑔𝐾−1(⋯ 𝑔2(𝑔1(𝑿)) ⋯ )) (11) 

Figure 4 demonstrates a two-layer LDN model. Taking the No.6 road segment as an example, the 

spatial dependencies between the zeroth- (segment 6) and the first-order (segments 2, 3, 7, 10, and 11) 

neighbours are captured via the first LDN layer. Then, the second-order (segments 1, 4, 8, 9, 12, and 

13) spatial dependency is modelled via the second LDN layer. 



 

Figure 4. A two-layer LDN the spatial dependency between each node and its zero-, first- and 
second-order adjacent neighbours. The inner connections in each LDN layer can preserve the graph 
topology. The connections with the same colour in the lower right plot indicate that they share the 

same learnable parameters. 

3.3 Gated Localised Diffusion Network  

The influence of each historical event is spread through time and, as well, distributed across its 

immediate vicinity in space. To generate the network-based predictive mapping of spatio-temporal 

sparse events, a GLDNet model is constructed by integrating the gated network, the LDN and a fully 

connected layer, as displayed in Figure 5. The GLDNet can be formulated as: 

 𝐺𝐿𝐷𝑁𝑒𝑡(𝑿) = 𝑔𝐾(⋯ 𝑔1(ℎ𝐿(⋯ ℎ1(𝑿) ⋯ )) ⋯ ) ∙ 𝝎𝑓𝑐 +  𝑏𝑓𝑐 (12) 

where the output of 𝑔𝐾(∙) is of dimension ℝ𝑁×𝑚𝐾
 , 𝝎𝑓𝑐 ∈ ℝ𝑚𝐾

 and 𝑏𝑓𝑐 are the learnable parameters 

in the fully-connected layer.  

 

Figure 5. Framework of GLDNet 

 

In this DL framework, the input sequence is first smoothed by SES and then fed into the GNet, 

which consists of L GRL layers for temporal propagation modelling. Afterwards, the output of the 

GNet is passed to a K-layer LDN for street-network-based spatial propagation modelling. The final 



output after the fully-connected layer is a predictive mapping indicating the probability of event 

occurrence on each street segment at the next time step.  

3.4 Parameter Learning 

All learnable parameters in the GLDNet can be adaptively adjusted during model training by 

minimising a training loss function. Traditionally, the most frequently used criterion is the mean-

square error (MSE) for regression. However, the predictive mapping task is not a trivial regression 

task, because the observed events are typically rare. MSE measure is insufficient to measure error 

appropriately for sparse data. Thus, DL models simply using MSE as the loss function will tend to be 

biased to the most frequent and uninteresting cases (locations without event occurrence).  

To tackle this issue, we treat the predictive mapping of sparse events as an imbalanced regression 

task. A novel weighted loss function is employed to make the learning algorithm focuses on these 

rare events. This strategy operates by assigning high misprediction cost to rare cases. The weighted 

loss function is formulated as: 

 𝑙𝑜𝑠𝑠 =
1

𝑁
∑ 𝜔𝑖(𝑥𝑖 − 𝑥𝑖)2

𝑁

𝑖=0

 (13) 

where 𝑁 is the number of graph node, the 𝑥𝑖, 𝑥𝑖 are, respectively, the observed and predicted values 

at the i-th graph node. 𝜔𝑖 is the weight assigned to each square error (𝑥𝑖 − 𝑥𝑖)2, defined as 

 𝜔𝑖 = {
𝑥𝑖     if 𝑥𝑖 > 0
𝜌      otherwise,

 (14) 

where 𝜌 ∈ [0, 1) is a predefined coefficient. That is, if 𝑥𝑖 > 0 (there are events occurring at the i-th 

node), the misprediction cost is 𝑥𝑖(𝑥𝑖 − 𝑥𝑖)2, otherwise, it is 𝜌(𝑥𝑖 − 𝑥𝑖)2. With a small coefficient 𝜌, 

the misprediction cost at graph node with non-zero value is higher than the misprediction cost at 

node with zero value. Consequently, the weighted loss function enables the GLDNet model to focus 

on the most important and rare event occurrence. Leveraging the weighted loss function, all learnable 

parameters can be trained via backpropagation algorithm (LeCun et al., 2015). 

4 Case Study 

4.1 Experiment data and pre-processing 

We validate the proposed GLDNet using a crime forecasting case. The crime data and the 

corresponding street network are downloaded from the City of Chicago open data portal. We consider 

three different crime types, burglary (3995 crimes), assault (5707 crimes), and theft (13033 crimes) in 

the south side of Chicago, covering a two-year period (731 days) starting on 1st January 2016. 

Chicago’s sides are defined as a collection of multiple community areas, which are used for urban 

planning purposes. Figure 6 (a) illustrates the street network (5910 segments) of the South Chicago 



and Figure 6 (b)-(d) show the distribution of the total assaults, burglaries and thefts during the study 

period. The three subplots also highlight several geographical features (parks and cemetery) that have 

no crimes being observed, just like ‘holes’ in the spatial pattern, which suggests that crimes are 

preferentially aligned with streets.  

Crimes are aggregated daily by street segment and predictions are made one day ahead. The one-

day timescale is required by the patrolling police officers, who are assigned patrolling tasks on a daily 

basis. According to Figure 6a, the daily crimes are very sparse, and the spatial pattern varies across 

crime types. To construct the weight matrix of the graph representation of the street network, we set 

the parameter 𝛼2 in Eq. (1) to be 5. 

To construct the input-output pairs, we fix the time window 𝑀 to be 100 in the three tasks. Thus, 

the length of the input-output pairs is 631. In this experiment, we use the last 100-day crime data to 

test both models. Regarding GLDNet training, we divide the rest of the data into a training set (431-

day) and a validation set (100-day). The validation data are not used to train the model but to monitor 

the change of the predictive performance of GLDNet during the training process to prevent 

overfitting. The smoothing factor 𝛼𝑠 in in Eq. (3) is set to be 0.5. 

 
Figure 6. (a) The street network in South Chicago. The map also shows one-day crime records of the three 
different crime types on 31st December 2017. (b) (c) and (d) The South Chicago with assault, burglary, and 

theft crimes in two-year period overlaid, respectively. 

4.2 Performance measurement 

Due to the sparsity of events, we evaluate the mapping effectiveness using the mean hit rate with 

statistical quantification. ‘Hit rate’ is a widely-used metric to measure the performance of predictive 



hotspot mapping (Adepeju et al., 2016, Bowers et al., 2004, Rosser and Cheng, 2016). Hit rate is defined 

as the proportion of events accurately captured by the predicted locations. To calculate the hit rate, 

we first compute the prediction on each street segment, and then sort all segments by the predicted 

values in descending order. The street segments are selected in the sorted order and the proportion 

of the events falling on those street segments is tallied. In this paper, the hit rate is computed at 

maximum 20% street length coverage and the mean of the hit rates over all consecutive testing days 

is used as the metric for predictive mapping assessment.   

The mean hit rate can directly reflect the comparison results of any two models, but the statistical 

significance of such results is unknown. To provide a robust evaluation of the improvement of one 

method over the other, we also present a statistical quantification. It means we treat the hit rates at a 

given coverage percentage of two different methods over all testing days as a pair of time series. 

Wilcoxon Signed-Rank (WSR) test is employed to assess whether one method is significantly better 

than the other. The statistic of the WSR test is given by 

 𝑆𝑤𝑠𝑟 = ∑(𝑠𝑔𝑛(𝑦𝑖
1 − 𝑦𝑖

2) ∙ 𝑅𝑖)

𝐷

𝑖=1

 (15) 

where 𝐷 is the number of testing days, 𝑠𝑔𝑛 is the sign function, 𝑦𝑖
1 and 𝑦𝑖

2 denote the hit rate on the 

i-th testing day from model 1 and model 2 at a chosen length coverage, respectively. 𝑅𝑖 is the rank of 

the i-th difference 𝑦𝑖
2 − 𝑦𝑖

1. After obtaining the statistic 𝑆𝑤𝑠𝑟, we can get the corresponding p-value 

using a single tailed lookup and determine whether the difference is statistically significant or not. 

4.3 GLDNet implementation 

In the GLDNet model, the hyper-parameters primarily include the number of GRLs 𝐿, the number 

of hidden units 𝑛𝑙 in each GRL, the number of LDN layers 𝐾, and the number of hidden units 𝑚𝑘 in 

each LDN layer. For model training, we also need to predefine the weighted loss function parameter 

𝜌 (Eq. (14)). This paper employs the grid search approach to determine the optimal hyper-parameters 

of GLDNet by changing one of the hyper-parameters while keep the others unchanged. Grid search 

is the simplest possible way to get good hyperparameters of deep learning model and it has been 

widely used in many deep learning models (Zhang et al., 2019, Huang et al., 2014). The pro is that it 

can be easily parallelised. In the grid search, the hyper-parameter 𝐿 is chosen from a range of [1, 4]; 

𝐾 is selected from one to seven; 𝑛𝑙 and 𝑚𝑘 are chosen from [2, 4, 8, 16]. The parameter 𝜌 in the loss 

function is selected between 0.005 to 0.035 with the step of 0.005. For simplicity, the hidden unit 

number 𝑛𝑙 in each GRL layer is set to be the same, so is the hidden unit number 𝑚𝑘 in each LDN 

layer. 

The GLDNet was implemented using the GPU-version TensorFlow 1.2 (Abadi et al., 2016). In 

model training, we set the batch size to be 50 and run 30 epochs (enough for convergence) with the 

Adam optimizer (Kingma and Ba, 2014). The learning rate is initialised to be 0.03 and then 



exponentially decays per 20 batches with a decay rate of 0.9. After the grid search, we adopt the 

cascade of two GRL layers, each of which has eight units, and five LDN layers, each of which has four 

hidden units. The GLDNet for the three crime forecasting tasks has the same configurations, but the 

model is trained separately for different crime types. The loss function parameter 𝜌 is 0.005, 0.010 and 

0.025, respectively, for burglary, assault and theft forecasting. More discussions on the hyper-

parameter calibration are provided in the Section 4.5. 

4.4 Results comparison  

The proposed GLDNet model is compared with network-time kernel density estimation (NTKDE) 

proposed by (Rosser et al., 2017), which is the state-of-the-art statistical method for network-based 

predictive mapping. And a software using NTKDE has been deployed in Metropolitan Police Service 

for street network-based crime predictive mapping in London, UK (Cheng et al., 2016). The approach 

to determine the parameters of NTKDE can be referred to (Rosser et al., 2017). Due to the high sparsity 

of the data, existing spatio-temporal DL models, such as those for network-based flow prediction 

(Zhang et al., 2019, Yu et al., 2017, Ren et al., 2019b), cannot function in this case. Thus, the comparison 

experiment does not include other DL models.  

Figure 7 presents the mean hit rate of GLDNet and NTKDE, averaged over the 100 testing days. 

Results show the GLDNet performs better than the NTKDE in all cases. For burglaries, assaults, and 

thefts, the GLDNet outperforms the NTKDE by 12% or more at 10% length coverage, and by around 

25% at 20% length coverage. Comparing the three cases, the mean hit rate of burglaries is slightly 

lower than the other two crimes, which is probably because burglaries are sparser than assaults and 

thefts, leading to higher stochasticity. Overall, except for the minor decrease in the predictive 

performance of burglaries, the mean hit rate of GLDNet across different crime types is quite similar 

(around 40% and 60% at 10% and 20% coverage, respectively), which illustrates its consistent 

performance. In Figure 7, the background shading areas indicate the coverage levels where the daily 

hit rate of GLDNet is significantly higher than the NTKDE approach at the 5% significance level, 

evaluated using the WRS test. We can observe significant differences between the two results at the 

majority of coverage levels for three crime types. 

 
Figure 7. Plot of mean hit rate against street length coverage level for burglary, assault, and theft crimes in 
South Chicago for GLDNet and NTKED. Shaded regions indicate the coverage levels for which there is a 



significant difference between the GLDNet and NTKDE results at the 5% significance level, evaluated using 
the WRS test.  

The above analysis is based on mean hit rate. As we find that the sparsity of crimes may affect 

the performance of the approaches, we also examine the performance difference in hit rate 

corresponding to the level of daily crime count. We split 100-day data into equal-sized groups by 

ranking daily crime count. Figure 8 presents the performance of GLDNet and NTKDE in terms of hit 

rate by level of daily crime count. Consistent improvements in hit rate are observed in all level of 

daily crime counts for burglaries, assaults, and thefts. The improvements of hit rate at the length 

coverage of 10% or more are statistically significant in all cases, with the exception of the case shown 

in Figure 8d. Additionally, it is worth noting that the hit rate of NTKDE in the sparsest case (Figure 

8a) notably decreases by around 50%. Instead, the proposed GLDNet can still yield satisfying results. 

This highlights the advantage of the proposed approach. 

 

 
Figure 8. The plot of mean hit rate against street length coverage level for burglary, assault, and theft crimes 
in the South Chicago for GLDNet and NTKED at different daily crime count level (illustrated in each title). 
Shaded regions indicate the coverage levels for which there is a significant difference between the GLDNet 

and NTKDE results at 5% significance level, evaluated using WRS test. 

 

In addition, to gain greater insight into the relative performance difference between the two 

methods, we also employ the relative daily difference in hit rate over the 100 days of test data at a 

chosen coverage level to compare the two methods. The relative improvement is defined as the 

absolute difference in the daily hit rates at a given coverage level between the two approaches, divided 



by the mean hit rate of NTKDE over all testing days. The positive values indicate the GLDNet 

outperform NTKDE on a given day, and vice versa. The results are illustrated in Figure 9 at three 

different coverage levels (5%, 10% and 20%). Overall, the mean values of the relative improvement at 

the three coverage levels are, respectively, 0.48, 0.60, and 0.80 for burglaries, 0.17, 0.40, and 0.62 for 

assaults, 0.28, 0.46, and 0.63 for thefts. A consistent increase of the relative improvement of predictive 

accuracy can be observed with an increase in the coverage level during the testing days.  

 
Figure 9. Histograms showing the relative improvement of predictive accuracy of GLDNet over NTKDE at 

three different coverage levels (5%, 10%, and 20%). The relative improvement is given by the difference in daily 
hit rate between the two approaches divided by the mean NTKDE hit rate. Positive values indicate that the 
proposed GLDNet performs better. The red dashed line indicates the mean value of the difference in each 

case. The green dashed line is the zero-line using as a reference. 

 

For a more direct and concrete comparison, the predictive mapping results of the three crime 

types for the two approaches on the last testing day (31st December 2017) are selected as an example 

and visualised in Figure 10. Comparing the left and right panels, Figure 10 demonstrates several 

important differences between GLDNet and NTKDE. First, more crimes can be captured by the risk 

map at 10% coverage level of GLDNet than that of NTKDE. Second, the spatial distribution of the top-

ranked street segments in GLDNet’s heatmap is more concentrated than NTKDE’s. It means GLDNet 

can generate the prediction results of higher compactness (connectedness) than NTKDE. Although 

compactness is not the primary objective of the prediction methods considered here, it is a useful 

characteristic in practical applications (Adepeju et al., 2016). This is because more compact and 

connected high risk locations are easier to patrol with limited police resourcing. Additionally, 

comparing the panels across rows in Figure 10, it illustrates that although the spatial patterns and the 

daily count of the three crime types are different, our approach performs well in all cases. It shows 

GLDNet can function on a wide variety of scenarios, irrespective of the specific spatio-temporal 

patterns within the data.  



In summary, the proposed GLDNet performs better than NTKDE, which is probably owing to the 

deep structure and its strong ability of spatio-temporal dependency modelling without the 

assumptions about the specific statistical distribution form of the temporal and spatial propagations.  

 

 
Figure 10. Network-based predictive mapping of three types of crimes, which shows the predicted risk on the 
last testing day (31st December 2017). In each subfigure, we just highlight street segments in red at 10% length 
coverage level. The darkness of red is proportional to the predicted probability of crime occurrence. The green 
dots indicate the crimes captured by the street segments in the top 10% length coverage and the blue dots are 
the non-captured crimes.  



4.5 Sensitivity analysis 

In this section, we conduct the sensitivity analysis on GLDNet, where four kinds of parameters 

are investigated, including the length of time window 𝑀, the number of GRL layers 𝐿, the number of 

LDN layers 𝐾 and the parameter 𝜌 in the loss function. Figure 11 presents the change of the mean hit 

rate at 10% and 20% coverage level by crime type and the parameter of interest.  

 

 
Figure 11. Sensitivity analysis of GLDNet. In each panel, the red line indicates the mean hit rate at 10% 

coverage level changing with the parameter of interest for each crime type while the bar plot shows the mean 
hit rate at 20% coverage level by crime type and the parameter of interest. 

 

In terms of the time window length, Figure 11a shows that for burglary forecasting, the hit rate 

increases sharply when increasing the window length from 50 to 100, and it then keeps increasing 

but the improvement is slight. For assault and theft forecasting cases, the highest hit rates can be 

achieved at a time window of 100. The results show that burglary predictive mapping requires more 

temporal information than assault or theft forecasting, which is probably due to the higher sparsity 

of burglaries. Regarding the number of GRL layers 𝐿, Figure 11b demonstrates the change of the mean 

hit rate at the both coverage levels with this parameter is similar across crime type. The mean hit rate 

first rises and then slightly drops when the number of GRL layers is more than two. This is because 

increasing the parameter 𝐿 may lead to the overfitting issues. From Figure 11c, it is found that the 

mean hit rates at 10% coverage level of the three crime types are the highest when the 𝐾 is set to be 

five, which mean the spatial propagation modelling takes into account the dependency between each 



street and its, at most, fifth-order adjacent neighbours. However, the mean hit rate at 20% coverage 

level of the burglary and assault predictions achieve the highest value at 𝐾 = 3 while that of the theft 

mapping peaks at 𝐾 = 5. This difference is potentially due to the variation of the spatial pattern 

across crime type. As we care more about the hit rate at a lower coverage level, the number of LDN 

layers is set to be five. Figure 11d displays the sensitivity analysis on the loss function parameter 𝜌. 

It shows the optimal value of 𝜌 for burglary, assault and theft forecasting is 0.005, 0.010 and 0.025, 

respectively. It is interesting to find that the optimal value of 𝜌 is lower when the sparsity of the crime 

is higher. For example, in the assault case, the mean hit rate sharply drops when enlarging the 𝜌 from 

0.02 to 0.025. It demonstrates the imbalance regression cannot be overlooked in the sparse scenario.  

5 Conclusions and future work 

In this paper, we propose a novel DL framework for predictive mapping of sparse spatio-temporal 

data on urban street networks. In this framework, the network-based sparse spatio-temporal data are 

represented as graph signals on a weighted and undirected graph. Based on this representation, a 

GLDNet is proposed. The model integrates a gated network for temporal propagation modelling and 

a localised diffusion network for spatial propagation modelling considering the topology of the street 

network. Due to the sparsity of data, we treat this predictive mapping problem as an imbalance 

regression task. A weighted loss function is employed in the model training process to solve the 

imbalance issue. The model is validated on three crime forecasting cases using the real-world crime 

data provided by the City of Chicago open data portal. The proposed model outperforms the state-of-

the-art benchmark NTKDE by 12% in the mean hit rate at 10% coverage level and by 25% at 20% 

coverage level for burglary, assault and theft forecasting. And the predictive hotspot map produced 

by GLDNet is more compact than NTKDE. 

In the future, we intend to test our model with other sparse spatio-temporal data in other cities 

and countries, to show its potential application in broader fields, such as traffic accidents prediction 

and other emergence event forecasting. In addition, the street network is represented as a static graph 

corresponding to its physical topology. A dynamic graph representation could be incorporated in our 

framework to better model the spatial mutual influence considering the road reconstruction or urban 

form change. We also intend to incorporate external factors, e.g., weather and holidays, in the deep 

learning model to further improve its robustness. 
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