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The burden of prostate cancer

Prostate cancer is the most common cancer for males in the 
UK. About 1 in 6 men are predicted to develop prostate 
cancer over their lifetime (1). In 2016, 11,631 patients died 
from prostate cancer in the UK (2). Until recently, the 
causes of prostate cancer were unclear owing to significant 
heterogeneity in samples between patients, and even 
within the same patient. However, the development of 
gene sequencing technology in the past few decades has 
revolutionized the study of genomics.

The origin of prostate cancer

The prostate is a walnut sized glandular structure 
surrounded by a collagenous capsule, Denonviller’s fascia 
and neurovascular bundle. Within the structure lies the 
urethra in which glandular fluid drains from the various 
areas of the prostate. Most of the glandular elements of 
the prostate lie within the peripheral zone, which is held 
together in a fibrous prostatic capsule within a stromal and 

collagen meshwork. It is known from radical prostatectomy 
samples that 68% prostate cancer arise from the peripheral 
zone (3-5).

Within the epithelial layer lies three cell types: the 
luminal acinar cells which secrete glandular fluid involved 
in semen production, basal cells which line the basal layer 
and are integral to survival of the luminal cells, and finally 
sparsely populated neuroendocrine cells which are involved 
in paracrine and endocrine signalling. Experimental 
difficulties isolating the underlying cell type responsible 
for the transformative change in prostate cancer means 
the origin still eludes researchers. The loss of the basal 
layer forms part of the diagnostic criteria for prostate 
cancer. Some studies have also suggested that a separate 
type of cell termed “intermediate” cells may be involved 
in carcinogenesis (6). However, no study has been able to 
prove beyond doubt the origin of prostate cancer and it 
is possible, given the significant inter- and intra-tumoural 
heterogeneity, that prostate cancer can arise from multiple 
cell types.
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Genome-wide association studies and single 
nucleotide polymorphisms (SNPs)

Prostate cancer risk factors are very varied. Age, ethnicity 
and family history are the most well recognized risk factors 
for prostate cancer (7-9), although environment, lifestyle 
and sexual history have also been implicated (10-13). Since 
the completion of the Human Genome Project (14,15) and 
advent of genome wide association studies, many studies 
have attempted to identify susceptible loci for prostate 
cancer. Initial family linkage and twin studies failed to 
find reproducible results owing to the heterogeneity 
of  prostate  cancer tumorigenesis .  Genes such as  
HOXB13 (16), BRCA1 (17), BRCA2 (18,19) were identified 
to confer significantly increased risk in prostate cancer 
development, aggression and are inherited in an autosomal 
dominant fashion with high penetrance, but this only 
accounted for a small percentage of familial prostate cancer. 
A recent review by Rubin and Demichaelis in 2018 (20) 
described several common genomic alterations in prostate 
cancer in which PTEN, RB1, TP53, AR and C-MYC are the 
most frequently implicated.

Other studies have identified further susceptible genes 
and foci, but the risk did not always translate to disease 
development. In a meta-analysis and GWAS of 24,395 cases 
and 24,726 controls the SNP rs11672691 showed evidence 
of replication with genome wide significance (21). However, 
rs8khie87391, located the same region as rs11672691, 
was associated with prostate cancer, but not found to be 
significant in another GWAS of 2,393 cases and 1,222 
controls (22). Common alterations across all prostate cancer 
samples are still elusive and reflect patient heterogeneity. 

In 2018, Schumacher et al. (23) published a meta-
analysis of 79,194 prostate cancer samples and 61,112 
control samples which identified 63 new prostate cancer 
susceptibility loci. Around half of the data generated for 
this meta-analysis was generated by using OncoArray, a 
microarray designed to detect around 600,000 SNPs. This 
study builds upon previous GWAS results which identified 
approximately 100 prostate cancer susceptibility foci (24,25) 
and led to the development of the BARCODE 1 trial in 
2017 predicting prostate cancer risk from a saliva test (26).

It is widely accepted that prostate cancer is pathologically 
multi-focal following autopsy studies by Djavan et al. (27) 
in 1999 showing 66% of cases were multifocal and 33% 
had a single focus of disease. Early genomic studies by 
Liu et al. (28) in 2009 using genome-wide SNP analysis 
of 94 anatomically separate cancer sites from 30 patients 

who passed away from metastatic prostate cancer found no 
relationship between the anatomic site of metastasis and 
the genomic copy number change pattern, suggesting a 
monoclonal origin of metastatic prostate cancer. However, 
subsequent genomic studies suggest that multifocal prostate 
cancer is a result of branching evolution, subsequent 
differentiation and ultimately mixing clonal populations. 
This gives evidence to the theory that cancer exhibits a 
field effect whereby surrounding morphologically normal 
tissue also exhibits high levels of mutations consistent 
with cancer cells despite being morphologically normal  
(29-32). It is possible that some patients may have 
monoclonal expansions whilst others have mixed metastatic 
clones. Further work is required in this area to understand 
the progression of metastatic prostate cancer.

Theories of treating the index lesion to reduce 
cancer burden has led to focal therapies gaining traction 
within parts of the urology community (33). Prospective 
studies (34,35) and meta-analysis (36) of morbidity data 
in whole gland versus focal therapy treatments have 
shown significantly reduced complication rates, although 
comparative toxic end points are still lacking (37). At 
present, UK National Guidelines continue to recommend 
whole gland therapy for intermediate to high risk  
patients (38).

Proteomic and genomic diagnostic and 
prognostic factors

Prostate cancer is often inherently slow-growing, and 
diagnosis is complicated by the presence of clinically 
insignificant cancer. Prostate specific antigen (PSA) was first 
purified in 1979 by Wang et al. (39). The discovery of PSA 
and subsequent studies as a serum biomarker created a new 
era of testing in prostate cancer. Unfortunately, PSA can 
be raised or under-represented in many benign conditions 
unrelated to prostate cancer (Table 1).

Due to the inaccuracies and ethical issues of overtreating 
patients with clinically insignificant prostate cancer (49), 
studies have attempted to validate the use of PSA in 
general screening. In 2013, Vickers et al. (50) performed 
retrospective PSA testing on archival samples from the 
Malmo Preventive Project in Sweden from the 1970s and 
compared them to previous PSA results. They concluded 
that measurements of PSA concentration from early to mid-
life can identify small groups of men at increased metastatic 
risk several decades later. Their results were widely reported 
in the media as evidence to offer screening for men in the 
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40s (51). However, the study results and interpretation were 
mired in controversy including questions over the stability 
of archival samples, changes in the PSA assay over time 
and the suitability of taking multiple PSA tests (the authors 
recommended at least 3) over their lifetime to screen for a 
small number of men. What is interesting is that an article 
published by Wilt and Ahmed (52) on prostate cancer 
screening in the same edition of BMJ recommended that 
“By choosing not to have the PSA test you can live a similar 
length of life, have little to no difference in your risk of 
dying from prostate cancer, and avoid the harms associated 
with tests, procedures, and treatments”. In 2018, Ilic  
et al. (53) performed a systematic review and meta-analysis 
of five randomized control trials involving a total of 721,718 
men comparing PSA screening with routine care. He 
concluded that screening may lead to a small reduction in 
disease-specific mortality over 10 years but has no effect on 
overall mortality. 

At present, PSA is used both as part of a diagnostic 
algorithm used for at risk patients (54) as well as for 
assessing biochemical recurrence but, due to its poor 
specificity, alternative clinical scoring systems including 
Gleason score, TMN staging, CAPRA score (55), imaging 
and histopathological examination should be incorporated 

when assessing the holistic long-term risk for patients and 
deciding treatment as a multidisciplinary team.

With improvements in proteomics and genomics, 
multiple diagnostic and prognostic indicators are now 
available commercially to assist in clinical decision making 
(Table 2).

It is important to note that, at present, the gold standard 
is still biopsy and histopathology examination, but many of 
these tests will provide further indications whether patients 
should receive invasive testing or treatment.

Androgen receptor (AR): the molecular basis of 
CRPC treatments

The relationship between androgens and prostate cancer 
was first discovered in a landmark study by Huggins and 
Hodges (67) in 1941, and they were subsequently awarded 
the Nobel Prize in Medicine and Physiology 1966 (68). 
Further work revealed that this is largely driven by the AR. 
In recurrent prostate cancer, androgen deprivation therapy 
(ADT) is utilized with good results. However, ultimately, 
most cases will progress to castration-resistant prostate 
cancer (CRPC) due to extragonadal sources of androgens, 
AR overexpression and amplification (69), mutation and 

Table 1 Benign conditions associated with serum PSA changes

Condition Study Finding

Age Oesterling et al. 1993 (40) Upper limit (between 2.5 to 6.5 ng/mL) increases between age 40–79

Ethnicity DeAntoni et al. 1996 (41) Statistically significant pairwise differences in mean PSA between whites and 
blacks, whites and Latinos, blacks and Asians and Asians and Latinos

Weight Beebe-Dimmer et al. 2008 (42) Flint’s Men’s Health Study showed that overweight African American men had 
on average 0.15 to 0.30 ng/mL lower PSA than those of normal weight

Medications Adhyam and Gupta 2012 (43) Finasteride, Dutasteride, 5-alpha reductase inhibitors reduce serum PSA by 
50% or greater

Digital rectal examination Chybowski et al. 1992 (44) Elevated PSA of 0.4 ng/mL in test subjects compared to control

Ejaculation Tchetgen et al. 1996 (45) Mean relative PSA increase (± standard error) ranged from 41% (±4%) after  
1 hour to 10% (±2.3%) after 48 hours

Acute prostatitis Gamé et al. 2003 (46) Total PSA increased up to day 3, then decreased over a month. Level of free 
PSA decreased up to day 10 and remained low for a month

Prostate biopsy Oesterling et al. 1993 (47) Increase in serum PSA with a median change of 7.9 ng/mL. 15–17 days to 
normalize

Trans-urethral resection of 
prostate

Increase in serum PSA with a median change of 5.9 ng/mL, 18 days to 
normalize

Acute urinary retention Aliasgari et al. 2005 (48) Increase serum PSA by a factor of 2-fold and can take 2 weeks to normalize

PSA, prostate specific antigen. 
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variants (70) or ligand-independent transactivation. A small 
number of patients will develop AR independent metastatic 
castration-resistant prostate cancer (mCRPC) which is 
linked to more aggressive phenotypes.

AR structure and signalling

AR is a ligand-activated transcription factor found on the X 

chromosome and dysregulation is associated with prostate 
cancer. The wild-type AR contains an N-terminus, DNA 
binding domain, hinge region and ligand-binding domain. 

AR ligand binding domain

The ligand-binding domain is involved in the activation 
of AR. Unliganded AR resides within the cytoplasm in 

Table 2 Commercially available prostate cancer genomic and proteomic assays to assist in clinical decision making

Test Patient criteria Details Prognostic predictor

Stockholm 3 (56) Age 50 to 70 and must not 
previously had diagnosis of 
prostate cancer

Panel of plasma biomarkers, 
232 genetic polymorphisms in 
association with clinical variables

Improves diagnostic specificity for 
detection of prostate cancer of Gleason 
score 7 or greater

Prolaris (57) Low to intermediate National 
Comprehensive Cancer Network 
(NCCN) risk (58)

31 RNA expression profiles 
implicated in cell cycle progression 
genes using tissue samples in 
combination with PSA and Gleason 
score

10-year disease specific mortality risk. 
Aggressive disease. 10-year biochemical 
recurrence risk

OncotypeDx Genomic 
Prostate score (59)

Low to intermediate NCCN risk RNA expression using tissue 
samples in combination with PSA, 
TMN staging and Gleason score

10-year disease specific mortality and 
metastatic risk. Aggressive disease

ConfirmMDx (60) Previous negative biopsy Methylation-specific quantitative 
polymerase chain reaction in 
combination with PSA, TMN 
staging and Gleason score

Improves negative predictive value of 
repeat biopsy

Progensa PCA3 (61) Previous negative biopsy RNA ratio of PCA3 RNA to PSA 
RNA in urine combined with PSA, 
DRE, age and prostate size

Improves negative predictive value of 
repeat biopsy

4K Score (62) Negative or no previous biopsy A panel of four Kallikrein protein 
in combination with clinical 
information

20-year disease specific mortality risk.  
10-year metastatic risk. Aggressive disease

Decipher (63) Low to intermediate NCCN risk 
or Post-radical prostatectomy 
with positive surgical margins, 
pT3a disease, pT4 disease or 
biochemical recurrence on PSA

RNA expression using tissue 
samples in combination with PSA, 
TMN staging and Gleason score

10-year disease specific mortality risk. 
5-year metastatic risk. Aggressive disease

OncotypeDx AR-V7 
Nucleus test (64)

mCRPC patients AR-V7 protein AR-V7 variant detection

ProstaVysion (65) Must have had biopsy or 
prostatectomy

ERG gene fusion/translocation or 
PTEN deletion using tissue samples 
in combination with PSA, TMN 
staging and Gleason score

Disease specific mortality risk and 
aggressive disease

Promark (66) Gleason 3+3 and 3+4 A panel of eight proteins using 
tissue samples in combination with 
PSA, TMN staging and Gleason 
score

Risk of aggressive disease

PSA, prostate specific antigen; mCRPC, metastatic castration-resistant prostate cancer; DRE, digital rectal examination; PTEN, 
phosphatase and tensin homolog. 
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combination with heat shock proteins. Androgens enter 
the cell via diffusion and bind to the C-terminal ligand-
binding domain of the receptor, causing a conformational 
change and dissociation of the heat shock protein complex, 
revealing a nuclear localization sequence (NLS). The AR 
with an exposed NLS localizes to the nucleus and binds 
to a variety of androgen response elements throughout 
the genome, resulting in modulation of gene expression. 
Modern CRPC treatment utilizes multiple modalities 
as the range of patients varies significantly from those 
with asymptomatic persistently high PSA to those with 
metastatic lesions (71). Current treatments targeting the AR 
receptor aim to disrupt this signalling pathway at various 
points. 

AR N-terminus

In 1995, Jenster et al. (72) performed a series of AR 
N-terminal deletions which identified that amino acid 
residues 1–485 (Transcription Activating Unit 1) were 
required for full AR activity via the ligand-activating 
pathway, whilst preservation of amino acids residues  
360–528 (Transcription Activating Unit 5) were sufficient to 
allow transcription by the AR even when the ligand-binding 
domain was deleted. The N-terminus also contains a CAG 
and GGC trinucleotide repeat polymorphism, which varies 
in length (73). The significance of variations in AR CAG 
polymorphism remains controversial, with some studies 
associating shorter repeat lengths with higher incidence of 
prostate cancer in African American men versus Caucasian 
men (74-77), but others not observing the same results 
in European populations (78,79). In 1994, Chamberlain  
et al. (80) found that increasing CAG repeat length reduced 
transactivation of transcription factors but did not eliminate 
AR activity. 

AR DNA binding domain

The DNA binding domain consists of two zinc molecules 
surrounded by nine cysteine molecules. The two “finger-
like” zinc projections function to provide specificity to 
DNA binding as well as a dimerization interface to stabilize 
binding (81,82). 

AR hinge region

The hinge region is involved in the regulation of AR 
activity. It has a role in differentiation between classical 

and selective androgen response elements and in post-
translational modifications (83). 

AR mutations

AR mutations are rare in the early stages of prostate cancer 
but increases in mCRPC. In 2015, Robinson et al. (84) 
published matched genome wide sequencing, germline 
and transcriptomics data of 150 mCRPC samples which 
identified 62.7% of all mCRPC samples harboured 
mutations in AR. Interestingly, their data showed a relative 
minority of mutations were within exon 1 (N-terminal 
and CAG polymorphism) and showed that most mutations 
focused in exon 4–8 (ligand-binding domain). The My 
Cancer Genome database manually aggregates data from 
multiple papers and databases including the Catalogue of 
Somatic Mutations in Cancer (85) and shows that L702H, 
W742C, H875Y, F877L, T878A and AR-V7 are the most 
common AR mutations. Other open access resources such 
as cBioPortal also exists nowadays to aggregate cancer  
data (86,87).

Anti-androgen therapy

AR mutations have been implicated in bicalutamide failure. 
Bicalutamide is a competitive inhibitor of testosterone and 
dihydrotestosterone binding to the AR. In 2002, Steketee 
et al. (88) looked at ligand responsiveness to AR mutants 
using a MMTV-LUC reporter and found that bicalutamide 
did not activate wild-type AR or the AR mutants H874Y, 
T877A, T877C, T877G or T8775. While they did not 
show the data for the other 877 variants they tested, they 
state that bicalutamide did not activate any of the other 
877 variants either. Interestingly, other studies have found 
that first generation anti-androgens such as bicalutamide, 
flutamide and nilutamide can have an agonist effect in some 
patients after several years of treatment, and conversely 
withdrawal of the drug appears to initially reduce tumour 
burden—a phenomenon coined as ‘androgen withdrawal 
syndrome’. This was experimentally shown when Tan  
et al. (89) demonstrated anti-androgen transactivation 
of AR using a luciferase reporter with AR mutants from 
mouse xenograph CWR22. They found that treatment 
with hydroxyflutamide (an early anti-androgen) at 10 nMol 
caused a 4- and 6-fold increase in transcriptional activity 
for H874Y and T877A mutants respectively compared 
to wild-type AR. However, total transcription activity 
was still only 15–20% of the maximal activity elicited by 
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testosterone and dihydrotestosterone. They also noted 
that dehydroepiandrosterone (secreted by the adrenals) at 
1 nMol, 10 nMol and 100 nMol stimulated an increase of 
2-, 3- and 8-fold H874Y transcription activity compared to 
wild-type AR. In 2003, Hara et al. (90) cultured androgen-
dependent LNCaP-FGC human cells with bicalutamide. 
They found that after 6–13 weeks, bicalutamide treatment 
increased PSA levels and growth in these LNCaPs. 
Subsequent sequencing of AR showed new mutations 
in W741C and W741L in the ligand-binding domain. 
Interestingly, hydroxyflutamide inhibited growth in these 
mutated LNCaP cells. This suggests that prolonged therapy 
with bicalutamide can cause AR mutations which cause 
bicalutamide to have agonist effects.

Enzalutamide is an anti-androgen capable of exerting 
action on three different stages of AR signalling. Firstly, 
it is a competitive AR inhibitor which binds to the ligand 
binding domain without triggering AR downstream 
signalling, thereby stopping androgens activating AR. It 
also has inhibitory actions on AR nuclear translocation and 
AR DNA binding within the nucleus (91). In 2013, Korpal  
et al. (92) and Joseph et al. (93) each generated different 
resistant LNCaP cell lines to overexpress AR and discovered 
a mutation at F876L within the AR ligand-binding 
domain which contributes to resistance to enzalutamide 
and apalutamide. Additionally, Korpal et al. observed 
that LNCaPs containing F876L were able to bypass the 
enzalutamide inhibition of AR nuclear translocation.

CYP17 inhibitor

Abiraterone irreversibly and selectively blocks cytochrome 
P450 17A1 (steroid 17α-monooxygenase) throughout the 
body, including those located within the adrenal cortex 
and the gonadal tissues. It also acts upon prostate cancer 
tissue itself and stops endogenous androgen production. 
As this drug is unselective for certain tissue groups, it 
effectively disrupts the hypothalamic-pituitary-adrenal 
axis, causing an increase in adrenocorticotrophic hormone 
and reduction in serum cortisol. Concurrent prednisolone 
treatment is therefore recommended for all patients using  
abiraterone (94,95).

Immunotherapy

The landmark discovery of dendritic cells in 1973 by 
Steinman et al. (96) led to the development of Sipuleucel-T 

immunotherapy and led to the first posthumous award in 
2011 of the Nobel Prize in Medicine and Physiology for  
50 years (97).

Sipuleucel-T immunotherapy is a therapeutic cancer 
vaccine designed to exploit the inherent nature of 
dendritic cells and their antigen presenting abilities. 
Antigen presenting cells are harvested from the patient, 
centrifuged and cultured with a combination of prostatic 
acid phosphatase and granulocyte-macrophage colony-
stimulating factor antigen. The activated cells are 
infused back into the patient and recruit T-cells against 
prostate cancer cells (98). The exact mechanism of 
action once the cells are returned to the patient remains 
unknown. The IMPACT trial of 512 asymptomatic or 
minimally symptomatic men with mCRPC has shown 
that Sipuleucel-T has a statistically significant median 
improvement in survival of 4.1 months compared to control 
arms (99). However, each added month of survival is 
estimated to be at an average cost of $22,683 USD (100).

Chemotherapy

Failure of ADT or immunotherapy typically meant 
treatment with systemic chemotherapy. Hitchings and 
Elliot first developed rational molecules which lead to 
chemotherapy and they were awarded the Nobel Prize in 
Medicine and Physiology 1988 (101).

Docetaxe l  i s  one  of  the  most  commonly  used 
chemotherapy drugs in prostate cancer. Mechanistically it 
is thought to inhibit cell division by acting on the tubulin 
network. Docetaxel also has cytoplasmic and nuclear 
activity against the AR, although the mechanism is not 
well understood (102). Large randomized control trials 
such as the CHAARTED and STAMPEDE trials have 
shown statistically significant improvements in median 
survival of 13.6 months (103) and 10 months respectively. 
The STAMPEDE trial further evaluated combinations of 
docetaxel and zoledronic acid together versus standard of 
care alone and concluded that zoledronic acid showed no 
evidence of survival improvement, whilst docetaxel did, 
albeit associated with an increase in adverse events (104).

Several new molecular therapeutics are currently under 
clinical trials including cycline-dependent kinase 4 and 6 
(CDK4/6) inhibitors palbociclib, ribociclib, abemaciclib, 
poly adenosine diphosphate ribose polymerase (PARP) 
inhibitors olaparib, veliparib and talazoparib, and 
phosphoinositide 3-kinase (PI3K) inhibitors buparlisib and 
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alpelisib.
In 2017, Goodall et al. (105) reported results from a 

prospective trial of serial circulating cell free-DNA of 
patients being treated with olaparib in a phase II clinical 
trial. By monitoring the change in gene expression and 
sequencing, they were able to demonstrate the emergence 
of mutations at progression that likely resulted in drug 
resistance compared to pre-treatment samples. This can 
have implications in predicting which patients may respond 
to certain drug treatments. It is hoped that in the future, 
biomarkers which allow clinicians to predict the effects of 
drug treatments in individuals will be available.

The treatments described here are not exhaustive and 
many are currently still in clinical trials. However, the 
mainstay of current CRPC treatment remains centred 
around targeting the AR.

Convergence towards personalized precision 
medicine

It is evident that a holistic picture of cancer is required given 
the significant heterogeneity between patients. Difficulties 
remain identifying the cell line responsible for development 
of prostate cancer. Whilst localized prostate cancer may 
develop from luminal acinar cells, it is possible there is 
an underlying stem cell population (such as intermediate 
cells) which may develop into CRPC and may explain drug 
resistance and treatment failure. GWAS studies have shown 
significant inter-tumoural, intra-tumoural and inter-patient 
heterogeneity. However, most mutations centre around 
AR, ETS Family, TP53, PTEN, C-MYC and FOXA1. Some 
studies have suggested that mCRPC may originate from a 
single clonal population. Genomic and proteomic studies 
have led to improvements in tests for prognostic factors, 
but these tests are only useful for certain situations and 
cannot predict every patient’s course. Often tests give rise 
to a probability of a risk of relapse or aggressive disease 
but these outcomes do not always occur. PSA on its own 
remains a poor diagnostic and prognostic marker.

Several therapeutics targeting AR are available, but 
due to AR overexpression, variants, mutations and other 
androgen production pathways, patients who relapse 
inevitably progress to CRPC despite AR inhibition. Not 
all patients react the same way to therapeutics and some 
patients are more sensitive to certain therapeutics than 
others. As cancer research increasingly embraces multi-
disciplinary teams these bring together expertise in 

genomics, proteomics, radiomics, bioinformatics, clinical 
knowledge and surgery to translate medicine from the 
laboratory to the holistic patient.
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