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ABSTRACT 

 

Difficulties identifying drug-resistant epilepsy (DRE) at disease onset and complex 

temporal patterns of epilepsy represent challenges in research and clinical practice. A 

better understanding of the underlying mechanisms of DRE is needed to enable 

biomarker development, early diagnosis, and personalised treatments. This work 

explores the influence of genomic variation on DRE through genome-wide association 

(GWAS) and heritability analyses. It is part of a collaborative, European Commission 

funded project: EpiPGX (Epilepsy Pharmacogenomics: delivering biomarkers for clinical 

use). 

Individuals with epilepsy were recruited from specialised clinical centres across 

Europe. Healthy controls were obtained from several publically available sources. To 

establish whether common genomic variants are associated with DRE, two GWAS were 

performed by the Author. The first analysis, comparing individuals with DRE and 

controls with drug-responsive epilepsy, did not reveal any variants with genome-wide 

significance. The second analysis, comparing individuals with DRE and healthy controls, 

revealed several loci with genome-wide significance. The top genome-wide association 

signal (rs75700350), located at 4q31.1, likely represents an artefact. Other findings 

include the signals at loci 5p13.2, and 11p13, pointing to potentially significant 

candidate genes, SLC1A2 and SLC1A3, implicated in glutamate reuptake and 

excitotoxicity. Furthermore, one of these loci has been linked to an important epilepsy 

comorbidity, autism. The functional variants driving these signals may represent risk 

factors for drug resistance, epilepsy susceptibility, or variants affecting 
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pathophysiological pathways common to DRE and its comorbidities. The main 

limitations of these GWAS analyses were small sample sizes and the lack of replication. 

To explore if drug resistance in epilepsy has a polygenic inheritance component, a 

single nucleotide polymorphism (SNP) heritability analysis was performed. This analysis 

yielded an estimate of DRE SNP heritability of 0.22, showing that drug resistance in 

epilepsy is heritable. 
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IMPACT STATEMENT 

 

The findings of this thesis provide insight into the genetic background of drug 

resistance in common epilepsies. The heritability analysis presented in this work 

demonstrates that drug resistance in epilepsy has a heritable component, justifying 

further genome-wide research efforts in this field. The GWAS results provide 

preliminary evidence of potential functional variants underlying drug resistance across 

different epilepsy syndromes. Alternatively, they could also reflect the 

pathophysiological pathways common to DRE and its comorbidities. 

Together, these findings may point to a future role of genomic variants as a screening 

tool to predict response to antiepileptic drugs (AEDs). If the results are confirmed in 

replication studies, this would increase our understanding of DRE mechanisms and 

facilitate the development of biomarkers and targeted therapies. 

The extensive database of epilepsy cases with well-phenotyped long-term outcomes 

created in the course of this project is a rich resource for future research efforts 

seeking to understand epilepsy prognosis and treatment outcomes. 
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CHAPTER 1: BACKGROUND 

1.1 Introduction 

Epilepsy has a highly variable clinical course with outcomes ranging from response to 

the first anti-epileptic drug (AED) to treatment failure with numerous AED trials, as 

well as varying degrees of impact on cognitive function, mood, quality of life, and 

independence (1-3). 

Drug resistance remains poorly understood, despite being the most significant 

contributor to disease burden in people with epilepsy (PWE). Drug-resistant epilepsy 

(DRE) is associated with higher frequencies of comorbid illnesses (4, 5), psychological 

dysfunction (6, 7), social stigmatisation (8), reduced quality of life, and a higher risk of 

premature mortality in comparison with drug-responsive epilepsy (4, 9-13). The 

mechanisms underlying drug resistance remain to be fully elucidated. There is general 

consensus that genetic factors likely contribute to variable AED response in humans; 

however, this is supported by limited scientific evidence (14, 15). 

The present work explores the contribution of common genomic variation to DRE. 

Currently, the application of evidence-based management of epilepsy is limited by 

significant gaps in knowledge. Studying the genetic landscape of DRE is important to 

identify novel mechanisms underlying DRE and to establish genome-based biomarkers 
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for use in clinical practice and research. Early identification of DRE would decrease the 

burden of failed AED trials and shorten the periods of time individuals might spend 

taking AEDs without benefit. It would encourage better counseling, early consideration 

of rational combination therapy, and early referral for epilepsy surgery, resulting in 

better epilepsy outcomes (16-18). Predictive biomarkers of DRE have a significant 

potential for use in pharmaceutical drug development, enabling clinical trial designs 

where genotypes are used as eligibility or stratification criteria and not only in post-

hoc analyses (19). 

1.2 Definitions 

1.2.1 Definition of drug resistance 

Defining DRE appropriately and consistently is vital to the success of studying its 

epidemiological, clinical, genomic, and pharmacogenomic aspects. However, even this 

important first step remains a challenge and a subject of debate. Several definitions of 

DRE were proposed and used by various authors in the past decades (20-23). Some 

studies used strict definitions. For instance, Berg et al. suggested the following criteria 

in 1996: “uncontrolled seizures with an average frequency of at least one seizure per 

month for a period of at least two years” and “failure of at least three different AEDs, 

either because they did not control seizures or because of unacceptable side effects” 

(24). In contrast, other authors used much more lenient definitions, such as the one 
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proposed by Arts et al. in 1999: failure to attain at least three months’ seizure-free 

period at six months after diagnosis (20). Significant differences in the way DRE has 

been defined pose a challenge for establishing unified treatment guidelines and 

comparisons between different studies. 

To improve the medical care of PWE and to facilitate inter-study comparisons, the 

International League against Epilepsy (ILAE) proposed a consensus definition of DRE in 

2010 (25). The ILAE definition framework encompasses two hierarchical levels. Level 1 

outlines standard criteria for AED trial outcome classification into the following 

categories: “seizure-free”, “treatment failure”, or “undetermined”. Categorising an 

AED trial outcome as “seizure-free” or “treatment failure” requires the AED trial to be 

“appropriate for the epilepsy and seizure type” and “adequate”, i.e. “applied at 

adequate dosage for a sufficient length of time”. Level 2 outlines the core definition of 

DRE as “failure of adequate trials of two tolerated and appropriately chosen and used 

AED schedules (whether as monotherapies or in combination) to achieve sustained 

seizure freedom”. Seizure freedom refers to “freedom from all seizures, including 

auras” (25, 26). If appropriate, this core definition may be modified to fit specific 

purposes. It is important to note that DRE classification is not static as the course of 

epilepsy in an individual may fluctuate over time. As a consequence, an individual may 

be deemed drug-resistant at certain points in time and not others (26). 
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1.2.2 Definition of drug response 

According to the ILAE definition Level 1 scheme, the outcome of an AED trial is 

categorised as “seizure-free” (Category 1 response) if the treatment results in “seizure 

freedom for 12 months, or for a minimum of three times the longest pre-intervention 

inter-seizure interval, whichever is longer” (26). This definition implements the “rule of 

three for calculating confidence intervals for zero events” (27). If the observed period 

of seizure freedom is “at least three times the longest pre-treatment inter-seizure 

interval”, then the certainty that there has been a therapeutic effect is 95%. Level 2 of 

the ILAE framework defines drug-responsive epilepsy as a Category 1 outcome of the 

current AED treatment, i.e. “freedom from seizures for a minimum of three times the 

longest pre-intervention inter-seizure interval, or 12 months, whichever is longer” (26). 

Often, studies of long-term epilepsy outcomes describe drug-responsiveness as 

terminal remission. This is defined as the time from the last seizure to the end of the 

follow-up, on or off AEDs. One-year or five-year terminal remission is most commonly 

reported (17, 28, 29). 

1.2.3 Undetermined response 

In some cases, it may not be possible to classify the epilepsy as drug-resistant or drug-

responsive. According to the ILAE consensus proposal, the response should be 

temporarily classified as “undetermined” in such circumstances (26). Some examples 

are listed below: 
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a) In an individual with newly diagnosed epilepsy where the seizures stop after 

introducing an AED, but not enough time has passed to categorise the outcome 

as seizure freedom. 

b) If seizures continue, but the individual has had fewer than two informative AED 

trials. An AED trial may be uninformative because the drug is not appropriate 

for the seizure or epilepsy type, because it has not been administered at a 

sufficient dose, or for long enough due to adverse drug reactions or other 

reasons. 

c) If there is an apparent change in drug responsiveness, for example, if there is a 

relapse of seizures after a period of remission. In such cases, “the epilepsy is no 

longer drug-responsive, but it can only be considered drug-resistant if it 

subsequently meets the criteria for drug resistance” (26).  

1.3 Epidemiology 

Establishing reliable epidemiologic estimates for a complex group of disorders such as 

epilepsy is challenging. Prevalence and incidence estimates vary widely across studies 

and are usually higher in developing countries (30). Two meta-analyses including 222 

and 65 studies in adult and paediatric populations have attempted to assess the global 

prevalence rates of epilepsy (31, 32). The overall lifetime prevalence of epilepsy was 

estimated at 7.6/1,000 (31). The estimates ranged from 5.2 to 5.8/1,000 for developed 

and 8.8 to 15.4/1,000 for developing countries. The overall prevalence of active 
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epilepsy was estimated at 6.4/1,000. It ranged from 4.9 to 5.5/1,000 for developed and 

from 6.7 to 12.7 for developing countries. There was substantial variability between 

estimates from individual studies included in both meta-analyses, depending on the 

country income, age range of the population, and sample size. Other potential sources 

of variability included imbalances in the frequency of different aetiologies and 

differences in case definitions or case ascertainment (31, 32). Commenting on the 

relationship between the lifetime prevalence and prevalence of active epilepsy is 

difficult since the estimates come from different subsets of individual studies included 

in both meta-analyses, resulting in imbalances in cohort characteristics for both types 

of prevalence. In addition, studies reporting active epilepsy used a variety of case 

definitions which were not taken into account in the meta-analyses. Some examples 

include: an individual who is “currently taking medication for epilepsy or has had at 

least one seizure in the past year”, “at least one epileptic seizure in the previous five 

years, regardless of AED treatment”, and definitions using different time frames, such 

as two years (33, 34).  

 

Two meta-analyses have provided global incidence rates of epilepsy. Overall incidence 

rates were estimated at 50 to 61/100,000/year. They ranged from 45 to 

49/100,000/year for developed and from 82 to 139/100,000/year for developing 

countries (31, 35). The incidence rates were also higher in the paediatric and elderly 

age groups (31). 
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1.3.1 Long-term outcomes of epilepsy 

1.3.1.1 Remission 

The likelihood of achieving terminal remission is one of the ways to describe the long-

term prognosis of epilepsy (36, 37).   

There is general consensus that up to 70% of PWE eventually achieve long-term 

seizure freedom (38, 39). This is supported by several studies assessing the prognosis 

of epilepsy by following well-defined cohorts of newly diagnosed individuals 

prospectively for 5 to 40 years, as summarised in Table 1.1. The proportion of PWE in 

one-year terminal remission at the end of follow-up ranged from 59 to 84%, the 

median duration of follow-up being 5 to 11 years (17, 28, 40-43). The proportion of 

PWE in five-year terminal remission ranged from 54 to 73% (29, 37, 41, 42, 44-46). The 

median duration of follow-up in the studies reporting five-year terminal remission 

rates was 7.1 to 40 years. 
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Table 1.1: Studies of long-term outcomes in epilepsy 

 
 

Study 
 

 
Number of subjects 

Study design 
Duration of FU 

 

 
Proportion of 
subjects with 

≥ 1-year remission at 
any point during FU 

 

 
Proportion of 
subjects with 

≥ 5-year remission at 
any point during FU 

 
Proportion of 
subjects with 

≥ 1-year terminal 
remission 

 
Proportion of 
subjects with 

≥ 5-year terminal 
remission 

 
Proportion of 

subjects not in 
terminal remission 

at the end of FU 

Annegers et al., 
1979 (44) 
 

N = 457 
Paediatric cohort 
Retrospective 
Minimum 5 years FU (72% 
of the cohort had ≥ 10 years 
FU and 30% had ≥ 20 years 
FU) 

NA 65% within 10 years 
76% within 20 years NA 61% at 10 years 

70% at 20 years 

39% not in 5-year 
terminal remission at 

10 years 
30% not in 5-year 

terminal remission at 
20 years 

Bell et al., 2016 
(45) 

N = 354 
Paediatric and adult 
Prospective 
Median FU 22.3 years (IQR 
12.1-24.1) 

NA NA NA 73% 
 

27% not in 5-year 
terminal remission 

Brodie et al., 
2012* (28) 
 

N = 1,098 
Paediatric and adult 
Prospective 
Median FU 7.5 years (IQR 
4.7-12) 

75% NA 68% NA 32% not in 1-year 
terminal remission 
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Chen et al., 2018* 
(40) 

N = 1,795 
Paediatric and adult 
Prospective 
Median FU 11 years (IQR 7-
16) 

NA NA 63.7% NA 36.3% not in 1-year 
terminal remission 

Cockerell et al., 
1997 (41) 
 

N = 564 
Paediatric and adult 
Prospective 
Median FU 7.1 years (CI 5.7, 
8.1) 

96% 71% 84% 54% 

26% not in 1-year 
terminal remission 
46% not in 5-year 

terminal remission 

Geerts et al., 2010 
(29) 
 

N = 413 
Paediatric cohort 
Prospective 
Median FU 14.8 (range 
11.6-17.5) 

NA NA NA 70.9% 29.1% not in 5-year 
terminal remission 

Giussani et al., 
2016 (47) 

N = 747 
Paediatric and adult 
Retrospective 
Median FU 9.5 years (IQR 
4.5-22.5) 

NA NA NA 

The probability of 
starting 5-year 
remission was 

50.2% at 20 years 

NA 

Hanaoka et al., 
2017 (42) 

N = 258 
Paediatric 
Retrospective 
FU 10 years 

NA NA 71.7% 59.3% 

28.3% not in 1-year 
terminal remission 
40.7% not in 5-year 
terminal remission 

Kwan and Brodie, 
2000* (17) 

N = 525 
Paediatric and adult 
Prospective 
Median FU 5 years (range 2-
12) 

NA NA 63% NA 37% not in 1-year 
terminal remission 
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Lindsten et al., 
2001 (48) 
 

N = 107 
Adult cohort 
Prospective 
Up to 12 years FU (80% of 
the cohort had ≥ 5 years FU, 
35% ≥ 10 years FU) 

68% 58% NA NA NA 

Mohanraj and 
Brodie, 2006* (43) 

N = 780 
Adult cohort 
Prospective 
Median FU 79 months 
(range 24-252) 

64.4% NA 59.2% NA 40.8% not in 1-year 
terminal remission 

Silanpää and 
Schmidt, 2006 (37) 
 

N = 144 
Paediatric cohort 
Prospective 
Median FU 40 years (range 
11-42) 

NA NA NA 67% 33% not in 5-year 
terminal remission 

Wakamoto et al., 
2000 (46) 

N = 155 
Paediatric cohort 
Retrospective 
Mean FU 18.9 +/- 5.3 years 
(range 6-37.5) 

NA NA NA 

62.8% at final FU 
Estimated 52% at 

10 years from 
onset and 56% at 

20 years from 
onset 

37.2% not in 5-year 
terminal remission 

Zhang et al., 2013 
(49) 

N = 180 
Paediatric and adult 
Prospective 
Median FU 5 years (range 2-
10) 

80% NA 60% NA 40% not in 1-year 
terminal remission 

CI = confidence interval, FU = follow-up, IQR = interquartile range, NA = not applicable 
*There was an overlap of participants in these studies. 
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For most individuals who achieve seizure remission, this happens early in the disease 

course (28). Approximately 47 to 60% of people with newly diagnosed epilepsy achieve 

seizure freedom with the first AED, 13% to 17% with the second AED, and 3% with the 

third AED, with only 0.6% to 0.8% responding to further trials (17, 43, 49).  

1.3.1.2 Drug resistance 

While the prognosis in terms of AED response is favourable for the majority of PWE, 

some individuals do not achieve remission, despite treatment with several AEDs (17). 

Several studies suggest drug resistance develops early in the epilepsy course (17, 21, 

43). The work of Brodie and colleagues indicates that a large proportion of people who 

respond to their first AED never experience another seizure (78% in a recently 

published study) and that drug resistance can be predicted very early in the disease 

course, with most PWE responding to the first or second AED and a decreasing 

probability of responding to further trials (17, 28, 43). Lindsten et al. concluded that 

the majority of the drug-resistant population can be identified within two years 

following epilepsy diagnosis (48). In the study by Kwan and Brodie, only 11% of 

participants for whom the absence of response to the first AED was due to the lack of 

efficacy subsequently achieved seizure freedom (17). These results imply that the 

likelihood of a favourable prognosis is small once an individual is identified as resistant 

(17, 23). On this basis, the ILAE has defined DRE as ”failure of adequate trials of two 

tolerated and appropriately chosen and used AED schedules (whether as 

monotherapies or in combination) to achieve sustained seizure freedom“ (26). 
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DRE was variably defined by different authors prior to the ILAE definition and as a 

result the reported prevalence of DRE varies across studies. In hospital-based studies, 

using variable definitions of drug resistance, 25 to 35% of participants are reported to 

have DRE (20, 28, 43). Population-based studies report lower rates of drug resistance: 

19.2% to 22.5% (50, 51), likely because less severe cases are usually not seen in tertiary 

centres. The study by Berg et al. was not strictly population-based; however, 

recruitment of PWE from academic centres, as well as private centres and community 

clinics, allowed for a more comprehensive inclusion of cases. The proportion of 

individuals with DRE in this study was 10% (21). One study reported the prevalence of 

DRE as 1.36/1,000 (50). To illustrate the impact of different definitions of DRE, Berg 

and Kelly (52) assessed the proportion of resistant cases in their cohort using six 

different definitions. The proportion of cases categorised as drug-resistant varied from 

9 to 24%, depending on the definition used. 

To my knowledge, only three studies have reported the incidence or prevalence of DRE 

using the ILAE definition (see Table 1.2). Giussani et al. studied the population of the 

Italian province Lecco; the prevalence of DRE was 0.73/1,000 population (15.6% of all 

people with active epilepsy) (47). The remaining two studies were tertiary-centre 

based and the proportion of people with DRE was 21.5% (53) and 17% (54). 
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Table 1.2: Studies of the incidence/prevalence of DRE using the ILAE definition 

Study Study design 
 

Number of subjects 
Duration of FU 

Definitions Incidence/prevalence of DRE 

Giussani et al., 
2016 (47) 

Retrospective, 
population-based 
study, paediatric 
and adult 
population 

Total N = 1021 
Incident cohort N = 342 
Prevalent cohort N = 
747 
 
Median FU 9.5 years 
(IQR 4.5-22.5) 

ILAE definition of DRE 

Prevalence of DRE: 107/684 (15.6%) of all 
individuals with active epilepsy (0.73/1,000 
local population of Lecco, Italy) 
Incidence of DRE: 10.5% during the FU period 

Kong et al., 
2014 (53) 

Adult population 
Retrospective, 
tertiary referral 
centre based 

N = 557 
 
Mean FU 12 years 
(range 1-28) 

Drug response defined as ”12 months of 
seizure freedom“ or  ”at least three-times 
the pre-treatment seizure-free interval“ 

Prevalence of DRE: 21.5% of the entire cohort 
Prevalence of drug-responsive epilepsy: 40.9% 
Undefined response: 37.5% 

Ramos-Lizana 
et al., 2012 
(54) 

Paediatric 
population 
Prospective, 
tertiary referral 
centre based 

N = 508 
 
Mean FU 90 months (SD 
45, range 24-168) 

ILAE definition of DRE 
 
Dug response defined as achievement of 
seizure freedom on the first or second 
AED regimen 
 
Undefined drug response - not fitting any 
of the above categories 

Prevalence of DRE: 17% of the whole cohort, 
19% of the treated individuals 

FU = follow-up, IQR = interquartile range, SD = standard deviation. 
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1.3.2 Predictors of drug resistance 

The course of epilepsy and the development of drug resistance are challenging to 

predict, irrespective of the epilepsy type (55). As already mentioned in Section 1.1, 

reliable prediction of DRE would significantly improve counselling of PWE regarding 

expected outcomes, facilitate timely consideration of alternative treatments, and 

potentially provide a useful means of stratification in clinical trials (16-18). 

Studies of DRE predictors often produce conflicting results, which can partly be 

explained by different methodologies and heterogeneous study populations. Epilepsy 

cohorts often consist of individuals with different epilepsy types and the results can be 

skewed in favour of the most represented aetiology or seizure type (56). In addition, 

epilepsy oucomes may be defined differently across studies. 

The most consistently reported predictors of drug resistance are:  

Symptomatic aetiology  

Individulas with epilepsy due to structural brain abnormalities are less likely to respond 

to AEDs than individuals without abnormal imaging findings. This has been showed in 

several studies for both focal and generalised epilepsies (17, 44, 57-60). Deficits on 

neurologic examination at disease onset and focal lesions on brain imaging which are 

indicators of a symptomatic cause (44, 61, 62) are also predictors of a poorer outcome, 

although some studies have not confirmed this (63). Among the localisation-related 
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epilepsies due to symptomatic causes, certain syndromes, for example mesial 

temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), are overrepresented in 

drug-resistant populations and in populations referred to specialist epilepsy services 

(57, 64). 

Seizure type 

Several studies have suggested that individuals with complex focal seizures are less 

likely to achieve seizure freedom in comparison with individuals experiencing 

generalised tonic-clonic and absence seizures (44, 65). Subgroup analysis of the data 

from the Standard and New Antiepileptic Drugs (SANAD) trial Arm A (focal epilepsy) 

showed that secondary generalised seizures were a risk factor for time to treatment 

failure and focal simple or focal complex seizures only were a protective factor (2). In 

the UK National General Practice Survey of Epilepsy (NGPSE), the seizure type was not 

an important predictor of prognosis (66). Individuals experiencing multiple seizure 

types have been shown to have a less favourable prognosis (29, 67-69). Recent 

research also suggests seizure clusters are associated with a poorer prognosis (70).  

High seizure frequency at the onset of the condition 

Several large studies have identified high seizure frequency or seizure density at onset 

as a predictor of drug resistance in multivariate analyses (2, 21, 36, 66, 71). In the 

study by Sillanpää and Schmidt, pre-treatment seizure frequency of less than one 

seizure per week was a predictor of the cumulative probability of one-year remission 

at any point during follow-up, one-year terminal remission, and continuous remission 

up to the end of follow-up in univariate analyses, but it only remained a significant 
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predictor in multivariate analysis for the latter outcome. The probability of 

uninterrupted remission in individuals with fewer than one seizure per week was 23%, 

compared with 14% in individuals with equal or more than one seizure per week. 

Weekly seizures prior to initiating treatment were associated with a higher likelihood 

of never entering one-year terminal remission (59). Kwan and Brodie have found a 

linear relationship between the proportion of individuals developing DRE and the 

seizure number prior to treatment start. Epilepsy was resistant to treatment in 51% of 

individuals reporting more than 20 seizures at diagnosis, compared to 29% of those 

who reported fewer than 20 seizures (17). On the other hand, a study in rural Kenya 

has shown a similar likelihood of remission in individuals who had been experiencing 

seizures for several years before starting treatment than in those starting treatment 

after a small  number of seizures (72). Detailed analysis of data from several 

observational studies has suggested that the seizure frequency prior to treatment 

initiation is a predictor of drug resistance only in individuals with complex partial 

seizures (73). In the study by Sillanpää and Schmidt, a higher seizure frequency prior to 

treatment start predicted DRE only in individuals with symptomatic epilepsy (59). This 

would imply that the initial seizure frequency is a reflection of aetiology driving the 

response to AEDs (74). Differences in the outcomes of individual studies could be due 

to different methods, but also to different representation of certain aetiologies. 

Especially in paediatric populations, frequent seizures may be the initial presentation 

of an array of epileptic syndromes that vary widely in severity (59). It is also possible 

that frequent seizures induce changes leading to DRE, as Gowers stated in 1881: ”The 

tendency of the disease is toward self-perpetuation; each attack facilitates the 

occurrence of the next by increasing the instability of the nerve elements” (75). 
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Poor response to initial treatment  

Initial response to AED treatment appears to be a significant predictor of long-term 

outcome. A significant reduction or complete seizure control observed in the first 

months of starting the first AED has been shown to predict the likelihood of 

subsequent remission (58). Continuing seizures despite an adequate dose of an 

appropriately selected AED are a predictor of a lower chance of remission, while this is 

not the case if an AED failure is due to the lack of tolerability (17). A study in a 

paediatric population showed that children continuing to experience a weekly seizure 

frequency within the first year of initiating treatment were eight-fold more likely to 

develop DRE and had twice the risk of never achieving a one-year terminal remission 

(59). If the first AED trial fails to control the seizures, the likelihood of success for the 

subsequent AED regimens gradually declines (17, 20, 23, 44, 58, 76-78). More recent 

studies have demonstrated remissions in a proportion of PWE who had failed more 

than five AED regimens, suggesting that AED failure does not indicate a uniformly poor 

prognosis (28). Many of these individuals with late remissions will, however, 

subsequently relapse (79). This is discussed in more detail in Section 2.5.3.5.  

 

Factors that are less likely to be significant predictors of drug resistance or for which 

the evidence is inconclusive include: 

Younger age at disease onset 

Several studies in children suggest lower age at onset is a poor prognostic factor (2, 80, 

81). However, age less than 12 years in the study by Camfield et al. (36) was a 
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predictor of remission, and in the study by Sillanpää and Schmidt, age at onset was not 

a predictor of outcome (59). The effect of age at onset on the outcomes was not 

shown to be consistent in studies including adult and paediatric populations (44, 66). 

Similarly, age at onset was not found to be an independent factor correlating with 

prognosis in multivariate analyses of prognostic factors (66). Of note, comparisons 

between studies are often difficult as different authors use different ways to 

categorise age at onset, e.g. younger or older than one year, 10 years, 12 years, or 70 

years. Different categorisations may also affect the results. Taking all of this into 

account, it is likely that any effects of age on outcomes reflect the differences in the 

frequencies of epilepsy syndromes in different age categories (56).  

Learning disability  

Learning disability has been associated with DRE (36, 76) and seizure relapse after 

experiencing remission (82). Studies including all age groups or adults only, however, 

have not replicated these findings. Studies of the NGPSE and Glasgow cohorts did not 

show a significant effect of learning disability on prognosis (66, 71). It is possible that 

learning disability may not be an independent risk factor of DRE; however, it could be a 

reflection of an underlying neurological deficit and therefore a symptomatic or genetic 

cause (21, 83). 

Despite the existing knowledge about the factors influencing the outcome of epilepsy, 

accurate prediction of drug resistance that could inform treatment decisions remains 

challenging (55). Few prognostic models enabling outcome prediction have been 

proposed.  
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1.4 Mechanisms of action of AEDs 

Current AEDs suppress seizures, but fail to influence the underlying epileptogenic 

mechanisms (84). AEDs control seizures by either reducing neuronal excitation or 

enhancing neuronal inhibition directly, through interaction with specific ion channel 

subunits, or indirectly, through influencing the synthesis, metabolism, or reuptake of 

neurotransmitters that act on ionotropic receptors. AEDs are typically grouped 

according to their principal molecular target (see Table 1.3), although some AEDs are 

thought to exert their effects through more than one mechanism, and for many the 

precise mechanism of action is not known (85-87).  
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Table 1.3: Mechanisms of action of AEDs (adapted from Brodie and Sills, 
2011 (87), and Sills, 2015 (86))  

 
AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; GABA = γ-aminobutyric acid; 
GAT-1 = GABA transporter 1. 
 

Currently, we have an incomplete understanding of the spectrum of AED effects; the 

aforementioned mechanisms are merely those as of yet identified (85, 88). 

Traditionally, mechanisms of action of AEDs have been evaluated on isolated neurons 
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in vitro. Consequently, we have a good understanding of acute actions of AEDs on 

single neurons and a limited understanding of AED effects on neuronal interactions 

and neural network modifications (89). Since epilepsy is a disease of neuronal 

networks, methods focusing on single neurons might be limiting AED development for 

DRE. A further factor limiting AED development could be the models used in drug 

discovery. Most AEDs were discovered serendipitously or by testing a range of 

compounds in acute seizure models like the pentylenetetrazole or the maximal 

electroshock model (90). This could be limiting the development of AEDs with unique 

mechanisms of action. For instance, levetiracetam did not demonstrate efficacy in 

traditional seizure models used for drug screening, e.g. the pentylenetetrazole and 

maximal electroshock models, but it was shown to be efficacious in less conventional 

models such as the kindled and genetic animals (91).  

Similarly, our understanding of the mechanisms of drug resistance and the overlap 

between drug resistance and disease aetiology is incomplete (92). Experimental and 

clinical data suggest that the basis of DRE is multifactorial (93). Most individuals with 

DRE are resistant to multiple AEDs targeting different pathways, suggesting that non-

specific factors influence DRE or that several mechanisms act in an integrated manner 

to produce drug resistance (85, 93-96). Alternatively, there could be several specific 

mechanisms, none of which are addressed by current AEDs. Several hypotheses of 

drug resistance have been proposed, including the target hypothesis, the multidrug 

transporter hypothesis, and the intrinsic severity hypothesis (93). 
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1.5 Mechanisms of drug resistance 

1.5.1 The target hypothesis 

According to the target hypothesis, DRE results from the loss of target sensitivity due 

to “a structural or functional change at the site of action” (94). Alterations of the 

structure or function of ion channels and excitatory neurotransmitter receptors that 

are the principal targets of AEDs cause pharmacodynamic changes. These target 

alterations may develop in the course of epilepsy due to external factors, such as AEDs, 

or they may be genetically determined (96-98).  

The target hypothesis originates from extensive research of carbamazepine effects on 

voltage-gated sodium channels in hippocampal neurons (99). Vreugdenhil and 

Wadman studied the effect of carbamazepine on sodium currents in hippocampal 

neurons in a rat kindling model of epilepsy. Carbamazepine selectively shifted the 

voltage threshold for steady-state inactivation to more hyperpolarised potentials. This 

shift was most pronounced shortly after kindling, recovering after a period without 

seizures, which suggests an epileptic activity-dependent block (100). Remy et al. 

studied changes in hippocampal tissue from people with TLE who underwent epilepsy 

surgery, comparing individuals who were resistant to carbamazepine with responders. 

They demonstrated that activity-dependent sodium channel block was lost in 

carbamazepine-resistant cases and preserved in responders. In the same paper, they 

also demonstrated the absence of the activity-dependent sodium channel block in 
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isolated dentate granule cells in pilocarpine-treated rats. Based on their experiments 

using human tissue and rat models, the authors proposed that seizure activity itself 

may cause a chronic change in sodium channel properties resulting in the loss of 

carbamazepine sensitivity (101). This mechanism could explain the development of 

carbamazepine resistance in the course of epilepsy, but it is uncertain whether the 

effect would extend to other AEDs (95). Furthermore, the loss of carbamazepine effect 

on sodium-channel properties demonstrated in the kindled rat model was transient 

and it is uncertain whether it is relevant in chronic epilepsy (100). 

Another widely studied AED target are GABAA receptors, which exhibit significant 

alterations associated with seizures (95). The GABAA receptor is a ligand-gated chloride 

channel that is the main mediator of neuronal inhibition in the central nervous system 

(CNS). There are several GABAA receptor subtypes characterised by different subunit 

composition, regional and cellular distribution, affinity for GABA, ion channel 

properties, and desensitization rates. Changes in channel composition may affect the 

receptor sensitivity to benzodiazepines and barbiturates (99).  

Mutations or variants affecting the genes encoding GABAA receptor subunits have 

been shown to underlie a spectrum of epilepsy syndromes, including idiopathic 

(genetic) generalised epilepsies, genetic epilepsy with febrile seizures, and epileptic 

encephalopathies (EE). Functional consequences of these mutations include GABAA 

receptor kinetics changes resulting in hyperexcitability (102-104). In addition to 

genetically determined alterations, there is evidence from clinical and preclinical 

studies indicating acquired GABAA alterations in status epilepticus (SE) and chronic 

epilepsy. The efficacy of benzodiazepines declines as the duration of seizures increases 
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(105-107). Individuals who experience SE are more likely to develop AED resistance 

(108). Studies in human epileptic tissue and animal models indicate that the 

mechanisms underlying the resistance to benzodiazepines could be GABAA receptor 

changes, including reduced number of receptors in the target tissue and altered 

subunit composition and function (109).  

Drug-resistant individuals with MTLE-HS have been shown to have a reduction of 

benzodiazepine-binding sites in the hippocampus greater than what could be 

attributed to neuronal loss in sclerotic areas (110, 111). Furthermore, the affinity of 

benzodiazepine binding has been shown to change in drug-resistant focal epilepsy, 

indicating a biophysical change in GABAA receptors. [11C]flumazenil positron emission 

tomography (PET) imaging in drug-resistant focal epilepsy also suggests a loss of 

GABAA receptors (112, 113). These research findings indicate a deficit of 

benzodiazepine-sensitive receptors in some types of DRE, in line with the target 

hypothesis (109). 

Studies in a rat pilocarpine model of epilepsy provide insights into the GABAA receptor 

function and pharmacology in the process of epileptogenesis. In this animal model, SE 

is induced using pilocarpine injections, and following a latent period animals begin to 

have spontaneous seizures of temporal lobe origin. During animal SE, there is 

development of rapid functional plasticity of GABAA receptors with profound reduction 

of benzodiazepine efficacy (114). Experiments in single dentate granule cells from rat 

brains combining patch-clamp recordings and single-cell messenger RNA (mRNA) 

methods show GABAA receptor subunit expression alterations preceding chronic 

seizure onset by weeks and correlating with significant changes in receptor 
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pharmacodynamics (increased sensitivity to zinc blockade and decreased sensitivity to 

benzodiazepines). These observations indicate that abnormalities in the expression 

and function of GABAA receptors represent an important mechanism underlying 

epileptogenesis (115). Importantly, GABAA receptor changes have an increased impact 

in the context of other changes, such as mossy fiber sprouting. GABAA receptor 

changes represent only one aspect of the complex process of DRE development (94, 

115). 

An important limitation of AED target studies in humans is accessing the brain tissue of 

drug responders as they generally do not undergo epilepsy surgery. This is reflected, 

for example, in the study by Remy et al. where the number of controls was much 

smaller than the number of cases, and they differed in pathology (101). A limitation of 

most studies using animal models is the lack of pre-selection of animals according to 

their in vivo AED response (99). Despite some very elegant studies of sodium channel 

and GABAA receptor changes in epilepsy, it is unlikely that these changes explain drug 

resistance to all drugs acting on these targets, let alone other AEDs or AEDs with 

multiple mechanisms of action. Most people with DRE are resistant to multiple AEDs 

with a broad range of targets, suggesting that non-specific mechanisms may contribute 

to drug resistance (116). 

1.5.2 The multidrug transporter hypothesis 

The multidrug transporter hypothesis postulates that DRE results from inadequate AED 

concentrations in target tissue as a result of increased efflux via the multidrug 
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transport proteins due to their modifications or increased expression. The multidrug 

transporter hypothesis is built on the following premises: 

- Most AEDs are substrates of multidrug transport proteins 

- The changes in multidrug transporter proteins primarily affect epileptogenic 

brain tissue, explaining the occurrence of CNS adverse effects in drug-resistant 

individuals 

- Modifications or increased expression of multidrug transporter proteins are a 

feature of DRE and not epiphenomena of the underlying pathology (98) 

 

Most multidrug transport proteins belong to the ABC (adenosine triphosphate (ATP)-

binding cassette) superfamily and they are located on capillary endothelial cells 

forming the blood-brain barrier (BBB) (97). One of the best characterised transporters 

in several medical conditions is P-glycoprotein (P-gp), encoded by the ABCB1 (ATP-

binding cassette subfamily B member 1) gene (117, 118). Tishler et al. observed 

increased expression of P-gp mRNA in brain tissues of PWE undergoing surgery, 

suggesting that insufficient penetration of AEDs to the CNS may underlie drug 

resistance in epilepsy (119). This report and several subsequent studies demonstrating 

overexpression of P-gp in the affected brain tissue of individuals with DRE led to the 

multidrug-transporter hypothesis (95). For instance, Sisodiya et al. found increased P-

gp expression in resected tissue from individuals undergoing epilepsy surgery due to 

focal cortical dysplasia (FCD), dysembryoplastic neuroepithelial tumours, and MTLE-HS 

(120). These findings were replicated in some animal models, suggesting that 

increased P-gp expression in the brain tissue is associated with decreased AED 
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concentrations. P-gp inhibitors have been shown to reverse this decrease (118). 

Observed differences in P-gp expression in humans may be due to genetic factors, 

exposure to certain drugs, or seizures themselves (121). The genetic factors, in 

particular ABCB1 polymorphisms, were explored by Hoffmeyer et al. (122). They 

reported that the ABCB1 exon 26 polymorphism C3435T affects P-gp expression and 

function. The TT genotype, present in 24% of the population, was associated with 

significantly lower expression of P-gp and higher tissue concentration of digoxin (which 

is a P-gp substrate) (122). In 2003, Siddiqui et al. reported a higher frequency of the 

C3435T CC genotype (associated with increased expression) in individuals with DRE in 

comparison with drug responders (123), but this has not been consistently reproduced 

in further studies (14). As a result, the association between variation in ABCB1 and DRE 

has been challenged in the past decade. Genetic variation in ABCB1 will be discussed in 

more detail in Section 1.8.2.2. 

Other assumptions underlying the multidrug transporter hypothesis have also been 

challenged. Firstly, not all AEDs seem to be substrates of multidrug transporter 

proteins such as P-gp. Determining whether an AED is a substrate of P-gp is not 

straightforward since consensus criteria defining the P-gp substrate status have not 

been established. The available evidence is not equally reliable for all AEDs and the 

results from different models are often inconsistent. Furthermore, cell culture models 

used to determine whether a drug is a P-gp substrate may not fully represent the 

physiology in vivo. Taking all of this into account, phenytoin, phenobarbitone, 

oxcarbazepine and lamotrigine have consistently been shown to be P-gp substrates 

both in vivo and in vitro. Acetazolamide, carbamazepine, eslicarbazepine, 
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levetiracetam, and lacosamide are probable substrates, and valproate, topiramate, 

and gabapentin are possible substrates. Vigabatrin, zonisamide, and ethosuximide are 

unlikely substrates (118). As a consequence, the multidrug transporter hypothesis does 

not adequately explain broad AED resistance. Furthermore, the overexpression of P-gp 

in DRE may only be an epiphenomenon related to frequent seizures and/or underlying 

pathology, without affecting AED brain concentrations and efficacy (98). 

1.5.3 The intrinsic severity hypothesis 

According to the intrinsic severity hypothesis, “common neurobiological factors 

underlie both epilepsy severity and drug resistance” (85). Drug resistance is therefore 

an inherent property of the epilepsy related to its severity which can be described as a 

continuum ranging from mild to severe (85, 94, 96, 99). The intrinsic severity 

hypothesis originates from observations that high seizure frequency at disease onset is 

a predictor of DRE. Both the number of seizures at onset (2, 17, 21, 36, 66, 71) and 

immediately after introducing treatment have been shown to be important predictors 

of drug resistance (20, 44, 58). One possible explanation of these epidemiological data 

is that seizure frequency at disease onset reflects the inter-individual differences in 

inherent epilepsy severity, influencing the response to AEDs (85). An alternative 

explanation could be that frequent seizures at presentation trigger a 

pathophysiological process similar to kindling in animal models, resulting in DRE. This is 

inherently linked to the question whether ‘seizures beget seizures’ (75). However, 

symptomatic treatment following the first unprovoked seizure does not seem to 
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influence the long-term prognosis, despite controlling seizures in the short term (56, 

124-126). It could be argued that such findings are not supportive of a kindling-like 

process, but could be in favour of the intrinsic hypothesis. 

Experiments in acute seizure models show that suppression of epileptic activity by 

increasing doses of AEDs can be counteracted by intensifying the excitatory stimulus 

(127, 128). If the threshold for seizures is low, it may not be possible to suppress them 

with a non-toxic dose of any AED, in line with the hypothesis that the factors underlyng 

epilepsy severity and drug resistance may be shared (85). 

While the link between high seizure frequency and drug resistance fits the intrinsic 

hypothesis well, the seizure patterns in some types of epilepsy are more difficult to 

explain by intrinsic severity, for example spontaneous remission in some childhood 

epilepsies that appear resistant at onset, progression over time in EE, and relapse after 

early remission in mesial temporal lobe sclerosis (85). In conclusion, the intrinsic 

hypothesis alone does not seem to be sufficient to explain DRE. 

1.5.4 Other proposed mechanisms of drug resistance in epilepsy 

More recent hypotheses that have received considerable attention are the network 

hypothesis and the methylation hypothesis (129). The network hypothesis is based on 

the premise that repeated seizures induce alterations in the brain, including neuronal 

death, gliosis, neurogenesis, axonal sprouting and synaptic reorganisation, resulting in 

remodelling of the network. This new, abnormal network is less sensitive to inhibitory 
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effects of endogenous antiepileptic systems and to the action of AEDs. However, 

plastic changes are not found only in DRE, but also in epilepsy cases responding well to 

AEDs. It is currently unclear if changes in DRE are different or more severe than in 

drug-responsive epilepsy (130).  

According to the methylation hypothesis, DRE is a consequence of epigenetic 

modifications triggered by persistent seizures. Excessive depolarisation of the neuronal 

membrane may result in persistent epigenetic changes, including deoxyribonucleic 

acid (DNA) methylation patterns, histone modifications, and non-coding ribonucleic 

acid (RNA) changes. These epigenetic processes influence gene transcription, with the 

potential for persistent and dynamic regulation of neuronal gene expression. DNA 

methylation can suppress gene expression by directly or indirectly affecting the 

binding of sequence-specific transcription factors. Thus, epigenetic modifications may 

be mediated by recurrent seizures, resulting in DRE (131). Epigenetic changes could 

potentially explain observations such as discordance of monozygotic twins and 

fluctuating epilepsy course seen in some individuals (55). An example of epigenetic 

modifications that may potentially contribute to increased susceptibility to epileptic 

seizures following an episode of epileptic activity are changes in potassium channel 

subunit activity. Potassium channel subunits Kv7.2 and Kv7.3, encoded by the KCNQ2 

(potassium voltage-gated channel subfamily Q member 2) and KCNQ3 (potassium 

voltage-gated channel subfamily Q member 3) genes play a crucial role in the 

repolarisation of neurons and raising the threshold for firing an action potential via 

non-activating potassium currents (M-currents), therefore regulating neuronal 

excitability (132, 133). Mutations in KCNQ2 and KCNQ3 cause benign familial neonatal 
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convulsions, an autosomal dominant epilepsy occurring in neonates (134-136), and 

early-onset EE (137, 138). Mucha et al. identified regulatory elements within the 

KCNQ2 and KCNQ3 and showed that the transcription of both genes is facilitated by 

transcription factor Sp1 (also known as specificity protein 1), and reduced by the 

repressor element 1-silencing transcription factor (REST). Repression of KCNQ2 and 

KCNQ3 expression by REST results in the inhibition of M-currents, causing neuronal 

hyperexcitability that may contribute to chronic epilepsy (139). Neuronal expression of 

REST increases as a consequence of kainate-induced seizures in animal models (140), 

cerebral ischaemia (141), and inflammatory mediators (139). Thus, long-term synaptic 

changes resulting from seizures may be mediated by the regulation of KCNQ2 and 

KCNQ3 transcription. 

Albeit not formulated as a separate hypothesis, it has been suggested that 

inflammation is involved in the development of DRE as it can promote epileptic 

activity. It may significantly contribute to a high seizure frequency and intrinsic 

severity, but it could also be a consequence of persistent seizures (93, 142, 143). 

Accumulating evidence supports the role of inflammation in different types of 

epilepsies. For instance, anti-inflammatory treatments represent the standard-of-care 

in specific epilepsy syndromes such as infantile spasms where prednisolone and 

adrenocorticotrophic hormone (ACTH) are highly efficacious in controlling seizures. 

Specific epileptic disorders such as limbic encephalitis have been associated with the 

presence of antibodies directed against neuronal antigens (144). In addition, there are 

data supporting an inflammatory component of the epileptogenic process in focal 

epilepsies. For example, PET imaging has shown increased translocator protein 18 kDA 
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(TSPO; biomarker of neuroinflammation) in individuals with temporal lobe epilepsy, 

suggesting ongoing inflammation (145). 

Inflammatory mediators released in the epileptic brain tissue have been reported to 

significantly contribute to neuronal hyperexcitability and drug resistance in 

experimental models (146). In addition to promoting local inflammation, cytokines 

such as tumor necrosis factor-α (TNF-α) can also mediate alterations in the expression 

and subunit composition of neurotransmitter receptors, affecting neuronal function 

and excitability (142, 143, 147, 148). For example, TNF-α has been shown to increase 

the release of glutamate from microglia (149). It upregulates AMPA receptors and 

causes exocytosis of AMPA receptors in hippocampal pyramidal neurons, thus 

increasing the number of AMPA receptors on the neuronal surface and enhancing 

glutamatergic transmission. Furthermore, it causes preferential exocytosis of 

glutamate receptor 2 (GluR2) subunit-lacking AMPA receptors with changed 

biophysical properties resulting in enhanced conductance and consequently increased 

excitatory synaptic strength. To further enhance neuronal excitability, TNF-α also 

induces endocytosis of GABAA receptors, resulting in a smaller number of surface 

GABAA receptors and a decrease in inhibitory synaptic strength (150). These 

observations suggest that TNF-α can regulate neuronal circuit homeostasis in a manner 

that may result in drug resistance. Other examples of immune mediators that may 

increase neuronal excitability and lower seizure threshold in epilepsy models include 

interleukin-1β (IL-1β), interleukin-6 (IL-6), and high-mobility group box 1 (HMGB1) 

(144). 
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1.5.5 Links between different hypotheses of DRE 

The aforementioned hypotheses of drug resistance are predicated on experimental 

and clinical studies showing correlations between various factors and drug response. 

However, associations alone do not permit causality to be ascribed. Studies to 

determine causality of different factors in DRE are difficult to design considering the 

intimate relationship between the causes and consequences of seizures (93).  

The proponents of the intrinsic hypothesis argue a high seizure frequency results in 

target, network and BBB alterations, which are seen as merely a reflection of the high 

intrinsic severity. On the other hand, changes in the network, receptors, ion channels, 

or the BBB can contribute to epileptogenesis and to intrinsic severity once epilepsy has 

developed (93). 

1.5.6 The role of genetic factors 

Genetic factors may affect the intrinsic severity of epilepsy as well as the disease and 

therapy associated alterations (Figure 1.1). Pharmacogenomics of drug resistance of 

epilepsy will be discussed in section 1.8.2. 
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Figure 1.1: Factors influencing individual drug response (modified from 
Potschka, 2013 (93)) 

 

 

 

 

 

 

 

Genetic factors may underlie the intrinsic severity of epilepsy, as well as the disease-associated 
alterations. *Target and network changes, inflammation, changes to the BBB, AED metabolism 
or distribution. 
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categories (74) and that specific pharmacoresistance factors determine the lack of 

response to AEDs (152, 153). Treatments reversing resistance mechanisms, rather than 

reducing excitatory activity, could therefore lead to treatment response (96). 

The intrinsic severity hypothesis on the other hand considers drug resistance as an 

inherent feature of the epilepsy, rather than a consequence of specific 

pharmacoresistance factors. It holds that there is a continuum of epilepsy severity, 

with severe epilepsy syndromes being more challenging to treat. The development of 

efficacious treatment approaches may benefit from a better understanding of the 

underlying mechanisms of epilepsy severity variations (96). 

1.6 Definition of genomics and pharmacogenomics 

Genetics and genomics 

The terms “genetic” and “genomic” are often used interchangeably; however, the 

term genetic usually refers to the study of specific, individual genes and their role, and 

the term genomic refers to the entire genetic material. The term genome was 

conceived by Hans Winkler in 1920, combining the words “gene” and “chromosome” 

to designate the complete genetic makeup of an organism (154). The concept of 

genome changed and evolved in the decades that followed, from referring to “the 

haploid chromosomal number”, “the total chromosomal complement”, “the set of 

chromosomal genes composed of DNA”, and more recently “the totality of the DNA” 
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(155). When using the term “genomic” in this work, I refer to the latter meaning. As 

this work focuses on genome-wide approaches, I mostly use the term “genomic” in 

further text (unless the term “genetic” is more appropriate). 

Pharmacogenomics 

Pharmacogenomics is the study of the relationship between genomic variation  and 

drug response. The mission of pharmacogenomics is to identify DNA sequence 

variations associated with the variability of drug pharmacokinetics, 

pharmacodynamics, and adverse effects in the population. Two important objectives 

of epilepsy pharmacogenomics are to expand our understanding of biological 

mechanisms underlying DRE, potentially identifying new drug targets, and to find 

biomarkers that could predict drug response, eventually serving to guide epilepsy 

treatment (156). Biomarkers allowing stratification of PWE into potential responders 

or non-responders, or those at risk of developing adverse events would transform 

epilepsy clinical practice by allowing a personalised medicine approach to the 

investigation and management of PWE. Identifying reliable genomic biomarkers of DRE 

could lead to the implementation of genotyping at an individual level to guide 

pharmacotherapy (157, 158). 
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1.7 The human genome sequence and variation 

1.7.1 The reference genome 

The reference genome is an electronic database that contains the human DNA 

sequence and serves as an approximation of the DNA of any individual and can be used 

for comparison of sequencing data and other research efforts. The first draft of the 

human genome was the product of The Human Genome Project (HGP). Running from 

1990 to 2003, HGP mapped nearly all DNA bases (over 3 billion) using Sanger 

sequencing. The human genome sequence released in 2004 was 99% complete. The 

final HGP publication predicted between 20,000 and 25,000 protein-coding genes in 

the human reference genome (159). However, a recent examination of seven 

extensive proteomic studies estimated that the number of protein-coding genes may 

be closer to 19,000 (160). 

Since the completion of HGP, the reference human genome has been curated and 

regularly updated by The Genome Reference Consortium (GRC). The Genome 

Reference Consortium Human Build 38 (GRCh38), released in 2014, is the most recent 

version. Its predecessor, GRCh37, was released in 2009 (161, 162). 
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1.7.2 Genomic variation in humans 

In a typical individual genome, there are  4.1 million to 5.0 million sites that differ from 

the reference human genome (163). Genomic variation occurs at several levels; from 

gross chromosomal abnormalities, structural variations, and indels (insertions or 

deletions of bases), to single nucleotide polymorphisms (SNPs). Depending on the 

minor allele frequency (MAF) in the population, the genetic variants can be classified 

as rare and common. Variants with MAF < 0.5% or 1% are considered rare (164, 165). 

Most variants found in an individual’s genome are common in the population. Only 

40,000 to 200,000 variants in a typical individual genome (1 to 4%) occur with a 

frequency of less than 0.5%. However, on the population level the proportions of both 

types of variants are the reverse from this, with most observed variants being rare. The 

final 1000 Genomes data set contained approximately 64 million autosomal variants 

with a frequency of less than 0.5%, approximately 12 million with a frequency between 

0.5% and 5%, and approximately 8 million with a frequency of less than 5% (163). 

Single nucleotide polymorphisms (SNPs) 

SNPs are single nucleotide (base-pair) changes in the DNA sequence compared with 

reference. SNPs are by far the most common form of variation, estimated to account 

for over 95% of all sequence variation (163). The term SNV (single nucleotide variant) 

is sometimes used interchangeably with SNP. Both terms denote a difference in one 

base pair between individuals within a population. The term SNP implies that a variant 

is common in a population, usually defined as MAF ≥ 1% (166). With SNV, there is no 

implication about frequency. 
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Indels 

Indels describe deletions and insertions less than 50 base pairs in size (167). Indels are 

estimated to account for approximately 4% of all sequence variation (163). 

Copy number variations (CNVs) 

CNVs are defined as structural rearrangements increasing or decreasing the DNA 

content. The size of CNVs is typically defined as larger than 50 base pairs (167). 

Although SNPs and short indels represent more than 99.9% of the genomic variation, 

CNVs affect a larger number of bases. Approximately 2,100 to 2,500 CNVs can be 

found in a typical individual genome, affecting approximately 20 million bases of DNA 

(163). 

Distinction between SNPs and mutations 

Mutations and SNPs can be structurally equivalent; however, the term SNP is generally 

used to describe common single base-pair changes, i.e. those found in at least 1% of 

the population, and the term mutation refers to rare genetic variants. The arbitrary 

threshold of 1% was established in preparation of the human genome sequence to 

differentiate common variants (SNPs) and rare variants (mutations). The assumption 

underlying this definition is that higher prevalence in the population indicates that 

SNPs have neutral or beneficial effects (168-170). Since the emergence of next 

generation sequencing (NGS) technologies, it has become evident that genomic 

variation in the population is more complex than previously thought. The distinction 

between SNPs and mutations is often not straightforward based on their frequency or 

disease-causing potential alone. For example, some pathogenic mutations have been 
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found in more than 1% of the population (171). SNPs can cause amino acid changes, 

affect mRNA stability and the affinity for transcription factor binding, resulting in 

functional consequences (172). This might explain why some SNPs are associated with 

complex diseases. Conversely, many rare variants that meet the mutation definition 

are not associated with disease, and some mutations are exclusively associated with 

disease in certain populations (173). 

1.7.3 Genomic variation and complex traits 

The majority of genetic variation in the human genome is not thought to have 

pathologic consequences. The challenge is to identify variants increasing risk of disease 

or acting as disease modifiers. The extent to which genetic variants influence complex 

traits depends on their MAF and effect size, i.e. the increase (or decrease) in risk 

carried by a given variant (170).  Commonly occurring variants usually have small effect 

sizes, typically representing a 1.2 to 1.5-fold increase in the relative risk (RR). Genetic 

variants with high effect sizes are typically very rare (examples are mutations causing 

Mendelian disorders). Figure 1.2 illustrates the relationship between MAF and the 

effect of genetic variants on disease risk. 
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Figure 1.2: Allelic architecture of complex traits (modified from Manolio 
et al., 2009 (174); Bush and Moore, 2012 (170))  
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variants of small effect (lower left) are very difficult to identify by current genetic methods.  
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strategies used to identify contributory genetic loci influencing complex phenotypes. 

Linkage studies focus on familial aggregation and are suitable for identifying rare and 

highly penetrant variants causing Mendelian diseases. Conversely, association studies 

seek disease risk alleles at the population level. They can be conducted using a 

candidate gene approach or genome-wide approach. While both linkage and 

association studies have their strengths, association analyses are particularly 

informative in pharmacogenomics. Whilst the candidate gene approach has proven 

especially valuable in studying the genes known to influence drug pharmacokinetics, 

genome-wide approaches have the potential to discover variants affecting drug 

pharmacodynamics (175, 176). Examples of GWAS discoveries expanding our 

understanding of inter-individual variability of drug response have been the GWAS 

linking SNPs in VKORC1 (vitamin K epoxide reductase complex), the warfarin drug 

target, and cytochrome P450 (CYP) genes CYP2C9 and CYP4F2 with warfarin response, 

and the association of CYP2C19 genotype with the effect on platelet aggregation and 

clinical response to clopidogrel (177, 178). 

1.7.4.1 Linkage studies 

Linkage studies are suitable for discovering rare variants with large effect sizes and 

may require genotyping a relatively small number of genetic markers. Before genome-

wide approaches were available, linkage mapping of large families, with several 

affected members, facilitated the discovery of numerous genes causing Mendelian 

diseases (170). An example of a successful linkage study in epilepsy was the 
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identification of SCN1A (coding for the sodium voltage-gated channel type I alpha 

subunit; Nav1.1) as the causal gene for generalised epilepsy with febrile seizures plus 

(GEFS+) (179, 180). Following this discovery, SCN1A was also linked to Dravet 

syndrome (181). Generally, linkage mapping is unsuitable for common traits with 

polygenic inheritance where multiple variants contribute to overall genetic risk, as the 

effect size of each risk allele is not sufficient to be detected this way (182). However, 

there are a few exceptions, including the identification of the APOE (apolipoprotein E) 

locus in early onset Alzheimer’s disease (183, 184). Over the past few years, there has 

been a resurgence of interest in family-based linkage analyses coupled with NGS. 

Several research groups have used linkage in combination with whole-exome, whole-

genome, or targeted NGS to identify new disease susceptibility genes (185). For 

example, Bowden et al. recognised that the linkage signal in the Insulin Resistance 

Atherosclerosis Family Study (IRASFS) originated from only a few families. They 

performed targeted sequencing of the chromosome interval restricted to the lineage 

peak, identifying a rare c.133G>C (p.Ala45Arg) mutation in the adiponectin gene 

(ADIPOQ) (186). In the future, linkage analysis of NGS data is expected to be even more 

widely used. 

1.7.4.2 Candidate gene studies 

Candidate gene studies focus on associations of selected gene variants and 

phenotypes of interest. Identifying suitable candidate genes depends on the pre-

existing knowledge of their biological, pathophysiological, or functional link with the 
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disorder. If the understanding of biological mechanisms for a trait are limited, this 

approach will be biased. This is the case in epilepsy, where the poor understanding of 

drug resistance mechanisms represents a major limitation for candidate gene studies 

(187). Nevertheless, this approach has revealed the association between the human 

leukocyte antigen HLA-B*1502 and carbamazepine-induced Stevens-Johnson 

syndrome in people of South Asian origin and HLA-A*3101 in Caucasians (188, 189). 

1.7.4.3 Genome-wide association studies (GWAS) 

GWAS is a powerful approach for assessing known DNA variants across the genome to 

identify genetic risk factors for common diseases or traits (170). Unlike candidate gene 

analyses, GWAS do not require a priori assumptions for involved genes and 

consequently have the potential for discovery of novel pathophysiological mechanisms  

underlying a phenotype (190). Despite having significant limitations, such as case 

selection biases, genotyping errors, and/or the potential for false-positive and false-

negative results, GWAS remain a powerful research tool for examining the genome 

and providing insights into the biological pathways involved in common traits (191). 

The concept of GWAS is based on the common disease-common variant hypothesis 

(192, 193). The common disease-common variant hypothesis is built around the 

premise that common traits are caused by genetic variants common in the population, 

each causing a small increase in the disease risk. The disease risk (or effect size) carried 

by an individual variant must be small in comparison to that found in Mendelian 

diseases, otherwise these diseases would affect a much larger proportion of the 
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population. Consequently, a single variant can explain only a small proportion of the 

total phenotypic variability attributed to genetic factors (170). 

GWAS were conceptualised by Risch and Merikangas in 1996 as a technique suitable to 

identify risk variants with small effects that cannot be detected with linkage analysis 

(194). However, the implementation of GWAS in practice followed a decade later, 

when the microarray technology, required to genotype hundreds of thousands of SNPs 

in large cohorts  became available (195). Another important factor enabling GWAS was 

the completion of the International HapMap project. The HapMap Project, initiated in 

2002, identified the location and density of common SNPs and it provided information 

on the haplotypes, i.e. sets of associated SNP alleles in a region of a chromosome that 

are inherited together, and the SNPs that tag those regions (170). Population-specific 

differences in genetic variations were catalogued. Phase I data were published in 2005, 

Phase II in October 2007, and Phase III in 2010 (196-198). 

The 1000 Genomes project that followed was designed to provide a reference set of 

markers to allow the imputation of genotypes. The 1000 genomes project final 

analysis, published in 2015, lists “88.3 million variants, including 84.4 million bi-allelic 

SNVs, 3.4 million bi-allelic indels, and 60,000 structural variants (SVs) consisting of 

large insertions, deletions, inversions, and multi-allelic CNVs. The final release also 

included approximately 475,000 multi-allelic SNVs and indels” (164). 

The haplotype information provided by the HapMap and 1000 Genomes projects has 

been successfully used in GWAS (170). In most chromosomal regions there are only a 

few common haplotypes accounting for most of the inter-individual variation in a 
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population (196). By genotyping only the SNPs that are representative of each 

haplotype (tagging SNPs), utilising the concept of linkage disequilibrium (LD; ”the 

degree to which an allele of one SNP is inherited or correlated with an allele of another 

SNP within a population” (170)), it is possible to capture most of the information on 

the pattern of genetic variation in the region. For example, by using 250,000 to 

500,000 tagging SNPs that are representative of each LD block and predicting most of 

the remaining SNPs, it is possible to capture almost as much mapping information as 

with several million SNPs (170, 199-201). 

When the GWAS methodology first became available, scientists got the opportunity to 

interrogate the entire human genome without predefined hypotheses and at levels of 

resolution that had previously been unattainable (191). The first GWAS was published 

in 2005, identifying the complement factor H gene as a risk factor for age-related 

macular degeneration (202). In 2007, a landmark GWAS study with approximately 

17,000 participants identified 24 independent association signals for seven common 

diseases: bipolar disorder, coronary artery disease, Chron’s disease, hypertension, 

rheumatoid arthritis, type 1 diabetes, and type 2 diabetes (195). This was followed by 

several other GWAS successes in prevalent diseases with complex phenotypes. As of 

August 2018, the National Human Genome Research Institute and the European 

Bioinformatics Institute (NHGRI-EBI) GWAS catalog contains 3,541 unique GWAS 

studies with 69,969 unique SNV-trait associations (https://www.ebi.ac.uk/gwas/). 

The GWAS field is advancing rapidly, with an emphasis on larger sample sizes and 

advancing technology, for example high-density genotyping arrays and NGS (203, 204). 

Over the past decade, several consortia have formed to meet the large sample size 

https://www.ebi.ac.uk/gwas/
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requirements that are beyond the reach of single research groups. Increasing sample 

sizes and large-scale meta-analyses will likely continue to lead to new genetic 

discoveries, increasing the list of variants and genes associated with diseases and 

allowing the evaluation of disease heterogeneity. GWAS using SNP array data are 

increasingly being replaced with GWAS using NGS data (205). GWAS can also be 

conducted using mRNA data in expression quantitative trait loci (eQTL) studies. 

Additionally, GWAS results can be integrated with gene expression data, 

methylation/acetylation, and protein-protein interaction data (186, 204, 206, 207). 

1.7.4.4 Estimating heritability from genome-wide data  

The purpose of GWAS is to identify individual loci associated with a phenotype. In 

GWAS of complex traits, it is common practice to estimate how much of the 

phenotypic variability in the studied population can be explained by each associated 

SNP, by all associated SNPs combined, and by all SNPs in the GWAS. This is then 

compared with the total heritability of the phenotype estimated from pedigrees (208). 

Narrow sense heritability 

Heritability in the narrow sense (h2) is defined as the proportion of the total 

phenotypic variance between individuals in a population due to additive effects of all 

causative genetic variants (209). Heritability can range from zero (no genetic 

contribution) to 100% (all phenotypic variance in the population is due to genetic 

variation). Traditionally, heritability was estimated by studying pedigrees, comparing 

the observed and expected phenotypic resemblance between parents and children, 
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siblings, or monozygotic and dizygotic twin pairs. When estimating heritability by 

comparing relatives, shared environmental factors can act as a confounder (210), 

hence the need for an analysis model that specifies how much of the expected 

phenotypic similarity is due to the genetic and environmental factors. For example, in 

analyses of monozygotic and dizygotic twins, the phenotypic similarity attributed to 

shared environment is assumed to be the same (211). By utilising genetic marker data, 

more recent methods enable heritability estimation without the requirement for such 

assumptions (212). 

Missing heritability 

For the majority of common diseases studied with GWAS, the proportion of variance 

explained by genome-wide significant SNPs (h2
GWS) is much less than the estimated 

total heritability of the trait (h2). The gap between h2 and h2
GWS is referred to as the 

missing heritability (174, 204, 213). It has been posited that in the case of complex 

traits, heritability is hidden rather than missing (214). Possible explanations include 

rare variants with large effects, structural variation, or a large number of common 

variants with individual effect sizes insufficient to reach genome-wide significance 

(174, 215). The missing heritability issue triggered the development of methodology to 

estimate the amount of phenotypic variance accounted for by all SNPs used in a GWAS 

in conventionally unrelated individuals (see below) (209). 

SNP-based heritability 

SNP-based heritability (h2
SNP) is the proportion of phenotypic variance explained by a 

defined set of SNPs; this can be either all SNPs used in a GWAS (genotyped and 
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imputed) or all genomic variants from NGS (216, 217). In complex traits caused by a 

large number of variants with small effect sizes, consistent with a model of polygenic 

inheritance, more of the heritability can be explained by estimating heritability from 

the entire GWAS data set than just the significantly associated SNPs (h2
GWS) (208). 

Figure 1.3: SNP heritability explains some of the missing heritability 
(modified from Witte et al., 2014 (208))  

 

 

Methods to estimate h2
SNP are typically applied to conventionally unrelated individuals 

(216). Any random pair of unrelated individuals has common distant ancestors and 

consequently shares a small amount of genomic variation. These matching variants 

occur at random, i.e. they are independent. It is possible to make estimates of 

heritability by comparing these genetic similarities. If individuals sharing the same 

phenotype also tend to have genetic similarities, this represents evidence that 

heritability is non-zero. Estimating heritability from data of unrelated individuals has 

two key advantages. Firstly, as unrelated individuals are unlikely to share common 
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environment, the estimates are unlikely to be confounded by common environmental 

factors. Secondly, the sample sizes in GWAS analyses are significantly larger than in 

pedigree studies. This approach has shed some light on the missing heritability debate. 

The classic example is human height. The heritability of human height has been 

estimated at 80% from pedigree studies (218, 219). By 2008, several GWAS studies had 

identified approximately 50 SNPs associated with height, jointly explaining only 

approximately 5% of phenotypic variance (i.e. h2
GWS is 5%). Increasing the sample size 

represented the opportunity to discover additional associated variants using the GWAS 

design (209). Indeed, a larger 2014 study by the GIANT consortium increased the 

number of loci to over 400, increasing the h2
GWS estimate to 16% (220). In 2010, Yang 

et al. introduced a mixed linear model approach to estimate h2
SNP using GWAS data 

and showed that a set of SNPs captured on a genotyping array explained 45% of 

variance in height, which is a significant proportion, but still less than h2 (80%) (216). A 

smaller h2
SNP in comparison with h2 is expected because not all causal variants can be 

perfectly tagged by SNPs on a genotyping array, and because the SNPs on the array 

may not be in perfect linkage diseuqilibrium (LD) with the causal variants. More of the 

variance can be explained by increasing the number of SNPs tested or by using NGS 

data. However, when working with GWAS data, even the latest genotyping arrays do 

not include all SNPs. Most microarrays contain only common variants (present in > 1% 

population), so h2
SNP does not reflect the contribution of rare SNPs and other types of 

genomic variation, such as structural variants (e.g. CNVs), epigenetic effects, and a 

whole host of ‘omics’ (proteomics, lipidomics, transcriptomics, metabolomics, etc.) 

(209, 217). 



73 
 

1.8 Genomic variation and drug resistance in epilepsy 

1.8.1 Evidence for the genetic basis of epilepsy 

There is no consensus estimate of the heritability of epilepsy, reflecting the 

heterogeneity of the condition and the variability of study designs and statistical 

approaches used to measure it (221). Twin studies of epilepsy susceptibility have been 

performed since the 1960s when Lennox first showed that monozygotic twins are 

more likely to be concordant for epilepsy more often than expected by chance (222). 

More recent epidemiological studies show significantly higher concordance rates in 

monozygotic compared with dizygotic twins, indicating that genetic factors are 

important in the pathogenesis of IGE (GGE), but also have a contribution in focal 

epilepsies (223-227). Heritability estimates from twin studies range from 8 to 88% 

(228-230). Potential reasons for the variable estimates can be attributed to the 

inclusion of different epilepsy syndromes, as well as different terminology and 

methodology across the studies (230). 

A significant proportion of epilepsies are thought to have a genetic background. This 

includes monogenic causes (familial or de novo) and epilepsies with complex or  

polygenic inheritance where multiple genes, susceptibility alleles, and genetic 

modifiers play a role (231, 232). A polygenic genetic architecture has generally been 

associated with common epilepsies with complex patterns of inheritance, although the 

actual underlying genetic risk factors have proven difficult to discover (233, 234). Due 
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to the gaps in knowledge and the fact that genetic testing is not routinely applied in 

epilepsy management, we do not have a reliable estimate of the proportion of 

epilepsies that have a genetic underlying aetiology (235, 236). However, epidemiology 

studies quantifying the genetic contribution for epilepsies have provided valuable 

insights on the population level. Reliable estimates of epilepsy prevalence in relatives 

of PWE have been established by the Rochester Epidemiology Project. The overall risk 

of being diagnosed with epilepsy before the age of 40 is increased approximately 

threefold in relatives of PWE compared with the general population. The increase in 

risk is higher for idiopathic (genetic) generalised epilepsies (IGE; GGE) than for focal 

epilepsies (221). In addition, we have a good understanding of the genetic structure of 

epilepsy subpopulations where routine genetic screening is commonly used, for 

example EE, and preliminary estimates for the frequency of some monogenic 

epilepsies in the overall epilepsy population. A recent epidemiology study including 

close to 6,000 adults and children reported the prevalence of Dravet syndrome and 

tuberous sclerosis in the epilepsy population as 2.1% and 1.2%, respectively. The 

frequency of chromosomal/monogenic causes of epilepsy (excluding Dravet syndrome 

and tuberous sclerosis) was reported as 3.9% (236). There is substantial evidence that 

IGE (GGE) have a significant genetic contribution. This genetic basis is thought to be 

complex in most cases and monogenic in a minority. Pathogenic variants of SLC2A1 are 

estimated to account for up to 1% and CNVs for approximately 3% of cases (237). 

A number of genes causing or contributing to individual epilepsy syndromes have been 

discovered over the past two decades (238). Wang et al. recently performed an 
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extensive search of online databases and identified 977 genes associated with 

epilepsy. They categorised them as follows: 

- 84 epilepsy genes causing syndromes with epilepsy as the only or the most 

prominent symptom 

- 73 genes causing abnormalities of brain development and epilepsy 

- 536 epilepsy-related genes causing syndromes with abnormalities of several 

organ systems where epilepsy is one of the features 

- 284 potential epilepsy genes (232) 

As there is continuous progress in the identification of novel epilepsy genes, this list 

may not be comprehensive. 

This large base of genetic knowledge started with the discovery of a number of gene 

mutations causing rare Mendelian forms of epilepsy using linkage analysis. The first 

one was CHRNA4, coding for the neuronal nicotinic acethylcholine receptor subunit 

alpha 4, identified in 1995 in a large Australian kindred with autosomal dominant 

nocturnal frontal lobe epilepsy (ADNFLE) (239). Multiple other epilepsy gene 

discoveries in monogenic familial epilepsies followed, mostly coding for ion channels, 

including KCNQ2 and KCNQ3 in families with benign familial neonatal convulsions (134, 

135), and SCN1A in GEFS+ (180). SCN1A mutations were later shown to have a wide 

phenotypic spectrum, ranging from milder epilepsy disorders such as GEFS+, febrile 

seizures plus (FS+), and simple febrile seizures to severe myoclonic epilepsy of infancy 

or Dravet syndrome (181, 240). 
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NGS technologies have accelerated the identification of disease-causing mutations 

through targeted gene panels, whole exome sequencing (WES), and whole genome 

sequencing (WGS). Most notably, NGS has facilitated the discovery of de novo 

causative mutations in sporadic diseases. A common method to achieve this is the 

comparison of exome or genome sequences of the affected individual and both 

(unaffected) parents (i.e. trio analysis). The application of these methods in the 

epilepsy field has helped identify pathogenic mutations in a wide spectrum of genes as 

causes of EE, expanding the list of proteins and pathways involved in epilepsy 

pathogenesis beyond ion channels. Some examples of epilepsy genes identified with 

NGS include: de novo SCN8A (sodium voltage-gated channel alpha subunit 8) 

mutations in EE and in milder phenotypes such as benign infantile seizures (241, 242), 

KCNQ (potassium voltage-gated channel subfamily), previously shown to cause benign 

familial neonatal convulsions (135), as a cause of early-onset EE (137, 138), de novo 

mutations in HCN1 (potassium/sodium hyperpolarisation-activated cyclic nucleotide-

gated channel 1) in individuals with early infantile EE resembling Dravet syndrome 

(243), GABRA1 (GABA type A receptor alpha1 subunit) and STXBP1 (syntaxin binding 

protein 1) in individuals with SCN1A-negative Dravet syndrome (244), mutations in 

SYNGAP1 (synaptic Ras GTPase-activating protein 1) in individuals with EE, absences 

and myoclonic seizures, and mutations in CHD2 (chromodomain helicase DNA binding 

protein 2) in EE associated with myoclonic seizures and photosensitivity (245-248). 

These discoveries have significantly improved the clinical management of individuals 

with specific epilepsy syndromes and provided the basis to develop targeted 

treatments. The numerous rare variants in epilepsy genes that can explain epilepsy in 
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selected families, however, constitute only a fraction of the heritability of common 

epilepsies. As of now, the molecular basis of the majority of common epilepsies 

remains elusive (232). 

Gross chromosomal abnormalities, detectable by karyotyping, can also cause epilepsy. 

One such example is the ring chromosome 20 syndrome (249). The frequency of CNVs 

is higher in PWE, especially when epilepsy is associated with learning disability, autism, 

or psychiatric disorders such as schizophrenia (237, 250). CNVs have been established 

as a risk factor for EE, generalised and focal epilepsies using array comparative 

genomic hybridisation (aCGH) or high-density SNP and CNV arrays, providing key 

insights into the genetic structure of common epilepsies. The first CNV linked with 

epilepsy was the 15q13.3 microdeletion, reported in individuals with idiopathic 

(genetic generalised) epilepsy (GGE) (251). Microdeletions of 15q11.2 and 16p13.11 

are two additional examples of CNVs that are well established risk factors for epilepsy 

(252-255). 

These observations indicate that rare CNVs carrying intermediate risks may represent a 

sizeable fraction of the heritability of common epilepsies. Pathogenic CNVs are 

thought to be the underlying cause of epilepsy in 3 to 5% of EE cases (256, 257). 
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Epilepsy GWAS 

 

Several large GWAS studies have explored the genetic susceptibility loci of common 

epilepsies. The GWAS efforts have resulted in the establishment of several 

international consortia: EPIGEN (The Epilepsy Genetics Consortium), EPICURE, EMInet 

(Epilepsy and Migraine Integrated Network), The ILAE Consortium on Complex 

Epilepsies, and EpiPGX. 

The first large-scale GWAS of GGE identified two genome-wide significant loci: 2p16.1 

and 17q21.32. Analyses of subgroups revealed significant associations of the 2q22.3 

locus with absence epilepsy and 1q43 with juvenile myoclonic epilepsy (JME). In 

addition, suggestive evidence for an association was detected at 2q24.3, close to the 

SCN1A gene, suggesting its role in common epilepsies (258). Another GWAS linked 

MTLE-HS with febrile seizures to common variants within the locus containing SCN1A 

(259). These findings were remarkable because they expanded the genetic spectrum of 

SCN1A-related epilepsies from rare syndromes caused by mutations in the gene to 

common epilepsies caused by common variants representing risk factors (260). 

The GWAS efforts in epilepsy reached a new level with the establishment of the ILAE 

Consortium on Complex Epilepsies, bringing together several consortia to investigate 

common genomic variation in epilepsy. The ILAE Consortium has published two GWAS 

meta-analyses. The original ILAE meta-analysis included 8,696 individuals with epilepsy 

and 26,157 controls and utilised the phenotypic and genotypic data from 12 cohorts. 

To allow combining the phenotypic and genome-wide association data from five sites, 

investigators used standardised imputation and quality control (QC) to enable the joint 
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analysis of data acquired on different genotyping platforms. Meta-analysis including all 

epilepsy cases identified loci at 2q24.3 (rs6732655, c.2590-424T>A), implicating SCN1A, 

and at 4p15.1, harbouring PCDH7 which encodes protocadherin 7. The association with 

SCN1A further consolidated the importance of its variants as risk factors for common 

epilepsies. Due to the significant overlap of samples, this GWAS is not considered a 

formal replication of SCN1A associations identified in previous studies (260). In 

contrast, protocadherin 7 had previously not been associated with epilepsy. Meta-

analysis of the GGE subgroup identified a single signal at 2p16.1, implicating vaccinia-

related kinase 2 (VRK2) or Fanconi anaemia complementation group L (FANCL). In the 

sub-analysis analysis of focal epilepsy, no SNP reached genome-wide significance. 

However, a SNP at 2q24.3, harbouring SCN1A (rs12987787, c.4284+591A>G) was close 

to reaching genome-wide significance (261). rs12987787 is in high LD with the SCN1A 

variant (rs7587026, c.-142+4684G>T) reported in the GWAS of mTLE-HS and febrile 

seizures (259). 

The recently published extended ILAE meta-analysis included 15,212 individuals with 

epilepsy and 29,677 controls, combining the original ILAE cohort with additional 6,516 

cases and 3,460 controls. As a consequence, the extended analysis does not represent 

a formal replication of the original ILAE analysis. Meta-analysis including all epilepsy 

cases confirmed two previously identified associations at 2p16.1, harbouring FANCL, 

and 2q24.3, harbouring SCN1A. It also led to the identification of a new genome-wide 

significant locus at 16q12.1, harbouring two potential candidate genes: HEAT repeat 

containing protein 3 (HEATR3) and bromodomain containing protein 7 (BRD7). In 

contrast with the original ILAE analysis, the locus at 2q24.3 also reached genome-wide 
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significance in the analysis of focal epilepsy. In addition, the extended ILAE meta-

analysis lead to the identification of 14 genome-wide significant loci associated with 

GGE, 8 of which were novel, and 2 novel loci associated with MTLE-HS. In detailed 

analyses of the associated loci, some signals were only significant in a single epilepsy 

subtype, whereas others were suggestive of pleiotropic effects. However, since the 

sample sizes in these epilepsy subtype analyses were small, the results should not be 

overinterpreted. The loci with genome-wide significance from all analyses 

corresponded to 146 genes in total. A scoring system with multiple criteria was used to 

establish the putative risk genes for epilepsy. These were defined as the genes with the 

highest score at each locus, including “seven ion-channel genes (SCN1A, SCN2A, 

SCN3A, GABRA2, KCNN2, KCNAB1, and GRIK1), three transcription factors (ZEB2, 

STAT4, and BCL11A), the histone modification gene BRD7, the synaptic transmission 

gene STX1B, and the pyridoxine metabolism gene PNPO” (262). 

The ILAE GWAS demonstrated the value of pooling all types of epilepsy in one sample, 

as well as analysing sub-phenotypes. Larger sample sizes would have enabled further 

analyses of epilepsy sub-phenotypes. 

How to improve the yield of epilepsy GWAS? 

 

Epilepsy GWAS performed up to date have uncovered a relatively small number of risk 

variants compared to studies in other neurologic conditions. This most likely reflects a 

highly heterogeneous genetic background and likely a large number of common 

susceptibility alleles carrying very small risks, requiring large cohorts of tens of 
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thousands of cases for definitive GWAS studies (260). Although the ILAE Consortium 

meta-analysis included the largest cohort of PWE published to date, the sample size is 

modest compared to those in some other complex disorders. For instance, GWAS of 

schizophrenia and migraine have included cohorts of over fifty thousand cases and 

identified several dozen independent risk loci (263). The recently completed GWAS of 

insomnia has included in excess of 1.3 million cases and has identified 956 genes linked 

to the sleep disorder (264). Importantly, epilepsies are a heterogenous group of 

disorders. Analysing them as a group may have limitations in terms of discovering 

genetic risks. Sub-phenotyping and performing GWAS limited to sub-syndromes may 

prove more successful in the future. This approach has already proven beneficial in the 

ILAE Consortium on Complex Epilepsies GWAS meta-analysis where GGE and focal 

epilepsies were analysed as sub-phenotypes (261). A further dissection of epilepsy sub-

phenotypes may be possible in the future as the epilepsy consortia accumulate 

sufficiently large cohorts with well-defined phenotypes. 

1.8.2 Evidence for the genetic basis of drug resistance in epilepsy 

Genomic variation is thought to be at least partly responsible for differences in 

response to AEDs among PWE; however, the heritability (i.e. extent of genetic 

contribution) of drug resistance in epilepsy has not been quantified yet. Using family 

studies to define the heritable component of phenotypic variance is much more 

challenging when applied to drug response than disease susceptibility. It is usually 

difficult to find pedigrees with multiple members affected with the same disease and 
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well-defined drug-response phenotypes; consequently, the contribution of heritability 

to the variability in drug response may be unknown (19). Epilepsy is not an exception. 

Whilst there is abundant evidence for the heritability of epilepsies from twin studies, 

candidate gene association studies, GWAS, and NGS approaches (223, 225, 226, 229, 

230, 265), little is published on the genetic contribution to DRE. The available evidence 

for the heritability of DRE comes from animal studies, twin studies, and candidate gene 

association studies. Few studies have attempted to identify the genetic component of 

DRE in humans as finding suitable pedigrees or twin pairs affected by epilepsy is 

difficult. Generating heritability estimates in animal models is easier as it allows the 

elimination of some of the variability by using the same strain, aetiology, and 

controlling for environmental factors. In contrast with the small number of studies 

exploring the heritability of common epilepsies in humans, there is an abundance of 

candidate gene association studies and studies elucidating drug resistance in selected 

epilepsy syndromes. Whole genome approaches have not been extensively utilised for 

this purpose yet. 

1.8.2.1 Evidence from heritability studies 

One study has assessed the heritability of drug response in 37 twin pairs concordant 

for epilepsy (27 monozygotic, 10 dizygotic). Twin pairs were concordant for epilepsy 

type and had no antecedent environmental factors (such as brain trauma) that could 

potentially contribute to their epilepsy, allowing the assumption that their shared 

genetic predisposition was most likely the underlying cause of epilepsy. Clinical 
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outcomes of epilepsy were defined as seizure presence or absence in the year 

preceding the study assessment and epilepsy severity was assessed by a neurologist on 

a scale of 1 to 6, where 1 was remission and 6 was severe DRE. A high correlation for 

clinical outcome and severity of epilepsy was observed in twin pairs (0.62 for all twin 

pairs combined; 95% CI 0.42, 0.80), with no difference between the monozygotic and 

dizygotic twin pairs. The high correlation in clinical outcome was consistent across the 

different epilepsy syndromes and concordant outcomes were observed even with 

discordant treatments. This study thus failed to demonstrate that the clinical outcome 

is determined by genetic factors distinct from those determining susceptibility to the 

disease. Considering the predominance of GGE in the sample, it is possible that the 

epilepsy genetic susceptibility shared by twins contributed substantially to the clinical 

outcome (266). Nevertheless, the study was small and its results do not mean a role 

for genetic factors in drug resistance can be discounted. Experiments in animal models 

of focal symptomatic epilepsy indicate DRE could have a genetic component. Löscher 

et al. discovered that it was possible to select phenytoin responders and non-

responders from a population of amygdala-kindled outbred Wistar rats. In contrast to 

responders, non-responders did not show any significant increase of after-discharge 

threshold following an intraperitoneal application of phenytoin. They showed that the 

response to phenytoin did not depend on the plasma level differences, kindling 

parameters, or electrode placement, but appeared to be an inherent property of the 

selected rats (267). An attempt to reproduce these results in Sprague-Dawley rats was 

unsuccessful (268). Cramer et al. compared five different inbred rat strains. Even 

though inbred strains are more genetically homogenous than outbred strains, they 
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demonstrated within-strain differences in response to phenytoin (269). Overall, animal 

data provide limited support for a genetic contribution to DRE. 

1.8.2.2 Evidence from studying individual genes/syndromes 

An extensive body of epilepsy pharmacogenomics studies has been published to date, 

mostly utilising candidate gene approaches. A large number of variants in different 

genes have been proposed to contribute to DRE. In a recent review, Balestrini and 

Sisodiya proposed a working classification of the genetic factors influencing drug 

resistance according to the mechanisms affected by genetic variation: 

pharmacokinetics, pharmacodynamics, and gene mutations capable of causing 

epilepsy (14). 

i) Genetic factors influencing AED pharmacokinetics  

 

Pharmacokinetics refers to the absorption, bioavailability, distribution, 

metabolism, and excretion of drugs. The onset, duration, and intensity of 

the effect of a drug are determined by its pharmacokinetics (270). Two 

processes have received considerable attention in relation to AEDs: 

metabolism with microsomal CYP enzymes and transport across the BBB 

which can both affect the response to AEDs in the population. The oxidation 

of several AEDs is catalysed by one or more of the CYP enzymes. The 

variability in the metabolism is the result of the presence of many CYP 

isoenzymes and polymorphisms in their coding genes (271). The first study 
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showing an association of genetic polymorphisms with metabolism of an 

AED was published in 1998 by Mamiya et al. They showed that 

polymorphisms in genes encoding drug-metabolising enzymes CYP2C9 and 

CYP2C19 influenced phenytoin doses used clinically (272). Since then it has 

been firmly established that CYP2C9 polymorphisms are a significant 

determinant of the phenytoin metabolism rate (273, 274). The CYP2C9 

enzyme accounts for approximately 90% of phenytoin metabolism (273, 

275, 276). Two CYP2C9 haplotypes are associated with poor metabolism of 

phenytoin: CYP2C9*2 (rs1799853, c.430C>T, p.Arg144Cys) and CYP2C9*3 

(rs1057910, c.42614A>C, p.Ile359Leu). Individuals with these variants have 

a significantly higher risk of experiencing adverse drug reactions with 

phenytoin therapy (277-279). It has been shown that the CYP2C9*3 allele is 

associated with an approximately 50 mg lower maximum phenytoin dose 

compared with wild-type homozygotes in regular usage in a series of 

individuals with epilepsy (274).  

 

There are preliminary data showing that the metabolism of the following 

drugs is influenced by polymorphisms of genes coding for their 

corresponding major metabolising enzymes:  

- carbamazepine - CYP3A4 gene and epoxide hydroxylase 1 gene (EPHX1) 

polymorphisms 

- clobazam - CYP2C19 gene polymorphisms  

- lamotrigine - uridine diphosphateglucuronosyl transferase gene  

polymorphisms 
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- phenobarbital - CYP2C19 gene polymorphisms  

- valproate - CYP2C9, CYP2A6 and CYP2B6 gene polymorphisms  

- zonisamide - CYP2C19 gene polymorphisms (14, 280).  

Most of the aforementioned associations were established by studying drug 

levels and toxicity, with only a few exceptions where the association with 

drug response was determined. For instance, while the association of 

CYP2C9 haplotypes with phenytoin toxicity has been well established, much 

less research has been done on the association of CYP2C9 variants with 

drug resistance. Two studies have suggested a role of CYP2C9 

polymorphisms in DRE (281, 282); however, such results need to be 

interpreted with caution. A recent study showed that EPHX1 

polymorphisms influence plasma carbamazepine levels, but no association 

with drug response to carbamazepine was shown. The plasma level of 

carbamazepine was not associated with carbamazepine response (280). 

 

In summary, the relationship between the variation in genes encoding the 

main AED metabolising enzymes and the metabolism, levels, toxicity, and 

response to individual AEDs is complex. Since AEDs are metabolised via a 

number of different enzymes, it is unlikely that any single CYP or other 

variant would completely explain DRE.  

 

Another important aspect of pharmacokinetics is AED transport across the 

BBB via ATP-dependent transport proteins (multidrug transport proteins); 

located on capillary endothelial cells forming the BBB. Multidrug transport 
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proteins are members of the ABC superfamily. According to the multidrug 

transporter hypothesis, drug resistance results from inadequate AED 

concentration in the target tissue as a result of increased efflux via the 

multidrug transport proteins due to their modifications or increased 

expression (98). The most extensively studied transporter across medical 

conditions is P-gp, encoded by the ABCB1 gene (117). Tishler et al. found an 

increased expression of P-gp mRNA in resected brain tissue of 11 out of 19 

PWE who underwent epilepsy surgery. The variability in P-gp expression 

may be due to genetic variation, environmental factors, or both (119). 

There is a high number of polymorphisms in the ABCB1 gene, with over 800 

variants described to date, some of which alter the expression of the 

multidrug transporter (122, 283-285). The c.3435C>T (rs1045642) 

polymorphism is the most widely investigated. Siddiqui et al. observed 

increased expression of P-gp in individuals with the rs1045642 CC genotype, 

associated with DRE (123). While some studies replicated this finding (286-

289), others either found a reverse association (290, 291), or no association 

(292-294). Contrary findings prompted several meta-analyses, mostly with 

negative results (295, 296). However, two recent meta-analyses including 

8,604 cases from 30 studies and 8,331 cases from 23 studies, respectively, 

identified a significant correlation between the ABCB1 rs1045642 CC 

genotype and DRE in Caucasian, but not Asian populations (297, 298). 

Another meta-analysis including 734 cases from 13 studies in Caucasian and 

Asian populations found an association between the TT genotype and drug 

resistance (299). Meta-analyses highlighted several difficulties when 
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comparing different studies, including different definitions of DRE. Some 

studies used stratification by epilepsy syndrome or seizure type, whereas 

others did not. Various studies included different uses of AEDs 

(monotherapies, combination therapies). Some AEDs, for example 

valproate, are not P-gp substrates. The use of valproate in a significant 

proportion of individuals in studies may have confounded the results of 

some meta-analyses, making it difficult to accurately determine whether 

the rs1045642 polymorphism is truly correlated with DRE (298, 299). In 

addition, the effect of a single polymorphism could be modified by variants 

in other genes and the environment. In conclusion, various analyses have 

resulted in contradictory conclusions regarding the relationship between 

C3435T and other ABCB1 polymorphisms and DRE. The link between ABCB1 

polymorphisms and DRE thus remains unertain (14).  

 

ii) Genetic factors influencing AED pharmacodynamics  

 

Pharmacodynamics refers to the target binding, effects on the target, and 

chemical interactions of a drug at its site of action. Structural of functional 

changes at the site of action, resulting in altered pharmacodynamics, can be 

the cause of drug resistance. Alterations of AED targets, including ion 

channels and neurotransmitter receptors, can be genetically determined 

(300). To my knowledge, all genetic variants influencing pharmacodynamics 

are also genetic causes of epilepsy; I will thus discuss them in the next 

http://www.msdmanuals.com/professional/clinical-pharmacology/pharmacodynamics/overview-of-pharmacodynamics
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section.  

 

iii) Gene mutations capable of causing epilepsy  

 

There are several examples of rare genetic forms of epilepsy where the 

causative mutation also determines drug resistance. Perhaps the most well-

known example are mutations in SCN1A gene encoding Nav1.1 which is a 

key player in action potential generation and propagation in neurons. 

Missense mutations in SCN1A commonly result in a mild phenotype (e.g. 

GEFS+) with seizures that are easily controlled by AEDs. In contrast, 

truncation mutations or missense mutations affecting the channel pore 

region cause a severe disturbance in protein function resulting in Dravet 

syndrome (severe myoclonic epilepsy of infancy), characterised by drug 

resistance as one of its main features. Loss of function of Nav1.1. in Dravet 

syndrome results in reduced sodium current and consequently reduced 

neuronal excitability, so an epilepsy phenotype would not be expected 

(240, 301). Studies in a mouse model of Dravet syndrome have provided 

initial insights into the neurobiological changes associated with the loss of 

one copy of Scn1a. They helped establish that the mutant sodium channel 

subunits are expressed predominantly in GABA-ergic inhibitory 

interneurons. Consequently, reduced sodium current density and impaired 

neuronal excitability is observed in hippocampal inhibitory interneurons, 

but not excitatory neurons, leading to the prevailing hypothesis that 

impaired GABA-mediated inhibition leads to network hyperexcitablity and 
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seizures in Dravet syndrome (302, 303). Sodium channel blockers (which 

bind to the α-subunit of the voltage-gated sodium channel) decrease the 

sodium current in the inhibitory interneurons even further, resulting in 

seizure worsening (304). Importantly, some studies in human-derived 

induced pluripotent stem cells have not provided supporting evidence for 

an interneuron-specific decrease in excitability, suggesting that the 

mechanisms underlying seizures and drug resistance are more complex 

than previously thought (305). Changes in sodium currents and neuronal 

excitability may depend on the specific SCN1A mutation and several 

modifying factors such as the individual’s genetic background and 

developmental stage (306). Nevertheless, understanding the underlying 

mechanism of seizures has enabled better clinical management which 

includes avoiding AEDs that exacerbate seizures, such as carbamazepine, 

and prioritising clobazam, valproate, stiripentol, topiramate, and the 

ketogenic diet (307). The new insights have also facilitated the exploration 

of targeted treatments such as cannabidiol (approved by the FDA in 2018 

(308)) and fenfluramine which has recently shown clinically meaningful 

seizure improvements in open label studies and case series (309-311). 

Fenfluramine is not yet available on the market. A Phase 3 study comparing 

fenfluramine with placebo has recently been completed, but the results 

have not been published yet (312).  

 

Since common variants around SCN1A have been identified as risk factors 

for a wide range of common epilepsies (259, 261), it is possible that 
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variation in the SCN1A gene could also be associated with drug resistance in 

common epilepsies. Considering that multiple AEDs target sodium channels, 

investigating the SCN1A gene variation in relation with the clinical response 

could lead to important insights in DRE (313). Several studies have explored 

the association of SCN1A SNPs with drug resistance. Tate et al. explored the 

haplotype-tagging SNPs in SCN1A and reported the association of the 

rs3812718 (c.603-91G>A) genotype with the maximum dose of phenytoin 

and carbamazepine in regular usage in PWE (274). This SNP is located in a 

splice donor site which determines the alternative splicing of exon 5 

encoding a voltage sensor domain of the sodium channel (274, 314). The 

association of serum phenytoin levels at maintenance dose and rs3812718 

genotype was detected in a second study in a Chinese population (315). 

However, a further study in Austrian individuals did not replicate these 

findings (316). One study in a Japanese population has found an association 

of the AA genotype with the lack of response to carbamazepine (317); 

whereas several other studies in a range of populations did not succeed to 

replicate the association between the rs3812718 SNP and drug resistance 

to carbamazepine, oxcarbazepine, and multiple AEDs (280, 318-322). One 

study found a marginally statistically significant association between a 

different SCN1A SNP, rs10188577 (c.265-699A>G), genotype and drug 

resistance (322). Margari et al. explored the association of 14 SCN1A SNPs 

(located both in exons and non-coding areas) with drug resistance in a 

paediatric epilepsy cohort. Three intronic SNPs (but none of the exonic 

SNPs) were statistically significantly associated with treatment outcomes 
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(rs6730344, c.3430-9985G>T; rs6732655, c.2590-424T>A; rs10167228, 

c.2044-168A>C) (313). Of note, rs6732655 was also found to be an epilepsy 

risk factor in the ILAE GWAS of genetic determinants of common epilepsies 

(261).  

 

While the mechanism of drug resistance in monogenic epilepsy syndromes 

caused by SCN1A mutations is at least to some extent explained, the 

relationship between SCN1A polymorphisms and drug resistance in 

common epilepsies appears to be more complex. There is limited support 

for the role of rs6730344, rs10167228, rs3812718, and rs6732655 in DRE, at 

least in some populations. These SNPs are intronic, potentially resulting in 

splice site alterations and changes in the protein (313, 320). More research 

is needed to establish whether the variation around SCN1A affects drug 

resistance in the general epilepsy population.  

 

Another extensively studied example of a gene causing epilepsy and drug 

resistance is SLC2A1 (solute carrier family 2 member 1). Mutations of the 

gene result in glucose type 1 transporter (GLUT-1) deficiency and 

consequently impaired transport of glucose across the BBB which affects 

brain development and function (323). Individuals with GLUT-1 deficiency 

have low CSF and brain glucose presenting with a variety of phenotypes 

including myoclonic-astatic epilepsy, early childhood refractory absence 

epilepsy, rarely juvenile absence epilepsy, and paroxysmal exercise-induced 

dyskinesia (324, 325). The severity of the phenotype depends on the extent 
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of the reduction of the GLUT-1 transporter function (326, 327); however, 

genotype-phenotype correlations are not clean-cut or easy to establish. 

Individuals with the same mutation may exhibit phenotypic heterogeneity 

in terms of the range and severity of clinical symptoms, allowing the 

possibility of genetic modifiers influencing the phenotype (328). Epilepsy 

associated with GLUT-1 deficiency is resistant to classic AEDs, but amenable 

to treatment with the ketogenic diet, which generates ketones replacing 

glucose and restoring brain energy metabolism (329). GLUT-1 deficiency 

syndrome is a great example of how understanding the underlying cause 

enables personalised treatment.  

 

There are a few other examples of epilepsy syndromes where the 

underlying gene abnormality at leaset partially explains drug resistance to 

conventional AEDs and where precision therapy might be implemented to 

treat epilepsy. These include the use of mTOR (mammalian target of 

rapamycin) inhibitors in epilepsy associated with tuberous sclerosis (330) 

and the potential use of memantine in individuals with EE due to GRIN2A 

(glutamate NMDA receptor subunit 2A) mutations (331). 

 

Mutations in the above listed genes explain resistance to individual or multiple AEDs in 

a few rare genetic epilepsy syndromes. In these syndromes, the mutations causing 

epilepsy also likely contribute to drug resistance, which would be consistent with the 

intrinsic hypothesis. However, the phenotypic heterogeneity frequently seen in 
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monogenic epilepsy syndromes allows for the possibility of genetic or other modifiers 

affecting both the seizure severity and drug resistance (96). These modifiers could be 

either syndrome-specific or acting across a broader spectrum of epilepsies. 

1.8.2.3 Evidence from genome-wide approaches 

Severe mutations in genes like SCN1A are rare, but it is possible that common variation 

in these genes could partially explain drug resistance in common epilepsies (92). GWAS 

have the potential to help elucidate this. GWAS studies in the field of epilepsy have 

mainly focused on identifying common susceptibility loci conferring an increased 

epilepsy risk (332). With increased collaboration among scientific groups enabling 

larger sample sizes, better exploration of drug response with GWAS approaches is 

becoming feasible. However, as of now, only one GWAS focussing on drug response 

has been published. Speed et al. reported a GWAS comparing responders and non-

responders in a prospective cohort of newly-diagnosed PWE. Suggestive evidence for 

association with response to AEDs was found for the following loci: 6p12.2, 9p23 and 

15q13.2. The authors argued that any individual common variant is unlikely to explain 

more than 4.4% of the variation in the treatment outcomes in newly-diagnosed 

epilepsy (333). There are no published GWAS on drug resistance in chronic epilepsy. 
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1.9 Rationale to study the genetic basis of drug resistance 

Genomic medicine is transforming the field of epilepsy. Large-scale international 

collaborations and progress in sequencing technology have enabled the exploration of 

the genetics of common and rare epilepsies, explaining the aetiology in an increasing 

proportion of PWE (334). So far, the field has been most successful in establishing the 

genetic causes of EE, but there have also been novel gene discoveries in common 

epilepsies. For example, NGS have recently expanded our knowledge of the genetic 

causes of familial focal epilepsies and IGE (335). GWAS of common epilepsies suggest a 

complex genetic architecture, with several loci, each carrying a low disease 

susceptibility risk (261). There is still potential for novel discoveries in all epilepsies 

using both approaches, GWAS as well as NGS. Both approaches will continue to benefit 

from large international collaborative efforts, allowing pooled analyses of large cohorts 

with well-defined phenotypes. 

 

The rationale to study the genetic basis of drug resistance in general epilepsies is 

supported by the following existing knowledge: 

- Drug resistance is a major unmet medical need in epilepsy, representing a 

problem that is both difficult to predict in an individual and difficult to manage 

(156).  
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- DRE occurs across the whole spectrum of AEDs and epilepsies, regardless of the 

underlying aetiology, implying that it could be driven by a non-specific 

mechanism (116).  

- Albeit limited, combined evidence from animal models and studies in 

individuals with epilepsy provides sufficient support for a genetic basis of DRE. 

Increased risk for DRE may be the consequence of genetic variation in genes 

coding for proteins involved in drug pharmacokinetics, pharmacodynamics, and 

genes that (when mutated) cause epilepsy. So far, efforts to establish specific 

pharmacogenomic markers of DRE have produced less robust or conflicting 

findings needing further validation, for example variation in genes encoding 

drug transporters and AED targets (14).  

- There is a significant unmet need for genomic markers of DRE to guide epilepsy 

management. 

 

GWAS is a valid method to explore the genetic basis of DRE for the following reasons: 

- The GWAS experimental design is well suited to explore common genomic 

variation.  

- It is reasonable to assume that DRE could potentially be caused by common 

genomic variation, considering that drug resistance is a common trait in the 

epilepsy population, affecting approximately 30% of PWE (20, 28, 43). 

Furthermore, since variants in genes mediating drug response are not expected 
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to be subject to selection pressure, functionally important variants may be 

common in the population (19). 

- In the field of epilepsy, the GWAS approach has already resulted in discoveries 

impacting patient care, most notably the risk alleles associated with severe 

adverse drug reactions to AEDs (336). Similarly, the GWAS approach has the 

potential to provide insights into the prognosis of epilepsy. 

- The unbiased nature of GWAS allows the exploration of DRE without the 

limitation to known pathways which have been extensively studied using 

candidate approaches. 

 

Potential positive GWAS outcomes might contribute to the understanding of the 

molecular basis of DRE. Better understanding of DRE could facilitate targeted or 

precision therapies to address the neurochemical deficits leading to resistant seizures 

in an important subset of PWE (337-339). Rare successful examples of targeted 

molecular therapies to treat extremely resistant epilepsy syndromes have already 

attracted significant interest and enthusiasm from the epilepsy community (311). 
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1.10 Aims and hypotheses 

The aim of this work is to explore the genetic contribution to DRE and identify 

common genomic variants associated with drug resistance in epilepsy of any aetiology. 

The identification of such variants could have two potential implications:  

i) Pointing to novel biological pathways, increasing our understanding of DRE 

ii) A variant highly associated with DRE could be useful as a biomarker to predict 

the outcome early in the disease course 

 

This work has one principal research question: 

Does common genomic variation contribute to drug resistance in epilepsy, regardless 

of the epilepsy type? 

 

The following hypotheses were tested: 

 

Hypothesis 1: 

Common genomic variants are associated with drug resistance in common epilepsies. 

 

To test Hypothesis 1, I performed a GWAS analysis comparing individuals with DRE and 

individuals with drug-responsive epilepsy (GWAS1). 
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Hypothesis 2: 

Identified variants are determinants of drug response rather than epilepsy 

susceptibility variants. 

 

To test Hypothesis 2, I performed an additional GWAS analysis comparing individuals 

with DRE and healthy individuals (GWAS2). If Hypothesis 2 is accurate, the loci 

identified in GWAS1 will not be replicated in GWAS2. 

 

Hypothesis 3: 

Drug resistance in epilepsy has a polygenic inheritance component. 

 

To test Hypothesis 3, I performed a SNP heritability analysis, using the data from 

GWAS1. The heritability analysis explores the joint contribution of all variants included 

in the GWAS analysis of drug resistance. 
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CHAPTER 2: ESTABLISHING A PHENOTYPIC DATABASE OF DRUG 
RESPONSE IN EPILEPSY 

2.1 Introduction 

As stated in the preface, I completed this work as part of collaborative, European 

Commission 7th Framework funded project: EpiPGX (Epilepsy Pharmacogenomics: 

delivering biomarkers for clinical use). This was an extensive effort with contributions 

from numerous researchers. The full list of researchers is provided in the preface and 

my contribution is outlined in Table 1. 

In this chapter, I outline the EpiPGX organisation and scope of work, focussing on the 

procedures for case selection for the GWAS and heritability analyses. I describe the 

results of the phenotyping work and the cohorts available for analyses. Lastly, I discuss 

the relevance and the impact of the chosen case definitions. 

2.1.1 DRE definitions 

Appropriate phenotype definitions and classification of cases and controls are of key 

importance in GWAS, particularly when cohort sizes are restricted. The analysis should 



101 
 

involve a representative sample of cases and controls to increase the likelihood of 

detecting a relevant signal and to eliminate potential confounding factors (340). 

Defining drug resistance in epilepsy has been challenging, reflecting the complex and 

diverse course of the disorder. Before the ILAE proposed a unified concept of DRE in 

2010, no consensus definition existed and drug resistance was defined differently 

across studies, making comparisons difficult. Definitions used in large studies of 

epilepsy outcomes before 2010, as well as the ILAE definition, are summarised in Table 

2.1. 

Table 2.1: DRE definitions used in studies of epilepsy outcomes 

Reference Definition 
Arts et al., 1999 (20) “Failure to be ≥ 3 months seizure-free at 6 months 

after diagnosis” 
Berg et al., 2001 (21) “The failure or lack of seizure control with ≥ 2 first-

line AEDs with an average seizure frequency ≥ 1 
seizure/month for 18 months and no more than 3 
consecutive months seizure-free during that 
interval” 

Dlugos et al., 2001 (23) “Failure to be ≥ 6 months seizure-free at 2 years 
after diagnosis” 

Camfield and Camfield, 2003 
(22) 

“An average of ≥ 1 seizures in each 2-month period 
during the last year of follow-up, despite treatment 
with at least 3 AEDs as monotherapy or 
polytherapy” 

Kwan and Brodie, 2004 (84) “DRE is defined as < 1 year of seizure freedom 
despite treatment with at least 2 AEDs” 

ILAE definition 
Kwan et al., 2010 (26) 

“A failure of adequate trials of 2 tolerated, 
appropriately chosen and used AED schedules 
(whether as monotherapy or in combination) to 
achieve sustained seizure freedom” 
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Berg and Kelly applied the definitions mentioned above (apart from the ILAE) 

prospectively in a de novo cohort of 613 children. Absolute agreement between any 

two definitions was above 0.80, but there were discrepancies in the kappa statistics 

(“agreement after correcting for agreement expected by chance alone”). Importantly, 

all definitions correlated well with the likelihood of a two-year and five-year remission 

at the last follow-up (52). The ILAE definition has been validated against the Berg, 

Kwan and Brodie, and Camfield and Camfield definitions in a recent study by Tellez-

Zenteno et al. The ILAE definition was found to be reliable (inter-observer kappa score 

0.77) and correlated well with the three older DRE criteria which retain their clinical 

significance. The differences in the proportion of the population classified as having 

DRE using the four definitions were not statistically significant (341). In conclusion, 

different DRE definitions seem to capture the resistant population well. As stated by 

Berg and Kely in the conclusion of their work, having a choice of several definitions of 

DRE is not necessarily a negative thing as it is unlikely that a single definition of DRE 

will suit all purposes. Depending on the research purpose, one definition may be more 

appropriate than another, or sometimes a slight modification (which the ILAE 

framework allows) may be required (26, 52). 

The main advantage of the ILAE definition, in addition to providing consensus, is that it 

allows an early diagnosis of drug resistance in clinical settings and it has been widely 

used in studies of epilepsy outcomes over the past years (341-345). However, it is less 

readily applicable in some types of studies, for example clinical trials of new 

investigational drugs and pharmacogenomic studies. 



103 
 

Early phase pharmaceutical trials of novel AEDs are almost without exception 

conducted in individuals with DRE; however, the way this population is defined is 

usually guided by the design and the ethical imperative to include only individuals who 

have the potential to benefit from experimental treatments. Typically, at least two to 

eight seizures per month over a period of a few weeks (often eight) is required, as well 

as having failed a minimum of two to three AEDs. Sometimes an additional criterion 

requiring “no continuous 21-day seizure-free periods” is added (330, 346-351). These 

criteria are tailored to the design that usually includes a few weeks of screening during 

which the baseline seizure frequency can be assessed. 

Similarly, epilepsy pharmacogenetic and pharmacogenomic studies often tailor the 

DRE criteria to increase the probability of demonstrating efficacy, resulting in a 

multitude of definitions in the published literature. Often, these are based on the 

criteria proposed by Siddiqui et al., requiring a minimum of four seizures over a period 

of 12 months despite treatment with more than three AEDs (123). The number of AED 

trials required by different authors may vary from two to four (123, 352, 353). Other 

definitions used in these studies may require higher seizure frequencies, for instance 

one seizure per month or ten seizures over a period of 12 months (352, 353). The use 

of the ILAE definition in pharmacogenomic studies published prior to 2015 was rare, 

but has been increasing in the past three years, although it is still less common than 

variations of the Siddiqui et al. definition (294, 313, 353-355). Drug responsiveness is 

almost without exception defined as one year of seizure freedom (123, 352, 353), in 

contrast with the ILAE proposal recommending either “seizure freedom for 12 months, 

or for a minimum of three times the longest pre-intervention inter-seizure interval, 
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whichever is longer” (26). This may be due to the often retrospective phenotypic data 

collection where the exact intervals between seizures may not be readily available. 

2.1.1.1 Addressing pseudo-resistance 

Uncontrolled seizures due to factors other than DRE are often referred to as pseudo-

resistance. Before determining the outcome of epilepsy as drug resistance, it is 

important to consider potential causes of pseudo-resistance, including (but not limited 

to): poor adherence, other conditions with symptoms mimicking seizures (e.g. NES), 

inappropriate medication for the epilepsy or seizure type, and insufficient dose of the 

correct medication (356, 357). The latter category also includes situations where 

suboptimal seizure control is accepted to balance the benefits, risks, lifestyle issues, 

and personal preferences. In some individuals, complete seizure control cannot be 

achieved without unacceptable adverse effects (358). Rarely, treatment with the most 

efficacious AED for the condition may not be appropriate due to the potential risks. For 

example, valproate remains one of the most efficacious AEDs to treat some types of 

epilepsy, such as CAE and JME (359-361), but it is associated with higher rates of 

congenital malformations and developmental disorders as a result of intrauterine 

exposure than other AEDs (362-365). In 2014, the National Institute for Health and 

Care Excellene (NICE) published a guideline recommending to avoid valproate use in 

pregnancy (366). More recently, the CMDh (Coordination Group for Mutual 

Recognition and Decentralised Procedures), a medicines regulatory body representing 

the European Union, and the EMA (European Medicines Agency) endorsed more 

stringent measures. According to the new requirements, “valproate should not be 

used in pregnancy unless the woman has a form of epilepsy that is unresponsive to 



105 
 

other AEDs”, and it “should not be prescribed to women of child-bearing potential who 

are not enrolled in a pregnancy prevention programme” (367). As for some women 

valproate may be the only AED that controls their seizures, switching to a different 

AED due to pregnancy planning or pregnancy may mean accepting suboptimal seizure 

control  (368).  

Other situations where drug response may be challenging to ascertain include 

provoked and reflex seizures. Provoked seizures are seizures that are associated with 

provoking external factors. These include fever, sleep deprivation, and menstrual cycle 

changes. In clinical practice it may be difficult to establish the causal association 

between the seizure and the external factor with certainty and thus determine 

whether a seizure was provoked or a result of AED failure. The same may be true for 

reflex seizures which are epileptic events precipitated by external stimuli (e.g. light 

flashes), internal mental processes, or both (369, 370). 

According to the ILAE DRE definition, potential causes of pseudo-resistance have to be 

considered when determining the outcome of individual AED trials. For the trial to be 

informative, the AED has to be “appropriate for the epilepsy and seizure type” and 

“applied at adequate dosage”. Consequently, seizures that occur in the context of non-

adherence are not considered a sign of drug resistance. The ILAE framework does not 

specifically address situations where suboptimal seizure control is accepted by the 

affected individual due to lifestyle reasons, safety, or tolerability. Provoked seizures 

are interpreted as AED failure and reflex seizures are not mentioned (26). 
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2.1.2 Consistency of data entry and classification in multicentric studies 

Agreeing on and carefully applying definitions is especially important in international 

multicentric studies. Regardless of the definitions used, there may be cross-centre 

diversity of practice and interpretation. Definitions of DRE usually do not include 

instructions on how to classify an AED trial as adequate, how to interpret the 

outcomes of AED trials after epilepsy surgery, when to consider an individual non-

adherent to medication, etc. As a consequence, classification of cases can depend 

heavily on the interpretation. Such challenges should be expected and managed to 

allow reliable classification of phenotypes. 

2.1.3 Aim of the phenotyping work 

The aim of phenotyping within EpiPGX was to provide reliably classified cases for 

GWAS studies, including the drug resistance GWAS. Establishing a collection of DNA 

samples linked with a database of phenotypic data was a prerequisite to allow 

meaningful genomic analyses. 

2.2 The EpiPGX Consortium 
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The EpiPGX Consortium (referred to as the Consortium in further text) was established 

in 2011, with the aim to identify genomic markers of epilepsy treatment response to 

improve and guide epilepsy treatment. 

2.2.1 EpiPGX sites 

The following centres are part of the Consortium: UCL, ULB, IGG, EKUT, SEIN, UKB, 

RCSI, HSCT, deCODE, UL, UMCU, ULIV, Imperial, UGLA, GABO:mi (full names are 

provided in the Statement of contribution section). 

2.2.2 Scope of work 

The Consortium addresses several aspects of epilepsy pharmacogenomics, including: 

i) Early and late response to AEDs 

ii) Drug resistance 

iii) Adverse drug reactions of AEDs 

iv) Developmental malformations caused by specific AEDs 

 

The scientific work is organised into ten work packages (WP). Each WP has a leading 

centre and a varying number of collaborating parties. The work on each WP focusses 

either on one of the epilepsy pharmacogenomics aspects, or activities that feed into all 

other WP (see Table 2.2). The EC funding started in November 2011 and finished in 
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October 2015. The Consortium is still active and analyses of the data continue to this 

date. 

Table 2.2: EpiPGX WP 

WP Scope of work Leading site 
WP01 Characterisation of pharmacogenomic phenotypes and 

phenotype quality assurance 
ULB 

WP02 Genome-based biomarkers of early treatment response 
in newly-diagnosed epilepsy 

ULIV 

WP03 Genome-based biomarker discovery for resistance to 
multiple AEDs 

UCL 

WP04 Genome-based biomarker discovery for late response to 
specific AEDs 

EKUT 

WP05 Genome-based biomarker discovery for specific ADRs RCSI 
WP06 Genome-based biomarker discovery for valproate 

teratogenesis 
BHSCT 

WP07 Core analytic and bioinformatic processing UL 
WP08 Development of diagnostic tests and in silico database deCODE 
WP09 Project Management GABO:mi 
WP10 Dissemination and Training UCL 

 

 

Shortly following its establishment, the Consortium generated detailed consensus 

phenotype definitions relating to different aspects of epilepsy pharmacogenomics and 

a corresponding project-specific case record form (CRF). The CRF formed the basis for a 

centralised electronic phenotypic database enabling direct entry and sharing of the 

data across the sites. Parallel to these efforts, there was ongoing recruitment of 

individuals with epilepsy to establish a collection of DNA samples linked with the 

phenotypic database. PWE were recruited across all clinical EpiPGX sites. DNA samples 

were shipped to DeCODE for SNP-genotyping and WES. GWAS and other analyses to 

identify biomarkers associated with pre-defined epilepsy pharmacogenomic 
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phenotypes started soon after the genotype data became available. The present work 

is part of WP03 which focuses on broad AED resistance. The methods for phenotypic 

collection in WP03 are described in detail below. 

2.3 Methods 

2.3.1 Ethics 

All study participants provided written, informed consent for genetic analyses. Local 

institutional review boards reviewed and approved study protocols at each 

contributing site (see Appendix 5). This work was undertaken in accordance with 

national and international regulations listed in Appendix 5. The EpiPGX project was 

also guided by an Ethics Advisory Board consisting of three expert ethicists, 

representing legal, philosophical, and social aspects of ethical issues in genetics, one 

rotating scientific advisory board member, and one rotating EpiPGX WP leader. The 

Ethics Advisory Board ensured a high standard of ethics was maintained in the overall 

pursuit of the project. 
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2.3.2 Recruitment and inclusion criteria 

Individuals with epilepsy were recruited from clinical centres in the UK, Ireland, 

Belgium, Netherlands, Germany, and Italy, as outlined in Table 2.3. They had to meet 

the following inclusion criteria: 

1. Diagnosis of epilepsy 

2. Written informed consent (or assent where appropriate) signed by the 

individual or their legal representative 
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Table 2.3: EpiPGX recruiting centres 

EpiPGX site Recruiting centre 
 

Ancestry 

UCL Outpatient Epilepsy Clinics at the Department of 
Clinical and Experimental Epilepsy (DCEE), National 
Hospital for Neurology and Neurosurgery (NHNN), 
London 

British 

ULB Epilepsy Clinics at UZ Gasthuisberg, Katholieke 
Universiteit Leuven, and Hôpital Erasme, Université 
Libre de Bruxelles, Brussels 

Belgian 

IGG Outpatient Epilepsy Clinics at Instituto Giannina 
Gaslini, Genova 

Italian 

EKUT Outpatient Epilepsy Clinics at the University Hospital 
Tübingen 

German 

SEIN Tertiary Referral Center for Epilepsy at Stichting 
Epilepsie Instellingen Nederland, Heemstede 

Dutch 

UKB Klinik für Epileptologie, Universität Bonn German 
RCSI Specialised Epilepsy Clinic at Beaumont Hospital, 

Dublin 
Irish 

UMCU Outpatient Epilepsy Clinics at University Medical 
Center Utrecht 

Dutch 

ULIV Outpatient Epilepsy Clinics at The Walton Centre for 
Neurology & Neurosurgery, Liverpool 

British 

UGLA Epilepsy Unit, University Department of Medicine 
and Therapeutics, Western Infirmary, Glasgow 

British 

 

Ethnically matched healthy controls were obtained from publically available sources, 

as outlined in Table 2.4. 
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Table 2.4: Sources of healthy controls 

Contributor 
 

Description Ancestry 

National Blood Bank 
Service (NBS) 

Healthy blood donors from the UK Blood 
Service 

British 

Wellcome 1958 Birth 
Cohort 

Individuals born in a single week in 1958 in 
England, Scotland, and Wales, participating in 
The National Child Development Study (NCDS) 

British 

Trinity Student Study Healthy young adult volunteers of Irish 
ancestry 

Irish 

Belgian donors Blood donors and healthy volunteers of 
Belgian ancestry 

Belgian 

KORA Epidemiologically recruited cohort from the 
Northern region of Germany 

German 

PopGEN Epidemiologically recruited cohort from the 
Southern region of Germany 

German 

Italian SP1 and SP5 Healthy employees from Epilepsy centres in 
Italy 

Italian 

 

2.3.3 Procedures to ensure uniform phenotyping across the sites 

Several processes were put in place to ensure uniform phenotyping across the sites: 

i) Consensus definitions 

ii) Unified CRF and centralised phenotypic database 

iii) Phenotyping manual 

iv) Phenotyping workshops 

v) Evaluation of inter-rater agreement across the sites 

These processes are described in more detail in further text below. 
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2.3.4 Definitions of pharmacogenomic phenotypes 

Seizures and epilepsy syndromes were classified according to the 1989 ILAE 

terminology (Commission on Classification and Terminology of the ILAE, 1989), taking 

into account clinical information, imaging, and electroencephalography (EEG) findings. 

Criteria for IGE (GGE) comprised: “tonic-clonic, absence, or myoclonic seizures with 

generalised spike-wave discharges on EEG and no evidence of an acquired cause” 

(261). Cases with GTCS or absence seizures alone and a non-informative EEG remained 

unclassified. Consensus definitions for the relevant pharmacogenetic categories were 

developed by the EpiPGX clinical principal investigators (SMS, JC, ND, CD, HL, AGM) 

based on clinical experience and evidence from the literature (Appendix 2). Phenotype 

definitions relevant for this work are listed below. 

Definition of drug resistance used in this work 

The consensus definition of DRE was designed to allow meaningful classification of 

cases using medical records as well as promoting harmonisation across several sites 

and nations. It is based on the ILAE consensus proposal, which defines drug resistance 

as “a failure of adequate trials of two tolerated and appropriately chosen and used 

AED schedules (whether as monotherapies or in combination) to achieve sustained 

seizure freedom” (26). According to the ILAE definition, individuals with very rare 

seizures (for example one seizure in 12 months) may be classified as drug resistant (74) 

which could be a disadvantage in the context of pharmacogenomics research where 

the intention is to identify biomarkers of clinically meaningful DRE phenotype. Hence, 

the clinical principal investigators agreed to use the threshold of four seizures per year 
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that is frequently used in pharmacogenetic and pharmacogenomic studies (123, 352, 

353). As a result, the EpiPGX consensus definition of DRE was formulated as follows: 

“seizures recurring at a frequency of ≥ 4/year over the year preceding the latest data 

entry, despite adequate trials of ≥ 2 tolerated and appropriately chosen and used AED 

schedules, whether as monotherapies or in combination.” 

An AED trial was classified as adequate if it was applied at an adequate dose for a 

sufficient amount of time. An AED trial was classified as appropriate if it had been 

previously shown to be efficacious, preferably in randomised controlled studies. 

Minimum therapeutic doses for an average adult person were defined by the EpiPGX 

principal investigators (SMS, JC, ND, CD, HL, AGM, JWS, GJS) based on clinical 

experience, the World Health Organization (WHO) defined daily doses (DDD) (371), 

and evidence from the literature (Appendix 2). It is important to note that the agreed 

appropriate AED daily doses only apply to monotherapy trials and that the list was 

used as a guidance rather than a set of strict rules. Clinical judgement was required to 

evaluate the adequacy of AED trials in the context of polytherapy, extreme low or high 

weight, and for AED trials taking place in an individual’s childhood. Laboratory reports 

of AED levels were taken into account if available. If the AED levels were below the 

local reference range while the individual was taking a stable dose of the AED and 

there were no signs indicating CNS toxicity, the AED trial was considered inadequate. 

Individuals with non-epileptic seizures (NES) and those known to be non-adherent 

were excluded. Individuals who had undergone epilepsy surgery were classified as 

drug-resistant, provided they fulfilled the criteria for drug resistance prior to surgery. 
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Definition of drug responsiveness  

According to the EpiPGX consensus definition, drug responsiveness was defined as 

freedom from seizures for ≥12 months up to the latest recorded visit. This is a slight 

departure from the ILAE definition where the outcome of an AED trial is categorised as 

“seizure-free” (Category 1 response) if “the treatment results in seizure freedom for 12 

months, or for a minimum of three times the longest pre-intervention inter-seizure 

interval, whichever is longer” (26). Considering the phenotypic data were collected 

retrospectively, not taking into account the pre-intervention inter-seizure intervals, the 

EpiPGX definition of remission was thought to be appropriate and in line with other 

epilepsy pharmacogenetic and pharmacogenomic studies published in the literature 

(352, 353). Inter-seizure intervals are not consistently documented in medical records 

and the lack of information could have prevented the classification of cases. The 

downside is that some individuals with very rare seizures could have been classified as 

responders. 

Unclassified cases (undefined response) 

An individual remained unclassified if he/she: 

1. Was systematically non-adherent to medication 

2. Had a history of NES 

3. Had one to three seizures in the 12 months prior to the latest recorded visit 

4. Had an unknown number of seizures in the 12 months prior to the latest 

recorded visit 

5. Had only one or no adequate trials of tolerated and appropriately chosen 

and used AED schedules 
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6. Had newly-diagnosed epilepsy with seizures stopping after introducing an 

AED, but not enough time had passed to categorise the outcome as seizure-

freedom 

7. Was not treated with adequate doses of AEDs in the 12 months prior to the 

latest recorded visit (while continuing to experience seizures) 

8. There was insufficient information in the medical records to allow 

classification 

2.3.5 Phenotypic data collection 

Medical records were accessed and relevant clinical information was extracted using 

the EpiPGX-specific CRF (Appendix 1). The CRF was designed to capture a broad 

spectrum of phenotypic data in PWE, including: 

1. General information (demographic data, information on DNA collection) 

2. Epilepsy diagnosis 

3. Comorbidities 

4. Neurological examination 

5. Seizure types 

6. Seizure frequency data and remissions data 

7. Non-medical epilepsy treatment (surgery, vagal nerve stimulation) 

8. Medical investigations (imaging, electroencephalography (EEG)) 
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9. Detailed AED history data per AED (maximum dose, serum level if available, 

treatment duration, compliance, efficacy and detailed information on adverse 

drug reactions, reasons for discontinuation if applicable)  

10. Pregnancy outcomes (congenital malformations) 

11. Classification of outcomes (pharmacogenomic phenotypes) 

Data were entered in the EpiPGX database, developed specifically for the purposes of 

the project to improve the homogeneity of phenotyping and data sharing within 

EpiPGX (Appendix 4). It is hosted on a server at deCODE and it can be accessed online 

by members of the Consortium. 

Cases were classified into relevant pharmacogenomic categories (phenotypes) using 

consensus definitions (Appendix 2). The EpiPGX data entry manual provided decision 

algorithms and guidance on phenotyping and data entry (Appendix 3). Even with all of 

this in place, a degree of clinical judgment was required to accurately classify the 

cases. Case classifications were entered in a designated section of the EpiPGX 

database. This has enabled researchers across the Consortium to quickly identify 

informative cases for different analytical efforts. 

2.3.6 Inter-rater agreement 

Inter-rater reliability was checked across the Consortium and internally at UCL. To test 

cross-centre phenotyping consistency, trained fellows at seven EpiPGX sites 

independently phenotyped a set of ten anonymised medical records. Over 500 
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phenotype items were collected for earch set of medical records. Inter-rater 

agreement was checked for the following phenotype items: epilepsy syndrome 

diagnosis, seizure types, number of remissions, number of seizures before the first AED 

treatment, number of seizures in the last 12 months of follow-up, total number of 

appropriate and adequate AED trials, outcome of individual AED trials, number of 

failed AED trials, and reported adverse drug reactions to specific AEDs. In addition, we 

performed two focussed inter-rater agreement exercises to specifically test the 

classification of cases into drug-resistant, drug-responsive, and those for which the 

outcome was undefined. The first exercise was performed at the UCL and ULIV sites. 

Fifty consecutive cases from ULIV were independently classified by a clinical fellow 

from each site. The second exercise was an internal inter-rater reliability test at UCL. 

Thirty consecutive cases from each fellow working on the phenotyping task were 

independently classified as drug-resistant, drug-responsive, or undefined, by another 

fellow. Inter-rater agreement was expressed as percentage joint-probability 

agreement, defined as the proportion of the time the raters agree in a nominal or 

categorical rating system (372). 
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2.4 Results 

2.4.1 Assembly of cohorts for inclusion in drug resistance GWAS 

Over 12,500 individuals with epilepsy were recruited across the EpiPGX sites. Healthy 

controls were obtained from several publically available sources (See Section 2.3.2). As 

of October 2015, 9,726 out of the 12,500 recruited participants were phenotyped and 

their data were fully or partially entered in the EpiPGX database. The healthy controls 

were not entered in the EpiPGX database. Epilepsy outcome information was available 

for 4,876 epilepsy cases (2,639 were classified as drug-resistant and 2,237 as drug-

responsive). After the review of the phenotypic data, SNP genotyping and imputation, 

4,135 epilepsy cases (2,489 drug-resistant and 1,645 drug-responsive) were eventually 

available for inclusion in the drug resistance GWAS, in addition to 10,695 healthy 

controls. The overview of the cohort assembly for the drug resistance GWAS is shown 

in Figure 2.1 and individual steps are described in more detail in further text. 
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Figure 2.1: Cohort assembly overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1.1 Accessing medical records and phenotyping 

As mentioned above, 9,726 study participants were phenotyped as of October 2015. 

Medical records were accessed by dedicated clinical fellows and detailed disease and 

AED treatment information was extracted using the EpiPGX CRF. The data collected 
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prior to 2013 were entered in local databases. At UCL, basic demographic and 

diagnostic information was entered in an Excel database, while the AED treatment 

details were collected in paper format. In early 2013, the dedicated EpiPGX database 

was ready for use, enabling direct data entry. Data collected earlier were either 

automatically transferred from the local databases or manually entered in the EpiPGX 

database. 

The phenotyping process proved to be more labour-intensive than anticipated, 

requiring several dedicated full-time fellows to perform this task. For example, a 

simple case (two AED trials, no ADRs, no non-medical treatments, pregnancies, or 

issues such as non-adherence) required the fellow to fill in 60 to 70 fields in the EpiPGX 

database, with an additional seven fields for the classification into the WP-specific 

phenotypes. The number of fields that had to be entered increased with every 

additional AED trial and in case of complications such as ADRs, teratogenicity, or non-

medical treatments. Many individuals had had in excess of 20 AED trials and some 

medical records spanned several decades. For instance, the oldest clinical letter 

accessed at UCL was dated June 1933. Such complex cases required as many as 500 

fields to be entered, taking several hours to complete. 

In addition to extracting the relevant information from electronic or physical medical 

records and data entry, the fellows had to judge whether an individual case met the 

criteria to fit into any of the relevant pharmacogenomic categories (WP-specific 

phenotypes; see Appendix 2). In order to decide whether a case was drug-resistant or 

drug-responsive, the fellows followed an algorithm (see Appendix 3), taking into 

account the number of seizures in the 12 months prior to the latest recorded visit, the 
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number of adequate and appropriate AED trials, non-medical treatments, and 

potentially any issues such as non-adherence or NES. Classification of cases by the 

person with access to the full medical records ensured all the available information 

was integrated in the final judgement, including information that would have been 

difficult to capture electronically (e.g. AED dose changes over time, appropriateness of 

AEDs for certain epilepsy syndromes). 

Since the available resources did not allow for deep phenotyping of the entire EpiPGX 

cohort, each centre devised a strategy to maximise the number of cases for inclusion in 

individual GWAS analyses. For instance, when medical records were difficult to access 

(i.e. not in electronic format), often only basic demographic and disease information 

was entered. The Consortium agreed to consider a case fully phenotyped if there was 

complete information on at least one AED trial. If this was not true, the entry was 

considered a ‘stub’. Out the 9,726 cases entered in the EpiPGX database as of October 

2015, 7,750 cases were considered fully phenotyped, and the remaining cases were 

entered as ‘stubs’. 

2.4.1.2 Classification of epilepsy outcomes for the drug resistance GWAS 

The long-term outcome (drug resistance, drug responsiveness) information was 

available for 4,876 out of the 9,726 cases entered in the EpiPGX database. Of those, 

2,639 were classified as drug-resistant and 2,237 as drug-responsive. The outcome was 

undefined for 5,124 individuals which is a significant proportion of the entire sample. 

This was most commonly due to insufficient information in the EpiPGX database. Other 
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common reasons were NES, non-adherence, and unknown number of seizures in the 

12 months prior to the latest recorded visit. The reasons why the outcome remained 

undefined were tracked and documented for the UCL sub-cohort (as outlined in 

Section 2.4.1.3), but not for the entire EpiPGX sample as this was not part of the 

agreed data collection. 

2.4.1.3 Phenotyping of the UCL sub-cohort 

At UCL, 3,131 individuals with epilepsy were recruited from the epilepsy clinics at 

NHNN and their medical records were accessed by dedicated clinical fellows. 

Participants for which the diagnosis of epilepsy was not confirmed (64 in total) were 

excluded from further review, and the remaining 3,067 participants were phenotyped. 

Prior to 2013, the phenotypic data were collected in paper format, with the exception 

of the basic demographic and diagnostic information which was entered in an Excel 

database and later transferred to the EpiPGX database. Data collected from early 2013 

onwards were entered directly in the EpiPGX database. Out of the 3,067 phenotyped 

cases, 1,486 were classified as drug-resistant, 577 as drug-responsive, and for 1,004 

the outcome was undefined (see Figure 2.2). The reasons why the outcome was 

undefined are summarised in Table 2.5. 
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Figure 2.2: Phenotyping of the UCL sub-cohort – overview 
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Table 2.5: Reasons why the outcome was undefined in 1,004 cases in the 
UCL sub-cohort 

REASON 
 

NUMBER (PROPORTION) 

Non-adherence to medication 44 (4.4%) 
History of NES 195 (19.4%) 
1-3 seizures in the 12 months prior to the latest 
recorded visit 

150 (14.9%) 

Unknown number of seizures in the 12 months 
prior to the latest recorded visit 

221 (22.0%) 

Only one or no adequate trials of tolerated and 
appropriately chosen and used AEDs 

51 (5.1%) 

Not treated with adequate doses of AEDs in the 12 
months prior to the latest recorded visit (while 
continuing to experience seizures) 

74 (7.4%) 

Newly diagnosed epilepsy where the seizures 
stopped after introducing an AED, but not enough 
time has passed to categorise the outcome as 
seizure freedom 

11 (1.1%) 

Insufficient information on epilepsy treatment in 
the medical records / physical medical records or 
parts of physical medical records inaccessible 

271 (27.0%) 

A combination of two or more of the above 13 (1.3%) 
 

 

2.4.1.4 Inter-rater agreement 

Inter-rater agreement was checked across the Consortium for key phenotype items 

relevant for several WP, as well as at UCL and ULIV for the classification of DRE and 

drug responsiveness. The cross-centre phenotyping exercise started in May 2013. 

Trained fellows from seven EpiPGX sites phenotyped ten sets of anonymised notes. 

Overall agreement for all phenotype items was 74%. Agreement for classification into 

drug-resistant and drug-responsive cases was 76%. Most of the disagreement resulted 

from differences in determining whether the outcome was undefined among the 
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fellows. An additional source of disagreement was differential classification of cases 

where seizure freedom was achieved as a result of epilepsy surgery. These issues were 

promptly addressed by the Consortium. Following the cross-centre validation exercise, 

a phenotyping workshop was organised in October 2013, providing additional training 

for the clinical fellows. In addition, the EpiPGX database entry manual was compiled to 

ensure the homogeneity of classifications and data entry. 

In December 2013, we performed two inter-rater reliability exercises at the UCL and 

ULIV sites focussing on the classification of broad AED drug resistance and response. 

For the inter-rater agreement check between UCL and ULIV, fifty cases consecutively 

entered in the EpiPGX phenotypic database from ULIV were independently classified 

by the Author and the clinical fellow from ULIV (PA). Inter-rater agreement for 

classification of cases into drug-resistant, drug-responsive or undefined was 96%. In 

addition, we performed an internal inter-rater reliability test at UCL. Four fellows 

worked on the phenotyping task at UCL (AA, WS, KH, NS). Thirty consecutive cases 

from each fellow (120 cases in total) were independently classified as drug-resistant, 

drug-responsive, or undefined, by another fellow. The inter-rater agreement was 93% 

to 97%. All the discrepancies resulted from differences in understanding or 

interpretation of the recorded information. Importantly, there were no discordances in 

classifying the cases as drug-resistant or drug-responsive, but only in establishing the 

outcome as undefined. This is comparable with the report by Hao et al. which assessed 

the inter-rater reliability of the ILAE definition of DRE. The ILAE definition was applied 

to 150 individuals with epilepsy followed-up at a single centre by two independent 

raters. Inter-rater agreement for the classification of epilepsy as drug-resistant, drug-
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responsive, or undefined was 94% (373). Even though the comparison with the work 

by Hao et al. is to some extent limited due to different definitions of DRE, it is valuable 

since the EpiPGX definition was based on the ILAE definition, with the same underlying 

principles. 

2.4.2 Cases available for drug resistance GWAS 

After SNP genotyping and imputation, 2,489 drug-resistant cases (out of 2,639), 1,645 

drug-responsive cases (out of 2,237), and 10,695 healthy controls were available for 

inclusion in drug resistance GWAS (see Table 2.6). 

Table 2.6: Cohorts available for inclusion in drug resistance GWAS 

Country 
 

DRUG-RESISTANT DRUG-RESPONSIVE HEALTHY CONTROLS 
(publically available) 

UK - London 1,163 450 5,272 UK - Liverpool 388 622 
Ireland 310 100 2,223 
Belgium 196 94 1,622 
Italy 128 93 261 
Germany 281 251 1,317 
Netherlands 23 35 0* 
Total 2,489 1,645 10,695 

*Due to the geographic proximity and similar ancestry, Belgian and Dutch samples are 
considered to have similar haplotype structure (374, 375), justifying the use of Belgian healthy 
controls for both cohorts.  
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2.4.3 Demographic and epilepsy characteristics 

Demographic and disease characteristics of individuals with DRE and drug-responsive 

epilepsy are summarised in Tables 2.7 and 2.8. All parameters are calculated for cases 

and controls remaining in the analysis after GWAS QC filtering. 

Table 2.7: Demographic and disease characteristics of cases included in 
drug resistance GWAS 

Parameter DRUG-RESISTANT 
 

DRUG-RESPONSIVE P-value* 

Male gender 
(percentage) 

47.5% 49.3% 0.0118 

Mean age at epilepsy 
onset (years) 

16.3 (SD 13.8) 25.2 (SD 18.1) P < 0.0001 

Proportion of 
individuals who 
never experienced a 
12-month remission 

16.6% NA NA 

Mean number of 
adequate AED trials 

4.3 (SD 2.3) 1.9 (SD 1.3) P < 0.0001 

*Double sided t-test was used to compare means and chi-square test to compare proportions. 

Table 2.8: Distribution of epilepsy phenotypes in both epilepsy cohorts 

Epilepsy type DRUG-RESISTANT 
 

DRUG-RESPONSIVE 

Focal* 2,077 (85.7%) 1,179 (72.5%) 
     Focal cryptogenic 1,020 (42.1%) 831 (34.3%) 
     Focal symptomatic 990 (40.9%) 321 (19.7%) 
Generalised* 214 (8.8%) 274 (16.9%) 
     Generalised idiopathic (genetic) 152 (6.3%) 220 (13.5%) 
     Generalised symptomatic 40 (1.7%) 7 (0.4%) 
Unknown whether focal or 
generalised* 

132 (5.4%) 173 (10.6%) 

*Broad epilepsy type (focal, generalised, unknown whether focal or generalised) was used as a 
covariate in GWAS1. 
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2.5 Discussion 

2.5.1 Cohorts for inclusion in GWAS 

As of October 2015, the EpiPGX cohort consisted of over 12,000 PWE. In addition, the 

Consortium had access to 10,695 publically-available healthy controls. Out of the over 

12,000 epilepsy cases in the EpiPGX database, less than 50% had sufficiently well 

characterised outcomes to meet the critera for inclusion in the drug resistance GWAS 

(2,489 drug-resistant cases and 1,645 drug responders). This was mostly due to the 

demanding phenotyping procedures and insufficient information in the medical 

records, or the inability to access full medical records. The information on specific 

reasons why full medical records were not available was not collected; however, it is 

likely that this was often due to the fact that various research groups were using the 

notes for their studies and publications, excluding some of the more complex cases 

from the sample. Nevertheless, included individuals were representative of the typical 

population seen at tertiary centres, with a higher representation of drug-resistant 

individuals and fewer responders. 

Individuals with DRE and drug responders differed in terms of gender distribution and 

some disease characteristics. There was a slightly higher proportion of females in the 

DRE cohort in comparison with drug responders. Similar trends have also been 

observed in population-based and specialist centre studies of DRE cohorts (79, 376, 

377). The reasons for this difference could include substituting efficacious drugs (ike 
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valproate for GGE) with less optimal treatments due to family planning (366). 

Individuals with DRE had on average tried a higher number of AEDs and had a lower 

age at epilepsy onset. A possible reason for the difference in age at onset seen in the 

sample could have been recruitment from adult epilepsy clinics at tertiary care 

centres. Individuals with epilepsy onset in their childhood are more likely to be under 

follow-up at specialist epilepsy centres as adults if they are drug-resistant than if they 

are drug responsive. Drug responders are more likely to be either followed up by local 

neurologists, or no longer under follow-up and thus not accessible to recruitment 

within EpiPGX, skewing the mean age of the DRE cohort towards a lower value. 

Younger age at epilepsy onset has been associated with poor prognosis in some 

epidemiological studies in children (2, 80, 81), with other studies (especially in adults) 

showing either the opposite or no asssociation (36, 44, 56, 59, 66). Where the 

association was found, it was most likely driven by different aetiologies encountered in 

different age groups. Hence, I did not include the age at onset as a covariate in the 

association analysis (I did include epilepsy type). 

Individuals with DRE and drug responders also differed in terms of epilepsy types. 

Focal symptomatic and focal cryptogenic epilepsy were more common in the drug-

resistant group, and generalised idiopathic (genetic) in the drug responders group. As 

epilepsy type is a consistent predictor of drug response, with symptomatic causes 

predicting DRE (17, 44, 57-59), I included epilepsy type as a covariate in GWAS1. 

Defining the phenotype is of central importance in GWAS of complex traits, yet this 

step often receives little attention (378, 379). Since the accuracy of phenotyping 

affects the likelihood of detecting an association, as well as the reproducibility of the 
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results, it is important to apply uniform phenotypic criteria to define cases and 

controls. As GWAS studies are often conducted in a multicentre setting, there is the 

potential for different interpretations of the criteria by individual researchers, leading 

to heterogeneity of case classification (380). 

Significant efforts were made within EpiPGX to ensure homogeneity of classifications 

across the sites and to obtain good quality data despite the retrospective collection, 

including the use of consensus definitions, a unified CRF, and evaluation of inter-rater 

agreement. 

Limitations of the phenotypic work were mostly linked to the retrospective data 

collection. In addition, classifying epilepsy cases into drug-resistant and drug-

responsive is associated with other challenges which are much more difficult to 

overcome. Firstly, in the absence of objective methods, the assessment of seizure 

frequency relies on patient reports. The diagnosis and classification of epilepsies, 

seizure types, and drug response rest primarily on clinical observations, which may be 

subjective and sometimes poorly described in the medical records. Secondly, the 

epilepsy course may fluctuate between periods of resistance and remission in some 

individuals, posing an issue in the context of a genetic study. 

Advantages and limitations of the EpiPGX phenotyping approach are discussed in more 

detail below. 
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2.5.2 Lessons learnt from phenotyping efforts in EpiPGX 

2.5.2.1 Consensus definitions 

Agreeing on the consensus definitions for long-term epilepsy outcomes (drug 

resistance, drug responsiveness, and undefined response) was the first step to enable 

the standardisation of case selection for drug-resistance GWAS. 

According to the ILAE definition, one seizure per year is sufficient to classify a case as 

drug-resistant. However, the DRE definition used for the purpose of this work requires 

a minimum of four seizures in the 12 months prior to the latest documented visit, 

resulting in a more stringent drug-resistant phenotype. Extreme phenotypes are often 

used in GWAS to increase the chance of detecting a signal, although the value of this 

approach in different disorders can be difficult to predict (340). While the seizure 

frequency of four seizures over the course of 12 months certainly does not define an 

extreme phenotype, setting this limit was helpful to exclude individuals with very 

infrequent seizures for whom the AED response can be difficult to judge, especially in a 

retrospective setting. This has been illustrated by the ESPERA study which looked at 

the applicability of the ILAE definition of DRE. Misclassification of outcomes was much 

more likely in cases with fewer than four seizures per year (381). Individuals with 

infrequent seizures are more likely to fluctuate between periods of uncontrolled 

seizures and remissions (382). Consequently, increasing the threshold to four seizures 

per year is expected to result in the exclusion of some individuals with a fluctuating 
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course of epilepsy which could potentially be beneficial in the context of a 

pharmacogenomic study. 

To further improve the selection of cases for this research, special care was taken 

when evaluating individuals who underwent epilepsy surgery. If seizure-freedom was 

achieved following epilepsy surgery, the individual was still classified as drug-resistant 

rather than drug-responsive, provided the DRE criteria had been met prior to the 

surgery. According to the ILAE proposal, these cases would have been classified as 

drug-responsive; however, this may not reflect the underlying biology as remission is 

achieved with surgical intervention rather than pharmacotherapy. Since the main goal 

of this study was to examine the genetic basis of AED resistance, it was important to 

eliminate the possibility of epilepsy surgery acting as a confounder. 

Several measures were taken to make the assessment of adequate AED trials as 

uniform as possible. The ILAE definition framework does not provide guidance on the 

adequate doses and durations of treatment as this may vary in individuals due to a 

range of factors, such as age, weight, liver, and kidney function, as well as any 

interactions with concomitant medications (373). An individualised approach is needed 

in clinical practice; however, this may be difficult to translate into a set of rules and 

criteria for use in research. As a consequence, epilepsy studies rarely define what is 

considered an adequate trial (382). Even in pharmaceutical trials of novel AEDs where 

establishing drug resistance is extremely important, criteria for past AED trial failure 

are typically not defined and the judgement is left to investigators (383-386). In order 

to standardise the classification of adequate AED trials for the purpose of this study, 

the EpiPGX Consortium agreed on the appropriate minimum daily doses of individual 
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AEDs that would likely result in sufficient exposures in an average adult to provide 

guidance for the fellows who phenotped the cases. 

Uncontrolled epilepsy does not always equal DRE (387). Pseudo-resistance due to 

misdiagnosis, inappropriate AED(s), inadequate AED dose, or non-adherence should be 

excluded before an individual can be considered drug-resistant (388, 389). Drug 

response is also very difficult to judge if an individual experiences NES, especially from 

retrospective medical records. There is considerable variability in the approach to 

pseudo-resistance across clinical studies in epilepsy. For example, the history of NES is 

a standard exclusion criterion in pharmaceutical trials (383-386), but this is not always 

the case in other types of studies. It is not unusual to encounter cohort studies 

exploring DRE that do not disclose how NES were handled, or whether they were taken 

into consideration at all (344, 345, 386, 390). Similar heterogeneity is seen with non-

compliance and other causes of pseudo-resistance. Major causes of pseudo-resistance 

were taken into account in this work to improve case selection. However, since the 

phenotyping was done retrospectively, some causes of pseudo-resistance may not 

have been identified. This includes individuals accepting suboptimal seizure control 

due to the lifestyle (provided that they were taking sufficient doses) or women 

discontinuing valproate due to pregnancy planning and not achieving seizure control 

with other AEDs. 
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2.5.2.2 Uniform application of the phenotype definitions 

Standardised application of phenotype definitions across the sites was achieved by 

using a common CRF and a centralised EpiPGX database, as well as inter-rater 

agreement checks and workshops. There was continuing cross-site communication and 

discussion of difficult cases.  

One of the big learnings in EpiPGX was the extent of diversity of practice across 

European countries in evaluating epilepsy, from establishing the diagnosis to 

evaluating AED treatment outcomes. Standardisation of phenotyping in collaborative 

projects is key to overcome this challenge. Similar to EpiPGX, other international 

epilepsy genetics consortia (ILAE Consortium on Complex Epilepsies, Epi4k – Gene 

Discovery in 4,000 Genomes, EPGP – The Epilepsy Phenome/Genome Project) have 

established efficient phenotyping and informatics cores to standardise the 

documentation of epilepsy phenotypes across different sites (261, 334, 391). So far, 

the main focus of these consortia has been the discovery of causal epilepsy genes 

rather than AED treatment outcomes. As defining and documenting the latter in a 

consistent manner is more complex than simple disease descriptions, the EpiPGX 

Consortium has implemented more extensive and rigorous standardisation across a 

broad spectrum of phenotypes than what had been published in the literature before. 

For example, checking for inter-rater reliability has not been part of the methodology 

in the largest recently published epilepsy genetics studies (102, 261, 335, 392). 

However, this could change soon as several consortia are starting to explore epilepsy 

treatment outcomes. For example, the Epi4K Project 3 scope of work includes 
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exploring the effect of all variants identified as risk factors for epilepsy on the 

prognosis, as well as searching for variants affecting AED response independent of 

disease susceptibility (334). 

2.5.3 Limitations of the EpiPGX phenotyping methods 

2.5.3.1 Retrospective data collection 

A case-control design with retrospective identification of cases and controls is the 

most widely used approach in GWAS investigating the genomic basis of complex traits 

(393), including the present work. Retrospective identification of cases enables a much 

faster assembly of large cohorts needed for this type of analyses than would be 

possible with prospective work. Executing a similar drug resistance GWAS using 

prospective case ascertainment would probably not be feasible in a three-year time 

frame and it would require significantly larger resources. 

While the main advantage of retrospective data collection lies in the ability to identify 

large numbers of cases, the main disadvantage is potential selection bias. As PWE were 

recruited from specialist epilepsy clinics, difficult-to-treat cases were over-represented 

in the overall sample. This could have had a beneficial effect because of the possibility 

that using a more extreme phenotype may increase the likelihood of detecting a 

genetic association. 
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As the outcomes were determined from medical records, the allocation of the AED 

treatment outcome status relied on the accuracy and completeness of the records. 

Fellows involved in phenotyping (including myself) frequently encountered difficulties 

when judging the adequacy and response to past AED trials, especially with older 

medical records. At UCL (DCEE), there were noticeable quality differences between 

modern medical records and records from two or more decades ago. The most obvious 

difference was in the way seizure frequencies were documented, with seizure counts 

often missing in older letters. Another common issue, especially with paper records, 

was missing letters and reports. All of these issues hindered the classification of drug 

response, resulting in AED trials documented as unclassified. As a consequence, the 

average number of total and adequate AED trials per individual reported here is most 

likely an underestimate. Furthermore, it is likely that a substantial proportion of the 

271 UCL cases with undefined response due to insufficient information on epilepsy 

treatment would have met the definition of DRE, had that information been available. 

The main consequence for the GWAS is reduced power. 

2.5.3.2 Subjective reporting of seizure frequency 

Some issues in epilepsy treatment practice cannot be overcome by careful 

phenotyping and standardisation of data entry. In the absence of objective markers of 

seizure frequency, medical judgement of treatment response relies on imperfect 

reporting of seizure frequency by PWE or carers. Many PWE struggle to maintain 

accurate records of seizures, especially if they are accompanied by impaired 
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awareness, or if they occur at night (394, 395). Eyewitness accounts often disagree on 

important details of seizure presentation (395, 396). According to a study comparing 

patient records of seizures and video-telemetry results, only approximately 40% of 

individuals were able to document all seizures accurately. There was low 

documentation accuracy for complex focal seizures and nocturnal seizures (395). 

2.5.3.3 Manual database entry 

Manual transcription of data from medical records may result in errors, either due to 

omission, or wrong value entry. It is well known that structured data entry improves 

the accuracy of manual documentation (397). Hence, a structured CRF and a unified 

database were used to improve the overall quality of the data. The EpiPGX electronic 

database generated alerts if inconsistent data were entered or if no values were 

entered in the key data fields, prompting the person entering the data to check their 

consistency. Despite the risk of human error, classification of cases into pre-defined 

pharmacological categories (phenotypes) by the person entering the data was thought 

to be more accurate than using computer algorithms. The reason behind this was that 

the person entering the data had full access to the medical records, including complex 

information that would have been difficult to capture in the CRF or potential 

algorithms. 
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2.5.3.4 Larger than anticipated proportion of cases with undefined outcomes 

Another significant limitation of this work was the unexpectedly high proportion of 

cases for which the long-term treatment outcomes were undefined (52.7% of all cases 

entered in the EpiPGX database). The most common reason for this was missing 

information due to the time and resource constraints that did not allow for deep 

phenotyping of the entire EpiPGX cohort. Other reasons why the long-term outcomes 

remained undefined in a proportion of cases included unknown number of seizures in 

the last year of follow-up, NES, and inadequate AED trials in individuals continuing to 

experience seizures. 

Complete information on the reasons for undefined outcomes was only documented 

for the UCL sub-cohort. The most common reason was insufficient information in the 

medical records (27% of unclassified cases). Electronic medical records at DCEE were 

introduced in 2007. As a consequence, physical records had to be accessed to obtain 

any information recorded prior to 2007. Since physical records are regularly used by 

several clinical and research groups, inconsistent availability and missing volumes of 

notes were a recurrent issue. Usually two attempts at requesting individual records 

were made before the outcome was registered as undefined due to insufficient 

information. Since DCEE is a tertiary centre, some PWE may only be referred there for 

a single consultation or for diagnostic assessment, after which they continue their 

follow-up with local neurologists. In such cases, the lack of follow-up information often 

made the classification of response impossible. 
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The second most common reason for undefined outcomes was unknown number of 

seizures in the last 12 months of follow-up (22%). Since the EpiPGX definition of DRE 

requires at least four seizures in the 12 months prior to the last recorded visit, 

quantitative (rather than just qualitative) information was needed to judge whether 

participants met the criterion. The number of seizures was not possible to assess if the 

medical records contained vague descriptors of seizure frequency such as: ‘a few 

seizures’, ‘one cluster’, ‘unchanged seizure frequency’, or when the consultant was 

unable to judge the nature of episodes. The latter was especially common with sensory 

auras. The outcome also remained undefined if an individual had only one to three 

seizures in the past year (approximately 15% of the UCL cohort). 

History of NES was another common reason why drug response was difficult to judge 

(19%). Less common reasons included no or only one adequate AED trial (5.1%) and 

inadequate doses of current AEDs (7.4%). AED doses were often inadequate if the 

individual was in the process of titration, or if he or she did not follow the treating 

neurologist’s recommendation to increase the AED dose. 

Several published studies using the ILAE definition of DRE reported the proportion of 

cases with undefined outcome. Since the definition of DRE used in EpiPGX was 

modified, any comparisons with published data have limited value. In addition, EpiPGX 

was not an epidemiological study and PWE were not recruited consecutively. Two of 

the identified published studies using ILAE definition were epidemiological studies 

assessing the prevalence of DRE (53, 54). In addition, I identified one cross-sectional 

study (398), one retrospective study (399), and one study of inter-rater reliability of 

the ILAE classification (373). The latter assessed the inter-rater reliability of outcome 
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classification in 150 consecutive PWE seen at one centre. The proportion of cases with 

undefined response was 27.3% to 29.3% (373). The other four studies are summarised 

in Table 2.9. The proportion of cases with undefined response in these studies ranged 

from 7 to 37.5%, compared with 32.8% in the UCL sub-cohort in the present study. As 

expected, the proportion of cases with undefined response was larger in retrospective 

studies. 

Only one of these studies reported the reasons underlying the undefined response 

category. In 40.2% of participants the response was undefined because they had failed 

only one AED; 36.8% were receiving inadequate AED doses for various reasons (refusal 

by individual, titration phase, non-adherence, absence of all required information). For 

22.5% it was difficult to determine the outcome either because seizure-freedom was 

achieved, but the period was insufficient to qualify as remission, or because a new 

intervention had just been introduced. Missing information was not a major problem 

in this study, with only 0.5% cases for which the available medical information was 

insufficient. This is expected considering that only PWE under active follow-up at the 

time of the study were selected for the review. The entire cohort was under the 

follow-up of two neurologists, ensuring consistent medical documentation (53). 
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Table 2.9: Proportion of participants with undefined response in studies 
using the ILAE definition of DRE 

Study Design Number of 
participants 
 

Proportion of participants 
with undefined response 

Ramos-Lizana et 
al., 2012 (54) 

Prospective, tertiary 
referral centre based 
study 
Paediatric population 

508 49/508 (9.6%) 
 

Kong et al., 2014 
(53) 

Retrospective, tertiary 
referral centre based 
Adult population 

557 209/557 (37.5%) 
 

de Zélicourt et 
al., 2014 (398) 
(ESPERA study) 

Prospective, multicentre 
study 
Adults with focal epilepsy 

405 28/405 (7%) 

Gomez-Ibañez 
et al., 2017 
(399) 

Retrospective, single 
centre-based 
Consecutive GGE cases 
(> 16 years at inclusion) 

279 52/279 (18.6%) 

ESPERA = European Observational study on PWE. 
 
 

The ILAE and EpiPGX case definitions are based on the same principles, resulting in 

similar classification outcomes. Regardless of which definition is used, there is a 

significant proportion of cases that do not fit the drug resistance or drug 

responsiveness categories (undefined response). The main reasons for undefined 

response in the aforementioned publications are similar to my observations in the UCL 

sub-cohort. As expected, the proportion of cases with undefined response was higher 

in retrospective studies. However, direct comparison of the proportions of each 

specific cause may not be appropriate due to the definition differences, as well as 

different study designs and populations. 

The disadvantage of having a high proportion of cases with undefined response was a 

smaller than expected number of cases suitable for inclusion in the GWAS analysis. On 

the positive side, exclusion of cases with less than clear outcomes is beneficial in the 
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context of a pharmacogenomic study. Exclusion of cases with very infrequent seizures 

maximises the chance to identify genomic markers of clinically meaningful drug 

resistance. 

2.5.3.5 Fluctuating course of epilepsy – consequences for genomic studies 

As mentioned in Section 1.2.1, one of the disadvantages of the ILAE definition and any 

ILAE-based definition is that it is only valid at the time of assessment. Even though a 

significant proportion of individuals respond early and remain in sustained remission, 

while others remain resistant, several recent reports suggest that the natural course of 

epilepsy is much more complex than expected and that there is often a dynamic 

relationship between drug resistance and remission. A proportion of patients have a 

fluctuating course, with periods of seizure freedom and relapses (400, 401). 

Associating unstable phenotypes with constant genotypes represents a challenge that 

is difficult to overcome. In a recent publication, Neligan et al. estimated that 

approximately 10% of the epilepsy population follows a fluctuating course (401). In the 

study by Brodie et al., following participants for a median of 7.5 years, 16% had a 

fluctuating course (28). Several studies have documented (often transient) remissions 

of ≥ 12 months in patients who had met various criteria for DRE (79, 376, 377, 382, 

402-406). In the study by Callaghan et al., 246 individuals with DRE were followed for a 

median of 3.1 years. They estimated the probability to attain a 12-month remission as 

5% per year. This percentage was only slightly smaller when only medical treatments 

were taken into account. Terminal remissions were mostly observed within the first 
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ten years after diagnosis; however, a small proportion of individuals entered a 

remission as late as 30 to 35 years into the disease course (403). In a retrospective 

study of 187 adults with DRE with a median follow-up of seven years, the estimated 

annual probability of achieving a ≥ 12 months remission was approximately 4% (404). 

Neligan et al. found that a substantial proportion of PWE who initially achieved 

remission subsequently relapsed when followed up for an extended period (406). In 

the study by Berg et al., 68% of the individuals who achieved a ≥ 12 months remission 

relapsed by the end of follow-up (382). Repeated remissions and relapses were 

common. In the study by Callaghan et al., there was a 70% risk of relapse after a ≥ 12 

months remission at five years of follow-up (79). 

The published literature suggests that remissions in DRE are often not enduring. In the 

study by Berg et al., participants experiencing infrequent seizures had a higher chance 

to experience remissions, but they were also at a higher risk of a relapse afterwards. 

The authors speculated that in these PWE AEDs might have been partially efficacious, 

“reducing their break-through seizure rate to such a low point that they experienced 1-

year seizure-free periods” (382). Assessing AED response in individuals with very 

infrequent seizures is challenging. Potentially, these PWE would need to be followed 

for several years to determine the outcome with confidence (26, 382). 

The issue of fluctuating epilepsy course is not addressed by the ILAE framework or any 

other definition of DRE. All definitions used in research are only valid at the time when 

they are applied. It is probable that some of the individuals in our drug-resistant cohort 

would have achieved remission and that some of the drug-responsive individuals 

would have relapsed if they were assessed at a different time point. A solution to this 
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would be defining an extreme drug resistance phenotype for the purpose of whole-

genome studies. It has been demonstrated that the probability of achieving remission 

gradually declines with the number of failed AED trials. After five to six unsuccessful 

trials, the probability of a remission is close to zero (49, 78, 79). Thus, one possible 

option how to define extreme drug resistance would be as failure of ever achieving a 

12-month period of seizure-freedom despite treatment with at least five appropriate 

and adequate AED trials. Consensus would be needed on the minimum required 

follow-up duration in this context. From my experience with phenotyping, a very small 

proportion of cases would actually fulfill these criteria because remissions are 

relatively common. Retrospective data collection represents an issue, and potentially 

prospective collection would be beter. In our cohort, 421 PWE (10.2% of all epilepsy 

cases) had no remissions and only 185 (4.5%) had at least five documented 

appropriate and adequate AED trials in addition to no remissions. I have identified six 

studies reporting the proportion of PWE who never achieved a 12-month remission. 

The proportion was relatively small, ranging from 4% to 35.4% (Table 2.10). 
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Table 2.10: Proportion of participants with no 12-month remissions in 
cohort studies 

Study 
 

Number of participants 
Study design 
Duration of FU 
 

Proportion of participants 
who never achieved a 12-
month remission 

Brodie et al., 
2012 (28) 
 

N = 1,098 
Paediatric and adult 
Prospective 
Median FU 7.5 years (IQR 4.7-12) 

25% 

Cockerell et al., 
1997 (41) 
 

N = 564 
Paediatric and adult 
Prospective 
Median FU 7.1 years (CI 5.7, 8.1) 

4% 

Geerts et al., 
2010 (29) 
 

N = 413 
Paediatric cohort 
Prospective 
Median FU 14.8 (range 11.6-17.5) 

8.5% had no remissions exceeding 
3 months 

Lindsten et al., 
2001 (48) 
 

N = 107 
Adult cohort 
Prospective 
Up to 12 years FU (80% of the cohort had ≥ 
5 years FU, 35% ≥ 10 years FU) 

32% 

Mohanraj and 
Brodie, 2006 
(43) 

N = 780 
Adult cohort 
Median FU 79 months (range 24-252) 

35.4% 

Zhang et al., 
2013 (49) 

N = 180 
Paediatric and adult 
Prospective 
Median FU 5 years (range 2-10 years) 

20% (13% tried ≥ 2 AEDs and 7% 
only tried 1 AED and could 
therefore not be classified as drug-
resistant) 

FU = follow-up; N = number of individuals in a cohort. 
 
 
 
Exploring extreme drug resistance phenotypes in pharmacogenomic studies would be 

possible; however, assembling cohorts of sufficient size would represent a significant 

challenge, requiring collaborative efforts. Prospective data collection would provide 

higher phenotypic data quality. 
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2.6 Conclusions 

Appropriate selection of cases and controls is the foundation of any pharmacogenomic 

research and a key factor influencing the outcomes. Considering the large sample sizes 

required for GWAS analyses, phenotyping is a major endeavour in this type of 

research, requiring substantial resources and time. 

The phenotyping efforts within EpiPGX provided sufficiently large and well-

characterised cohorts of individuals with DRE and drug responders to conduct drug 

resistance GWAS analyses, although the phenotyping methods had several limitations. 

Phenotyping long-term AED treatment outcomes proved to be significantly more 

challenging than anticipated due to the requirement to integrate complex information 

to assign the final phenotypic categories. Challenges were encountered on both levels: 

when judging individual AED outcomes, as well as long-term outcomes (resistance vs. 

response). The long-term outcomes remained undefined for a significant proportion of 

cases, mainly due to missing data in the medical records and the inability to deeply 

phenotype all cases. 

Agreeing on EpiPGX consensus definitions of long-term outcomes was equally 

challenging and the Consortium leaders considered a range of possibilities before 

settling on the final definitions. Considering the complexity of AED response, it is not 

surprising that simplifying it to a dichotomous variable suitable for a case-control 

GWAS approach was challenging. Using quantitative rather than dichotomous 

outcomes may be worth exploring in the future. 



148 
 

The published literature provided little guidance on how to approach these issues in 

multicentric studies. The literature review I performed showed that the phenotyping 

methods in pharmacogenomics publications are usually not described in detail, so it is 

often unclear how the phenotypic categories were defined, how non-pharmacological 

interventions were taken into account, whether common causes of pseudoresistance 

were excluded, and how the adequacy and appropriateness of AED trials were judged. 

This could reflect the fact that implementing strict guidelines is difficult and potentially 

so restrictive it excludes high numbers of cases (as was the case in the present work), 

so authors may consider it more appropriate to rely on clinical judgement. Some 

studies mention AED levels, but these are not relevant for all AEDs (407). Considering 

the cost of pharmacogenomic studies and the impact of case selection on the quality 

of the results, phenotyping should receive more attention. A consensus on how to 

assess the adequacy of AED trials across research studies in epilepsy would improve 

transparency and allow for easy comparisons of studies. Further efforts to achieve 

consensus on how to define an adequate AED trial, considering multiple factors 

simultaneously, are needed. A better understanding of the relationship between the 

AED dosage and treatment duration on the clinical outcome would be helpful (389). 

According to the ILAE proposal, adequate means application of the AED “at adequate 

dosage for a sufficient length of time” (26). Defining the adequate clinical dose range is 

challenging, considering the significant inter-individual differences in the doses 

required to achieve seizure freedom (408). Some of the inter-individual variation can 

be attributed to factors such as age, the presence of hepatic or renal impairment, as 

well as the treatment regimen (as monotherapy or combination). For adults, the 

WHO’s DDD guideline represents a helpful reference, defining the average 
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“maintenance dose per day for a drug used for its main indication” (409). In his 

commentary on the ILAE definition, Kwan argues that more work is needed and that 

referring to systems like the WHO DDD could be a way forward, but points out that 

this only applies to monotherapy (74). Some authors emphasise the importance of a 

documented attempt to titrate the AED to reach an adequate dose, especially when 

gradual titration is needed to achieve good tolerability (410). 

The approach used in EpiPGX proved to be pragmatic and feasible to apply across 

multiple sites. Similar approaches could be considered in epilepsy research performed 

by multicentre consortia. Several improvements could be made in future studies, such 

as using community-based cohorts to access drug responders, and prospective design. 
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CHAPTER 3: GWAS 

3.1 Introduction 

I performed two GWAS analyses to explore the influence of common genomic 

variation on drug resistance in epilepsy. In the introductory part of this chapter, I 

outline the principles of GWAS design and explain the theoretical background of each 

step in a GWAS. The GWAS protocol and settings I used for the purpose of this work 

are outlined later on, in Section 3.3 (Methods). Lastly, I report and discuss the results 

of both GWAS analyses. 

3.1.1 The principles of GWAS design 

As explained in Section 1.7.4.3, GWAS examine a genome-wide set of variants to 

identify associations with diseases or traits and are especially suitable to detect 

associations of variants that are common in a population. A GWAS design includes the 

following steps: SNP genotyping, imputation, marker and sample QC, association 

analysis, and data interpretation. 
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3.1.1.1 SNP genotyping 

The first step in GWAS is SNP genotyping using chip-based microarrays to determine 

the alleles of, typically, 500,000 to over 1,000,000 SNPs as a surrogate of the total 

genomic variation. SNPs represented on commercial platforms are selected using the 

following strategies: tagging SNPs (representative of LD blocks) or SNPs equally 

distributed through the genome (dispersed approach), or both, to ensure maximally 

informative sets (199, 200). The two most commonly used platforms are Illumina and 

Affymetrix. Both types of microarrays contain multiple oligonucleotide sequences 

flanking selected SNPs that are differentially labelled according to the SNP allele (200). 

The Affymetrix platform contains short DNA sequences to detect specific SNP alleles as 

spots on a quartz chip (microarray). In contrast, Illumina uses slightly longer DNA 

sequences recognising different alleles and a bead-based technology (170). When the 

sample DNA is hybridised to a microarray, it differentially binds to the probes 

corresponding to the specific SNP alleles present in that sample. The assay produces 

two-colour readouts (depending on the SNP allele) for each genomic locus. Intensity 

values of the two colours convey information about the ratio between the two alleles 

at that locus. Usually, a large number of samples are genotyped in a single study, 

allowing normalisation of the intensity values across all samples. When these values 

are appropriately normalised and plotted, samples with identical genotypes at an 

individual genomic locus aggregate in a cluster. If two different alleles (A and B) exist at 

a locus, the samples are expected to exhibit three separate clusters (AA, AB, and BB). 

Genotype calls are made by comparing this information with information from a 

standard cluster file derived from a representative sample set with known genotypes, 
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allowing genotype calls in the studied samples. Implementing an efficient and robust 

clustering algorithm is essential for accurate genotyping (411). SNP genotyping using 

commercial microarray platforms (Affimetrix, Illumina) is expected to have greater 

than 99% accuracy. Reproducibility, expressed as genotype concordance between 

replicate studies of the same sample, has been shown to range from 99.4 to 99.9% for 

the same laboratory and platform (412, 413). 

3.1.1.2 Imputation 

Imputation is the process of statistical prediction of genotypes not directly genotyped 

in a sample using the haplotype structure of an external high-density reference (414). 

The purposes of imputation are: 

1. Increased power  

By predicting the un-typed SNPs, the number of SNPs available for association 

testing increases substantially, therefore increasing the power. 

2. Fine mapping   

Imputation provides a high-resolution overview of an association signal across a 

locus. 

3. Combining data genotyped with different arrays   

GWAS data sets genotyped with different arrays (common when working with 

several batches, or across consortia) can be imputed to the same reference 
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panel to provide genotypes for a common set of SNPs across all experiments, 

enabling all results to be combined into joint analyses (414). 

Commonly used reference panels are the HapMap and 1000 Genomes references. The 

most recent 1000 Genomes release includes genomes of 2,504 individuals from 26 

populations genotyped for over 88 million variants, including short indels and 

structural variants (163, 414). To facilitate haplotype matching, the reference panel 

should include haplotypes from the same population as the reference panel. Several 

types of software are used for genotype imputation, the most frequently used being 

IMPUTE (415), MaCH (416, 417), and Beagle (418). Imputation involves several 

computational steps. As the quality of imputation depends on the study and reference 

data being on the same physical strand of DNA, aligning the strands is an important 

initial step. This is followed by haplotype estimation, also referred to as haplotype 

phasing. Haplotypes are estimated at SNPs genotyped (observed) in the study sample. 

Next, the phased haplotypes are modelled as a mosaic of those in the haplotype 

reference panel. As the reference haplotypes contain the genotypes of SNPs that were 

not genotyped in the study sample, this allows the inference of unobserved genotypes. 

As the study sample haplotypes may map to multiple reference haplotypes, the 

imputed genotypes are assigned a probability score based on the haplotype overlap. 

This score can be utilised in GWAS  to account for the the uncertainty of imputation. 

For each individual, imputation provides a probability distribution of possible 

genotypes at each un-typed variant from the reference panel (414, 415, 419, 420). 
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3.1.1.3 Quality control (QC) procedures in GWAS 

GWAS aim to correlate the phenotype differences with differences in SNP allele 

frequencies. The commonly used case-control approach assumes that any detected 

allele frequency differences actually relate to the studied phenotype, i.e. there are no 

unobserved confounding effects, either directly attributable to the causal marker or 

through another marker that is located nearby (157). 

The potential to identify true genomic associations in a GWAS depends on the overall 

data quality. Association tests are compromised if the genome-wide SNP data have not 

passed appropriate QC, potentially leading to excessive type I or type II errors. Sample 

identity issues caused by sample handling errors can be detected by comparing genetic 

data with clinical and self-reported data (e.g. gender or relatedness). Confounding and 

false-positive associations in GWAS can also be a consequence of population 

stratification, relatedness, and batch effects (421). 

3.1.1.3.1 Marker QC procedures 

Marker QC procedures include removing SNPs with excessive missing genotype data, 

SNPs with a significant deviation from Hardy-Weinberg equilibrium (HWE), SNPs with 

significantly different missing genotype rates between cases and controls, and SNPs 

with a very low MAF (422). In analyses that include imputed data, SNPs with poor 

imputation quality measures are also excluded (414). 
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i) Exclusion of SNPs with high missing genotype rates  

Poorly characterised markers need to be filtered out from GWAS as 

problems with missingness or different missingness rates in cases and 

controls may lead to spurious associations. SNPs with excessive missingness 

rates or significantly different proportions of missing genotypes in cases 

and controls are excluded. Different thresholds are used for this purpose. 

The most commonly used standard is to exclude SNPs with more than 5% 

missing data across the sample from further analyses. In addition, SNPs 

should be checked for significant differences in missingness rates between 

cases and controls (195, 422, 423).   

 

ii) Excluding SNPs with a significant deviation from Hardy-Weinberg 

equilibrium (HWE)  

Most human SNPs satisfy the HWE law according to which states that both 

the allele and genotype frequencies in a population stay constant over 

generations. A SNP satisfies HWE if the ratios of genotype frequencies in 

the population are in the right proportion. This can be tested using a chi-

square goodness of fit test or the HWE exact test (424, 425). Possible 

reasons for a departure from HWE are analytical mistakes, natural 

selection, population admixture, inbreeding, and segmental duplications. 

Usually, SNPs that significantly deviate from HWE are excluded from 

downstream association analyses because this may be the result of 

genotyping or genotype calling errors (195, 422). On the other hand, 

deviations from HWE can be the consequence of selection associated with 
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the disease process, so they can be seen in case samples at loci associated 

with the disease and removing these SNPs from further analyses could be 

counter-productive. Thus, HWE deviations are only tested for in controls. It 

is common to exclude SNPs with the HWE exact test significance values 

(PHWE) below 10-4 to 10-7 (423, 426).  

 

iii) Excluding SNPs with low MAF  

If a SNP has a low MAF, this will result in low genotype counts for at least 

one of the three possible genotypes in the study population, potentially 

confounding the calling process. Normally, SNPs with low MAF are excluded 

from downstream analyses as they are more likely to be affected by 

genotyping errors and are generally less informative in GWAS (423). 

Furthermore, sample sizes would have to be extremely large to identify 

associations of variants with very low MAF. Commonly used thresholds to 

exclude SNPs with low MAF are 0.01, 0.02, or 0.05, depending on the cohort 

size (195, 423, 427, 428).   

 

iv) Excluding imputed SNPs with poor quality metrics  

Imputed SNPs are statistical predictions, not actual observations as the 

genotyped SNPs. The certainty of imputation for each imputed SNP is 

described by several imputation quality metrics. These metrics are specific 

to the software used. Here I am focussing on IMPUTE (imputation software 

used in the present work – specifically version 2.3.0) and SNPTEST 

(association analysis software used for marker QC in the present work). The 
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main imputation quality metrics given by IMPUTE and SNPTEST include the 

info score, average_maximum_posterior_call, concord_type0, and r2_type0. 

IMPUTE assigns an internal “type” to each SNP. Imputed SNPs are referred 

to as “Type 0” and SNPs genotyped in the study data set are referred to as 

“Type 2” (415, 419).  

 

The info score is a statistical information metrics capturing the certainty of 

imputation. It is based on the population allele frequency and it is 

calculated as a function of the observed statistical information on the allele 

dosage in the imputed sample and the expected allele dosage (429, 430). 

Values range from 0 to 1, with lower values signifying greater uncertainty in 

the imputed genotypes and values close to 1 indicating a high certainty. The 

genotyped SNPs have info values of approximately 1. According to the 

IMPUTE manual, negative info scores may be encountered “when the 

imputation is very uncertain”, and the value -1 means the metric could not 

be calculated (419). The info metric is often used to exclude poorly imputed 

SNPs from downstream association analyses; however, there is no strong 

consensus on the exact cutoff value (431). There is precedence for taking 

forward only SNPs with info scores of at least 0.3 to 0.9 (428, 431-433).

  

IMPUTE reports the posterior probabilities of genotype calls. Posterior 

probability is the likelihood that an individual carries a SNP genotype, taking 

into account all the background (prior) and new (generated during the 

imputation) evidence. The values range from 0 to 1. The posterior 
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probability of observed (measured) genotypes is 1 as there is no uncertainty 

due to imputation (430). The average_maximum_posterior_call is an 

imputation confidence score generated by SNPTEST. It is the average of the 

maximum posterior probabilities of the imputed genotypes for a SNP across 

all samples in a study (434). As with the info metrics, there is no default 

threshold for excluding SNPs on the basis of 

average_maximum_posterior_call metrics. There is precedence for using 

0.90 as the cutoff (435).  

 

Imputation accuracy (performance) can be assessed using the r-squared 

correlation (IMPUTE r2_type0) and concordance rate (IMPUTE 

concord_type0) metrics. Both metrics are derived by masking a proportion 

of observed genotypes and treating them as imputed (436). The r2_type0 

metric is defined as the squared correlation between observed and masked 

genotypes at a SNP. Values between 0 and 1 can be encountered, with 

higher values indicating better imputation accuracy. There is no agreed 

threshold for filtering SNPs on the basis of the r2_type0 metrics; however, 

cutoff values between 0.3 to 0.9 have been used (428, 437). The 

concord_type0 metric is defined as the concordance between the observed 

and masked/imputed genotypes at a SNP. Values between 0 and 1 can be 

encountered, with higher values indicating better imputation accuracy. 

There is no agreed threshold for filtering SNPs on the basis of the 

concord_type0 metrics; however, cutoff values between 0.7 and 0.9 have 
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been used (438, 439).  

 

3.1.1.3.2 Sample QC procedures 

Sample QC procedures include removing samples with potential identity problems, 

samples with excessive missing genotype data, heterozygosity, population 

stratification, or relatedness issues. 

 

i) Checking for potential sample identity problems  

Comparing genetic and clinical data can potentially uncover sample identity 

problems resulting from sample handling errors. Comparing the reported 

gender for each sample with the genotype data (chromosome X 

heterozygosity) can identify discrepancies, for example an individual’s 

reported gender is female, but genetic data show homozygosity for all 

chromosome X markers. In this case, the study record forms and medical 

records should be revisited to determine whether there has been a sample 

handling error. Another way to check sample identity is by comparing 

genotype data with self-reported relatedness between individuals. This is 

done by estimating the degree of shared genetic ancestry between 

individuals, i.e. computing kinship estimates for every pair of individuals in 



160 
 

the study (421). This is described in more detail below.  

 

ii) Sample relatedness  

In population-based GWAS using case-control design, all the individuals 

should be unrelated. This means that the relatedness between any pair of 

samples should not exceed the relatedness between second-degree 

relatives. Inclusion of first-or second-degree relatives in the sample might 

result in bias as the genotypes shared by the related individuals will be 

over-represented, and thus the allele frequencies in the population may no 

longer be reflected in the sample (422). Duplicate and related samples 

should therefore be removed from the analysis. Using dense SNP genotype 

data (excluding sex chromosomes), it is possible to compute IBS (identity by 

state), a metric based on the average proportion of alleles in common at 

genotyped SNPs for each pair of individuals. Independent SNPs (i.e. those 

not in LD) are used for this method. Alleles at each locus are compared 

between the two individuals. If two different alleles are possible (A and B), 

there are three options: the two individuals have both alleles in common 

(e.g. AA and AA; BB and BB; AB and AB), one allele in common (e.g. AA and 

AB; AB and BB), or no alleles in common (e.g. AA and BB). The IBS data are 

then used to estimate IBD (identitiy by descent), the degree of recent 

shared ancestry for each pair of individuals (421, 426). Two alleles are IBD if 

they originate from the same ancestral allele. Theoretical values of IBD 

across all alleles in a study are 1 for monozygotic twins or duplicated 

samples, 0.5 for first-degree relatives, 0.25 for second-degree relatives, and 
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0.125 for third-degree relatives. Unrelated individuals share zero alleles IBD 

at each locus (421, 422). There is often some variability around these 

theoretical values, arising from genotyping errors, LD, and population 

structure. In GWAS analyses it is common to remove one out each pair of 

individuals with an IBD > 0.1875, which is midway between the expected 

IBD for third- and second-degree relatives. Similarly, an IBD > 0.98 indicates 

monozygotic twins or duplicated samples (422).  

 

iii) Exclusion of samples with high or low proportions of heterozygous SNPs 

Heterozygosity is the proportion of heterozygous genotypes across all 

autosomal SNPs of the sample (423). Excess heterozygosity may point to 

sample contamination and low heterozygosity may be an indicator of 

hybridisation problems or inbreeding. High heterozygosity outliers (more 

than 3 or 4 standard deviations from the sample mean) are usually excluded 

from the association analysis (195, 422, 423).   

 

iv) Exclusion of samples with high missing genotype rates  

The missing genotype rate is defined as the fraction of missing calls over the 

total number of SNPs per sample. A high proportion of missing data may 

indicate hybridisation problems, which can be caused by microarray 

malfunction or poor DNA quality (423, 440). It is common to exclude 

samples with > 0.05 missing call rates from the association analyses (195, 

440).  
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v) Population stratification  

The genetic composition (i.e. allele frequencies) varies within and between 

populations, irrespective of disease status. Population stratification refers 

to the presence of a systematic difference in allele frequencies due to the 

diverse ancestry of cases and controls (157). Population stratification is one 

of the main sources of confounding in GWAS that explore the association of 

SNP alleles with a trait of interest (422). In epidemiology studies, a 

confounder is defined as a factor that is associated with both the exposure 

variable and the trait, but is not a result of the exposure variable. In GWAS 

analyses, the exposure variables are SNP alleles. Confounding occurs when 

cases and controls have different allele frequencies attributable to different 

population substructure. In this situation, an association signal may arise 

because of different allele frequencies between the founder populations 

that are differentially represented in the case and control groups and not 

because of an association with the risk for the trait under investigation. 

Population stratification is probably the most frequently cited reason for 

non-replication of GWAS results (157). Since large sample sizes are required 

to identify common variants carrying risk for common traits, even a low 

degree of population stratification can negatively affect GWAS results (194).

   

 

There are various approaches to control for population stratification in 

GWAS. When selecting samples for GWAS, careful consideration should be 

given to matching the cases and controls according to ancestry, although 
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this is not always sufficient (441). The effect of population stratification can 

also be reduced by removing the  population outliers (422).   

 

The most commonly used methods for identifying and removing samples 

with divergent ancestry are principal component analysis (PCA) and 

multidimensional scaling (MDS). The relatedness or genetic distance 

between individuals in the sample is determined by measuring IBS defined 

as the genome-wide proportion of shared alleles (426). Differences in IBS 

between pairs of individuals can result from relatedness or from 

population-specific genotype frequencies (442). IBS is used to create a 

similarity matrix for PCA or MDS. PCA and MDS are multivariate statistics 

methods in which each individual is represented by a vector or point in an 

X-dimensional matrix and the pairwise inter-individual similarity is indicated 

by the distance between two points. The genetic background of an 

individual is expressed as a vector of coordinates reflecting the pairwise 

inter-individual genetic correlations  (443, 444). The first vector represents 

the axis accounting for the greatest possible amount of genetic variation in 

the data; the second vector represents the axis accounting for the second 

greatest amount of genetic variation, etc. (444).   

 

These vectors are commonly used as covariates in the association analysis 

to account for population stratification in GWAS, a method established by 

The Wellcome Trust Case Control Consortium (195).  
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The PCA or MDS output is commonly visualised on a plot where the first 

two PCA (MDS) components (coordinates) for each sample are represented 

on the X and Y axes. Any outlying samples may be removed at this point on 

the basis of visual inspection (413).  

 

Another method of checking for population stratification in GWAS is to 

examine quantile-quantile (QQ) plots. In these plots, the observed test 

statistics (i.e. P-values generated for every SNP) in a GWAS are ranked from 

the lowest to the highest and plotted against a theoretical (such as the chi-

square) distribution of values expected under the null hypothesis, i.e. if 

there were no SNPs associated with the trait. The plots are expected to 

show a diagonal line, also referred to as the identity diagonal line. Since the 

vast majority of SNPs tested in a GWAS are not expected to be associated 

with the trait, strong deviations from the diagonal line may indicate 

undetected sample duplications or familial relationships, population 

stratification, or systematic technical bias (191). The deviation (inflation) of 

observed statistics from the expected distribution is expressed as the 

genomic inflation factor (λ), defined as the ratio of the median of observed 

chi-square test statistics and the median of chi-square expected under the 

null distribution (431). Genomic control is a method that can be used to 

correct for this inflation. When implementing genomic control, the 

observed test statistics is divided by λ. There is no universally agreed 

threshold for the λ cutoff value. Values below 1.1 have been considered 

acceptable in large GWAS (195). 
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3.1.2 Association analysis 

The most common approach to association analysis is comparison of two groups of 

samples: a case group (i.e. the group with a disease/trait under investigation) and a 

control group (i.e. the group without the disease/trait). For each SNP genotyped in 

both groups, a test is conducted to investigate if the allele frequency is significantly 

different between the case group and the control group. The effect size is usually 

reported as odds ratio (OR) of two odds: the odds of disease for carriers of  a specific 

allele, and the odds of disease for non-carriers. In addition, P-value indicating the 

significance of the OR is reported. The commonly used statistical methods to examine 

dichotomous phenotypes (case-control) are the chi-square test, Fisher’s exact test, and 

logistic regression. In logistic regression, the outcome of a linear regression model is 

transformed using a logistic function predicting the likelihood of having the disease 

phenotype given the genotype status. Often, logistic regression is the selected method 

because it allows the inclusion of covariates and can generate adjusted OR as a 

measure of effect size (170). 

The genotype data used in case-control association analyses can be encoded in 

different ways which can influence the statistical power of a test. In allelic association 

tests a SNP allele is tested against the phenotype. In contrast, genotypic association 

tests use genotypes or genotype categories. In genotype association testing, 



166 
 

assumptions may be made about the underlying genetic model of inheritance, such as 

dominant, recessive, additive, or multiplicative (170, 445). 

The bioinformatics software packages commonly used for association analyses are 

SNPTEST (415) and PLINK (426). Linear mixed models, such as Factored Spectrally 

Transformed Linear Mixed Models (FaST-LMM) algorithm, can also be used. Mixed 

model in this context is equivalent to a form of linear regression in which the genetic 

similarity between individuals in the study is used as a covariate. The genetic similarity 

between every pair of individuals in the study is derived from IBS (explained above) 

and captured in the genetic similarity matrix. The advantage of FaST-LMM is the 

correction of confounding by population stratification, cryptic relatedness, or close 

familial relationships (446). 

3.1.3 Correction for multiple testing 

It is important to consider multiple comparisons when determining statistical 

significance in GWAS. Since it is common to test more than a million SNPs in a single 

GWAS, the probability of Type I errors (false positive associations) with a statistical 

significance level typical of small studies (e.g. α = 0.005 or 0.001) is high. The most 

commonly used solution in GWAS is applying the Bonferroni correction, which means 

dividing the conventional P-value threshold by the number of statistical tests 

performed in parallel. This approach is conservative and applicable only if the tested 

SNPs are independent. For SNPs located in regions with strong LD (LD blocks) that are 

not truly independent, it would result in over-correction, increasing the probability of 
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Type II errors (false negative results). Since the human genome in Europeans and 

North Americans has approximately one million independent chromosomal regions, 

the corrected thresholds for an assumed million independent SNPs are α < 5*10-8 

(corresponding to α < 0.05) or 1*10-8 (corresponding to α < 0.01). Using these 

corrected thresholds may result in substantial Type II error rates if sample sizes are 

small, for example in studies of rare disorders (447). 

3.1.4 Interpreting results 

Association studies using case-control design can produce valid results, provided that 

good epidemiologic design practice is applied (191). However, interpretation of GWAS 

results can be challenging due to the limited resolution of the SNP genotyping arrays. 

The allele driving the association (i.e. index SNP) is not necessarily the functionally 

relevant allele. Often, other SNPs in high LD with the genome-wide associated variant  

have functional implications for the phenotype. Thus, an associated SNP may point to 

the functional allele in the region (haplotype block), or it may be used as a genomic 

biomarker for the trait (200). Additional work is usually required to bridge the gap 

between finding an associated SNP and understanding how a locus contributes to a 

trait. This work may combine fine-mapping of association signals and functional 

annotation of variants. Fine-mapping refers to dense genotyping, imputation, or 

sequencing of the loci of interest to identify a larger number or all variants in the 

candidate region, followed by an association analysis to identify the specific variant 

responsible for the association or secondary association signals at a locus. Functional 
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annotation refers to identifying SNPs within regulatory elements of the DNA  or effects 

of SNP alleles on gene expression (448). 

More than 90% of the SNPs found to be associated with diseases in GWAS are not 

located in protein-coding regions, indicating that they may increase the risk by altering 

regulatory elements of DNA elements resulting in  gene expression changes (203, 449, 

450). Variation in gene expression is an important contributor to disease risk and it has 

been shown to be highly heritable (449). Non-coding variants can influence gene 

expression in several ways. Variants within promoters or enhancers can influence 

transcription (451, 452). Intronic variants can potentially affect alternative splicing and 

mRNA stability. Furthermore, variants may affect the expression or function of non-

coding RNAs (453). Identifying the genes affected by non-coding variants often 

requires considerable effort. Attributing the effect of non-coding variants identified by 

GWAS to the nearest gene, while common practice, may not necessarily be 

scientifically accurate (454, 455). In certain cases, the answer is provided by 

complementary methods, such as eQTL and tissue-specific expression patterns of local 

genes (456, 457). An eQTL is a locus that influences the expression level of a gene. 

Such a locus can be located close to the gene (cis-eQTL), or far away (trans-eQTL). 

Standard eQTL analysis combines a genome-wide analysis of transcript levels in the 

tissue(s) of interest with GWAS. Interpretation of eQTL data can be enriched by 

incorporating information on epigenetic modifications and analysis of regulatory 

networks (449). 

As explained above, genomic variants found to be associated with traits of interest in 

GWAS are unlikely to be the functional variants (203). SNPs are markers of regions and 
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functional variants driving the association may be several thousands of base pairs away 

from the associated SNP(s). If the association of the genotyped SNP with a phenotype 

is shown to be biologically plausible, the phenotypic association is considered direct. If 

a tagging SNP that is in strong LD with the functionally significant SNP shows 

statistically significant assoiation with the phenotype, the association is indirect (170). 

Follow-up studies are important to explore all variants in complete or near-complete 

LD with the tagging SNP to identify potentially functional variants (170, 458). 

3.2 Aim 

The aim of the present GWAS work was to identify common genomic variants 

associated with drug resistance in epilepsy of any aetiology by studying individuals 

with DRE, drug responders, and healthy controls. As outlined in Section 1.10, I tested 

two hypotheses using GWAS: 

 

Hypothesis 1: 

Common genomic variants are associated with drug resistance in common epilepsies. 

 

To test Hypothesis 1, I performed a GWAS analysis comparing individuals with DRE and 

individuals with drug-responsive epilepsy (GWAS1). 
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Hypothesis 2: 

Identified variants are determinants of drug response rather than epilepsy 

susceptibility variants. 

 

To test Hypothesis 2, I performed an additional GWAS analysis comparing individuals 

with DRE and healthy individuals (GWAS2). If Hypothesis 2 is accurate, the loci 

identified in GWAS1 will not be replicated in GWAS2. 

3.3 Methods 

I performed two GWAS analyses:  

a) GWAS1: comparison of individuals with DRE and individuals with drug-

responsive epilepsy 

b) GWAS2: comparison of individuals with DRE and healthy controls 

I performed both analyses following the protocol outlined in Figure 3.1. 
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Figure 3.1: GWAS protocol 

 

 

 

 

 

 

 

 

 

 

QC = quality control; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; MDS 
= multidimensional scaling. IMPUTE metrics include r2_type0 and concord_type0. SNPTEST 
metrics include average_maximum_posterior_call and info. 
 

3.3.1 Peripheral blood collection, DNA extraction, and SNP genotyping 

Peripheral blood samples were collected from all participants. DNA was extracted 

using standard procedures and SNP genotyping was performed. The majority of 

samples were genotyped using the Illumina platform and a small number using the 

Affymetrix platform (for details see Tables 3.1 and 3.2).  

Post-imputation marker QC – per genotype data set 
r2_type0 ≥ 0.90, concord_type0 ≥ 0.90, MAF ≥ 0.005 

Final marker QC – per phenotype (resistant, responders, healthy) 
MAF ≥ 0.01, info ≥ 0.90, average_maximum_posterior_call ≥ 0.97, HWE > 1e-6 (healthy controls only) 

GWAS1 
Resistant  vs. responders 

GWAS2 
Resistant  vs. healthy 

Post-imputation sample QC 
MDS analysis and removal of population outliers and related individuals 

Pre-imputation QC – per genotype data set 
Marker QC: genotype rate ≥ 0.90, Sample QC: genotype rate ≥ 0.95, ≥ 0.90 European ancestry    

Imputation 
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Table 3.1: Genotyping platforms used for epilepsy samples 

Country 
(Ancestry) 

Number of epilepsy 
cases (drug resistant 
and drug responsive) 

Genotyping 
platform(s) 

Chip(s) 

UK 2,623 Illumina 

OmniExpress-12 v1.1 
OmniExpress-24 v1.1 
HumanOmniExpress 
Human610-Quad 
HumanHap550v3 
HumanHap550-Quad 
Illumina 1.2M 

Ireland 410 Illumina 

OmniExpress-12 v1.1 
OmniExpress-24 v1.1 
Human610-Quad 
HumanHap550-Quad 
HumanOmni1-Quad 

Belgium 290 Illumina 

OmniExpress-12 v1.1 
OmniExpress-24 v1.1 
Human610-Quad 
HumanHap300v1 
HumanHap300v2 

Italy 221 Illumina OmniExpress-12 v1.1 
OmniExpress-24 v1.1 

Germany 532 
Illumina OmniExpress-12 v1.1 

OmniExpress-24 v1.1 
Affymetrix Array 6.0 

Netherlands 58 Illumina OmniExpress-12 v1.1 
OmniExpress-24 v1.1 

 
 

Table 3.2: Genotyping platforms used for healthy control samples 

 
Country 

(Ancestry) 
 

 
Number of healthy 

controls 

 
Genotyping 
platform(s) 

 
Chip(s) 

UK 5,272 Illumina Illumina 1.2M 
Ireland 2,223 Illumina HumanOmni1-Quad 
Belgium 1,662 Illumina HumanHap300v1 

HumanHap300v2 
Italy 261 Affymetrix Array 6.0 

Germany 1,317 Affymetrix Array 6.0 
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3.3.2 Imputation 

All genotype data sets were imputed to the 1000 Genomes July 2011 reference using 

IMPUTE2 (459) at deCODE.  

3.3.3 Sample and marker QC procedures 

Pre-imputation QC: 

Pre-imputation marker and sample QC were performed separately for each data set at 

deCODE using PLINK 1.9 (426) and included the following steps: 

1. Removal of markers with < 0.90 genotype rate 

2. Extraction of genotypes for 2,766 ethnicity-sensitive SNPs common to all 

Illumina SNP arrays 

3. STRUCTURE 2.2 software (460) was used to derive European, Asian, and African 

ancestry probabilities, with the following Hapmap samples as respective 

reference populations: Yoruba in Ibadan, Nigeria; Japanese in Tokyo, Japan; 

Han Chinese in Beijing, China; and Utah residents with ancestry from Northern 

and Western Europe 

4. Exclusion of samples with < 0.90 European ancestry in individual data sets 

5. Exclusion of samples with > 0.05 missing genotype rates 

6. Exclusion of samples where gender determined from the genotype did not 

match the reported gender 
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Array-specific maps retrieved from the Wellcome Trust website 

(http://www.well.ox.ac.uk/~wrayner/strand/) were used to update all marker 

positions and chromosome numbers to the Genome Reference Consortium Human 

Build 37 (GRCh37) and all A/T and C/G markers were removed to avoid strand issues. 

The genotypes were then split up according to chromosome arms. Phased haplotypes 

were created for every data set using SHAPEIT v2 (461), with the recommended 

effective population size setting (11,418) and the 1000 Genomes phase 1 (July 2011) 

integrated (v3) map files as the reference. Following the haplotype phasing, 

imputation was performed for every data set using IMPUTE version 2.3.0 (414, 415, 

462), with the recommended effective population size setting (20,000) and 1000 

Genomes phase 1 (July 2011) integrated (v3) genotypes as the reference (163). 

 

I performed additional marker and sample QC as follows: 

 

Marker QC: 

I first performed a marker QC for each data set separately based on IMPUTE version 

2.3.0 metrics, using the following thresholds:   

- r2_type0 ≥ 0.90  

- concord_type0 ≥ 0.90  

- MAF ≥ 0.005 

I then performed a further marker QC for each phenotype group separately (i.e. drug-

resistant cases, drug-responsive cases, and healthy controls) using the thresholds listed 

http://www.well.ox.ac.uk/%7Ewrayner/strand/
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below. I used SNPTEST v2 (434) to generate the following metrics: info, 

average_maximum_posterior_call, and controls_hwe. 

1. Drug-resistant cases:  

- MAF ≥ 0.01  

- info  ≥ 0.90  

- average_maximum_posterior_call ≥ 0.97 

2. Drug-responsive cases:  

- MAF ≥ 0.01  

- info ≥ 0.90  

- average_maximum_posterior_call ≥ 0.97 

3. Healthy controls:  

- MAF ≥ 0.01  

- info ≥ 0.90  

- controls_hwe > 1e-6 (healthy controls only)  

- average_maximum_posterior_call ≥ 0.97 

 

Sample QC 

As all samples with < 0.95 genotype rate had already been removed at the time of 

imputation, I did not perform any additional genotype rate QC. 

Using PLINK 1.9 (426), I created a subset of markers independent of each other with 

respect to LD using a window size of 150 markers, shifting by 10 markers at a time and 

removing one half of every SNP pair with genotypic r2 > 0.4 (PLINK command: --indep-
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pairwise 150 10 0.4). Using this subset of markers, I calculated heterozygosity (PLINK 

command: --het) and IBS/IBD (PLINK command: --genome). I then removed: 

1. All samples with outlying heterozygosity values (> 4 standard deviations from 

the median of the whole sample) 

2. Duplicate and related individuals, by excluding one sample out of each pair of 

samples with Pi-hat (proportion of IBD) > 0.125 

To infer the population structure and detect population outliers, I performed MDS 

analysis with PLINK 1.9. I visualised the results in R (463) using the first two principal 

coordinates for plotting. I excluded the outliers using visual inspection. In addition, I 

performed MDS analysis using EpiPGX samples against the HapMap 3 samples. The 

HapMap 3 collection includes 1,301 samples from 11 populations: African ancestry in 

Southwest USA, Utah residents with Northern and Western European ancestry from 

the Centre d'Etude du Polymorphism Humain (CEPH) collection, Han Chinese in Beijing, 

China, Chinese in Metropolitan Denver, Colorado, Gujarati Indians in Houston, Texas, 

Japanese in Tokyo, Japan, Luhya in Webuye, Kenya, Mexican ancestry in Los Angeles, 

California, Maasai in Kinyawa, Kenya, Toscans in Italy, and Yoruba in Ibadan, Nigeria 

(198). 

3.3.4 Association analysis 

I performed the single variant association tests using Factored Spectrally Transformed 

Linear Mixed Models (FaSTLMM) algorithm for GWAS (446). 
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3.3.5 Power and sample size calculations 

I performed power and sample size calculations using the Power for Genetic 

Association Analysis Calculator (464).  

3.3.5.1 GWAS1 power and sample size calculations 

I used the following assumptions for GWAS1 calculations: a co-dominant penetrance 

model (where two alleles have an equal effect on the phenotype) and a prevalence of 

DRE in the epilepsy population of 0.3. As evident from Figure 3.2, inclusion of 2,489 

drug-resistant cases and 1,626 controls with drug-responsive epilepsy (control-to-case 

ratio 0.65) allows for 80% power to detect variants with MAF ≥ 0.05 carrying a RR of 

approximately 1.5, and variants with MAF ≥ 0.2 carrying a RR of approximately 1.2 to 

1.3. Please see Section 2.4.2 for details on the sample sizes of both cohorts used for 

these calculations. 
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Figure 3.2: GWAS1 – minimum detectable RR at P = 5*10-8 for different 
power levels 

 

 

All calculations assume a co-dominant model, prevalence of DRE in the epilepsy population 
0.3, number of cases 2,489, number of controls 1,626, and a genome-wide statistical 
significance threshold 5*10-8. 

— 90% power 

— 80% power 

— 60% power 

 

3.3.5.2 GWAS2 power and sample size calculations 

I used the following assumptions for GWAS2 calculations: a co-dominant penetrance 

model, and a prevalence of DRE in the general population 0.0015. The prevalence of 

DRE was estimated assuming an epilepsy prevalence of 0.005 in the general population 
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(32) and a 0.3 rate of drug resistance (20, 28, 43). As evident from Figure 3.3, inclusion 

of 2,489 drug-resistant cases and 10,695 healthy controls (control to case ratio 4.3) 

would allow for 80% power to detect variants with MAF ≥ 0.05 carrying a RR of 

approximately 1.5, and variants with MAF ≥ 0.2 carrying a RR of approximately 1.2 to 

1.3 (Figure 3.3). Please see Section 2.4.2 for details on the sample sizes of both cohorts 

used for these calculations. 

Figure 3.3: GWAS2 –  minimum detectable RR at P = 5*10-8 for different 
power levels 

  

 

All calculations assume a co-dominant model, prevalence of  DRE in the general population 
0.0015, number of cases 2,489, number of controls 10,695, and a genome-wide statistical 
significance threshold 5*10-8. 

— 90% power 

— 80% power 

— 60% power 
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For GWAS1 and GWAS2 power and sample size curves see Appendix 6. 

3.3.6 Visualisation of results 

I used R (463) to generate Manhattan and QQ plots, and LocusZoom (465) to generate 

plots of top associated loci. 

3.3.7 Interpretation of results 

To obtain insight into which genes may account for the genome-wide associations, I 

first identified the SNPs in high LD (r2 > 0.8) with the lead associated SNP at each locus 

using the HaploReg v4.1 tool which utilises LD information from the 1000 Genomes 

Project (466, 467). I used the ENSEMBL Variant Effect Predictor (468, 469) to check for 

potential impact of all identified SNPs on either protein structure or regulation of gene 

expression. 

 

I prioritised candidate genes on the basis of the following: 

- Proximity (location within 250kb (kilobase) from the lead SNP at a locus) 

- Preferential expression in the brain, based on the gene expression data 

available in the Genotype-Tissue Expression (GTEx) database (470, 471) 
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- Presence of a missense variant in the genome-wide significant locus, as 

annotated by ENSEMBL (468, 469) 

- Observation of a central nervous system phenotype in knockout mouse models, 

based on the information available in the Mouse Genome Informatics (MGI) 

database (472, 473) 

- Presence of a significant cis-eQTL (Bonferroni corrected P < 8*10-10) in the 

genome-wide significant locus, based on the information in publically available 

databases: GTEx (470, 471), Brain xQTL (474, 475), and Braineac (476, 477) 

 

To place the results of the present work in the context of the relevant published 

literature, I examined the output of GWAS2 for top SNPs identified in both ILAE GWAS 

analyses as variants influencing epilepsy risk (261, 262). In addition, I extracted the 

results for variants in selected genes that had previously been associated with 

resistance to multiple AEDs from the output of GWAS1 and GWAS2. I selected the 

genes for which I have been able to identify multiple, rather than single reports (Table 

3.3). As discussed in Section 1.8.2, the published literature for some of these candidate 

genes may be conflicting, with positive and negative assicociations identified by 

different research groups. 
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Table 3.3: Genes associated with drug resistance in epilepsy 

Gene 
 

Protein Polymorphisms associated with drug response / 
resistance 
 

CYP2C9 Cytochrome P450 2C9 
enzyme 

CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910) 
(274, 278, 279, 281) 

CYP2C19 Cytochrome P450 2C9 
enzyme 

CYP2C19*2 (rs4244285) (382, 478) 

ABCB1 P-gp rs1045642 (297, 298) 
 

SCN1A Sodium voltage-gated 
channel type I alpha 
subunit; Nav1.1 

rs2298771 (479, 480) 

 

3.4 Results 

3.4.1 Genotyping and imputation 

All 16 data sets were genotyped and imputed at deCODE using the 1000 Genomes July 

2011 reference. This generated approximately 40,000,000 SNPs per case overall before 

QC. The X chromosome was not analysed as SNP data were not available for all 

cohorts. 



183 
 

3.4.2 Cohorts 

I studied 14,829 samples in total, including: 2,489 cases with drug-resistant epilepsy 

and 1,645 cases with drug-responsive epilepsy from 7 cohorts (Belgium, Netherlands, 

Germany, Ireland, UK - London, UK - Liverpool, Italy), in addition to 10,695 healthy 

individuals from 6 cohorts (Belgium, Germany, Ireland, UK - NBS, UK - 1958 Birth 

Cohort, Italy). MDS analysis suggested that all samples clustered in the European 

ethnic origin, as expected (Figures 3.4 and 3.5). On the basis of visual inspection of the 

MDS plot (Figure 3.4), I excluded 29 population outliers from downstream analyses. In 

addition, I excluded 85 samples due to relatedness and 21 samples due to outlying 

heterozygosity values, leaving in total 14,694 samples after QC: 2,423 drug-resistant, 

1,626 drug-responsive, and 10,645 healthy controls. Additional MDS plots showing the 

distribution of cases and controls for both GWAS analyses are included in Appendix 7. 
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Figure 3.4: MDS analysis of cases and controls considered for drug 
resistance GWAS 

 
 
o Belgian epilepsy cases 
o Dutch epilepsy cases 
o Belgian healthy controls 
o German epilepsy cases 
o German healthy controls 
o Irish epilepsy cases 
 

o Irish healthy controls 
o UK epilepsy cases 
o UK healthy controls 
o Italian epilepsy cases 
o Italian healthy controls 
o Excluded samples

C1 = principal coordinate 1; C2 = principal coordinate 2. Epilepsy cases include both drug-
resistant and drug-responsive cases. 
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Figure 3.5: MDS analysis of EpiPGX samples included in drug resistance 
GWAS and the HapMap population 

 

o HapMap samples 
o EpiPGX samples 
C1 = principal coordinate 1; C2 = principal coordinate 2. 

 

3.4.3 GWAS1 (comparison of drug-resistant individuals with drug 
responders) 

After application of QC criteria, I included 2,423 cases with DRE and 1,626 cases with 

drug-responsive epilepsy in the association analysis. After application of marker QC, 
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5,952,081 SNPs remained in the association analysis. I performed association testing 

using FaSTLMM. I noted an inflation factor of 1.008, suggesting adequate control for 

possible cryptic stratification (see Figure 3.7 for QQ plot). 

No SNPs reached genome-wide significance in this analysis. The top associated SNP 

was rs2816283 (P = 1.98*10-06) located in an intergenic region at 6p25.3 (see Table 

3.3). 
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Table 3.4: GWAS1 – top associated loci (none of these loci reached genome-wide significance) 

SNP 
 
 

Cytogenetic 
band 

Base pair 
position 

Allele 1, 
allele 2 

MAF 
(minor allele) 

Candidate 
gene 

Annotation P-value 
(FaSTLMM) 

OR (95% CI) 

rs2816283 
 

6p25.3 1529872 T, C 0.2499 (T) Multiple Intergenic 1.98*10-06 0.94 (0.92-9.97) 

rs79316678 
 

22q12.1 27786568 A, G 0.0296 (G) Multiple Intergenic 4.38*10-06 1.16 (0.84-1.60) 

rs4611336 
 

13q31.1 83201920 T, C 0.3104 (C) SLITRK1 Intergenic 6.03*10-06 1.05 (0.94-1.18) 

rs9531372 
 

13q31.1 83197385 A, T 0.3894 (T) SLITRK1 Intergenic 6.40*10-06 1.05 (0.94-1.18) 

rs1683557 
 

2q21.2 134816184 G, A 0.0165 (A) Multiple Intergenic 6.71*10-06 1.10 (0.89-1.35) 

Base pair position refers to human genome build 37 (GRCh37, hg19). MAF is from all populations from the 1000 Genomes Project. Candidate gene refers to the 
most plausible candidate gene attributable to the signal, based on proximity (450). OR (odds ratio) corresponds to allele 2. Annotation refers to type of SNP; nc 
transcript variant refers to a transcript variant of a non-coding gene; upstream refers to upstream of a gene. 
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Figure 3.6: GWAS1 – Manhattan plot 

X-axis shows genomic coordinates, Y-axis shows the negative algorithm of the association P-
value for each SNP. Each SNP is represented as a dot. The red line shows the threshold of 
genome-wide significance.  
 
 

Figure 3.7: GWAS1 – QQ plot 

 

X-axis shows the negative algorithm of the expected association P-value for each SNP under 
the null hypothesis. Y-axis shows the negative algorithm of the observed P-value for each SNP. 
P-value refers to single association tests performed with FaSTLMM. 
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3.4.4 GWAS2 (comparison of drug-resistant individuals with healthy 
controls) 

After application of the QC criteria, I included 2,423 cases with DRE and 10,645 healthy 

controls in the association analysis. After application of marker QC, 5,919,078 SNPs 

remained in the analysis. I performed association testing using FaSTLMM. I noted an 

inflation factor of 1.016, suggesting adequate control for possible cryptic stratification 

(see Figure 3.9 for QQ plot). 

I identified 8 loci with genome-wide significance (Table 3.4 and Figure 3.8). 
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Table 3.5: GWAS2 – genome-wide associated loci at P < 5*10-8 

SNP 
 
 

Cytogenetic 
band 

Base pair 
position 

Allele 1, 
allele 2 

MAF 
(minor allele) 

Candidate 
gene 

Annotation P-value 
(FaSTLMM) 

OR (95% CI) 

rs75700350 
 

4q31.1 140189612 C, T 0.0529 (T) MGARP Intronic 3.52*10-11 1.07 (1.05-1.09) 

rs4629621 
 

5p13.2 36426049 T, C 0.1512 (T) SLC1A3 
 

Intergenic 4,69*10-11 1.06 (0.97-1.15) 

rs5765116 
 

22q13.31 45408407 G, A 0.4589 (G)  
Multiple 

Intergenic 2.58*10-10 1.03 (0.98-1.09) 

rs8127410 
 

21q22.3 47507039 A, G 0.3894 (G) Multiple Intergenic 1.04*10-09 0.97 (0.91-1.02) 

rs150512569 
 

6p21.33 30495053 G, A 0.1032 (A) Multiple Intergenic 2.38*10-09 1.04 (0.98-1.11) 

rs16927514 
 

11p13 35505321 T, C 0.0280 (C) PAMR1 Intronic 1.52*10-08 0.94 (0.84-1.05) 

rs73999651 
 

2q37.3 238054898 G, T 0.0873 (T) Multiple Intergenic 2.48*10-08 0.93 (0.82-1.06) 

rs4516077 
 

13q31.2 89193635 A, G 0.4922 (G) LINC00433 nc transcript 
variant 

5.59*10-08 0.97 (0.93-1.02) 

Base pair position refers to human genome build 37 (GRCh37, hg19). MAF is from all populations from the 1000 Genomes Project. Candidate gene refers to the 
most plausible candidate gene attributable to the signal, based on proximity (450). OR (odds ratio) corresponds to allele 2. Annotation refers to type of SNP; nc 
transcript variant refers to a transcript variant of a non-coding gene; upstream refers to upstream of a gene. 
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Figure 3.8: GWAS2 – Manhattan plot 

X-axis shows genomic coordinates, Y-axis shows the negative algorithm of the association P-
value for each SNP. Each SNP is represented as a dot. The red line shows the threshold of 
genome-wide significance. 
 
 

Figure 3.9: GWAS2 – QQ plot 

 

X-axis shows the negative algorithm of the expected association P-value for each SNP under 
the null hypothesis. Y-axis shows the negative algorithm of the observed P-value for each SNP. 
P-value refers to single association tests performed with FaSTLMM. 
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3.4.4.1 Signal at locus 4q31.1 

The top genome-wide association signal (rs75700350) was located at 4q31.1 (Figure 

3.10). This signal was centred on the mitochondria localised glutamic acid rich protein 

(MGARP) gene. rs75700350 was the only SNP with genome-wide significance in this 

region. Usually, associated regions in GWAS are expected to contain a set of SNPs with 

varying degrees of association due to local LD patterns (465). Although in 1000 

Genomes, there are 34 SNPs in high LD with rs75700350 (467) and 33 of them were 

included in the association analysis, none of them reached (or was close to reaching) 

genome-wide significance indicating that this hit could be an artefact. rs75700350 was 

a Type0 SNP (i.e. imputed and not directly genotyped in any of the data sets). The 

imputation quality metrics (info, average_maximum_posterior_call, r2_type0, 

concord_type0) were satisfactory for all genotype data sets, as well as across the cases 

and the controls. That said, GWAS2 included publically available controls genotyped on 

different platforms than the DRE cases. In such settings, imputation can introduce bias, 

especially if the MAF in the study data differs substantially from the reference (481). In 

this case, there was a significant difference between the MAF in the reference (0.0529; 

1000 Genomes) and the study data. In some of the data sets including cases as well as 

controls, the MAF was as low as 0.007. 
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Figure 3.10: Genomic context of the 4q31.1 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012.  
 

3.4.4.2 Signal at locus 5p13.2 

The SNP with the second lowest P-value (rs4629621) was located in an intergenic 

region at 5p13.2 (Figure 3.11). Two other variants in high LD (r2 > 0.8) with rs4629621 

and genome-wide significance (rs4479866 and rs6861831) were found in this region, 

as well as several variants with nominal significance and r2 > 0.2. 

There are four genes within 250kb of the lead SNP (rs4629621): S-phase kinase-

associated protein 2 (SKP2), RAN binding protein 3 like (RANBP3L), nicotinamide 
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adenine dinucleotide kinase 2 (NADK2), and solute carrier family 1 member 3 (SLC1A3). 

SKP2 encodes one of the subunits of the ubiquitin-protein ligase complex and has a 

role in phosphorylation-dependent ubiquitination. It is a protooncogene, implicated in 

the pathogenesis of multiple types of cancer (482, 483). RANBP3L is associated with 

bone development and mesenchymal stem cell differentiation (484). The NADK2 gene 

encodes a mitochondrial kinase that catalyses the phosphorylation of NAD to yield 

NAD phosphate (485). SLC1A3 encodes excitatory amino acid transporter 1 (EAAT1), a 

glial glutamate transporter (486). None of the SNPs in the locus has been identified as 

a significant cis-eQTL for any of the four genes in the aforementioned eQTL databases 

(471, 475, 477). Two out of the four genes of interest (RANBP3L and SLC1A3) are 

preferentially expressed in the brain (471). While RANBP3L has not been associated 

with any relevant phenotype in animal models, SLC1A3 knockout mice have been 

shown to have abnormal kindling responses and seizures (473). Mutations in SLC1A3 

have been linked to epilepsy (487), making SLC1A3 the most interesting of the four 

genes. 
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Figure 3.11: Genomic context of the 5p13.2 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
 

3.4.4.3 Signal at locus 22q13.31 

The third top associated SNP (rs5765116) was located in an intergenic region at 

22q13.31 (Figure 3.12). No other variants in this LD block reached genome-wide 

significance. In 1000 Genomes, there are 16 SNPs in high LD with rs5765116 (467). 

While seven of them did not pass the QC and were not included in the association 

analysis, the remaining nine were included and they all reached nominal significance. 

However, upon close inspection of the LocusZoom plot, the pattern of association for 

these SNPs appears atypical, suggesting the possibility that this signal was an artefact. 
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rs5765116 was a Type0 SNP (i.e. imputed and not directly genotyped in any of the data 

sets). The imputation quality metrics (info, average_maximum_posterior_call, 

r2_type0, concord_type0) were satisfactory for all genotype data sets, as well as across 

the cases and the controls. 

 

Figure 3.12: Genomic context of the 22q13.31 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
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3.4.4.4 Signal at locus 21q22.3 

The fourth top associated SNP (rs8127410) was located in an intergenic region at 

21q22.3 (Figure 3.13). In 1000 Genomes, there are six SNPs in high LD with rs8127410 

(467); however, none of them passed the QC. Two other variants with genome-wide 

significance (rs2839104 and rs2839103) were found in this region. These two variants 

are not in LD with rs8127410, but they are in strong LD with each-other. Despite the 

missing information on SNPs in high LD with the associated variants, it is most likely 

that these hits were artefacts. Both associated variants were Type0 SNPs (i.e. imputed 

and not directly genotyped in any of the data sets). The imputation quality metrics 

(info, average_maximum_posterior_call, r2_type0, concord_type0) were satisfactory 

for all genotype data sets, as well as across the cases and the controls. 
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Figure 3.13: Genomic context of the 21q22.3 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
 

3.4.4.5 Signal at locus 6p21.33 

The next signal (rs150512569) was located in an intergenic region at 6p21.33 (Figure 

3.14). In 1000 genomes, there are five SNPs in high LD with rs150512569 (467). These 

SNPs did not pass the QC and were thus not included in the association analysis. 

Nevertheless, it is very likely that that this SNP was an artefact as it is not supported by 

other SNPs with genome-wide or nominal significance. 
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Figure 3.14: Genomic context of the 6p21.33 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
 

3.4.4.6 Signal at locus 11p13 

The next signal (rs16927514) was located at 11p13 (Figure 3.15). This signal was 

centred on the PAMR1 (peptidase domain containing associated with muscle 

degeneration) gene (intronic variant) which has so far not been linked to epilepsy. In 

1000 Genomes, there are seven SNPs in high LD with rs16927514 (467). Six of them 

(rs117711020, rs117145777, rs17726212, rs117054435, rs117524439, rs115838855) 

passed the QC and reached genome-wide significance. All these SNPs are annotated as 

intronic variants of PAMR1 in ENSEMBL. In addition to PAMR1, there are three other 
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genes within 250kb from the lead SNP at this locus: solute carrier family 1 member 2 

(SLC1A2), four-jointed box kinase 1 (FJX1), and tripartite motif containing 44 (TRIM44). 

FJX1 and SLC1A2 are predominantly expressed in the brain (471), and SLC1A2 knockout 

mouse models exhibit seizures, increased susceptibility to pharmacologically induced 

seizures, and abnormalities of the hippocampus (473). None of the SNPs in the locus is 

a significant cis-eQTL for any of the four genes (471, 475, 477). Considering its function 

and expression pattern, SLC1A2 could be a plausible candidate gene, even though all 

the significantly associated SNPs are intronic variants of PAMR1. 

Figure 3.15: Genomic context of the 11p13 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
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3.4.4.7 Signal at locus 2q37.3 

The next signal (rs73999651) was located in an intergenic region at 2q37.3 (Figure 

3.16). In 1000 Genomes, there are 65 SNPs in high LD (r2 > 0.8) with rs75700350 (467), 

58 of which passed the QC and were included in the association analysis. None of them 

reached genome-wide or nominal significance. Only one variant in moderate LD (r2 > 

0.6) with rs73999651 had nominal significance. Considering that the lead SNP at this 

locus was not supported by other SNPs, it is possible that this hit was an artefact, 

potentially arising in the course of the imputation. rs73999651 was a Type0 SNP (i.e. 

imputed and not directly genotyped in any of the data sets). The imputation quality 

metrics (info, average_maximum_posterior_call, r2_type0, concord_type0) were 

satisfactory for all imputation batches, as well as across the cases and the controls. On 

detailed inspection of the characteristics of this SNP, I noted a significant difference 

between the MAF in the reference (0.0873; 1000 Genomes) and the UK controls (0.018 

to 0.021). 
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Figure 3.16: Genomic context of the 2q37.3 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
 
 

3.4.4.8 Signal at locus 13q31.2 

The final signal (rs4516077) was located at 13q31.2 (Figure 3.17), centred on the long 

intergenic non-protein coding RNA 433 (LINC00433) gene (transcript variant of a non-

coding RNA gene). In 1000 Genomes, there is one SNP in high LD with the lead SNP 

(467). This SNP (rs7491918) also reached genome-wide significance. Apart from 

LINC00433, there are no other genes within 250kb of the lead SNP. 
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Figure 3.17: Genomic context of the 13q31.2 signal (LocusZoom plot) 

 

Chr = chromosome, cM = centimorgan, Mb = megabase, cM/Mb = recombination rate (shown 
as the blue line running through the plot, with peaks indicating the recombination hotspots), 
P-value refers to single variant association tests performed with FaSTLMM, r2 = measure of LD. 
LD data were taken from the 1000 Genomes project (European population), human genome 
build 37 (GRCh37, hg19), March 2012. 
 

3.5 Discussion 

3.5.1 Comparison of drug-resistant individuals with drug responders 

In GWAS1, I compared 2,423 cases with DRE and 1,626 controls with drug-responsive 

epilepsy. To my knowledge, this is the largest GWAS of DRE to this date. The 

association analysis did not show a differential distribution of SNPs in individuals with 

DRE compared with individuals who respond to AEDs. This study was powered to 
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detect variants with MAF 0.05 carrying a RR for DRE of at least 1.5, or variants with 

MAF of at least 0.2 carrying a modest RR. The results suggest drug resistance may not 

be caused by common variants with modest or large effect sizes, although an influence 

of rare variants or variants with small effect sizes cannot be excluded. 

It is possible that drug resistance is caused by a large number of variants with small 

effect sizes, in line with the so called infinitesimal model. In contrast with the common 

disease-common variant hypothesis, the infinitesimal model predicts that many 

variants with small effect sizes (RR less than 1.1) underlie the variable susceptibility for 

common traits (488). This could possibly mean hundreds or thousands of contributing 

loci, with affected individuals carrying an excess of risk variants compared with the 

general population (488, 489). Such pattern has been observed in sudden unexpected 

death in epilepsy (SUDEP), another severe phenotype associated with DRE. Leu et al. 

showed that the polygenic burden underlying SUDEP consists of contributions from 

more than a thousand genes (490). 

Another possible scenario that cannot be excluded is that drug resistance is caused by 

a small number of rare variants (MAF < 0.01) which would not have been identified by 

the present analysis. This would be consistent with the rare variant hypothesis, 

according to which most of the phenotypic variability in complex traits is due to rare 

variants with relatively large effect sizes (491). Since an individual variant explains 

most of the risk only in a fraction of cases, the effects of rare variants may not account 

for a sufficient amount of the variability in the population to be detectable by standard 

GWAS (489). 
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Last but not least, it is possible that variants underlying drug resistance are specific to 

different types of epilepsy and not the same across all epilepsy types. 

3.5.1.1 Limitations 

The main limitation of this study is the relatively small sample size. Even though this is 

the largest GWAS of this type to date, the sample size is still modest, reflecting the 

difficulty obtaining large numbers of cases with well characterised pharmacologic 

outcomes. The sample size was insufficient to allow the detection of variants carrying a 

small risk for DRE. Furthermore, the small sample size did not allow for analysis of 

variants associated with DRE in epilepsy subtypes. Lastly, there is a lack of independent 

replication sample. 

The analysis used genotype data generated separately on several platforms, which is 

normal for GWAS conducted in a consortium setting. To mitigate this, the data sets 

were imputed to the same reference using a unified protocol. It is important to note 

that the X chromosome was not included in the analysis as the data were not available 

for all cohorts. Any potentially significant variants on chromosome X could thus not be 

detected. 

The limitations associated with case and control selection are discussed in detail in 

Section 2.5.3. Due to the retrospective data collection, the classification of cases relied 

on the quality of medical records. Since the patients were recruited at tertiary centres, 

there was over-representation of difficult-to-treat cases in the overall sample (2,489 
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cases with drug-resistant epilepsy and 1,626 cases with drug-responsive epilepsy were 

available for inclusion in GWAS1). In a general epilepsy population, one would expect 

only approximately 30% resistant cases (20, 28, 43). In addition, it is possible that the 

drug-responsive controls were less typical of the general responder population. 

Individuals recruited in EpiPGX might have required a longer time to achieve remission, 

or suffered relapses, warranting continuous follow-up at a tertiary centre. Individuals 

achieving a sustained remission with their first AED trial would be more likely followed 

locally and would consequently be under-represented in our cohort. The information 

on the time to remission was not available for the cohort of drug responders in this 

analysis. Consequently, I have not been able to make comparisons with the published 

community-based epilepsy cohort outcomes, or speculate whether the drug-

responsive cohort included in GWAS1 could be genetically different from a general 

drug-responsive population and whether the analysis could have been affected. The 

average number of adequate and appropriate AED trials in individuals with drug-

responsive epilepsy was approximately two, which is similar to what has been 

observed in another study (81). 

The issue of the fluctuating course of epilepsy has been discussed in detail in Section 

2.5.3.5. The classification of cases with a fluctuating course of epilepsy poses 

challenges with any definition of epilepsy outcomes because the classification is only 

valid at one point, and may change at another point in time. It is probable that some of 

the individuals in our drug-resistant cohort would have achieved remission and that 

some of the drug-responsive individuals would have relapsed down the line, thus 

falling into the opposite phenotypic category. As a consequence, both GWAS1 cohorts 
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might have included a small proportion of cases with a fluctuating epilepsy course that 

may have a different genomic signature than both the drug-resistant and the drug-

responsive populations. The extent to which this issue could have affected the power 

and the results of GWAS1 is difficult to estimate. The proportion of individuals with a 

fluctuating course is estimated at approximately 10 to 15% (28, 401), so there could 

theoretically be a few percent of them in each GWAS1 cohort. Fluctuations between 

periods of uncontrolled seizures and remissions are more likely in individuals 

experiencing infrequent seizures (382). Since the EpiPGX definition of DRE required a 

minimum of four seizures in the 12 months prior to the last follow-up, it likely excluded 

a fair proportion of such cases. However, this was not the case with the definition of 

drug response. 

3.5.1.2 Concluding remarks 

In conclusion, GWAS1 does not provide a definitive answer regarding the genetic basis 

of drug resistance in epilepsy. It is possible that drug resistance is caused by rare 

variants or variants with very small effect sizes that could not be detected by this 

analysis. 

3.5.2 Comparison of drug-resistant individuals with healthy controls 

In GWAS2, I compared 2,423 cases with DRE and 10,645 healthy controls. Association 

analysis revealed eight loci with genome-wide significance: 4q31.1, 5p13.2, 22q13.31, 



208 
 

21q22.3, 6p21.33, 11p13, 2q37.3, and 13q31.2. I examined the genomic context, LD 

structure, and potential functional significance of these loci using information from 

1000 Genomes, ENSEMBL Variant Effect Predictor (468, 469), GTEx (470, 471), Brain 

xQTL (474, 475), Braineac (476, 477), and MGI databases (472, 473). Exploring these 

resources allowed me to speculate which genes could be plausible candidates at each 

locus. More advanced methods like the exploration of chromatin interaction data, 

protein-protein interactions, and transcriptome-wide association analysis (262) were 

beyond the scope of this work. 

All genome-wide significant SNPs were located in non-coding regions of the genome, 

which is consistent with GWAS findings in other complex diseases. It is estimated that 

approximately 80% of all GWAS signals are located in introns and intergenic regions, 

often within promoter or enhancer sequences. Functional variants driving these signals 

are likely to affect the regulation of gene expression (492, 493). 

The genome-wide significant SNPs from GWAS2 can be grouped as follows: 

1. Intronic: 11p13 

2. Intergenic: 5p13.2 

3. Non-coding transcript variant: 13q31.2 

4. Associated variants not supported by other SNPs at the same locus, likely 

representing artefacts: 4q31.1, 6p21.33, 2q37.7, 21q22.3, 22q13.31 
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3.5.2.1 Signal at locus 11p13 

The signal at locus 11p13 was centred on the second intron of the PAMR1 (peptidase 

domain containing associated with muscle regeneration 1) gene. PAMR1 has so far not 

been linked to epilepsy or neuronal excitation (494). Instead, it has been proposed that 

PAMR1 could be a tumour suppressor as it has been found to be frequently inactivated 

by promoter hypermethylation in breast cancer tissues (495). Even though the lead 

SNP and all the SNPs in high LD with it are PAMR1 intronic variants, this does not 

necessarily mean that PAMR1 is the biological candidate. There are known examples of 

intronic variants affecting the expression of adjacent genes (496) and there is a 

theoretical possibility that another gene within the locus (such as SLC1A2 or FJX1) 

could be affected. None of the SNPs in the locus is an eQTL for any of the 

aforementioned genes, based on the data available in public databases (471, 475, 

477); however, the available information is limited and may be incomplete. 

On the basis of its function and expression pattern, the most interesting gene within 

this locus is SLC1A2, encoding the excitatory amino acid transporter 2 (EAAT2). Located 

in the membranes of astroglia, EAAT2 is responsible for removing glutamate from the 

extracellular space at the synapse, allowing timely glutamatergic transmission and 

maintaining the extracellular glutamate concentration at low levels to protect neurons 

from its toxic effects. Heterozygous Slc1a2 loss of function mutations in mice result in 

impaired glutamate uptake and excitotoxicity (497, 498). De novo mutations in SLC1A2 

cause EE with onset in the first week of life, multiple seizure types, and profound 

learning disability (102, 392). Lower regional content of EAAT2 has been shown in 



210 
 

dysplastic tissue of individuals with FCD (499). Zhang et al. identified SLC1A2 as a 

pivotal gene in MTLE using a systems biology approach focussing on gene co-

expression networks. They found low expression of SLC1A2 in individuals with MTLE. In 

addition, the authors studied the rat pilocarpne model of epilepsy and showed low 

levels of Slc1a2 in the hippocampal tissue after SE. Rats transfected with 

pheochromocytoma cells overexpressing human SLC1A2 exhibited reduced seizure 

activity and less pronounced neuronal loss, astrocytosis, and inflammation (500). 

Combined, these results indicate that genetic variation impacting SLC1A2 expression 

could influence disease progression across different epilepsy types by affecting the 

glutamatergic pathway. Higher expression of EAAT2 could mean more efficient 

clearance of glutamate from the synapse and less excitotoxicity following different 

insults (e.g. SE, brain trauma). Existence of variants influencing the regulation of 

SLC1A2 expression could be a potential non-specific mechanism underlying drug 

resistance in common epilepsies. 

3.5.2.2 Signal at locus 5p13.2 

The signal at locus 5.13 was located in a non-coding region, within 250kb of four genes: 

SKP2, RANBP3L, NADK2, and SLC1A3. Publically available eQTL data do not indicate any 

involvement of the variants in this locus in the regulation of these genes in the CNS 

(471, 475, 477). However, the available data may be incomplete and potential 

influences cannot be excluded. 
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Based on its function and high expression in the brain, SLC1A3, encoding the glial 

glutamate transporter EAAT1, is the most interesting gene in the region. Since the 

reuptake of glutamate via astroglial glutamate transporters is the main mechanism for 

terminating excitatory neurotransmission, EAAT1 is critical for the regulation of 

extracellular glutamate and excitotoxicity (501), in the same way as the 

aforementioned EAAT2. In addition to regulating the extent and duration of glutamate-

mediated signal, EAAT1 also has anion channel activity preventing further glutamate 

release (502-504).  

Variation in SLC1A3 (rs4869682 genotype) has been shown to correlate with the risk of 

developing epilepsy as a consequence of traumatic brain injury (505). Mutations in 

SLC1A3 have been linked to seizures in the context of episodic ataxia and alternating 

hemiplegia (487, 506). Jen et al. described a case with a heterozygous mutation of 

SLC1A3 and episodic ataxia, focal seizures, migraine, and alternating hemiplegia. The 

mutation in this individual resulted in a substitution of arginine for proline at a highly 

conserved site in the EAAT1 protein. The glutamate uptake assay showed markedly 

reduced glutamate uptake capacity of mutant EAAT1. Insufficient clearance of 

glutamate from the synapse can lead to to hyperexcitability, manifesting as baseline 

epileptiform discharges and a lower seizure threshold, as well as other paroxysmal 

neurologic disturbances, which was clearly demonstrated in this case. The overlapping 

clinical features resulting from mutations in proteins important in glutamate release 

and reuptake strengthen a role for glutamate transmission in paroxysmal neurological 

disorders (487). 
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CNVs at the 5p13.2 locus result in complex syndromes that can feature seizures as one 

of the symptoms, often in combination with autistic spectrum disorder (ASD) and 

attention deficit hyperactivity disorder (ADHD). Chromosome 5p13 duplication 

syndrome (OMIM #613174) has been described in rare individuals with developmental 

delay, behavioural problems, and facial dysmorphism. Duplications of 5p13 described 

up to date vary in size from 0.25 to 13.6 Mb and span a variable number of genes. 

Clinical presentations are heterogenous and may include epilepsy, ASD, and ADHD 

(507-510). The main dosage-sensitive gene driving the phenotype is most likely NIPBL 

(nipped-B-like; regulator of the sister chromatid cohesion complex). SLC1A3, commony 

included in 5p13 microduplications, likely contributes to the clinical features. Van 

Amen-Hellebrekers et al. described a series of four children with very short 

duplications of 5p13.2 encompassing only the SLC1A3 gene. The most consistent 

clinical findings were developmental delay, learning disability, facial dysmorphism, 

behavioural problems resembling ADHD, and autistic features. Interestingly, one of the 

cases also had EE with onset at four years of age. They concluded that SLC1A3 might 

be a risk gene for ASD and ADHD (511). Locus 5p13-q11 has also been linked to ADHD 

in several other studies. The region contains several plausible candidate genes for 

ADHD, based on their role in the CNS function and development, SLC1A3 being one of 

them (512, 513). Triplications of 5p12-14 region have been associated with epilepsy 

and ASD (514, 515). 

As detailed above, the region on chromosome 5 harbouring the GWAS signal has 

already been implicated in epilepsy, ASD and ADHD. The most interesting plausible 

candidate gene within this locus is SLC1A3. Similar to SLC1A2, variants affecting SLC1A3 
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could be involved in drug resistance across different epilepsy types by affecting the 

clearance of glutamate, the main excitatory neurotransmitter in the CNS. In addition, 

connections with ASD and ADHD are particularly interesting because these are 

common comorbidities in PWE. Co-occurrence of epilepsy and ASD in children is 

estimated at approximately 20 to 25% (516). The prevalence of ADHD in the epilepsy 

population ranges from 23 to 40% (517). ASD and ADHD are more likely in children 

with DRE than with epilepsy that is easy to treat (518, 519). 

The signal at locus 5.13 could potentially reflect a causal variant underlying DRE, 

epilepsy, or merely the higher prevalence of behavioural comorbidities in DRE. 

Unfortunately, the information on these comorbidities was not systematically 

collected in EpiPGX. A confirmation of this association signal in a second GWAS is 

important as the next step. In addition, expression data could help determine which 

genes are directly affected. 

3.5.2.3 Signal at locus 13q31.2 

The signal at locus 13q31.2 was centred on the LINC00433 gene (transcript variant of a 

long non-coding RNA gene). Long non-coding RNAs (lncRNAs) are a type of transcribed 

RNA molecules that are more than 200 nucleotides in length and do not encode 

proteins. They are believed to have a wide array of functions, including gene inhibition 

and gene activation through various mechanisms. They may regulate genes in close 

proximity or at a distance from the transcribed lncRNA (520, 521). An example of 

lncRNA with a known function is the XIST (X-inactive specific transcript) lncRNA which 
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plays an important role in X chromosome inactivation (522). To date, very few lncRNAs 

have been characterised in detail. No information is available on the function of 

LINC00433. Publically available eQTL data for both associated SNPs at this locus do not 

indicate a significant effect on the expression of any genes (477). Nevertheless, it is 

possible that variants affecting LINC00433 could result in changes in gene regulation 

underlying epilepsy or DRE. Further expression studies could help determine the 

function of LINC00433. 

3.5.2.4 Associated loci representing artefacts 

Associated loci that likely represent artefacts include: 4q31.1, 6p21.33, 2q37.3, 

21q22.3, and 22q13.3. Based on the examination of GWAS output for SNPs in high LD 

with the associated SNPs at these loci, there is less confidence that these could be true 

associations. The cohorts used in this GWAS were genotyped in several separate 

batches on different platforms and there is a possibility of imputation artefacts. 

Despite the use of stringent marker QC, issues can arise if SNPs in the studied cohorts 

differ substantially from the reference. Further work may be required to eliminate 

these issues, including repeating the analysis in an independent cohort. 

3.5.2.5 Limitations 

As mentioned in the previous section, the main limitation of this analysis was the use 

of genotype data generated separately on various platforms which may have resulted 
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in artefacts despite imputing all data sets using the same reference. As with GWAS1, 

the sample size, in particular of the DRE cohort, was modest. As shown by GWAS in 

other areas, increasing the sample size usually reveals additional associated loci (220) 

and allows the detection of variants carrying small risks. Furthermore, increasing the 

sample size would also allow for analysis of variants associated with DRE in epilepsy 

subtypes. It is important to note that the X chromosome was not included in the 

analysis as the data were not available for all cohorts. Any potentially significant 

variants on chromosome X could thus not be detected. Lastly, there is a lack of 

independent replication sample. 

I used several public databases to prioritise candidate genes at each locus based on the 

proximity to the lead SNP, expression patterns, eQTL data, functional consequences of 

variants within the locus, and knockout mouse phenotype data. Together, these 

resources have provided only limited insight into the potential relevance of the 

associated signals rather than allowing definitive conclusions. There are additional 

methods that could have provided valuable information, for example taking into 

account chromatin interactions data, protein-protein interactions, and transcriptome-

wide association analysis; however, these were beyond the scope of this work. When 

examining the expression and mouse phenotype data, I focussed predominantly on the 

central nervous system. Theoretically, genes involved in DRE could be associated with 

other organ systems, such as the liver, or the immune system. 

Assembling large cohorts of epilepsy cases with well characterised long-term outcomes 

represents a challenge even for large international consortia. The EpiPGX definition of 

DRE required the availability of sufficient information on individual AED treatment 
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outcomes and seizure frequency in the medical records. Due to the retrospective data 

collection, complete information was not always available, resulting in a lower number 

of cases classified as resistant than what would be expected with less stringent 

definitions. The DRE cohort available for inclusion in GWAS2 was thus modest. This is 

discussed in detail in Section 2.5.3, together with other reasons for undefined 

outcomes. An important part of classifying the cases as drug-resistant was checking for 

causes of pseudoresistance, for example NES or poor adherence to medication. As this 

relied on the quality of medical records, it is possible that the exclusion of such cases 

was not complete. As with GWAS1, the classification of cases with a fluctuating course 

of epilepsy represents an additional challenge. It has been shown that individuals 

meeting criteria for DRE may achieve late remissions (401, 406), so it is possible that 

some individuals in the drug-resistant cohort would have achieved remission with 

further drug changes. Since GWAS2 included healthy controls this issue might have 

affected it to a lesser extent than GWAS1 which also included drug responders. 

Additional efforts and collaboration with other epilepsy consortia will be required to 

generate an independent replication cohort. 

3.5.2.6 Concluding remarks 

GWAS2 revealed several interesting loci associated with the drug-resistant phenotype, 

most notably 5p13.2 and 11p13 which both harbour potentially biologically relevant 

genes. This includes the genes for both glial glutamate transporters (SLC1A2 and 

SLC1A3), responsible for the clearance of glutamate from the synaptic cleft and 
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protection against glutamate excitotoxicity. In addition, one of these two loci has been 

linked to ASD and ADHD. These are important comorbidities in epilepsy, more 

frequently encountered in DRE compared with drug responders. These loci could be 

risk factors for drug resistance or epilepsy susceptibility (especially difficult-to-treat 

epilepsy). In addition, the locus on chromosome 5 could reflect common 

pathophysiological pathways underlying DRE and comorbidities such as ASD and 

ADHD. All variants identified in GWAS2 were located in non-coding regions. Some of 

them could potentially affect gene regulation. Expression and functional work would 

be needed to establish the target genes and the effects of these variants. 

3.5.3 Comparison and interpretation of GWAS1 and GWAS2 results 

I performed GWAS1 and GWAS2 as two complementary analyses to explore the 

contribution of common genomic variation to DRE. I used the same DRE cases in both 

GWAS1 and GWAS2. While GWAS1 did not yield any genome-wide significant results, 

GWAS2 revealed several interesting associated loci. To get a more complete 

understanding of the results, I examined the output of GWAS1 for SNPs with genome-

wide significance in GWAS2. Similarly, I examined the GWAS2 results for SNPs that had 

genome-wide significance in the previously published studies of genetic determinants 

of common epilepsies (261, 262). 
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3.5.3.1 Comparison of GWAS1 and GWAS2 results 

No SNPs reached genome-wide significance in GWAS1 (comparison of drug-resistant 

cases with drug responders) and eight SNPs reached genome-wide significance in 

GWAS2 (comparison of drug-resistant cases with drug responders). Four out of these 

eight SNPs (rs4629621, rs8127410, rs16927514, and rs4516077) showed nominal 

significance in GWAS1 (see Table 3.5). None of these SNPs or SNPs in high LD with 

them were close to reaching genome-wide significance in GWAS1. 
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Table 3.6: P-values from single association tests of genome-wide associated loci from GWAS2 in GWAS1 

SNP 
 
 

Cytogenetic 
band 

Base pair 
position 

Allele 1, 
allele 2 

MAF 
(minor allele) 

P-value 
(FaSTLMM) 
GWAS2 

OR (95% CI) P-value 
(FaSTLMM) 
GWAS1 
 

OR (95% CI) 

rs75700350 
 

4q31.1 140189612 C, T 0.0529 (T) 3.52*10-11 1.07 (1.05-1.09) 8.87*10-01 1.05 (0.99-1.11) 

rs4629621 
 

5p13.2 36426049 T, C 0.1512 (T) 4,69*10-11 1.06 (0.97-1.15) 4.73*10-03 1.05 (0.88-1.25) 

rs5765116 
 

22q13.31 45408407 G, A 0.4589 (G) 2.58*10-10 1.03 (0.98-1.09) 5.36*10-01 1.01 (0.90-1.19) 

rs8127410 
 

21q22.3 47507039 A, G 0.3894 (G) 1.04*10-09 0.97 (0.91-1.02) 3.31*10-02 0.97 (0.86-1.10) 

rs150512569 
 

6p21.33 30495053 G, A 0.1032 (A) 2.38*10-09 1.04 (0.98-1.11) 1.39*10-01 1.02 (0.88-1.19) 

rs16927514 
 

11p13 35505321 T, C 0.0280 (C) 1.52*10-08 0.94 (0.84-1.05) 2.32*10-02 0.95 (0.75-1.20) 

rs73999651 
 

2q37.3 238054898 G, T 0.0873 (T) 2.48*10-08 0.93 (0.82-1.06) 6.79*10-01 0.99 (0.78-1.26) 

rs4516077 
 

13q31.2 89193635 A, G 0.4922 (G) 5.59*10-08 0.97 (0.93-1.02) 1.29*10-02 0.97 (0.87-1.09) 

Base pair position refers to human genome build 37 (GRCh37, hg19). MAF is from all populations from the 1000 Genomes Project. Candidate gene refers to the 
most plausible candidate gene attributable to the signal, based on proximity (450). OR (odds ratio) corresponds to allele 2. Annotation refers to type of SNP; nc 
transcript variant refers to a transcript variant of a non-coding gene; upstream refers to upstream of a gene. 
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3.5.3.2 Comparison of ILAE GWAS and GWAS2 results 

The ILAE Consortium on Complex Epilepsies was established to explore the genetic 

susceptibility factors underlying common epilepsies. In 2014, the ILAE Consortium 

published a meta-analysis combining GWAS data from 12 cohorts of PWE and 

publically available controls. It included 8,696 cases with epilepsy and 26,157 healthy 

controls. Analyses were performed separately for three phenotypic groups: all 

epilepsies, focal epilepsies, and GGE. Analysis of all epilepsies identified two 

significantly associated loci. The first one was 2q24.3, containing the SCN1A gene 

encoding Nav1.1. The second hit was at 4p15.1, harbouring PCDH7. Two additional loci 

approached genome-wide significance, implicating the golgi integral membrane 

protein 4 (GOLIM4) and GABA type A receptor alpha2 subunit (GABRA2) genes (261). 

Extended ILAE meta-analysis including all epilepsy cases confirmed two previously 

reported associations at 2p16.1, harbouring FANCL, and 2q24.3, harbouring SCN1A, 

and led to the identification of one novel genome-wide significant locus at 16q12.1, 

harbouring HEATR3 and BRD7 (262). 

The original and extended ILAE GWAS (all epilepsies analysis) and GWAS2 all compared 

individuals with epilepsy and healthy controls, the main differences being the selection 

of epilepsy cases and cohort size. While the ILAE studies included drug-resistant and 

drug-responsive cases, GWAS2 included only the former. The original and extended 

ILAE GWAS included 10,064 and 15,212 PWE, respectively, compared with 2,489 

individuals with DRE included in GWAS2. It is important to note that four EpiPGX 
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centres also contributed cases to the ILAE meta-analyses. Consequently, there was 

partial overlap between the two studies, with 932 out of 2,423 drug-resistant cases 

from the present analysis also included in the ILAE meta-analyses.  

I examined the top ILAE and extended ILAE GWAS SNPs from the analysis of all 

epilepsies in the GWAS2 output. The comparison of results is shown in Tables 3.6 and 

3.7. None of the top SNPs from the ILAE analyses reached genome-wide significance in 

GWAS2. The lead SNPs at 2q24.3 (rs6732655 and rs6432877) and 16q12.1 (rs4638568) 

reached nominal significance. The ILAE analyses and GWAS2 all included epilepsy cases 

and healthy controls; however, the structure of the epilepsy populations in these 

studies differed significantly. While GWAS2 included only cases with DRE, the 

proportion of cases with DRE and drug responders in the ILAE sample is unknown as 

the drug response was not assessed (261, 262). Due to these differences, GWAS2 may 

not have been positioned to replicate the ILAE results. In addition, the top associated 

SNPs in the ILAE analyses have low effect sizes, with OR ranging from 0.89 to 1.16 

(261). Featuring significantly lower numbers of cases and controls, GWAS2 was not 

powered to detect SNPs with such low effect sizes. Having said that, the genome-wide 

associated SNPs in GWAS2 had similarly low OR. GWAS2 could have yielded different 

results because the signal was driven by difficult-to-treat epilepsy or comorbidities 

more commonly associated with DRE. These results could support the intrinsic 

hypothesis of drug resistance. 
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Table 3.7: Comparison of the genome-wide associated variants identified in the ILAE GWAS study of genetic determinants of 
common epilepsies (261) and GWAS2 

SNP 
 
 

Cytogenetic 
band 
 

Base pair 
position 

Candidate 
gene 

Allele 1, 
allele 2 

MAF  
(minor allele) 

ILAE GWAS 
P-value (LMM) 

ILAE GWAS 
OR 

GWAS2 
P-value 
(FaSTLMM) 
 

rs6732655 
 

2q24.3 166895066 SCN1A T, A 0.22 (A) 8.71*10-10 0.89 1.22*10-02 

rs28498976 
 

4p15.1 31151357 PCDH7 A, G 0.46 (A) 5.44*10-9 0.90 6.67*10-02 

rs111577701 
 

3q26.2 167861408 GOLIM4 T, C 0.09 (T) 4.42*10-07 1.16 7.76*10-03 

rs535066 
 

4p12 46240287 GABRA2 T, G 0.40 (G) 1.71*10-07 1.10 1.56*10-01 

Base pair position refers to human genome build 37 (GRCh37, hg19); GOLIM4 = golgi integral membrane protein 4; GABRA2 = gamma-aminobutyric acid type A 
receptor alpha2 subunit. MAF is from all populations from the 1000 Genomes Project. Candidate gene refers to the most plausible candidate gene attributable to 
the signal. LMM refers to linear mixed-model meta-analysis used in the ILAE GWAS study. OR (odds ratio) corresponds to allele 2. Annotation refers to type of SNP. 
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Table 3.8: Comparison of the genome-wide associated variants identified in the extended ILAE GWAS study of genetic 
determinants of common epilepsies (262) and GWAS2 

SNP 
 
 

Cytogenetic 
band 
 

Base pair 
position 

Candidate 
gene 

Allele 1, 
allele 2 

MAF  
(minor allele) 

ILAE GWAS 
P-value (LMM) 

ILAE GWAS 
OR 

GWAS2 
P-value 
(FaSTLMM) 
 

rs6432877 
 

2q24.3 166998767 SCN3A, 
SCN2A, 
TTC21B, 
SCN1A 

T, A 0.26 (G) 1.7*10-13 NA 2.82*10-03 

rs4671319 
 

2p16.1 57950346 FANCL, 
BCL11A 

A, G 0.44 (G) 5.44*10-9 NA 9.84*10-02 

rs4638568 
 

16q12.1 50045839 HEATR3, 
BRD7 

T, C 0.09 (T) 4.42*10-07 NA 8.91*10-03 

Base pair position refers to human genome build 37 (GRCh37, hg19); SCN1A = sodium voltage-gated channel type I alpha subunit; SCN2A = sodium voltage-gated 
channel type II alpha subunit; SCN3A = sodium voltage-gated channel type III alpha subunit; TTC21B = tetratricopeptide repeat domain 21B; FANCL = Fanconi 
anaemia complementation group L; BCL11A = BAF chromatin remodeling complex subunit 11A; HEATR3 = HEAT repeat containing protein 3; BRD7 = Bromodomain 
containing protein 7. MAF is from all populations from the 1000 Genomes Project. Candidate gene refers to the most plausible candidate gene attributable to the 
signal. LMM refers to linear mixed-model meta-analysis used in the ILAE GWAS study. OR (odds ratio) corresponds to allele 2. Annotation refers to type of SNP. NA 
= not available. 
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3.5.3.3 Exploration of GWAS1 and GWAS2 results for SNPs in genes previously 
associated with drug resistance in epilepsy 

I examined the results of both GWAS analyses for SNPs in genes previously associated 

with drug resistance to multiple AEDs, including CYP2C9, CYP2C19, ABCB1, and SCN1A 

(for results, see Appendix 7). None of the SNPs in CYP2C9, CYP2C19, and ABCB1 

reached genome-wide or nominal significance in any of the analyses. The lack of 

significance in GWAS2 analysis that compared individuals with DRE and healthy 

individuals was expected since none of the three genes are considered epilepsy genes. 

The lack of any sub-threshold signals of interest in GWAS1 comparing individuals with 

DRE and drug responders might be due to the limited sample size. Alternatively, it is 

possible that no signal was detected because variation in these genes may only affect 

the response to a subset of AEDs. In the case of ABCB1 polymorphisms, published 

research has produced contradictory conclusions regarding their relationship with DRE. 

The association of ABCB1 polymorphisms with AED resistance remains uncertain (14). 

The results of the present work provide an additional insight into the complex question 

of ABCB1 involvement in DRE. 

Several SNPs within the SCN1A gene reached nominal significance in GWAS2, but not 

in GWAS1, including rs6732655 previously identified as an epilepsy risk factor in the 

original ILAE analysis. Although these values are not close to genome-wide 

significance, they are in line with the published literature linking variation in SCN1A 

with an increased risk of developing common epilepsies (261, 262). 
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3.6 Conclusions 

The main findings of the present GWAS work are: 

1. GWAS1 did not show a differential distribution of SNPs in individuals with DRE 

compared with drug responders. Hypothesis 1 could not be supported. GWAS1 

was powered to identify variants with at least moderate effect sizes; the 

existence of common variants with very small effect sizes or rare variants 

underlying drug resistance is possible. Factors underlying drug resistance could 

also be specific to underlying aetiology.  

 

2. GWAS2 showed a differential distribution of SNPs in individuals with DRE 

compared with healthy individuals. Considering the negative results of GWAS1, 

Hypothesis 2 can be neither confirmed nor rejected. It is possible that variants 

identified in GWAS2 are epilepsy susceptibility variants. 

3.6.1 Further work 

The present GWAS work can be viewed as the pilot to the more extensive and 

methodologically improved analyses that are going to follow. 

The current Consortium efforts focus on generating suitable replication cohorts for 

both GWAS1 and GWAS2 through collaborations with other epilepsy consortia. Plans 
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for further GWAS work predict meta-analyses including both the original and the new 

cohorts. As the Consortium GWAS1 did not identify any variants of genome-wide 

significance, a meta-analysis approach could help increase the likelihood of relevant 

findings. GWAS2 identified several interesting loci that require further exploration. 

Performing a replication analysis will help clarify the significance of the identified loci 

and hopefully establish whether the less reliable findings were indeed artefacts. 

Further marker QC measures may be needed to address the issue of possible artefacts. 

Any confirmed variants will require further work to evaluate their functional 

significance, for example eQTL analyses. 

Generating additional cohorts will also enable the exploration of common genomic 

variability in epilepsy sub-types, for example in focal epilepsies. In addition, there is 

ongoing NGS work in DRE exploring the contribution of rare variants. 

The expertise within EpiPGX and other international epilepsy consortia could be 

leveraged to redefine the phenotypes for use in genome-wide studies. As discussed in 

Section 2.5.3.5, the DRE definitions used in research do not address the issue of 

fluctuating epilepsy course in some PWE, resulting in classification issues and reduced 

power. One potential solution currently explored within EpiPGX is to compare 

‘extreme non-responders’ with ‘super-responders’. The former could be defined as 

individuals failing a minimum of five to six AEDs without ever achieving a 12-month 

remission. This is based on the studies showing that the likelihood of remission after 

this number of AED trials is extremely low  (49, 78, 79). ‘Super-responders’ could be 

defined as individuals achieving sustained response with the first adequate and 

appropriately used AED. A consensus would be needed on the minimum required follow-up 
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period to apply such a definition. Another potential option that could be explored is using 

quantitative rather than dichotomous phenotypes (for example proportion of time spent in 

remission, number of failed AEDs, etc.). Regardless of the definitions, prospective data 

collection would improve the data quality and the outcomes. Large international consortia 

have the potential to generate sufficiently large and adequately phenotyped prospective 

cohorts. 

The genotype data generated for the purposes of the present work have been shared 

with other consortia in the field of epilepsy and beyond to contribute to various 

research efforts. A proportion of the GWAS data has been included in the Brainstorm 

Consortium meta-analysis that explored the shared genetics of 25 common brain 

disorders in 265,218 affected individuals and 784,643 controls, as well as their 

relationship to 17 phenotypes from 1,191,588 individuals. The analysis quantified the 

overlapping genetic risk factors between these disorders (523). Furthermore, the data 

will contribute to other cross-consortia efforts combining multi-layered data sets (for 

example the work by the ENIGMA Consortium featuring genomic and imaging data 

(524)). 



228 
 

CHAPTER 4: HERITABILITY ANALYSIS 

4.1 Introduction 

4.1.1 The principles of SNP heritability analysis 

The purpose of SNP heritability analysis is to estimate how much of the phenotypic 

variance of a trait can be explained by all the measured SNPs in a data set. This is 

fundamentally different to GWAS discovery where millions of SNPs are tested 

individually (216).  

In a SNP heritability analysis, genetic similarity across a large number of SNPs is 

correlated with phenotypic similarity in a cohort of unrelated individuals, each 

compared pairwisewith every other individual in the sample (216). The amount of 

genomic variation shared by conventionally unrelated individuals is small and highly 

variable. However, these small genotype-phenotype association signals are 

accumulated using a large amount of information available in a matrix of thousands of 

individuals. If randomly selected individuals with similar phenotypic features are 

relatively similar genetically, this indicates that the assessed SNPs (capturing the 

contribution from causal variants in LD with these SNPs) influence the trait (209). 
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The statistical test behind the SNP heritability analysis is linear regression using a 

mixed model. Mixed model is implemented for the partitioning of the phenotypic 

variance into the variance explained by one or more fixed effects such as individual 

SNPs or other covariates and the residual variance due to an unobserved random 

effect, usually interpreted as the polygenic contribution to the disease risk (525, 526). 

The partitioning is achieved by comparing prediction error against relatedness (526). 

Inter-individual phenotype differences are used as the primary variable, and genomic 

relatedness as the dependent variable, modelled as a combination of fixed effects 

(such as genome-wide associated SNPs identified in GWAS analyses, age, and sex) and 

a random effect using restricted maximum likelihood method; REML. This type of 

analysis is referred to as genomic relatedness matrix REML (GREML) (209). 

The two software packages implementing GREML are Genome-wide Complex Trait 

Analysis (GCTA) and LD-Adjusted Kinships (LDAK) (525). Both of them use a two-step 

procedure to perform SNP heritability estimation: 

1. First, a kinship matrix, also called genetic relationships matrix (GRM) is 

estimated from genome-wide SNP data. Each element in the matrix represents 

the genetic similarity of two individuals. The main difference between the two 

packages is that LDAK calculates a modified kinship matrix in which SNPs are 

weighted according to local LD to account for potential biases due to LD. These 

biases may arise since the contributions of causal variants to h2 may be 

overestimated in chromosomal regions with strong LD and underestimated in 

those with low LD (525). 
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2. The second step is fitting the kinship matrix in a mixed linear model to estimate 

how much of the phenotypic variance is attributable to genomic variation via 

the REML method. This is achieved by comparing prediction error against 

relatedness (527). 

4.1.2 QC procedures in SNP heritability analysis 

As is the case with GWAS, the results of SNP heritability analyses depend heavily on 

the overall data quality. The QC procedures in SNP heritability analyses are similar to 

those in GWAS and aim at excluding suboptimal quality markers and samples. 

4.1.2.1 Marker QC procedures 

Marker QC procedures include removing SNPs with excessive missing genotype data, 

SNPs with a significant deviation from HWE, SNPs with significantly different 

missingness rates in cases and controls, and SNPs with a very low MAF (422). Details 

are provided in Section 3.3.3. 

4.1.2.2 Sample QC procedures 

Sample QC procedures include removing samples with potential identity problems, 

samples with excessive missing genotype data, heterozygosity, population 
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stratification, or relatedness issues. Procedures are similar to those in GWAS (see 

Section 3.1.1.3.2 for details); however, controlling for relatedness may be more 

stringent in SNP heritability analyses. 

When estimating SNP heritability, it is very important to exclude close relatives. If close 

relatives are part of the analysis, the phenotypic correlations between them can drive 

the estimate of genetic variance, potentially causing bias, for example due to common 

environmental effects. Both GCTA and LDAK have a function to iteratively exclude one 

sample out of each pair of individuals with genomic relatedness that is higher than a 

pre-specified cutoff value, e.g. IBD > 0.05. The function ensures that exclusion is done 

in a way to keep the maximum possible number of samples in the analysis (526). 

4.1.2.3 Covariates 

SNP heritability analyses are sensitive to potential biases due to population structure. 

Confounding can occur because individuals who are genetically similar are generally 

also geographically close and thus live in a similar environment. Consequently, it is 

difficult to ascertain whether phenotypic similarity is caused by shared genetic factors 

or by shared environment (528). Thus, it is common practice to include principal 

components as covariates in the mixed linear model to capture variance due to 

population structure (526). 
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4.2 Aim 

The purpose of the present SNP heritability analysis was to estimate how much of the 

phenotypic variance of drug resistance in epilepsy can be explained by all the 

measured SNPs in the data set. As outlined in Section 1.10, the SNP heritability analysis 

tests the following hypothesis: 

Hypothesis 3:  

Drug resistance in epilepsy has a polygenic inheritance component. 

4.3 Methods 

I performed the heritability analysis using the same genotype data as in GWAS1 

(comparing individuals with DRE and drug responders). I followed the protocol 

outlined in Figure 4.1. I used LDAK for the analysis (525). 
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Figure 4.1: Heritability analysis protocol 

 

 

 

 

 

 

 

 

 

 
QC = quality control, MAF = minorallele frequency, HWE = Hardy-Weinberg equilibrium, MDS = 
multidimensional scaling. IMPUTE metrics include r2_type0 and concord_type0. SNPTEST 
metrics include average_maximum_posterior_call and info. 
 

4.3.1 Peripheral blood collection, DNA extraction, SNP genotyping, and 
imputation 

The methods for peripheral blood collection, DNA extraction, SNP genotyping, and 

imputation are described in Sections 3.3.1 and 3.3.2. 

Post-imputation marker QC – per genotype data set 
r2_type0 ≥ 0.90, concord_type0 ≥ 0.90, MAF ≥ 0.005 

Final marker QC – per phenotype (resistant, responders) 
MAF ≥ 0.01, info (SNPtest) ≥ 0.90, average_maximum_posterior_call ≥ 0.97 

SNP Heritability analysis 

Post-imputation sample QC 
MDS analysis and removal of population outliers and related individuals (IBD > 0.05) 

Pre-imputation QC – per genotype data set 
Marker QC: genotype rate ≥ 0.90, Sample QC: genotype rate ≥ 0.95, ≥ 0.90 European ancestry    

Imputation 
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4.3.2 Sample and marker QC procedures 

I performed marker and sample QC as for GWAS1 (See Section 3.3.3), with the 

exception of controlling for relatedness where I applied a more stringent threshold 

than in GWAS1. I created a subset of markers independent of each other with respect 

to LD using a window size of 150 markers, shifting by 10 markers at a time and 

removing one half of every SNP pair with genotypic r2 > 0.4 (PLINK command: --indep-

pairwise 150 10 0.4). Using this subset of markers, I calculated IBS/IBD (PLINK 

command: --genome). I then pruned one out of each pair of individuals with > 0.05 

relatedness within each genotype data set and across the entire sample. 

4.3.3 Calculating population axes 

Using the genotype data for the subset of independent markers created with PLINK as 

described above (after removing SNPs in LD r2 > 0.4), I constructed a kinship matrix 

and performed PCA (LDAK commands --calc-kins-direct, --pca). This way I obtained the 

principal components (referred to as the population axes). 
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4.3.4 Calculating SNP weights and computing kinships 

I calculated LD-based SNP weights for all autosomal markers that passed QC (LDAK 

command --calc-weights). I then computed LD-weighted kinships (LDAK command --

calc-kins-direct) and created a GRM (LDAK command --add-grm). 

4.3.5 Estimating SNP heritability 

I performed h2 SNP estimation (LDAK command --reml) using the following 

parameters: 

- Prevalence (LDAK command --prevalence) 0.3 (proportion of people with DRE in 

the epilepsy population) 

- Covariates (LDAK command --covar): gender, epilepsy type (focal, generalised, 

unclassified), the first ten components (principal axes) of PCA  

It is common to include SNPs that are associated with the trait in question in GWAS as 

fixed-effect covariates in heritability analysis (529). As no SNPs reached genome-wide 

significance in GWAS1 (comparing individuals with DRE and drug responders), no 

individual SNPs were included as covariates. 
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4.4 Results 

4.4.1 Genotyping and imputation 

Genotyping and imputation generated approximately 40,000,000 SNPs per case overall 

before QC (for details see Section 3.4.1).  

4.4.2 SNP heritability analysis 

I included 2,489 cases with DRE and 1,626 cases with drug-responsive epilepsy. After 

application of sample QC criteria, 2,254 cases with DRE and 1,501 cases with drug-

responsive epilepsy remained in the analysis. After application of marker QC, 

5,919,078 SNPs were taken forward in the h2
SNP analysis. The h2

SNP for DRE was 

estimated at 0.22 (SD 0.17). This estimate represents the proportion of inter-individual 

variance in resistance to AEDs in PWE accounted for by common SNPs in LD with 

causal genomic variants that underlie drug resistance.  
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4.5 Discussion 

4.5.1 Interpreting SNP heritability results in absence of pedigree 
studies 

As discussed in Section 1.8.2, the heritability (i.e. extent of genetic contribution) of 

drug resistance in epilepsy has not been quantified yet. The GWAS approach used in 

the present work has provided limited insights into the contribution of common SNPs 

to DRE. When comparing individuals with DRE and drug responders in GWAS1, I did 

not identify any genome-wide associated common SNPs. In the present SNP 

heritability analysis, I explored the joint contribution of all tested SNPs to the drug 

resistance phenotype. 

The resulting h2
SNP estimate of 22% provides the most convincing evidence for the 

existence of a polygenic heritable component of DRE to date. The present estimate is 

free from confounders arising from shared environment. In absence of conclusive 

pedigree studies, h2 of drug resistance in epilepsy is unknown. Consequently, I am 

unable to compare the h2
SNP estimate obtained in this work with existing h2 estimates. 

The relationship between h2
SNP and h2 for several traits, including height, has been 

explored in large GWAS data sets using GCTA and simulation analyses (216, 220, 530). 

h2
SNP estimates are expected to be lower than h2. The gap is observed because it is 

difficult to capture the additive effects of rare SNPs from GWAS data and because of 

statistical “noise” arising from small sample sizes. In addition, h2 can be overestimated 
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due to the confounding resulting from shared family environment effects (530). For 

height, h2
SNP estimates from more recent studies with bigger sample sizes and using 

dense genotyping arrays approach h2 (220). Although the data from the present 

heritability work do not allow me to estimate the size of the gap between h2
SNP and h2, 

it is fair to assume that there is a gap between the h2
SNP and h2 of drug resistance in 

epilepsy. Nevertheless, this result indicates that the contribution of common SNPs 

captured on the genotyping platforms is limited. Other genetic contributions may arise 

from rare SNPs, CNVs, non-additive genetic effects, and environmental effects. 

4.5.2 Limitations 

As with GWAS1, the main limitations of this SNP heritability analysis are the relatively 

small sample size, under-representation of drug respoders in the sample, and potential 

issues with classification of individuals with a fluctuating course of epilepsy. This is 

discussed in more detail in Section 3.5.1.1. 

The resulting h2
SNP estimate is limited by the sample size, as well as the capacity of 

genotyping platforms and imputation methods. Using dense genotyping arrays or NGS 

data including rare variants and CNVs in larger samples sizes would likely result in 

higher h2
SNP estimates and potentially predict individuals at risk of DRE. The addition of 

gene-gene and gene-environment interaction effects may increase the h2
SNP estimate 

and allow better prediction of risk (530).  
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4.6 Conclusions 

To my knowledge, the present work provides the first estimate of the SNP heritability 

of DRE to date. The estimate of 22% is modest, but sufficient to conclude that DRE has 

a polygenic inheritance component, confirming Hypothesis 3. This estimate reflects 

only SNPs tested in this work, but it does not account for the potential contributions of 

rare variants or CNVs. 

Further work includes refining the SNP heritability estimate by using larger cohorts and 

dense genotyping arrays or NGS. Performing SNP heritability analyses for epilepsy sub-

types may provide additional relevant insights. 



240 
 

CHAPTER 5: CONCLUSIONS 

Over 25 AEDs with different mechanisms of action are currently available for the 

treatment of epilepsy, yet in individuals with DRE, resistance occurs to many or all of 

them. In some cases, AEDs may not work because they do not target the underlying 

pathophysiology (e.g. carbamazepine in Dravet syndrome), in line with the intrinsic 

hypothesis of drug resistance. The existence of such examples, however, does not 

exclude the possibility of a cross-syndrome component of DRE. Drug resistance is 

observed clinically across the entire spectrum of AEDs and epilepsies, regardless of the 

underlying aetiology, implying that it could be driven by a non-specific mechanism. 

Various research approaches have been used to determine the underlying causes of 

drug resistance over the past decades. Clinical predictors of DRE have been known for 

decades; however, the genetic factors underlying DRE have proven difficult to identify. 

There are no comprehensive pedigree studies of DRE heritability. Numerous candidate 

gene studies have been undertaken, but no convincing genetic cause has been 

identified yet. 

In the present work, I explored the genetic contribution to DRE and attempted to 

identify common genomic variants associated with drug resistance in epilepsy of any 

aetiology using a large data set of human SNP genotype data. In GWAS1, I searched for 

genome-wide significant common SNPs underlying drug resistance by comparing 

individuals with DRE and drug-responders. This study did not identify any common 
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SNPs associated with DRE; however, this analysis is not definitive and the existence of 

common variants with very small effect sizes or rare variants underlying drug 

resistance is possible. In GWAS2, I compared individuals with DRE and healthy controls. 

This study identified several interesting signals which could potentially be driven by 

epilepsy (in particular difficult-to-treat epilepsy) susceptibility variants or variants 

underlying comorbidities. 

I performed a SNP heritability analysis to explore the joint contribution of all tested 

SNPs to drug resistance, showing that DRE has a polygenic heritable component (22%). 

This value is modest, indicating other influences, such as that of the environment. 

Considering that the GWAS comparing individuals with DRE and individuals with drug-

responsive epilepsy did not identify any genome-wide significant variants, but the 

heritability analysis using the same data showed a combined effect of all SNPs, it is 

possible that drug resistance is caused by a large number of variants with small effect 

sizes, in line with the infinitesimal model. Showing that DRE has a heritable component 

is important as it provides a rationale for further genome-wide studies. Uncovering the 

genetic architecture of drug resistance in epilepsy has the potential to guide the 

development of novel therapies and personalised medicine. 



242 
 

BIBLIOGRAPHY 

 

1. Baker GA, Camfield C, Camfield P, Cramer JA, Elger CE, Johnson AL, et al. Commission on 
Outcome Measurement in Epilepsy, 1994-1997: final report. Epilepsia. 1998;39(2):213-
31. 

2. Bonnett L, Smith CT, Smith D, Williamson P, Chadwick D, Marson AG. Prognostic factors 
for time to treatment failure and time to 12 months of remission for patients with focal 
epilepsy: post-hoc, subgroup analyses of data from the SANAD trial. Lancet Neurol. 
2012;11(4):331-40. 

3. Noble AJ, Marson AG. Which outcomes should we measure in adult epilepsy trials? The 
views of people with epilepsy and informal carers. Epilepsy Behav. 2016;59:105-10. 

4. Gaitatzis A, Sander JW. The mortality of epilepsy revisited. Epileptic Disord. 2004;6:3-
13. 

5. Trinka E. Epilepsy: comorbidity in the elderly. Acta Neurol Scand. 2003;108(s180):33-6. 

6. Kwan P, Brodie MJ. Neuropsychological effects of epilepsy and antiepileptic drugs. 
Lancet. 2001;357(9251):216-22. 

7. McCagh J, Fisk JE, Baker GA. Epilepsy, psychosocial and cognitive functioning. Epilepsy 
Res. 2009;86(1):1-14. 

8. Spatt J, Bauer G, Baumgartner C, Feucht M, Graf M, Mamoli B, et al. Predictors for 
Negative Attitudes toward Subjects with Epilepsy: A Representative Survey in the 
General Public in Austria. Epilepsia. 2005;46(5):736-42. 

9. Keezer MR, Bell GS, Neligan A, Novy J, Sander JW. Cause of death and predictors of 
mortality in a community-based cohort of people with epilepsy. Neurology. 
2016;86(8):704-12. 

10. Lhatoo SD, Johnson AL, Goodridge DM, MacDonald BK, Sander JW, Shorvon SD. 
Mortality in epilepsy in the first 11 to 14 years after diagnosis: Multivariate analysis of a 
long-term, prospective, population-based cohort. Ann Neurol. 2001;49(3):336-44. 

11. Mohanraj R, Norrie J, Stephen LJ, Kelly K, Hitiris N, Brodie MJ. Mortality in adults with 
newly diagnosed and chronic epilepsy: a retrospective comparative study. Lancet 
Neurol. 2006;5(6):481-7. 

12. Sheth SG, Krauss G, Krumholz A, Li G. Mortality in epilepsy: driving fatalities vs other 
causes of death in patients with epilepsy. Neurology. 2004;63(6):1002-7. 

13. Trinka E, Bauer G, Oberaigner W, Ndayisaba JP, Seppi K, Granbichler CA. Cause-specific 
mortality among patients with epilepsy: Results from a 30-year cohort study. Epilepsia. 
2013;54(3):495-501. 

14. Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett. 2017;667:27-
39. 



243 
 

15. Franco V, Perucca E. The pharmacogenomics of epilepsy. Expert Rev Neurother. 
2015;15(10):1161-70. 

16. Aneesh TP, Sonal Sekhar M, Jose A, Chandran L, Zachariah SM. Pharmacogenomics: The 
Right Drug to the Right Person. J Clin Med Res. 2009;1(4):191-4. 

17. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 
2000;342(5):314-9. 

18. Wieser HG, Ortega M, Friedman A, Yonekawa Y. Long-term seizure outcomes following 
amygdalohippocampectomy. J Neurosurg. 2003;98(4):751-63. 

19. Roden DM, Wilke RA, Kroemer HK, Stein CM. Pharmacogenomics: the genetics of 
variable drug responses. Circulation. 2011;123(15):1661-70. 

20. Arts WF, Geerts AT, Brouwer OF, Boudewyn Peters AC, Stroink H, van Donselaar CA. The 
early prognosis of epilepsy in childhood: the prediction of a poor outcome. The Dutch 
study of epilepsy in childhood. Epilepsia. 1999;40(6):726-34. 

21. Berg AT, Shinnar S, Levy SR, Testa FM, Smith-Rapaport S, Beckerman B. Early 
development of intractable epilepsy in children: a prospective study. Neurology. 
2001;56(11):1445-52. 

22. Camfield P, Camfield C. Nova Scotia pediatric epilepsy study. In: Jallon PB, A.; Dulac, O.; 
Hauser, W. A., editor. Prognosis of Epilepsies. Montrogue, France: John Libbey Eurotext; 
2003. p. 113-26. 

23. Dlugos D, Sammel MD, Strom BL, Farrar JT. Response to first drug trial predicts outcome 
in childhood temporal lobe epilepsy. Neurology. 2001;57(12):2259-64. 

24. Berg AT, Levy SR, Novotny EJ, Shinnar S. Predictors of Intractable Epilepsy in Childhood: 
A Case-Control Study. Epilepsia. 1996;37(1):24-30. 

25. Kwan P, Hao XT. Update and overview of the International League Against Epilepsy 
consensus definition of drug-resistant epilepsy. US Neurology. 2010;6(2):122-4. 

26. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. 
Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of 
the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):1069-77. 

27. Hanley JA, Lippman-Hand A. If nothing goes wrong, is everything all right? Interpreting 
zero numerators. JAMA. 1983;249(13):1743-5. 

28. Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in 
newly diagnosed epilepsy. Neurology. 2012;78(20):1548-54. 

29. Geerts A, Arts WF, Stroink H, Peeters E, Brouwer O, Peters B, et al. Course and outcome 
of childhood epilepsy: a 15-year follow-up of the Dutch Study of Epilepsy in Childhood. 
Epilepsia. 2010;51(7):1189-97. 

30. Bell GS, Neligan A, Sander JW. An unknown quantity—The worldwide prevalence of 
epilepsy. Epilepsia. 2014;55(7):958-62. 



244 
 

31. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, et al. Prevalence and 
incidence of epilepsy: A systematic review and meta-analysis of international studies. 
Neurology. 2017;88(3):296-303. 

32. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden 
of active and life-time epilepsy: A meta-analytic approach. Epilepsia. 2010;51(5):883-90. 

33. Commission on Epidemiology and Prognosis ILAE. Guidelines for Epidemiologic Studies 
on Epilepsy. Epilepsia. 1993;34(4):592-6. 

34. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, et al. Standards for 
epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52(s7):2-26. 

35. Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of 
epilepsy: a systematic review and meta-analysis. Neurology. 2011;77(10):1005-12. 

36. Camfield C, Camfield P, Gordon K, Smith B, Dooley J. Outcome of childhood epilepsy: A 
population-based study with a simple predictive scoring system for those treated with 
medication. J Pediatr. 1993;122(6):861-8. 

37. Sillanpää M, Schmidt D. Natural history of treated childhood-onset epilepsy: 
prospective, long-term population-based study. Brain. 2006;129(Pt 3):617-24. 

38. Shorvon SD, Goodridge DMG. Longitudinal cohort studies of the prognosis of epilepsy: 
contribution of the National General Practice Study of Epilepsy and other studies. Brain. 
2013;136(11):3497-510. 

39. Neligan A, Sander JW. The prognosis of epilepsy. In: Rugg-Gunn FJ, Smalls JE, editors. 
Epilepsy 2015, From Channels to Commissioning, A Practical Guide to Epilepsy. East 
Sussex: Meritus Communications; 2015. p. 373-8. 

40. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment Outcomes in Patients With Newly 
Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year 
Longitudinal Cohort Study. JAMA Neurol. 2018;75(3):279-86. 

41. Cockerell OC, Johnson AL, Sander JW, Shorvon SD. Prognosis of epilepsy: a review and 
further analysis of the first nine years of the British National General Practice Study of 
Epilepsy, a prospective population-based study. Epilepsia. 1997;38(1):31-46. 

42. Hanaoka Y, Yoshinaga H, Kobayashi K. A ten-year follow-up cohort study of childhood 
epilepsy: Changes in epilepsy diagnosis with age. Brain Dev. 2017;39(4):312-20. 

43. Mohanraj R, Brodie MJ. Diagnosing refractory epilepsy: response to sequential 
treatment schedules. Eur J Neurol. 2006;13(3):277-82. 

44. Annegers JF, Hauser WA, Elveback LR. Remission of seizures and relapse in patients with 
epilepsy. Epilepsia. 1979;20(6):729-37. 

45. Bell GS, Neligan A, Giavasi C, Keezer MR, Novy J, Peacock JL, et al. Outcome of seizures 
in the general population after 25 years: a prospective follow-up, observational cohort 
study. J Neurol Neurosurg Psychiatry. 2016;87(8):843-50. 



245 
 

46. Wakamoto H, Nagao H, Hayashi M, Morimoto T. Long-term medical, educational, and 
social prognoses of childhood-onset epilepsy: a population-based study in a rural 
district of Japan. Brain Dev. 2000;22(4):246-55. 

47. Giussani G, Canelli V, Bianchi E, Franchi C, Nobili A, Erba G, et al. A population-based 
study of active and drug-resistant epilepsies in Northern Italy. Epilepsy Behav. 
2016;55:30-7. 

48. Lindsten H, Stenlund H, Forsgren L. Remission of seizures in a population-based adult 
cohort with a newly diagnosed unprovoked epileptic seizure. Epilepsia. 
2001;42(8):1025-30. 

49. Zhang Y, Yu N, Su L, Di Q. A prospective cohort study of prognosis for newly diagnosed 
epilepsy in east China. BMC Neurol. 2013;13:116. 

50. Picot MC, Baldy-Moulinier M, Daures JP, Dujols P, Crespel A. The prevalence of epilepsy 
and pharmacoresistant epilepsy in adults: a population-based study in a Western 
European country. Epilepsia. 2008;49(7):1230-8. 

51. Berg AT, Zelko FA, Levy SR, Testa FM. Age at onset of epilepsy, pharmacoresistance, and 
cognitive outcomes: a prospective cohort study. Neurology. 2012;79(13):1384-91. 

52. Berg AT, Kelly MM. Defining intractability: comparisons among published definitions. 
Epilepsia. 2006;47(2):431-6. 

53. Kong ST, Ho CS, Ho PC, Lim SH. Prevalence of drug resistant epilepsy in adults with 
epilepsy attending a neurology clinic of a tertiary referral hospital in Singapore. Epilepsy 
Res. 2014;108(7):1253-62. 

54. Ramos-Lizana J, Rodriguez-Lucenilla MI, Aguilera-López P, Aguirre-Rodríguez J, 
Cassinello-García E. A study of drug-resistant childhood epilepsy testing the new ILAE 
criteria. Seizure. 2012;21(4):266-72. 

55. Kobow K, Blumcke I. Epigenetics in epilepsy. Neurosci Lett. 2017;667:40-6. 

56. Mohanraj R, Brodie MJ. Early predictors of outcome in newly diagnosed epilepsy. 
Seizure. 2013;22(5):333-44. 

57. Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, et al. Is the underlying 
cause of epilepsy a major prognostic factor for recurrence? Neurology. 
1998;51(5):1256-62. 

58. Sillanpää M, Jalava M, Kaleva O, Shinnar S. Long-term prognosis of seizures with onset 
in childhood. N Engl J Med. 1998;338(24):1715-22. 

59. Sillanpää M, Schmidt D. Early seizure frequency and aetiology predict long-term medical 
outcome in childhood-onset epilepsy. Brain. 2009;132(Pt 4):989-98. 

60. Sillanpää M, Anttinen A, Rinne JO, Joutsa J, Sonninen P, Erkinjuntti M, et al. Childhood-
onset epilepsy five decades later. A prospective population-based cohort study. 
Epilepsia. 2015;56(11):1774-83. 



246 
 

61. Okuma T, Kumashiro H. Natural history and prognosis of epilepsy: report of a multi-
institutional study in Japan. The group for the study of prognosis of epilepsy in Japan. 
Epilepsia. 1981;22(1):35-53. 

62. Russo A, Posar A, Conti S, Parmeggiani A. Prognostic factors of drug-resistant epilepsy in 
childhood: An Italian study. Pediatr Int. 2015;57(6):1143-8. 

63. Trinka E, Martin F, Luef G, Unterberger I, Bauer G. Chronic epilepsy with complex partial 
seizures is not always medically intractable--a long-term observational study. Acta 
Neurol Scand. 2001;103(4):219-25. 

64. Stephen LJ, Kwan P, Brodie MJ. Does the Cause of Localisation-Related Epilepsy 
Influence the Response to Antiepileptic DrugTreatment? Epilepsia. 2001;42(3):357-62. 

65. Mattson RH, Cramer JA, Collins JF. Prognosis for total control of complex partial and 
secondarily generalized tonic clonic seizures. Department of Veterans Affairs Epilepsy 
Cooperative Studies No. 118 and No. 264 Group. Neurology. 1996;47(1):68-76. 

66. MacDonald BK, Johnson AL, Goodridge DM, Cockerell OC, Sander JW, Shorvon SD. 
Factors predicting prognosis of epilepsy after presentation with seizures. Ann Neurol. 
2000;48(6):833-41. 

67. Goodridge DM, Shorvon SD. Epileptic seizures in a population of 6000. II: Treatment and 
prognosis. Br Med J (Clin Res Ed). 1983;287(6393):645-7. 

68. Beghi E, Tognoni G. Prognosis of Epilepsy in Newly Referred Patients: A Multicenter 
Prospective Study. Epilepsia. 1988;29(3):236-43. 

69. Collaborative Group for the Study of Epilepsy. Prognosis of epilepsy in newly referred 
patients: a multicenter prospective study of the effects of monotherapy on the long-
term course of epilepsy. Epilepsia. 1992;33(1):45-51. 

70. Sillanpää M, Schmidt D. Seizure clustering during drug treatment affects seizure 
outcome and mortality of childhood-onset epilepsy. Brain. 2008;131(Pt 4):938-44. 

71. Hitiris N, Mohanraj R, Norrie J, Sills GJ, Brodie MJ. Predictors of pharmacoresistant 
epilepsy. Epilepsy Res. 2007;75(2):192-6. 

72. Feksi AT, Kaamugisha J, Sander JWAS, Shorvon SD, Gatiti S. Comprehensive primary 
health care antiepileptic drug treatment programme in rural and semi-urban Kenya. 
Lancet. 1991;337(8738):406-9. 

73. Shorvon SD, Reynolds EH. Early prognosis of epilepsy. Br Med J (Clin Res Ed). 
1982;285(6356):1699-701. 

74. Kwan P. Defining drug-resistant epilepsy. Neurology Asia. 2011;16:67-9. 

75. Gowers WR. Epilepsy and other chronic convulsive diseases: their causes, symptoms, & 
treatment. London: Churchill; 1881. 

76. Sillanpää M. Remission of Seizures and Predictors of Intractability in Long-Term Follow-
Up. Epilepsia. 1993;34(5):930-6. 



247 
 

77. Camfield C, Camfield P, Gordon K, Dooley J. Does the number of seizures before 
treatment influence ease of control or remission of childhood epilepsy? Not if the 
number is 10 or less. Neurology. 1996;46(1):41-4. 

78. Schiller Y, Najjar Y. Quantifying the response to antiepileptic drugs. Effect of past 
treatment history. Neurology. 2008;70(1):54-65. 

79. Callaghan B, Schlesinger M, Rodemer W, Pollard J, Hesdorffer D, Allen Hauser W, et al. 
Remission and relapse in a drug-resistant epilepsy population followed prospectively. 
Epilepsia. 2011;52(3):619-26. 

80. Casetta I, Granieri E, Monetti VC, Gilli G, Tole MR, Paolino E, et al. Early predictors of 
intractability in childhood epilepsy: a community-based case–control study in Copparo, 
Italy. Acta Neurol Scand. 1999;99(6):329-33. 

81. Ko TS, Holmes GL. EEG and clinical predictors of medically intractable childhood 
epilepsy. Clin Neurophysiol. 1999;110(7):1245-51. 

82. Sillanpää M, Schmidt D. Is incident drug-resistance of childhood-onset epilepsy 
reversible? A long-term follow-up study. Brain. 2012;135(Pt 7):2256-62. 

83. Hauser E, Freilinger M, Seidl R, Groh C. Prognosis of Childhood Epilepsy in Newly 
Referred Patients. J Child Neurol. 1996;11(3):201-4. 

84. Kwan P, Brodie MJ. Drug Treatment of Epilepsy: When Does It Fail and How to Optimize 
Its Use? CNS Spectrums. 2004;9(2):110-9. 

85. Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug 
refractoriness. Epilepsy Curr. 2008;8(5):127-30. 

86. Sills GJ. Mechanisms of action of antiepileptic drugs. In: Rugg-Gunn FJ, Smalls JE, 
editors. Epilepsy 2015, From Channels to Commissioning, A Practical Guide to Epilepsy. 
East Sussex: Meritus Communications; 2015. p. 373-8. 

87. Brodie MJ, Sills GJ. Combining antiepileptic drugs--rational polytherapy? Seizure. 
2011;20(5):369-75. 

88. Pohlmann-Eden B, Weaver DF. The puzzle(s) of pharmacoresistant epilepsy. Epilepsia. 
2013;54(s2):1-4. 

89. Faingold CL. Anticonvulsant Drugs Are Neuronal Network-Modifying Agents (NMAs). In: 
Stein J, Coen C, Rolls ET, Mann EO, Goodwin G, Morris J, et al., editors. Reference 
Module in Neuroscience and Biobehavioral Psychology: Elsevier; 2017. 

90. White HS. Preclinical Development of Antiepileptic Drugs: Past, Present, and Future 
Directions. Epilepsia. 2003;44(s7):2-8. 

91. Klitgaard H. Levetiracetam: The Preclinical Profile of a New Class of Antiepileptic Drugs? 
Epilepsia. 2001;42(s4):13-8. 

92. Sisodiya SM, Marini C. Genetics of antiepileptic drug resistance. Curr Opin Neurol. 
2009;22(2):150-6. 



248 
 

93. Potschka H. Animal and human data: where are our concepts for drug-resistant epilepsy 
going? Epilepsia. 2013;54 Suppl 2:29-32. 

94. Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. 
Brain. 2006;129(1):18-35. 

95. Löscher W. How to Explain Multidrug Resistance in Epilepsy? Epilepsy Curr. 
2005;5(3):107-12. 

96. Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic 
drugs. Epilepsia. 2013;54 Suppl 2:33-40. 

97. Martínez-Juárez IE, Hernández-Vanegas LE, Rodríguez y Rodríguez N, León-Aldana JA, 
Delgado-Escueta AV. Genes Involved in Pharmacoresistant Epilepsy. In: Rocha L, 
Cavalheiro EA, editors. Pharmacoresistance in Epilepsy: From Genes and Molecules to 
Promising Therapies: Springer; 2013. p. 11-25. 

98. Löscher W, Sills GJ. Drug resistance in epilepsy: Why is a simple explanation not 
enough? Epilepsia. 2007;48(12):2370-2. 

99. Schmidt D, Löscher W. Drug Resistance in Epilepsy: Putative Neurobiologic and Clinical 
Mechanisms. Epilepsia. 2005;46(6):858-77. 

100. Vreugdenhil M, Wadman WJ. Modulation of Sodium Currents in Rat CA1 Neurons by 
Carbamazepine and Valproate After Kindling Epileptogenesis. Epilepsia. 
1999;40(11):1512-22. 

101. Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, et al. A novel 
mechanism underlying drug resistance in chronic epilepsy. Ann Neurol. 2003;53(4):469-
79. 

102. Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette 
P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature. 
2013;501(7466):217-21. 

103. Hirose S. Mutant GABAA receptor subunits in genetic (idiopathic) epilepsy. In: Steinlein 
OK, editor. Progress in Brain Research. 213: Elsevier; 2014. p. 55-85. 

104. Hernandez CC, Kong W, Hu N, Zhang Y, Shen W, Jackson L, et al. Altered Channel 
Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to 
Dravet Syndrome. eNeuro. 2017;4(1). 

105. Naylor DE. Treating acute seizures with benzodiazepines: does seizure duration matter? 
Epileptic Disord. 2014;16 Spec No 1:S69-83. 

106. Mazarati AM, Baldwin RA, Sankar R, Wasterlain CG. Time-dependent decrease in the 
effectiveness of antiepileptic drugs during the course of self-sustaining status 
epilepticus. Brain Res. 1998;814(1):179-85. 

107. Mayer SA, Claassen J, Lokin J, Mendelsohn F, Dennis LJ, Fitzsimmons B. Refractory 
status epilepticus: Frequency, risk factors, and impact on outcome. Arch Neurol. 
2002;59(2):205-10. 



249 
 

108. Yuan F, Jia R, Gao Q, Yang F, Yang X, Jiang Y, et al. Early Predictors of Drug-Resistant 
Epilepsy Development after Convulsive Status Epilepticus. Eur Neurol. 2018;79(5-
6):325-32. 

109. Deeb TZ, Maguire J, Moss SJ. Possible alterations in GABAA receptor signaling that 
underlie benzodiazepine-resistant seizures. Epilepsia. 2012;53 Suppl 9:79-88. 

110. Koepp MJ, Richardson MP, Labbé C, Brooks DJ, Cunningham VJ, Ashburner J, et al. 11C-
flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe 
epilepsy. Neurology. 1997;49(3):764-73. 

111. Hand KS, Baird VH, Van Paesschen W, Koepp MJ, Revesz T, Thom M, et al. Central 
benzodiazepine receptor autoradiography in hippocampal sclerosis. Br J Pharmacol. 
1997;122(2):358-64. 

112. Ryvlin P, Bouvard S, Le Bars D, De Lamérie G, Grégoire MC, Kahane P, et al. Clinical 
utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory 
partial epilepsy. A prospective study in 100 patients. Brain. 1998;121(11):2067-81. 

113. Bouvard S, Costes N, Bonnefoi F, Lavenne F, Mauguière F, Delforge J, et al. Seizure-
related short-term plasticity of benzodiazepine receptors in partial epilepsy: a 
[11C]flumazenil-PET study. Brain. 2005;128(6):1330-43. 

114. Kapur J, Macdonald RL. Rapid Seizure-Induced Reduction of Benzodiazepine and Zn(2+) 
Sensitivity of Hippocampal Dentate Granule Cell GABA(A) Receptors. J Neurosci. 
1997;17(19):7532-40. 

115. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single 
cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat 
Med. 1998;4:1166. 

116. Kwan P, Brodie MJ. Refractory epilepsy: a progressive, intractable but preventable 
condition? Seizure. 2002;11(2):77-84. 

117. Dallas S, Miller DS, Bendayan R. Multidrug Resistance-Associated Proteins: Expression 
and Function in the Central Nervous System. Pharmacol Rev. 2006;58(2):140-61. 

118. Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. 
Adv Drug Deliv Rev. 2012;64(10):930-42. 

119. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 Gene 
Expression in Brain of Patients with Medically Intractable Epilepsy. Epilepsia. 
1995;36(1):1-6. 

120. Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: 
expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 
2002;125(Pt 1):22-31. 

121. Gidal BE. P-glycoprotein Expression and Pharmacoresistant Epilepsy: Cause or 
Consequence? Epilepsy Curr. 2014;14(3):136-8. 

122. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional 
polymorphisms of the human multidrug-resistance gene: multiple sequence variations 



250 
 

and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc 
Natl Acad Sci U S A. 2000;97(7):3473-8. 

123. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, et al. Association of 
Multidrug Resistance in Epilepsy with a Polymorphism in the Drug-Transporter Gene 
ABCB1. N Engl J Med. 2003;348(15):1442-8. 

124. Hauser WA, Rich SS, Annegers JF, Anderson VE. Seizure recurrence after a 1st 
unprovoked seizure: an extended follow-up. Neurology. 1990;40(8):1163-70. 

125. Camfield P, Camfield C, Smith S, Dooley J, Smith E. Long-term Outcome Is Unchanged by 
Antiepileptic Drug Treatment after a First Seizure: A 15-year Follow-up from a 
Randomized Trial in Childhood. Epilepsia. 2002;43(6):662-3. 

126. Marson A, Jacoby A, Johnson A, Kim L, Gamble C, Chadwick D. Immediate versus 
deferred antiepileptic drug treatment for early epilepsy and single seizures: a 
randomised controlled trial. Lancet. 2005;365(9476):2007-13. 

127. Barton ME, Klein BD, Wolf HH, Steve White H. Pharmacological characterization of the 6 
Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001;47(3):217-27. 

128. Metcalf CS, West PJ, Thomson K, Edwards S, Smith MD, White HS, et al. Development 
and Pharmacological Characterization of the Rat 6 Hz Model of Partial Seizures. 
Epilepsia. 2017;58(6):1073-84. 

129. Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few 
Answers. Front Neurol. 2017;8:301. 

130. Fang M, Xi ZQ, Wu Y, Wang XF. A new hypothesis of drug refractory epilepsy: neural 
network hypothesis. Med Hypotheses. 2011;76(6):871-6. 

131. Kobow K, El-Osta A, Blumcke I. The methylation hypothesis of pharmacoresistance in 
epilepsy. Epilepsia. 2013;54 Suppl 2:41-7. 

132. Tinel N, Lauritzen I, Chouabe C, Lazdunski M, Borsotto M. The KCNQ2 potassium 
channel: splice variants, functional and developmental expression. Brain localization 
and comparison with KCNQ3. FEBS Letters. 1998;438(3):171-6. 

133. Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol. 
2009;156(8):1185-95. 

134. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, et al. A pore mutation in a 
novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet. 
1998;18(1):53-5. 

135. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium 
channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 
1998;18(1):25-9. 

136. Yang W-P, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, et al. 
Functional Expression of Two KvLQT1-related Potassium Channels Responsible for an 
Inherited Idiopathic Epilepsy. Journal of Biological Chemistry. 1998;273(31):19419-23. 



251 
 

137. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, et al. Clinical 
whole-genome sequencing in severe early-onset epilepsy reveals new genes and 
improves molecular diagnosis. Hum Mol Genet. 2014;23(12):3200-11. 

138. Saitsu H, Kato M, Koide A, Goto T, Fujita T, Nishiyama K, et al. Whole exome sequencing 
identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol. 2012;72(2):298-300. 

139. Mucha M, Ooi L, Linley JE, Mordaka P, Dalle C, Robertson B, et al. Transcriptional 
control of KCNQ channel genes and the regulation of neuronal excitability. J Neurosci. 
2010;30(40):13235-45. 

140. Palm K, Belluardo N, Metsis M, Timmusk T. Neuronal Expression of Zinc Finger 
Transcription Factor REST/NRSF/XBR Gene. J Neurosci. 1998;18(4):1280-96. 

141. Calderone A, Jover T, Noh K-m, Tanaka H, Yokota H, Lin Y, et al. Ischemic Insults 
Derepress the Gene Silencer REST in Neurons Destined to Die. J Neurosci. 
2003;23(6):2112-21. 

142. Vezzani A, Bartfai T, Bianchi M, Rossetti C, French J. Therapeutic potential of new 
antiinflammatory drugs. Epilepsia. 2011;52 Suppl 8:67-9. 

143. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp 
Neurol. 2013;244:11-21. 

144. Vezzani A, Lang B, Aronica E. Immunity and Inflammation in Epilepsy. Cold Spring Harb 
Perspect Med. 2016;6(2):a022699. 

145. Gershen LD, Zanotti-Fregonara P, Dustin IH, Liow JS, Hirvonen J, Kreisl WC, et al. 
Neuroinflammation in Temporal Lobe Epilepsy Measured Using Positron Emission 
Tomographic Imaging of Translocator Protein. JAMA Neurol. 2015;72(8):882-8. 

146. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev 
Neurol. 2011;7(1):31-40. 

147. Viviani B, Gardoni F, Marinovich M. Cytokines and Neuronal Ion Channels in Health and 
Disease.  International Review of Neurobiology. 82: Elsevier; 2007. p. 247-63. 

148. Vezzani A, Maroso M, Balosso S, Sanchez M-A, Bartfai T. IL-1 receptor/Toll-like receptor 
signaling in infection, inflammation, stress and neurodegeneration couples 
hyperexcitability and seizures. Brain, Behavior, and Immunity. 2011;25(7):1281-9. 

149. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor Necrosis 
Factor-α Induces Neurotoxicity via Glutamate Release from Hemichannels of Activated 
Microglia in an Autocrine Manner. J Biol Chem. 2006;281(30):21362-8. 

150. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential Regulation of AMPA Receptor 
and GABA Receptor Trafficking by Tumor Necrosis Factor-α. J Neurosci. 
2005;25(12):3219-28. 

151. Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, 
gene interactions and modifier effects. J Physiol. 2010;588(Pt 11):1841-8. 



252 
 

152. Gorter JA, Potschka H. Drug resistance. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, 
Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies 4th ed. 
Bethesda: National Center for Biotechnology Information; 2012. 

153. Potschka H, Brodie MJ. Pharmacoresistance. In: Stefan H, Theodore WH, editors. 
Handbook of Clinical Neurology. 108: Elsevier; 2012. p. 741-57. 

154. Winkler H. Verbreitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche. 
Jena: Fischer; 1920. 

155. Noguera-Solano R, Ruiz-Gutierrez R, Rodriguez-Caso JM. Genome: twisting stories with 
DNA. Endeavour. 2013;37(4):213-9. 

156. Tate SK, Sisodiya SM. Multidrug resistance in epilepsy: a pharmacogenomic update. 
Expert Opin Pharmacother. 2007;8(10):1441-9. 

157. Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet. 
2003;361(9357):598-604. 

158. Walker LE, Mirza N, Yip VLM, Marson AG, Pirmohamed M. Personalized medicine 
approaches in epilepsy. J Intern Med. 2015;277(2):218-34. 

159. International Human Genome Sequencing Consortium. Finishing the euchromatic 
sequence of the human genome. Nature. 2004;431:931. 

160. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple 
evidence strands suggest that there may be as few as 19,000 human protein-coding 
genes. Hum Mol Genet. 2014;23(22):5866-78. 

161. Genome Reference Consortium Human Build 38 patch release 12 (GRCh38.p12) 
[Internet]. 2017 [cited 1.6.2018]. Available from: 
https://www.ncbi.nlm.nih.gov/assembly/GCA_000001405.27. 

162. Genome Reference Consortium. Human Genome Overview [Internet]. 2017 [cited 
1.6.2018]. Available from: https://www.ncbi.nlm.nih.gov/grc/human. 

163. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang 
HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-
74. 

164. Zheng-Bradley X, Flicek P. Applications of the 1000 Genomes Project resources. Brief 
Funct Genomics. 2017;16(3):163-70. 

165. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in 
copy number in the human genome. Nature. 2006;444(7118):444-54. 

166. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-
nucleotide polymorphisms in coding regions of human genes. Nat Genet. 
1999;22(3):231-8. 

167. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The Database of Genomic 
Variants: a curated collection of structural variation in the human genome. Nucleic 
Acids Res. 2014;42(Database issue):D986-92. 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000001405.27
https://www.ncbi.nlm.nih.gov/grc/human


253 
 

168. Brookes AJ. The essence of SNPs. Gene. 1999;234(2):177-86. 

169. Karki R, Pandya D, Elston RC, Ferlini C. Defining "mutation" and "polymorphism" in the 
era of personal genomics. BMC Med Genomics. 2015;8:37. 

170. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 
2012;8(12):e1002822. 

171. Auer PL, Johnsen JM, Johnson AD, Logsdon BA, Lange LA, Nalls MA, et al. Imputation of 
Exome Sequence Variants into Population- Based Samples and Blood-Cell-Trait-
Associated Loci in African Americans: NHLBI GO Exome Sequencing Project. Am J Hum 
Genet. 2012;91(5):794-808. 

172. Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S, et al. ORegAnno: an 
open-access community-driven resource for regulatory annotation. Nucleic Acids Res. 
2008;36(Database issue):D107-D13. 

173. Myles S, Davison D, Barrett J, Stoneking M, Timpson N. Worldwide population 
differentiation at disease-associated SNPs. BMC Med Genomics. 2008;1(1):22. 

174. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the 
missing heritability of complex diseases. Nature. 2009;461:747. 

175. Low SK, Takahashi A, Mushiroda T, Kubo M. Genome-Wide Association Study: A Useful 
Tool to Identify Common Genetic Variants Associated with Drug Toxicity and Efficacy in 
Cancer Pharmacogenomics. Clin Cancer Res. 2014;20(10):2541-52. 

176. Risch NJ. Searching for genetic determinants in the new millennium. Nature. 
2000;405(6788):847-56. 

177. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A Genome-
Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic 
Determinants of Warfarin Dose. PLoS Genet. 2009;5(3):e1000433. 

178. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. 
Association of cytochrome p450 2c19 genotype with the antiplatelet effect and clinical 
efficacy of clopidogrel therapy. JAMA. 2009;302(8):849-57. 

179. Moulard B, Chaigne D, Mouthon D, Buresi C, Guipponi M, Malafosse A. Identification of 
a New Locus for Generalized Epilepsy with Febrile Seizures Plus (GEFS+) on 
Chromosome 2q24-q33. Am J Hum Genet. 1999;65(5):1396-400. 

180. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, et al. 
Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. 
Nat Genet. 2000;24(4):343-5. 

181. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo 
mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of 
infancy. Am J Hum Genet. 2001;68(6):1327-32. 

182. Kwon JM, Goate AM. The candidate gene approach. Alcohol Res Health. 
2000;24(3):164-8. 



254 
 

183. St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, et al. The 
genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science. 
1987;235(4791):885-90. 

184. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation 
of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's 
disease. Nature. 1991;349(6311):704-6. 

185. Bailey-Wilson JE, Wilson AF. Linkage analysis in the next-generation sequencing era. 
Hum Hered. 2011;72(4):228-36. 

186. Bowden DW, An SS, Palmer ND, Brown WM, Norris JM, Haffner SM, et al. Molecular 
basis of a linkage peak: exome sequencing and family-based analysis identify a rare 
genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum Mol Genet. 
2010;19(20):4112-20. 

187. Kasperavičiūtė D, Sisodiya SM. Epilepsy pharmacogenetics. Pharmacogenomics. 
2009;10(5):817-36. 

188. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a 
marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. 

189. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. 
HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans. The 
New England journal of medicine. 2011;364(12):1134-43. 

190. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and 
complex traits. Nat Rev Genet. 2005;6(2):95-108. 

191. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 
2008;299(11):1335-44. 

192. Lander ES. The New Genomics: Global Views of Biology. Science. 1996;274(5287):536-9. 

193. Chakravarti A. Population genetics—making sense out of sequence. Nat Genet. 
1999;21(1):56-60. 

194. Risch N, Merikangas K. The future of genetic studies of complex human diseases. 
Science. 1996;273(5281):1516-7. 

195. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 
cases of seven common diseases and 3,000 shared controls. Nature. 
2007;447(7145):661-78. 

196. International HapMap Consortium, Altshuler D, Donnelly P. A haplotype map of the 
human genome. Nature. 2005;437:1299. 

197. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, 
et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 
2007;449(7164):851-61. 



255 
 

198. International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, 
Gibbs RA, et al. Integrating common and rare genetic variation in diverse human 
populations. Nature. 2010;467(7311):52-8. 

199. Barrett JC, Cardon LR. Evaluating coverage of genome-wide association studies. Nat 
Genet. 2006;38(6):659-62. 

200. Mullen SA, Crompton DE, Carney PW, Helbig I, Berkovic SF. A neurologist's guide to 
genome-wide association studies. Neurology. 2009;72(6):558-65. 

201. Amos CI. Successful design and conduct of genome-wide association studies. Hum Mol 
Genet. 2007;16(R2):R220-R5. 

202. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement 
Factor H Variant Increases the Risk of Age-Related Macular Degeneration. Science. 
2005;308(5720):419-21. 

203. Li MJ, Liu Z, Wang P, Wong MP, Nelson MR, Kocher JP, et al. GWASdb v2: an update 
database for human genetic variants identified by genome-wide association studies. 
Nucleic Acids Res. 2016;44(D1):D869-76. 

204. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies 
for human complex trait genetics. Genetics. 2011;187(2):367-83. 

205. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of 
GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101(1):5-
22. 

206. Alonso N, Lucas G, Hysi P. Big data challenges in bone research: genome-wide 
association studies and next-generation sequencing. Bonekey Rep. 2015;4:635. 

207. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs 
and statistical tests. Am J Hum Genet. 2014;95(1):5-23. 

208. Witte JS, Visscher PM, Wray NR. The contribution of genetic variants to disease 
depends on the ruler. Nat Rev Genet. 2014;15(11):765-76. 

209. Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and 
interpretation of SNP-based heritability. Nat Genet. 2017;49(9):1304-10. 

210. Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between 
complex diseases using single-nucleotide polymorphism-derived genomic relationships 
and restricted maximum likelihood. Bioinformatics. 2012;28(19):2540-2. 

211. Wray NR, Visscher PM. Estimating trait heritability. Nature Education [Internet]. 2008; 
1(1):[29 p.]. 

212. Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, et al. 
Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent 
Sharing between Full Siblings. PLoS Genet. 2006;2(3):e41. 

213. Maher B. Personal genomes: The case of the missing heritability. Nature. 
2008;456(7218):18-21. 



256 
 

214. Gibson G. Hints of hidden heritability in GWAS. Nat Genet. 2010;42(7):558-60. 

215. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and 
strategies for finding the underlying causes of complex disease. Nat Rev Genet. 
2010;11(6):446-50. 

216. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs 
explain a large proportion of the heritability for human height. Nat Genet. 
2010;42(7):565-9. 

217. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance 
estimation with imputed variants finds negligible missing heritability for human height 
and body mass index. Nat Genet. 2015;47(10):1114-20. 

218. Macgregor S, Cornes BK, Martin NG, Visscher PM. Bias, precision and heritability of self-
reported and clinically measured height in Australian twins. Hum Genet. 
2006;120(4):571-80. 

219. Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK, Davis C, et al. 
Heritability of adult body height: a comparative study of twin cohorts in eight countries. 
Twin Res. 2003;6(5):399-408. 

220. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of 
common variation in the genomic and biological architecture of adult human height. 
Nat Genet. 2014;46(11):1173-86. 

221. Peljto AL, Barker-Cummings C, Vasoli VM, Leibson CL, Hauser WA, Buchhalter JR, et al. 
Familial risk of epilepsy: a population-based study. Brain. 2014;137(Pt 3):795-805. 

222. Lennox WG, Lennox MA. Epilepsy and related disorders. Boston: Little Brown; 1960. 

223. Kjeldsen MJ, Corey LA, Christensen K, Friis ML. Epileptic seizures and syndromes in 
twins: the importance of genetic factors. Epilepsy Res. 2003;55(1-2):137-46. 

224. Kjeldsen MJ, Corey LA, Solaas MH, Friis ML, Harris JR, Kyvik KO, et al. Genetic Factors in 
Seizures: A Population-Based Study of 47,626 US, Norwegian and Danish Twin Pairs. 
Twin Res Hum Genet. 2005;8(02):138-47. 

225. Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: Genetics of the major 
epilepsy syndromes. Ann Neurol. 1998;43(4):435-45. 

226. Vadlamudi L, Milne RL, Lawrence K, Heron SE, Eckhaus J, Keay D, et al. Genetics of 
epilepsy: The testimony of twins in the molecular era. Neurology. 2014;83(12):1042-8. 

227. Corey LA, Pellock JM, Kjeldsen MJ, Nakken KO. Importance of genetic factors in the 
occurrence of epilepsy syndrome type: a twin study. Epilepsy Res. 2011;97(1-2):103-11. 

228. Sillanpää M, Koskenvuo M, Romanov K, Kaprio J. Genetic factors in epileptic seizures: 
evidence from a large twin population. Acta Neurol Scand. 1991;84(6):523-6. 

229. Miller LL, Pellock JM, DeLorenzo RJ, Meyer JM, Corey LA. Univariate genetic analyses of 
epilepsy and seizures in a population-based twin study: The Virginia twin registry. Genet 
Epidemiol. 1998;15(1):33-49. 



257 
 

230. Kjeldsen MJ, Kyvik KO, Christensen K, Friis ML. Genetic and environmental factors in 
epilepsy: a population-based study of 11 900 Danish twin pairs. Epilepsy Res. 
2001;44(2):167-78. 

231. Pal DK, Pong AW, Chung WK. Genetic evaluation and counseling for epilepsy. Nat Rev 
Neurol. 2010;6(8):445-53. 

232. Wang J, Lin ZJ, Liu L, Xu HQ, Shi YW, Yi YH, et al. Epilepsy-associated genes. Seizure. 
2017;44:11-20. 

233. Møller RS, Larsen LHG, Johannesen KM, Talvik I, Talvik T, Vaher U, et al. Gene Panel 
Testing in Epileptic Encephalopathies and Familial Epilepsies. Mol Syndromol. 
2016;7(4):210-9. 

234. Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic 
disorder with heterogeneous clinical phenotypes. Brain. 1997;120 (Pt 3):479-90. 

235. Thomas RH, Berkovic SF. The hidden genetics of epilepsy—a clinically important new 
paradigm. Nat Rev Neurol. 2014;10(5):283-92. 

236. Chipaux M, Szurhaj W, Vercueil L, Milh M, Villeneuve N, Cances C, et al. Epilepsy 
diagnostic and treatment needs identified with a collaborative database involving 
tertiary centers in France. Epilepsia. 2016;57(5):757-69. 

237. Mullen SA, Carvill GL, Bellows S, Bayly MA, Trucks H, Lal D, et al. Copy number variants 
are frequent in genetic generalized epilepsy with intellectual disability. Neurology. 
2013;81(24):2148-. 

238. Dunn P, Albury CL, Maksemous N, Benton MC, Sutherland HG, Smith RA, et al. Next 
Generation Sequencing Methods for Diagnosis of Epilepsy Syndromes. Front Genet. 
2018;9:20. 

239. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, et al. A 
missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is 
associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 
1995;11(2):201-3. 

240. Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations 
and epilepsy. Hum Mutat. 2005;25(6):535-42. 

241. Veeramah KR, O'Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, et al. De novo 
pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet 
affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 
2012;90(3):502-10. 

242. Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LH, et al. Benign infantile 
seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. 
2016;79(3):428-36. 

243. Nava C, Dalle C, Rastetter A, Striano P, de Kovel CG, Nabbout R, et al. De novo 
mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 
2014;46(6):640-5. 



258 
 

244. Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Møller RS, Hjalgrim H, et al. 
GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome. Neurology. 
2014;82(14):1245-53. 

245. Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J, et al. Targeted 
resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and 
SYNGAP1. Nat Genet. 2013;45(7):825-30. 

246. Galizia EC, Myers CT, Leu C, de Kovel CGF, Afrikanova T, Cordero-Maldonado ML, et al. 
CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain. 2015;138(5):1198-
208. 

247. Thomas RH, Zhang LM, Carvill GL, Archer JS, Heavin SB, Mandelstam SA, et al. CHD2 
myoclonic encephalopathy is frequently associated with self-induced seizures. 
Neurology. 2015;84(9):951-8. 

248. Mignot C, von Stülpnagel C, Nava C, Ville D, Sanlaville D, Lesca G, et al. Genetic and 
neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and 
epilepsy. J Med Genet. 2016;53(8):511-22. 

249. Atkins L, Miller WL, Salam M. A ring-20 chromosome. J Med Genet. 1972;9(3):377-80. 

250. Stewart LR, Hall AL, Kang SH, Shaw CA, Beaudet AL. High frequency of known copy 
number abnormalities and maternal duplication 15q11-q13 in patients with combined 
schizophrenia and epilepsy. BMC Med Genet. 2011;12(1):154. 

251. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, et al. 15q13.3 
microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 
2009;41(2):160-2. 

252. Mefford HC. CNVs in Epilepsy. Curr Genet Med Rep. 2014;2:162-7. 

253. Addis L, Rosch RE, Valentin A, Makoff A, Robinson R, Everett KV, et al. Analysis of rare 
copy number variation in absence epilepsies. Neurol Genet. 2016;2(2):e56. 

254. de Kovel CGF, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, et al. Recurrent 
microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized 
epilepsies. Brain. 2010;133(1):23-32. 

255. Monlong J, Girard SL, Meloche C, Cadieux-Dion M, Andrade DM, Lafreniere RG, et al. 
Global characterization of copy number variants in epilepsy patients from whole 
genome sequencing. PLOS Genetics. 2018;14(4):e1007285. 

256. Epilepsy Phenome/Genome Project, Epi4K Consortium. Copy number variant analysis 
from exome data in 349 patients with epileptic encephalopathy. Ann Neurol. 
2015;78(2):323-8. 

257. Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM, et al. Rare copy 
number variants are an important cause of epileptic encephalopathies. Ann Neurol. 
2011;70(6):974-85. 

258. EPICURE Consortium, EMINet Consortium, Steffens M, Leu C, Ruppert AK, Zara F, et al. 
Genome-wide association analysis of genetic generalized epilepsies implicates 



259 
 

susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet. 
2012;21(24):5359-72. 

259. Kasperavičiūtė D, Catarino CB, Matarin M, Leu C, Novy J, Tostevin A, et al. Epilepsy, 
hippocampal sclerosis and febrile seizures linked by common genetic variation around 
SCN1A. Brain. 2013;136(10):3140-50. 

260. Koeleman BPC. What do genetic studies tell us about the heritable basis of common 
epilepsy? Polygenic or complex epilepsy? Neurosci Lett. 2018;667:10-6. 

261. International League Against Epilepsy Consortium on Complex Epilepsies. Genetic 
determinants of common epilepsies: a meta-analysis of genome-wide association 
studies. Lancet Neurol. 2014;13(9):893-903. 

262. International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide 
mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the 
common epilepsies. Nat Commun. 2018;9(1):5269. 

263. Neale BM, Sklar P. Genetic analysis of schizophrenia and bipolar disorder reveals 
polygenicity but also suggests new directions for molecular interrogation. Curr Opin 
Neurobiol. 2015;30:131-8. 

264. Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J, Hammerschlag AR, et al. Genome-
wide Analysis of Insomnia (N=1,331,010) Identifies Novel Loci and Functional Pathways. 
bioRxiv. 2018. 

265. Vadlamudi L, Andermann E, Lombroso CT, Schachter SC, Milne RL, Hopper JL, et al. 
Epilepsy in twins: insights from unique historical data of William Lennox. Neurology. 
2004;62(7):1127-33. 

266. Johnson MR, Milne RL, Torn-Broers Y, Hopper JL, Scheffer IE, Berkovic SF. A Twin Study 
of Genetic Influences on Epilepsy Outcome. Twin Res. 2003;6(2):140-6. 

267. Löscher W, Rundfeldt C, Hönack D. Pharmacological characterization of phenytoin-
resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy 
Res. 1993;15(3):207-19. 

268. Löscher W, Cramer S, Ebert U. Selection of Phenytoin Responders and Nonresponders in 
Male and Female Amygdala-Kindled Sprague–Dawley Rats. Epilepsia. 1998;39(11):1138-
47. 

269. Cramer S, Ebert U, Löscher W. Characterization of phenytoin-resistant kindled rats, a 
new model of drug-resistant partial epilepsy: comparison of inbred strains. Epilepsia. 
1998;39(10):1046-53. 

270. Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med 
Pharmacol Sci. 2002;6(2):33-44. 

271. Emich-Widera E, Likus W, Kazek B, Niemiec P, Balcerzyk A, Sieroń AL, et al. CYP3A5∗3 
and C3435T MDR1 Polymorphisms in Prognostication of Drug-Resistant Epilepsy in 
Children and Adolescents. BioMed Research International. 2013;2013:526837. 



260 
 

272. Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imai J, Ninomiya H, et al. The Effects of 
Genetic Polymorphisms of CYP2C9 and CYP2C 19 on Phenytoin Metabolism in Japanese 
Adult Patients with Epilepsy: Studies in Stereoselective Hydroxylation and Population 
Pharmacokinetics. Epilepsia. 1998;39(12):1317-23. 

273. van der Weide J, Steijns LSW, van Weelden MJM, de Haan K. The effect of genetic 
polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. 
Pharmacogenetics. 2001;11(4):287-91. 

274. Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, et al. Genetic 
predictors of the maximum doses patients receive during clinical use of the anti-
epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 
2005;102(15):5507-12. 

275. Mosher CM, Tai G, Rettie AE. CYP2C9 Amino Acid Residues Influencing Phenytoin 
Turnover and Metabolite Regio- and Stereochemistry. J Pharmacol Exp Ther. 
2009;329(3):938-44. 

276. Rosemary J, Surendiran A, Rajan S, Shashindran CH, Adithan C. Influence of the CYP2C9 
AND CYP2C19 polymorphisms on phenytoin hydroxylation in healthy individuals from 
south India. Indian J Med Res. 2006;123(5):665-70  

277. Ninomiya H, Mamiya K, Matsuo S, Ieiri I, Higuchi S, Tashiro N. Genetic polymorphism of 
the CYP2C subfamily and excessive serum phenytoin concentration with central nervous 
system intoxication. Ther Drug Monit. 2000;22(2):230-2. 

278. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a 
comprehensive review of the in-vitro and human data. Pharmacogenetics. 
2002;12(3):251-63. 

279. Depondt C, Godard P, Espel RS, Da Cruz AL, Lienard P, Pandolfo M. A candidate gene 
study of antiepileptic drug tolerability and efficacy identifies an association of CYP2C9 
variants with phenytoin toxicity. Eur J Neurol. 2011;18(9):1159-64. 

280. Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD, et al. Polymorphic Variants 
of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and 
Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients. PLoS One. 
2015;10(11):e0142408. 

281. Lakhan R, Kumari R, Singh K, Kalita J, Misra UK, Mittal B. Possible role of CYP2C9 & 
CYP2C19 single nucleotide polymorphisms in drug refractory epilepsy. Indian J Med Res. 
2011;134(3):295-301. 

282. Seven M, Batar B, Unal S, Yesil G, Yuksel A, Guven M. The drug-transporter gene MDR1 
C3435T and G2677T/A polymorphisms and the risk of multidrug-resistant epilepsy in 
Turkish children. Mol Biol Rep. 2014;41(1):331-6. 

283. Wolf SJ, Bachtiar M, Wang J, Sim TS, Chong SS, Lee CGL. An update on ABCB1 
pharmacogenetics: insights from a 3D model into the location and evolutionary 
conservation of residues corresponding to SNPs associated with drug pharmacokinetics. 
Pharmacogenomics J. 2011;11:315. 



261 
 

284. Ieiri I, Takane H, Hirota T, Otsubo K, Higuchi S. Genetic polymorphisms of drug 
transporters: pharmacokinetic and pharmacodynamic consequences in 
pharmacotherapy. Expert Opin Drug Metab Toxicol. 2006;2(5):651-74. 

285. Ensembl release 93; Gene: ABCB1 [Internet]. 2018. Available from: 
https://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;g=ENS
G00000085563;r=7:87503633-87713323. 

286. Sayyah M, Kamgarpour F, Maleki M, Karimipoor M, Gharagozli K, Shamshiri AR. 
Association analysis of intractable epilepsy with C3435T and G2677T/A ABCB1 gene 
polymorphisms in Iranian patients. Epileptic Disord. 2011;13(2):155-65. 

287. Sánchez MB, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizán EM, et al. Genetic 
factors associated with drug-resistance of epilepsy: relevance of stratification by patient 
age and aetiology of epilepsy. Seizure. 2010;19(2):93-101. 

288. Hung CC, Jen Tai J, Kao PJ, Lin MS, Liou HH. Association of polymorphisms in NR1I2 and 
ABCB1 genes with epilepsy treatment responses. Pharmacogenomics. 2007;8(9):1151-8. 

289. Soranzo N, Cavalleri GL, Weale ME, Wood NW, Depondt C, Marguerie R, et al. 
Identifying Candidate Causal Variants Responsible for Altered Activity of the ABCB1 
Multidrug Resistance Gene. Genome Res. 2004;14(7):1333-44. 

290. Kwan P, Baum L, Wong V, Ng PW, Lui CHT, Sin NC, et al. Association between ABCB1 
C3435T polymorphism and drug-resistant epilepsy in Han Chinese. Epilepsy Behav. 
2007;11(1):112-7. 

291. Shaheen U, Prasad DK, Sharma V, Suryaprabha T, Ahuja YR, Jyothy A, et al. Significance 
of MDR1 gene polymorphism C3435T in predicting drug response in epilepsy. Epilepsy 
Res. 2014;108(2):251-6. 

292. Tan NCK, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, et al. Failure to 
confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. 
Neurology. 2004;63(6):1090-2. 

293. Sills GJ, Mohanraj R, Butler E, McCrindle S, Collier L, Wilson EA, et al. Lack of Association 
between the C3435T Polymorphism in the Human Multidrug Resistance (MDR1) Gene 
and Response to Antiepileptic Drug Treatment. Epilepsia. 2005;46(5):643-7. 

294. Manna I, Gambardella A, Labate A, Mumoli L, Ferlazzo E, Pucci F, et al. Polymorphism of 
the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic 
drug treatment in temporal lobe epilepsy. Seizure. 2015;24:124-6. 

295. Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. 
Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to 
anticonvulsant drugs: A meta-analysis. Epilepsia. 2009;50(4):898-903. 

296. Haerian BS, Lim KS, Tan HJ, Mohamed EH, Tan CT, Raymond AA, et al. Association 
between ABCB1 polymorphism and response to sodium valproate treatment in 
Malaysian epilepsy patients. Epileptic Disord. 2011;13(1):65-75. 

https://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;g=ENSG00000085563;r=7:87503633-87713323
https://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;g=ENSG00000085563;r=7:87503633-87713323


262 
 

297. Li M, Tan J, Yang X, Su L, Xie J, Liang B, et al. The ABCB1-C3435T polymorphism likely 
acts as a risk factor for resistance to antiepileptic drugs. Epilepsy Res. 
2014;108(6):1052-67. 

298. Li SX, Liu YY, Wang QB. ABCB1 gene C3435T polymorphism and drug resistance in 
epilepsy: evidence based on 8,604 subjects. Med Sci Monit. 2015;21:861-8. 

299. Chouchi M, Kaabachi W, Klaa H, Tizaoui K, Turki IB, Hila L. Relationship between ABCB1 
3435TT genotype and antiepileptic drugs resistance in Epilepsy: updated systematic 
review and meta-analysis. BMC Neurol. 2017;17(1):32. 

300. Beck H. Plasticity of antiepileptic drug targets. Epilepsia. 2007;48 Suppl 1:14-8. 

301. Dravet C. Dravet syndrome history. Dev Med Child Neurol. 2011;53 Suppl 2:1-6. 

302. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, et al. 
Reduced sodium current in GABAergic interneurons in a mouse model of severe 
myoclonic epilepsy in infancy. Nat Neurosci. 2006;9:1142. 

303. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, et al. Nav1.1 localizes 
to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic 
seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27(22):5903-14. 

304. Arzimanoglou A. Dravet syndrome: From electroclinical characteristics to molecular 
biology. Epilepsia. 2009;50(s8):3-9. 

305. Liu Y, Lopez-Santiago LF, Yuan Y, Jones JM, Zhang H, O'Malley HA, et al. Dravet 
syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol. 
2013;74(1):128-39. 

306. Isom LL. Opposing Phenotypes in Dravet Syndrome Patient-Derived Induced Pluripotent 
Stem Cell Neurons: Can Everyone Be Right? Epilepsy Curr. 2017;17(4):244-7. 

307. Wirrell EC, Laux L, Donner E, Jette N, Knupp K, Meskis MA, et al. Optimizing the 
Diagnosis and Management of Dravet Syndrome: Recommendations From a North 
American Consensus Panel. Pediatr Neurol. 2017;68:18-34.e3. 

308. Billakota S, Devinsky O, Marsh E. Cannabinoid therapy in epilepsy. Curr Opin Neurol. 
2019;32(2):220-6. 

309. Zhang Y, Kecskes A, Copmans D, Langlois M, Crawford AD, Ceulemans B, et al. 
Pharmacological characterization of an antisense knockdown zebrafish model of Dravet 
syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLoS 
One. 2015;10(5):e0125898. 

310. Schoonjans AS, Lagae L, Ceulemans B. Low-dose fenfluramine in the treatment of 
neurologic disorders: experience in Dravet syndrome. Ther Adv Neurol Disord. 
2015;8(6):328-38. 

311. Schoonjans A, Paelinck BP, Marchau F, Gunning B, Gammaitoni A, Galer BS, et al. Low-
dose fenfluramine significantly reduces seizure frequency in Dravet syndrome: a 
prospective study of a new cohort of patients. Eur J Neurol. 2017;24(2):309-14. 



263 
 

312. BRIEF-Zogenix Announces New Data From Pivotal Phase 3 Clinical Trial Of ZX008 
[Internet]. Reuters. 2017 [cited 4.8.2018]. Available from: 
https://www.reuters.com/article/brief-zogenix-announces-new-data-from-pi/brief-
zogenix-announces-new-data-from-pivotal-phase-3-clinical-trial-of-zx008-
idUSASB0BWCE. 

313. Margari L, Legrottaglie AR, Vincenti A, Coppola G, Operto FF, Buttiglione M, et al. 
Association between SCN1A gene polymorphisms and drug resistant epilepsy in 
pediatric patients. Seizure. 2018;55:30-5. 

314. Heinzen EL, Yoon W, Tate SK, Sen A, Wood NW, Sisodiya SM, et al. Nova2 interacts with 
a cis-acting polymorphism to influence the proportions of drug-responsive splice 
variants of SCN1A. The American Journal of Human Genetics. 2007;80(5):876-83. 

315. Tate SK, Singh R, Hung CC, Tai JJ, Depondt C, Cavalleri GL, et al. A common 
polymorphism in the SCN1A gene associates with phenytoin serum levels at 
maintenance dose. Pharmacogenet Genomics. 2006;16(10):721-6. 

316. Zimprich F, Stogmann E, Bonelli S, Baumgartner C, Mueller JC, Meitinger T, et al. A 
functional polymorphism in the SCN1A gene is not associated with carbamazepine 
dosages in Austrian patients with epilepsy. Epilepsia. 2008;49(6):1108-9. 

317. Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A 
polymorphism and carbamazepine-resistant epilepsy. Br J Clin Pharmacol. 
2008;66(2):304-7. 

318. Angelopoulou C, Veletza S, Heliopoulos I, Vadikolias K, Tripsianis G, Stathi C, et al. 
Association of SCN1A gene polymorphism with antiepileptic drug responsiveness in the 
population of Thrace, Greece. Arch Med Sci. 2017;13(1):138-47. 

319. Zhou L, Cao Y, Long H, Long L, Xu L, Liu Z, et al. ABCB1, ABCC2, SCN1A, SCN2A, GABRA1 
gene polymorphisms and drug resistant epilepsy in the Chinese Han population. 
Pharmazie. 2015;70(6):416-20. 

320. Manna I, Gambardella A, Bianchi A, Striano P, Tozzi R, Aguglia U, et al. A functional 
polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness 
in Italian patients with focal epilepsy. Epilepsia. 2011;52(5):e40-4. 

321. Kumari R, Lakhan R, Kumar S, Garg RK, Misra UK, Kalita J, et al. SCN1AIVS5-91G>A 
polymorphism is associated with susceptibility to epilepsy but not with drug 
responsiveness. Biochimie. 2013;95(6):1350-3. 

322. Yip TSC, O'Doherty C, Tan NCK, Dibbens LM, Suppiah V. SCN1A variations and response 
to multiple antiepileptic drugs. Pharmacogenomics J. 2014;14(4):385-9. 

323. Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, et al. GLUT-1 
deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose 
carrier. Nat Genet. 1998;18(2):188-91. 

324. Larsen J, Johannesen KM, Ek J, Tang S, Marini C, Blichfeldt S, et al. The role of SLC2A1 
mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated 
frequency of GLUT1 deficiency syndrome. Epilepsia. 2015;56(12):e203-e8. 

https://www.reuters.com/article/brief-zogenix-announces-new-data-from-pi/brief-zogenix-announces-new-data-from-pivotal-phase-3-clinical-trial-of-zx008-idUSASB0BWCE
https://www.reuters.com/article/brief-zogenix-announces-new-data-from-pi/brief-zogenix-announces-new-data-from-pivotal-phase-3-clinical-trial-of-zx008-idUSASB0BWCE
https://www.reuters.com/article/brief-zogenix-announces-new-data-from-pi/brief-zogenix-announces-new-data-from-pivotal-phase-3-clinical-trial-of-zx008-idUSASB0BWCE


264 
 

325. Lebon S, Suarez P, Alija S, Korff CM, Fluss J, Mercati D, et al. When should clinicians 
search for GLUT1 deficiency syndrome in childhood generalized epilepsies? Eur J 
Paediatr Neurol. 2015;19(2):170-5. 

326. Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, et al. Glut1 deficiency: 
inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68(6):955-8. 

327. Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, et al. Glut1 deficiency 
syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70(6):996-1005. 

328. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose 
transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a 
treatable disorder. Brain. 2010;133(3):655-70. 

329. De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other 
glycolytic defects. J Child Neurol. 2002;17 Suppl 3:3S15-23. 

330. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, et al. Adjunctive 
everolimus therapy for treatment-resistant focal-onset seizures associated with 
tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled 
study. Lancet. 2016;388(10056):2153-63. 

331. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, et al. GRIN2A 
mutation and early-onset epileptic encephalopathy: personalized therapy with 
memantine. Ann Clin Transl Neurol. 2014;1(3):190-8. 

332. Poduri A. Meta-Analysis Revives Genome-Wide Association Studies in Epilepsy. Epilepsy 
Curr. 2015;15(3):122-3. 

333. Speed D, Hoggart C, Petrovski S, Tachmazidou I, Coffey A, Jorgensen A, et al. A genome-
wide association study and biological pathway analysis of epilepsy prognosis in a 
prospective cohort of newly treated epilepsy. Hum Mol Genet. 2014;23(1):247-58. 

334. Epi4K Consortium. Epi4K: gene discovery in 4,000 genomes. Epilepsia. 2012;53(8):1457-
67. 

335. Epi4K Consortium. Phenotypic analysis of 303 multiplex families with common 
epilepsies. Brain. 2017;140(8):2144-56. 

336. Delanty N, Cavallleri G. Genomics-Guided Precise Anti-Epileptic Drug Development. 
Neurochem Res. 2017;42(7):2084-8. 

337. EpiPM Consortium. A roadmap for precision medicine in the epilepsies. Lancet Neurol. 
2015;14(12):1219-28. 

338. Reif PS, Tsai MH, Helbig I, Rosenow F, Klein KM. Precision medicine in genetic 
epilepsies: break of dawn? Expert Rev Neurother. 2017;17(4):381-92. 

339. Striano P, Vari MS, Mazzocchetti C, Verrotti A, Zara F. Management of genetic 
epilepsies: From empirical treatment to precision medicine. Pharmacol Res. 
2016;107:426-9. 



265 
 

340. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. 
Genome-wide association studies for complex traits: consensus, uncertainty and 
challenges. Nat Rev Genet. 2008;9(5):356-69. 

341. Tellez-Zenteno JF, Hernandez-Ronquillo L, Buckley S, Zahagun R, Rizvi S. A validation of 
the new definition of drug-resistant epilepsy by the International League Against 
Epilepsy. Epilepsia. 2014;55(6):829-34. 

342. Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A, et 
al. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells 
reduces seizure frequency: An open label study. Adv Med Sci. 2017;62(2):273-9. 

343. Cação G, Parra J, Mannan S, Sisodiya SM, Sander JW. Juvenile myoclonic epilepsy 
refractory to treatment in a tertiary referral center. Epilepsy Behav. 2018;82:81-6. 

344. Vignoli A, Peron A, Turner K, Scornavacca GF, La Briola F, Chiesa V, et al. Long-term 
outcome of epilepsy with onset in the first three years of life: Findings from a large 
cohort of patients. Eur J Paediatr Neurol. 2016;20(4):566-72. 

345. Voll A, Hernandez-Ronquillo L, Buckley S, Tellez-Zenteno JF. Predicting drug resistance 
in adult patients with generalized epilepsy: A case-control study. Epilepsy Behav. 
2015;53:126-30. 

346. Chung SS, Hogan RE, Blatt I, Lawson P B, Nguyen H, Clark AM, et al. Long-term safety 
and sustained efficacy of USL255 (topiramate extended-release capsules) in patients 
with refractory partial-onset seizures. Epilepsy Behav. 2016;59:13-20. 

347. Collart Dutilleul P, Ryvlin P, Kahane P, Vercueil L, Semah F, Biraben A, et al. Exploratory 
Phase II Trial to Evaluate the Safety and the Antiepileptic Effect of Pitolisant (BF2.649) in 
Refractory Partial Seizures, Given as Adjunctive Treatment During 3 Months. Clin 
Neuropharmacol. 2016;39(4):188-93. 

348. Krueger DA, Wilfong AA, Mays M, Talley CM, Agricola K, Tudor C, et al. Long-term 
treatment of epilepsy with everolimus in tuberous sclerosis. Neurology. 
2016;87(23):2408-15. 

349. Lim K-S, Lotay N, White R, Kwan P. Efficacy and safety of retigabine/ezogabine as 
adjunctive therapy in adult Asian patients with drug-resistant partial-onset seizures: A 
randomized, placebo-controlled Phase III study. Epilepsy Behav. 2016;61:224-30. 

350. Moseley BD, Sperling MR, Asadi-Pooya AA, Diaz A, Elmouft S, Schiemann J, et al. 
Efficacy, safety, and tolerability of adjunctive brivaracetam for secondarily generalized 
tonic-clonic seizures: Pooled results from three Phase III studies. Epilepsy Res. 
2016;127:179-85. 

351. Overwater IE, Rietman AB, Bindels-de Heus K, Looman CW, Rizopoulos D, Sibindi TM, et 
al. Sirolimus for epilepsy in children with tuberous sclerosis complex: A randomized 
controlled trial. Neurology. 2016;87(10):1011-8. 

352. Yu L, Liao WP, Yi YH, Qiu G. ABCB1 G2677T/A polymorphism is associated with the risk 
of drug-resistant epilepsy in Asians. Epilepsy Res. 2015;115:100-8. 



266 
 

353. Lv N, Qu J, Long H, Zhou L, Cao Y, Long L, et al. Association study between 
polymorphisms in the CACNA1A, CACNA1C, and CACNA1H genes and drug-resistant 
epilepsy in the Chinese Han population. Seizure. 2015;30:64-9. 

354. Bertok S, Dolzan V, Goricar K, Podkrajsek KT, Battelino T, Rener-Primec Z. The 
association of SCN1A p.Thr1067Ala polymorphism with epilepsy risk and the response 
to antiepileptic drugs in Slovenian children and adolescents with epilepsy. Seizure. 
2017;51:9-13. 

355. Butilă AT, Zazgyva A, Sin AI, Szabo ER, Tilinca MC. GABRG2 C588T gene polymorphisms 
might be a predictive genetic marker of febrile seizures and generalized recurrent 
seizures: a case-control study in a Romanian pediatric population. Arch Med Sci. 
2018;14(1):157-66. 

356. Asadi-Pooya AA, Emami M, Ashjazadeh N, Nikseresht A, Shariat A, Petramfar P, et al. 
Reasons for uncontrolled seizures in adults; the impact of pseudointractability. Seizure. 
2013;22(4):271-4. 

357. Kutlu G, Erdal A, Gomceli YB, Inan LE. Pseudo-refractory epilepsy. Neurosciences 
(Riyadh). 2013;18(3):284-6. 

358. Trinka E. Ideal characteristics of an antiepileptic drug: how do these impact treatment 
decisions for individual patients? Acta Neurol Scand. 2012;126(s194):10-8. 

359. Brigo F, Igwe SC, Lattanzi S. Ethosuximide, sodium valproate or lamotrigine for absence 
seizures in children and adolescents. Cochrane Database Syst Rev. 2019;2:CD003032. 

360. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, et al. Ethosuximide, 
Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy. The New England journal 
of medicine. 2010;362(9):790-9. 

361. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, et al. The 
SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised 
and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet. 
2007;369(9566):1016-26. 

362. Veroniki AA, Cogo E, Rios P, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety 
of anti-epileptic drugs during pregnancy: a systematic review and network meta-
analysis of congenital malformations and prenatal outcomes. BMC Med. 2017;15(1):95. 

363. Veroniki AA, Rios P, Cogo E, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety 
of antiepileptic drugs for neurological development in children exposed during 
pregnancy and breast feeding: a systematic review and network meta-analysis. BMJ 
Open. 2017;7(7):e017248. 

364. Bromley RL, Weston J, Marson AG. Maternal Use of Antiepileptic Agents During 
Pregnancy and Major Congenital Malformations in ChildrenMaternal Use of 
Antiepileptic Agents and Major Congenital Malformations in ChildrenMaternal Use of 
Antiepileptic Agents and Major Congenital Malformations in Children. JAMA 
2017;318(17):1700-1. 



267 
 

365. Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Perucca E, et al. Comparative risk 
of major congenital malformations with eight different antiepileptic drugs: a 
prospective cohort study of the EURAP registry. Lancet Neurol. 2018;17(6):530-8. 

366. National Institute for Health and Care Excellence Clinical guideline [CG185] Bipolar 
disorder: assessment and management [Internet]. NICE. 2014 [cited 15.8.2019]. 
Available from: https://www.nice.org.uk/guidance/cg185/chapter/1-
Recommendations#managing-bipolar-disorder-in-adults-in-the-longer-term-in-
secondary-care-2. 

367. European Medicines Agency. New measures to avoid valproate exposure in pregnancy 
endorsed [Internet]. 2018 [cited 15.8.2019]. Available from: 
https://www.ema.europa.eu/en/documents/referral/valproate-article-31-referral-new-
measures-avoid-valproate-exposure-pregnancy-endorsed_en-0.pdf. 

368. Shakespeare J, Sisodiya SM. Guidance Document on Valproate Use in Women and Girls 
of Childbearing Years. Royal College of General Practitioners and Association of British 
Neurologists and Royal College of Physicians; 2019. 

369. Proposal for Revised Classification of Epilepsies and Epileptic Syndromes. Epilepsia. 
1989;30(4):389-99. 

370. Okudan ZV, Özkara Ç. Reflex epilepsy: triggers and management strategies. 
Neuropsychiatr Dis Treat. 2018;14:327-37. 

371. WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC 
classification and DDD assignment 2013. Oslo, Norway: WHO; 2012. 

372. Altman DG. Practical Statistics for Medical Research. London: Chapman and Hall/CRC; 
1991. 

373. Hao XT, Wong IS, Kwan P. Interrater reliability of the international consensus definition 
of drug-resistant epilepsy: a pilot study. Epilepsy Behav. 2011;22(2):388-90. 

374. Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, et al. Correlation 
between Genetic and Geographic Structure in Europe. Curr Biol. 2008;18(16):1241-8. 

375. Nelis M, Esko T, Mägi R, Zimprich F, Zimprich A, Toncheva D, et al. Genetic Structure of 
Europeans: A View from the North–East. PLoS ONE. 2009;4(5):e5472. 

376. Luciano AL, Shorvon SD. Results of treatment changes in patients with apparently drug-
resistant chronic epilepsy. Ann Neurol. 2007;62(4):375-81. 

377. Giussani G, Canelli V, Bianchi E, Erba G, Franchi C, Nobili A, et al. Long-term prognosis of 
epilepsy, prognostic patterns and drug resistance: a population-based study. Eur J 
Neurol. 2016;23(7):1218-27. 

378. Greenberg DA, Subaran R. Blinders, phenotype, and fashionable genetic analysis: A 
critical examination of the current state of epilepsy genetic studies. Epilepsia. 
2011;52(1):1-9. 

379. Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Stat Sci. 
2009;24(4):561-73. 

https://www.nice.org.uk/guidance/cg185/chapter/1-Recommendations#managing-bipolar-disorder-in-adults-in-the-longer-term-in-secondary-care-2
https://www.nice.org.uk/guidance/cg185/chapter/1-Recommendations#managing-bipolar-disorder-in-adults-in-the-longer-term-in-secondary-care-2
https://www.nice.org.uk/guidance/cg185/chapter/1-Recommendations#managing-bipolar-disorder-in-adults-in-the-longer-term-in-secondary-care-2
https://www.ema.europa.eu/en/documents/referral/valproate-article-31-referral-new-measures-avoid-valproate-exposure-pregnancy-endorsed_en-0.pdf
https://www.ema.europa.eu/en/documents/referral/valproate-article-31-referral-new-measures-avoid-valproate-exposure-pregnancy-endorsed_en-0.pdf


268 
 

380. Barendse W. The effect of measurement error of phenotypes on genome wide 
association studies. BMC Genomics. 2011;12:232. 

381. de Toffol B, de Zelicourt M, Vespignani H, Fagnani F, Laurendeau C, Levy-Bachelot L, et 
al. ESPERA study: applicability of the new ILAE criteria for antiepileptic drug resistance 
of focal epilepsies in current clinical practice. Epilepsy Behav. 2012;25(2):166-9. 

382. Berg AT, Levy SR, Testa FM, D'Souza R. Remission of epilepsy after two drug failures in 
children: a prospective study. Ann Neurol. 2009;65(5):510-9. 

383. Sperling MR, Abou-Khalil B, Harvey J, Rogin JB, Biraben A, Galimberti CA, et al. 
Eslicarbazepine acetate as adjunctive therapy in patients with uncontrolled partial-
onset seizures: Results of a phase III, double-blind, randomized, placebo-controlled trial. 
Epilepsia. 2015;56(2):244-53. 

384. French JA, Krauss GL, Biton V, Squillacote D, Yang H, Laurenza A, et al. Adjunctive 
perampanel for refractory partial-onset seizures. Randomized phase III study 304. 
2012;79(6):589-96. 

385. Klein P, Schiemann J, Sperling MR, Whitesides J, Liang W, Stalvey T, et al. A randomized, 
double-blind, placebo-controlled, multicenter, parallel-group study to evaluate the 
efficacy and safety of adjunctive brivaracetam in adult patients with uncontrolled 
partial-onset seizures. Epilepsia. 2015;56(12):1890-8. 

386. Biton V, Berkovic SF, Abou-Khalil B, Sperling MR, Johnson ME, Lu S. Brivaracetam as 
adjunctive treatment for uncontrolled partial epilepsy in adults: a phase III randomized, 
double-blind, placebo-controlled trial. Epilepsia. 2014;55(1):57-66. 

387. Hao X, Goldberg D, Kelly K, Stephen L, Kwan P, Brodie MJ. Uncontrolled epilepsy is not 
necessarily the same as drug-resistant epilepsy: differences between populations with 
newly diagnosed epilepsy and chronic epilepsy. Epilepsy Behav. 2013;29(1):4-6. 

388. Chadwick D, Smith D. The misdiagnosis of epilepsy. BMJ. 2002;324(7336):495-6. 

389. Hao XT, Kwan P. Update and Overview of the International League Against Epilepsy 
Consensus Definition of Drug-resistant Epilepsy. European Neurological Review. 
2011;6(1):57-9. 

390. Gilioli I, Vignoli A, Visani E, Casazza M, Canafoglia L, Chiesa V, et al. Focal epilepsies in 
adult patients attending two epilepsy centers: classification of drug-resistance, 
assessment of risk factors, and usefulness of "new" antiepileptic drugs. Epilepsia. 
2012;53(4):733-40. 

391. Nesbitt G, McKenna K, Mays V, Carpenter A, Miller K, Williams M. The Epilepsy 
Phenome/Genome Project (EPGP) informatics platform. Int J Med Inform. 
2013;82(4):248-59. 

392. Epi4K Consortium. De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes 
of Epileptic Encephalopathies. Am J Hum Genet. 2016;99(2):287-98. 

393. Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment and the value of 
prospective cohort studies. Nat Rev Genet. 2006;7(10):812-20. 



269 
 

394. Fisher RS, Blum DE, DiVentura B, Vannest J, Hixson JD, Moss R, et al. Seizure diaries for 
clinical research and practice: Limitations and future prospects. Epilepsy Behav. 
2012;24(3):304-10. 

395. Hoppe C, Poepel A, Elger CE. Epilepsy: Accuracy of patient seizure counts. Arch Neurol. 
2007;64(11):1595-9. 

396. Rugg-Gunn FJ, Harrison NA, Duncan JS. Evaluation of the accuracy of seizure 
descriptions by the relatives of patients with epilepsy. Epilepsy Res. 2001;43(3):193-9. 

397. Hong MKH, Yao HHI, Pedersen JS, Peters JS, Costello AJ, Murphy DG, et al. Error rates in 
a clinical data repository: lessons from the transition to electronic data transfer—a 
descriptive study. BMJ Open. 2013;3(5):e002406. 

398. de Zélicourt M, de Toffol B, Vespignani H, Laurendeau C, Lévy-Bachelot L, Murat C, et al. 
Management of focal epilepsy in adults treated with polytherapy in France: the direct 
cost of drug resistance (ESPERA study). Seizure. 2014;23(5):349-56. 

399. Gomez-Ibañez A, McLachlan RS, Mirsattari SM, Diosy DC, Burneo JG. Prognostic factors 
in patients with refractory idiopathic generalized epilepsy. Epilepsy Res. 2017;130:69-
73. 

400. Shorvon S, Luciano AL. Prognosis of chronic and newly diagnosed epilepsy: revisiting 
temporal aspects. Curr Opin Neurol. 2007;20(2):208-12. 

401. Neligan A, Bell GS, Sander JW, Shorvon SD. How refractory is refractory epilepsy? 
Patterns of relapse and remission in people with refractory epilepsy. Epilepsy Res. 
2011;96(3):225-30. 

402. Berg AT, Vickrey BG, Testa FM, Levy SR, Shinnar S, DiMario F, et al. How long does it 
take for epilepsy to become intractable? A prospective investigation. Ann Neurol. 
2006;60(1):73-9. 

403. Callaghan BC, Anand K, Hesdorffer D, Hauser WA, French JA. Likelihood of seizure 
remission in an adult population with refractory epilepsy. Ann Neurol. 2007;62(4):382-
9. 

404. Choi H, Heiman GA, Munger Clary H, Etienne M, Resor SR, Hauser WA. Seizure 
remission in adults with long-standing intractable epilepsy: an extended follow-up. 
Epilepsy Res. 2011;93(2-3):115-9. 

405. Choi H, Hayat MJ, Zhang R, Hirsch LJ, Bazil CW, Mendiratta A, et al. Drug-resistant 
epilepsy in adults: Outcome trajectories after failure of two medications. Epilepsia. 
2016;57(7):1152-60. 

406. Neligan A, Bell GS, Elsayed M, Sander JW, Shorvon SD. Treatment changes in a cohort of 
people with apparently drug-resistant epilepsy: an extended follow-up. J Neurol 
Neurosurg Psychiatry. 2012;83(8):810-3. 

407. St Louis EK. Monitoring Antiepileptic Drugs: A Level-Headed Approach. Curr 
Neuropharmacol. 2009;7(2):115-9. 



270 
 

408. Kwan P, Brodie MJ. Effectiveness of First Antiepileptic Drug. Epilepsia. 
2001;42(10):1255-60. 

409. WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC 
classification and DDD assignment 2018. Oslo, Norway: WHO; 2017. 

410. Perucca E, Dulac O, Shorvon S, Tomson T. Harnessing the clinical potential of 
antiepileptic drug therapy: dosage optimisation. CNS Drugs. 2001;15(8):609-21. 

411. Genome-Wide DNA Analysis BeadChips [Internet]. 2010 [cited 1.3.2013]. Available 
from: https://www.illumina.com/content/dam/illumina-
marketing/documents/products/brochures/datasheet_omni_whole-
genome_arrays.pdf. 

412. LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, 
computational and technological advances. Nucleic Acids Res. 2009;37(13):4181-93. 

413. Reed E, Nunez S, Kulp D, Qian J, Reilly MP, Foulkes AS. A guide to genome-wide 
association analysis and post-analytic interrogation. Stat Med. 2015;34(28):3769-92. 

414. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat 
Rev Genet. 2010;11(7):499-511. 

415. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for 
genome-wide association studies by imputation of genotypes. Nat Genet. 
2007;39(7):906-13. 

416. Li Y, Abecasis GR. Mach 1.0: Rapid haplotype reconstruction and missing genotype 
inference. Am J Hum Genet. 2006:S79:2290. 

417. Biernacka JM, Tang R, Li J, McDonnell SK, Rabe KG, Sinnwell JP, et al. Assessment of 
genotype imputation methods. BMC Proc. 2009;3(Suppl 7):S5-S. 

418. Browning BL, Browning SR. A Unified Approach to Genotype Imputation and Haplotype-
Phase Inference for Large Data Sets of Trios and Unrelated Individuals. Am J Hum 
Genet. 2009;84(2):210-23. 

419. IMPUTE2; Output file options [Internet]. 2014 [cited 23.1.2015]. Available from: 
https://mathgen.stats.ox.ac.uk/impute/output_file_options.html. 

420. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method 
for the next generation of genome-wide association studies. PLoS Genet. 
2009;5(6):e1000529. 

421. Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, et al. 
Quality control procedures for genome-wide association studies. Curr Protoc Hum 
Genet. 2011;68(1):1-24. 

422. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data 
quality control in genetic case-control association studies. Nat Protoc. 2010;5(9):1564-
73. 

https://www.illumina.com/content/dam/illumina-marketing/documents/products/brochures/datasheet_omni_whole-genome_arrays.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/brochures/datasheet_omni_whole-genome_arrays.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/brochures/datasheet_omni_whole-genome_arrays.pdf
https://mathgen.stats.ox.ac.uk/impute/output_file_options.html


271 
 

423. Teo YY. Exploratory data analysis in large-scale genetic studies. Biostatistics. 
2010;11(1):70-81. 

424. Lee S, Kasif S, Weng Z, Cantor CR. Quantitative analysis of single nucleotide 
polymorphisms within copy number variation. PLoS One. 2008;3(12):e3906. 

425. Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg 
equilibrium. Am J Hum Genet. 2005;76(5):887-93. 

426. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool 
set for whole-genome association and population-based linkage analyses. Am J Hum 
Genet. 2007;81(3):559-75. 

427. Neale BM, Purcell S. The positives, protocols, and perils of genome-wide association. 
Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1288-94. 

428. Verma SS, de Andrade M, Tromp G, Kuivaniemi H, Pugh E, Namjou-Khales B, et al. 
Imputation and quality control steps for combining multiple genome-wide datasets. 
Front Genet. 2014;5:370. 

429. Chanda P, Yuhki N, Li M, Bader JS, Hartz A, Boerwinkle E, et al. Comprehensive 
evaluation of imputation performance in African Americans. J Hum Genet. 
2012;57(7):411-21. 

430. Ellinghaus D, Schreiber S, Franke A, Nothnagel M. Current software for genotype 
imputation. Human genomics. 2009;3(4):371-80. 

431. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects 
of imputation-driven meta-analysis of genome-wide association studies. Hum Mol 
Genet. 2008;17(R2):R122-8. 

432. Zheng HF, Rong JJ, Liu M, Han F, Zhang XW, Richards JB, et al. Performance of genotype 
imputation for low frequency and rare variants from the 1000 genomes. PLoS One. 
2015;10(1):e0116487. 

433. Krithika S, Valladares-Salgado A, Peralta J, Escobedo-de La Peña J, Kumate-Rodríguez J, 
Cruz M, et al. Evaluation of the imputation performance of the program IMPUTE in an 
admixed sample from Mexico City using several model designs. BMC Med Genomics. 
2012;5:12. 

434. SNPTEST v2 [Internet]. 2015 [cited 15.9.2015]. Available from: 
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/old/snptest.html. 

435. Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A. A comprehensive 
evaluation of SNP genotype imputation. Hum Genet. 2009;125(2):163-71. 

436. Ahmad M, Sinha A, Ghosh S, Kumar V, Davila S, Yajnik CS, et al. Inclusion of Population-
specific Reference Panel from India to the 1000 Genomes Phase 3 Panel Improves 
Imputation Accuracy. Sci Rep. 2017;7(1):6733. 

437. Kelly M, Fortes MRS, Moore SS. Accuracy of imputation in a population of tropical 
composite cattle with particular emphasis on the use of allelic r2 as a quality control 
metric. Proc Assoc Advmt Anim Breed Genet. 2013;20:550-3. 

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/old/snptest.html


272 
 

438. Shaffer JR, Li J, Lee MK, Roosenboom J, Orlova E, Adhikari K, et al. Multiethnic GWAS 
Reveals Polygenic Architecture of Earlobe Attachment. Am J Hum Genet. 
2017;101(6):913-24. 

439. Adhikari K, Fuentes-Guajardo M, Quinto-Sanchez M, Mendoza-Revilla J, Camilo Chacon-
Duque J, Acuna-Alonzo V, et al. A genome-wide association scan implicates DCHS2, 
RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun. 2016;7:11616. 

440. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, et al. Quality control 
and quality assurance in genotypic data for genome-wide association studies. Genet 
Epidemiol. 2010;34(6):591-602. 

441. Zondervan KT, Cardon LR. Designing candidate gene and genome-wide case-control 
association studies. Nat Protoc. 2007;2(10):2492-501. 

442. Stevens EL, Heckenberg G, Roberson ED, Baugher JD, Downey TJ, Pevsner J. Inference of 
relationships in population data using identity-by-descent and identity-by-state. PLoS 
Genet. 2011;7(9):e1002287. 

443. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification 
in genome-wide association studies. Nat Rev Genet. 2010;11(7):459-63. 

444. Li Q, Yu K. Improved correction for population stratification in genome-wide association 
studies by identifying hidden population structures. Genet Epidemiol. 2008;32(3):215-
26. 

445. Lewis CM. Genetic association studies: design, analysis and interpretation. Brief 
Bioinform. 2002;3(2):163-53. 

446. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed 
models for genome-wide association studies. Nat Methods. 2011;8(10):833-5. 

447. Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, et al. 
Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC 
Genomics. 2010;11:724. 

448. Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum Mol Genet. 
2015;24(R1):R111-9. 

449. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits 
with global gene expression. Nat Rev Genet. 2009;10(3):184-94. 

450. Zhu Y, Tazearslan C, Suh Y. Challenges and progress in interpretation of non-coding 
genetic variants associated with human disease. Exp Biol Med (Maywood). 
2017;242(13):1325-34. 

451. Nürnberg ST, Rendon A, Smethurst PA, Paul DS, Voss K, Thon JN, et al. A GWAS 
sequence variant for platelet volume marks an alternative DNM3 promoter in 
megakaryocytes near a MEIS1 binding site. Blood. 2012;120(24):4859-68. 

452. Corradin O, Scacheri PC. Enhancer variants: evaluating functions in common disease. 
Genome Med. 2014;6(10):85. 



273 
 

453. Hrdlickova B, de Almeida RC, Borek Z, Withoff S. Genetic variation in the non-coding 
genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim 
Biophys Acta. 2014;1842(10):1910-22. 

454. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-
associated variants within FTO form long-range functional connections with IRX3. 
Nature. 2014;507(7492):371-5. 

455. Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Berulava T, et al. Leveraging 
cross-species transcription factor binding site patterns: from diabetes risk loci to 
disease mechanisms. Cell. 2014;156(1-2):343-58. 

456. Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of 
GWAS and eQTL Signals Detects Target Genes. Am J Hum Genet. 2016;99(6):1245-60. 

457. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A 
gene-based association method for mapping traits using reference transcriptome data. 
Nat Genet. 2015;47(9):1091-8. 

458. Wooten EC, Huggins GS. Mind the dbGAP: The Application of Data Mining to Identify 
Biological Mechanisms. Mol Interv. 2011;11(2):95-102. 

459. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 
(Bethesda). 2011;1(6):457-70. 

460. Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using 
Multilocus Genotype Data. Genetics. 2000;155(2):945-59. 

461. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands 
of genomes. Nat Methods. 2011;9(2):179-81. 

462. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate 
genotype imputation in genome-wide association studies through pre-phasing. Nat 
Genet. 2012;44(8):955-9. 

463. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: 
R Foundation for Statistical Computing; 2013. 

464. Menashe I, Rosenberg PS, Chen BE. PGA: power calculator for case-control genetic 
association analyses. BMC Genetics. 2008;9(1):36. 

465. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: 
regional visualization of genome-wide association scan results. Bioinformatics. 
2010;26(18):2336-7. 

466. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, 
and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids 
Res. 2012;40(Database issue):D930-4. 

467. HaploReg v4.1 [Internet]. Broad Institute. 2015 [cited 1.7.2018]. Available from: 
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php. 

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php


274 
 

468. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant 
Effect Predictor. Genome Biol. 2016;17(1):122. 

469. Variant Effect Predictor [Internet]. EMBL-EBI 2018 [cited 1.10.2018]. Available from: 
http://www.ensembl.org/Homo_sapiens/Tools/VEP?db=core;tl=GxgGPPHWa6Ls4Mfv-
4713691. 

470. GTEx Consortium, Laboratory Data Analysis & Coordinating Center (LDAAC)—Analysis 
Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx 
(eGTEx) groups, NIH Common Fund, NIH/NCI, et al. Genetic effects on gene expression 
across human tissues. Nature. 2017;550(7675):204-13. 

471. The Genotype-Tissue Expression (GTEx) Project [Internet].  [cited 15.2.2019]. Available 
from: https://gtexportal.org/home/. 

472. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database Group. 
The Mouse Genome Database (MGD): facilitating mouse as a model for human biology 
and disease. Nucleic Acids Res. 2015;43(Database issue):D726-D36. 

473. Mouse Genome Informatics [Internet]. 2019 [cited 19.2.2019]. Available from: 
http://www.informatics.jax.org/. 

474. Ng B, White CC, Klein H-U, Sieberts SK, McCabe C, Patrick E, et al. An xQTL map 
integrates the genetic architecture of the human brain's transcriptome and epigenome. 
Nat Neurosci. 2017;20(10):1418-26. 

475. Brain xQTL Serve [Internet]. 2017 [cited 15.2.2019]. Available from: 
http://mostafavilab.stat.ubc.ca/xqtl/. 

476. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic 
variability in the regulation of gene expression in ten regions of the human brain. Nat 
Neurosci. 2014;17(10):1418-28. 

477. Braineac - The Brain eQTL Almanac [Internet]. UK Brain Expression Consortium (UKBEC). 
2013 [cited 1.10.2018]. 

478. Lopez-Garcia MA, Feria-Romero IA, Serrano H, Rayo-Mares D, Fagiolino P, Vazquez M, 
et al. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on 
antiepileptic drug metabolism in pediatric patients with refractory epilepsy. Pharmacol 
Rep. 2017;69(3):504-11. 

479. Bao Y, Liu X, Xiao Z. Association between two SCN1A polymorphisms and resistance to 
sodium channel blocking AEDs: a meta-analysis. Neurol Sci. 2018;39(6):1065-72. 

480. Shi L, Zhu M, Li H, Wen Z, Chen X, Luo J, et al. SCN1A and SCN2A polymorphisms are 
associated with response to valproic acid in Chinese epilepsy patients. Eur J Clin 
Pharmacol. 2019;75(5):655-63. 

481. Sinnott JA, Kraft P. Artifact due to differential error when cases and controls are 
imputed from different platforms. Hum Genet. 2012;131(1):111-9. 

http://www.ensembl.org/Homo_sapiens/Tools/VEP?db=core;tl=GxgGPPHWa6Ls4Mfv-4713691
http://www.ensembl.org/Homo_sapiens/Tools/VEP?db=core;tl=GxgGPPHWa6Ls4Mfv-4713691
https://gtexportal.org/home/
http://www.informatics.jax.org/
http://mostafavilab.stat.ubc.ca/xqtl/


275 
 

482. Xu J, Zhou W, Yang F, Chen G, Li H, Zhao Y, et al. The β-TrCP-FBXW2-SKP2 axis regulates 
lung cancer cell growth with FBXW2 acting as a tumour suppressor. Nat Commun. 
2017;8:14002-. 

483. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, et al. Skp2 is 
oncogenic and overexpressed in human cancers. Proceedings of the National Academy 
of Sciences of the United States of America. 2001;98(9):5043-8. 

484. Chen F, Lin X, Xu P, Zhang Z, Chen Y, Wang C, et al. Nuclear Export of Smads by RanBP3L 
Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell 
Differentiation. Mol Cell Biol. 2015;35(10):1700-11. 

485. Ohashi K, Kawai S, Murata K. Identification and characterization of a human 
mitochondrial NAD kinase. Nat Commun. 2012;3:1248-. 

486. Takai S, Yamada K, Kawakami H, Tanaka K, Nakamura S. Localization of the gene 
(SLC1A3) encoding human glutamate transporter (GluT-1) to 5p13 by fluorescence in 
situ hybridization. Cytogenet Cell Genet. 1995;69(3-4):209-10. 

487. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter 
EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65(4):529-34. 

488. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, et al. Estimation of 
effect size distribution from genome-wide association studies and implications for 
future discoveries. Nat Genet. 2010;42(7):570-5. 

489. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 
2012;13(2):135-45. 

490. Leu C, Balestrini S, Maher B, Hernández-Hernández L, Gormley P, Hämäläinen E, et al. 
Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected 
Death in Epilepsy. EBioMedicine. 2015;2(9):1063-70. 

491. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for 
complex diseases. Curr Opin Genet Dev. 2009;19(3):212-9. 

492. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic 
localization of common disease-associated variation in regulatory DNA. Science. 
2012;337(6099):1190-5. 

493. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations 
with regulatory information in the human genome. Genome research. 2012;22(9):1748-
59. 

494. Nakayama Y, Nara N, Kawakita Y, Takeshima Y, Arakawa M, Katoh M, et al. Cloning of 
cDNA Encoding a Regeneration-Associated Muscle Protease Whose Expression Is 
Attenuated in Cell Lines Derived from Duchenne Muscular Dystrophy Patients. Am J 
Pathol. 2004;164(5):1773-82. 

495. Lo PH, Tanikawa C, Katagiri T, Nakamura Y, Matsuda K. Identification of novel 
epigenetically inactivated gene PAMR1 in breast carcinoma. Oncol Rep. 2015;33(1):267-
73. 



276 
 

496. Visser M, Kayser M, Palstra R-J. HERC2 rs12913832 modulates human pigmentation by 
attenuating chromatin-loop formation between a long-range enhancer and the OCA2 
promoter. Genome research. 2012;22(3):446-55. 

497. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and 
Exacerbation of Brain Injury in Mice Lacking the Glutamate Transporter GLT-1. Science. 
1997;276(5319):1699-702. 

498. Colton CK, Kong Q, Lai L, Zhu MX, Seyb KI, Cuny GD, et al. Identification of translational 
activators of glial glutamate transporter EAAT2 through cell-based high-throughput 
screening: an approach to prevent excitotoxicity. J Biomol Screen. 2010;15(6):653-62. 

499. Ulu MO, Tanriverdi T, Oz B, Biceroglu H, Isler C, Eraslan BS, et al. The expression of 
astroglial glutamate transporters in patients with focal cortical dysplasia: an 
immunohistochemical study. Acta Neurochir (Wien). 2010;152(5):845-53. 

500. Zhang Y, Dong H, Duan L, Yuan G, Liang W, Li Q, et al. SLC1A2 mediates refractory 
temporal lobe epilepsy with an initial precipitating injury by targeting the glutamatergic 
synapse pathway. IUBMB Life. 2019;71(2):213-22. 

501. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of 
Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity 
and Clearance of Glutamate. Neuron. 1996;16(3):675-86. 

502. Jiang J, Amara SG. New views of glutamate transporter structure and function: advances 
and challenges. Neuropharmacology. 2011;60(1):172-81. 

503. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaught MP, Amara SG. An excitatory amino-
acid transporter with properties of a ligand-gated chloride channel. Nature. 
1995;375(6532):599-603. 

504. Winter N, Kovermann P, Fahlke C. A point mutation associated with episodic ataxia 6 
increases glutamate transporter anion currents. Brain. 2012;135(11):3416-25. 

505. Kumar RG, Breslin KB, Ritter AC, Conley YP, Wagner AK. Variability with Astroglial 
Glutamate Transport Genetics Is Associated with Increased Risk for Post-Traumatic 
Seizures. J Neurotrauma. 2019;36(2):230-8. 

506. de Vries B, Mamsa H, Stam AH, Wan J, Bakker SLM, Vanmolkot KRJ, et al. Episodic 
Ataxia Associated With EAAT1 Mutation C186S Affecting Glutamate Reuptake. Archives 
of neurology. 2009;66(1):97-101. 

507. Rethoré MO, de Blois MC, Peeters M, Popowski P, Pangalos C, Lejeune J. Pure partial 
trisomy of the short arm of chromosome 5. Hum Genet. 1989;82(3):296-8. 

508. Lorda-Sánchez I, Urioste M, Villa A, Carrascosa MdC, Vásquez MS, Martínez A, et al. 
Proximal partial 5p trisomy resulting from a maternal (19;5) insertion. Am J Med Genet. 
1997;68(4):476-80. 

509. Avansino JR, Dennis TR, Spallone P, Stock AD, Levin ML. Proximal 5p trisomy resulting 
from a marker chromosome implicates band 5p13 in 5p trisomy syndrome. Am J Med 
Genet. 1999;87(1):6-11. 



277 
 

510. Yasutomo K, Suzue T, Nishioka A, Kozan H, Sekiguchi T, Ohara K, et al. Partial trisomy for 
short arm of chromosome 5. Am J Med Genet. 1993;35(4):336-9. 

511. van Amen-Hellebrekers CJ, Jansen S, Pfundt R, Schuurs-Hoeijmakers JH, Koolen DA, 
Marcelis CL, et al. Duplications of SLC1A3: Associated with ADHD and autism. Eur J Med 
Genet. 2016;59(8):373-6. 

512. Laurin N, Lee J, Ickowicz A, Pathare T, Malone M, Tannock R, et al. Association study for 
genes at chromosome 5p13-q11 in attention deficit hyperactivity disorder. Am J Med 
Genet B Neuropsychiatr Genet. 2008;147B(5):600-5. 

513. Armstrong ME, Weaver DD, Lah MD, Vance GH, Landis BJ, Ware SM, et al. Novel 
phenotype of 5p13.3-q11.2 duplication resulting from supernumerary marker 
chromosome 5: implications for management and genetic counseling. Mol Cytogenet. 
2018;11:23. 

514. Velagaleti GVN, Morgan DL, Tonk VS. Trisomy 5p. A case report and review. Ann Genet. 
2000;43(3):143-5. 

515. Camerota L, Pitzianti M, Postorivo D, Nardone AM, Ligas C, Moretti C, et al. A Small 
Supernumerary Marker Derived from the Pericentromeric Region of Chromosome 5: 
Case Report and Delineation of Partial Trisomy 5p Phenotype. Cytogenet Genome Res. 
2017;153(1):22-8. 

516. Gilby KL, O'Brien TJ. Epilepsy, autism, and neurodevelopment: kindling a shared 
vulnerability? Epilepsy Behav. 2013;26(3):370-4. 

517. Williams AE, Giust JM, Kronenberger WG, Dunn DW. Epilepsy and attention-deficit 
hyperactivity disorder: links, risks, and challenges. Neuropsychiatr Dis Treat. 
2016;12:287-96. 

518. McCusker CG, Kennedy PJ, Anderson J, Hicks EM, Hanrahan D. Adjustment in children 
with intractable epilepsy: importance of seizure duration and family factors. Dev Med 
Child Neurol. 2002;44(10):681-7. 

519. Sansa G, Carlson C, Doyle W, Weiner HL, Bluvstein J, Barr W, et al. Medically refractory 
epilepsy in autism. Epilepsia. 2011;52(6):1071-5. 

520. Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol 
Biol. 2015;22(1):5-7. 

521. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of 
epigenetic regulation. Epigenetics. 2014;9(1):3-12. 

522. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X 
chromosome inactivation. Nature. 1996;379(6561):131-7. 

523. Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al. Analysis of 
shared heritability in common disorders of the brain. Science. 
2018;360(6395):eaap8757. 



278 
 

524. Whelan CD, Altmann A, Botia JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain 
abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 
2018;141(2):391-408. 

525. Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from 
genome-wide SNPs. Am J Hum Genet. 2012;91(6):1011-21. 

526. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet. 2011;88(1):76-82. 

527. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation 
factors under polygenic inheritance. Eur J Hum Genet. 2011;19(7):807-12. 

528. Browning SR, Browning BL. Population structure can inflate SNP-based heritability 
estimates. Am J Hum Genet. 2011;89(1):191-3; author reply 3-5. 

529. Speed D, Cai N, UCLEB Consortium, Johnson MR, Nejentsev S, Balding DJ. Reevaluation 
of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986-92. 

530. Guggenheim JA, St Pourcain B, McMahon G, Timpson NJ, Evans DM, Williams C. 
Assumption-free estimation of the genetic contribution to refractive error across 
childhood. Mol Vis. 2015;21:621-32. 

 

 



279 
 

APPENDICES 

 

Appendix 1. EpiPGX CRF 
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Appendix 2. Consensus definitions for phenotypic categories 
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Appendix 3. WP03 decision algorithm for the classification of 
cases 

 



302 
 

Appendix 4. EpiPGX database view 
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Appendix 5. National and international ethics regulations 
relevant for EpiPGX 
 

Country 
(EpiPGX 
sites) 
 

National Regulations for clinical studies 

UK  
(EpiPGX sites: 
UCL, BHSCT, 
ULIV, Imperial, 
UGLA) 

Local Research Ethics approval under UK clinical research 
guidelines and European Clinical Trials Directive 
 
Application through the Integrated Research Application 
System (IRAS) which is automatically forwarded to the Multi-
centre NHS Research Ethics, NHS Research and Development 
Committees and MHRA 
 
UK Data Protection Act, 1998 
 
UK Human Tissue Act, 2004 
 

Belgium  
(EpiPGX site ULB) 

Arrêté Royal instituant les CEM ou Comité d'Ethique Médicaux 
Hospitaliers (12 aôut 1994) 
 

- Loi sur la protection de la vie privée (décembre 1992; 
Arrêté Royal février 2001) définit, entre autres, les 
conditions dans lesquelles des données de santé, 
considérées comme sensibles, peuvent être traitées 
dans le cadre de la recherche clinique. 

- Loi relative aux droits du patient (août 2002) consacre 
le droit à l'autonomie du patient et définit la 
représentation du patient mineur / majeur incapable. 

- Loi relative à l'expérimentation humaine (mai 2004) 
définit le cadre dans lequel toute recherche clinique sur 
la personne humaine doit s'organiser. 

 
Loi relative à l'obtention et à l'utilisation de matériel corporel 
humain destiné à des applications médicales humaines ou à 
des fins de recherche scientifique (décembre 2008) définit la 
cadre dans lequel ce matériel peut être prélevé, conservé 
(biobanques) et utilisé. 
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Italy  
(EpiPGX site IGG) 

Legislative Decree no.211 of June 24, 2003 “Transposition of 
Directive 2001/20/EC relating to the implementation of good 
clinical practice in the conduct of clinical trials on medicinal 
products for clinical use”. 
(Decreto Legislativo n. 211 del 24 giugno 2003 Attuazione della 
direttiva 2001/20/CE relative all'applicazione della buona 
pratica clinica 
nell'esecuzione delle sperimentazioni cliniche di medicinali per 
uso clinico) 
 

The Netherlands 
(EpiPGX sites: 
SEIN, UMCU) 

Research is approved under the Medical Research Involving 
Human Subjects Act and/or the Embryos Act by an accredited 
Medical Research Ethics Committee (MREC) (Medical Research 
(Human Subjects) Act March 1, 2006. 
 

- Wet bescherming persoonsgegevens (WBP) (1 
September 2001) [Personal Data Protection Act] 

- Wet geneeskundige behandelovereenkomst (WGBO) 
(17 November 1994) [Medical Treatment Agreement 
Act] 

- Wet medisch onderzoek (WMO) (1Maart 2006) 
[Medical-Scientific Research Act] 

- Gedragscode Gezondheidsonderzoek (19 April 2004) 
[Code of Behaviour for Health Research] 

 
The research that will be conducted under this project is 
covered by the protocol METC 09-352K: The Genetics of 
epilepsy. 
 

Irenland 
(EpiPGX site RCSI) 

The World Medical Association Declaration of Helsinki 2008, 
the [Irish] 
Data Protection Act 1988, the [Irish] Data Protection 
(Amendment) Act 2003, the [Irish] Disability Act (2005), the 
[Irish] Data Protection Guidelines on Research in the Health 
Sector (Data Protection Commissioner 2007), and Human 
Biological Material: recommendations for Collection, Use and 
Storage in Research (Irish Council for Bioethics; 2005) 
 

Iceland 
(EpiPGX site 
deCODE) 

Samples are kept in the deCODE Biobank, which has an 
operation license from the Ministry of Health and Social 
Security according to the Act on Biobanks no. 110/2000. 
deCODE has a licence Reg. no.134/2000 on the keeping and 
utilisation of biological samples in biobanks 
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Luxembourg 
(EpiPGX site UL) 

There are two national commissions in Luxembourg that issue 
decrees and guidelines concerning ethical issues. These are 
taken into account in biomedicine research performed in 
Luxumbourg. The commissions are: 
Committée Nationale d’Ethique (CNE, www.cne.public.lu) And 
Commission Nationale Pour la Protection des Données (CNPD, 
wwwcnpd.public.lu). 
 

 
Relevant EU legislation and directives 
 
Directive 2005/28/EC or Good Clinical Practice Directive, of 8 April 2005 of the 
European Parliament and of the Council, lays down principles and detailed 
guidelines for good clinical practice as regards investigational medicinal products 
for human use, as well as the requirements for authorisation of the manufacturing 
or importation of such products. 
 
Directive 2001/20/EC or Clinical Trials Directive of 4 April 2001, of the European 
Parliament and of the Council on the approximation of the laws, Regulations and 
administrative provisions of the Member States relating to implementation of good 
clinical practice in the conduct of clinical trials on medicinal products for human 
use. 
 
Directive 95/46/EC of the European Parliament and of the Council of 24 October 
1995 on the protection of individuals with regard to the processing of personal 
data and on the free movement of such data 
 
International conventions and declarations 
 
WORLD MEDICAL ASSOCIATION DECLARATION OF HELSINKI: Ethical Principles for 
Medical Research Involving Human Subjects (Adopted by the 18th WMA General 
Assembly, Helsinki, Finland, June 1964, and amended by the 29th WMA General 
Assembly, Tokyo, Japan, October 1975; 35th WMA General Assembly, Venice, Italy, 
October 1983; 41st WMA General Assembly, Hong Kong, September 1989; 48th 
WMA General Assembly, Somerset West, Republic of South Africa, October 1996; 
and the 52nd WMA General Assembly, Edinburgh, Scotland, October 2000; Note of 
Clarification on Paragraph 29 added by the WMA General Assembly, Washington 
2002; Note of Clarification on Paragraph 30 added by the WMA General Assembly, 
Tokyo 2004) 

 

 

http://www.cne.public.lu/
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Site Ethics committee approving the study 
 

UCL Joint Research Ethics Committee, National Hospital for 
Neurology and Neurosurgery and Institute of Neurology, 
approval 00/N081 

ULB Comité d'Ethique de l'Hôpital Erasme 
IGG Ethics Committee for Scientific and Biomedical Research and for 

Clinical Experimentation, Instituto Gianina Gaslini 
EKUT Die Ethik-Kommission an der Medizinischen Fakultät der 

Universität Tübingen 
SEIN Medisch-Ethische Commissie SEIN 
UKB Ethikkommission an der Medizinischen Fakultät der Rheinischen 

Friedrich-Wilhelms-Universität Bonn 
RCSI Research protocol has been approved by Beaumont Hospital 

Ethics Committee (study code 02/44, title “Pharmacogenetics of 
Epilepsy”) 

BHSCT BHSCT Research Ethics Committee 
UMCU CCMO / Medisch Ethische Toetsingsommissie (METC) van het 

UMCU (study code 09/352, title “The Genetics of epilepsy”, 
approval ref: AvG/vb/10/15096 

ULIV North West 3 Research Ethics Committee, approval ref: 
10/H1002/5 

Imperial North-West Multicentre Research Ethics Committee, approval 
ref: MREC 02/8/45 

UGLA West Ethics Committee, North Glasgow University Hospitals 
NHS Trust, approval ref: 02/119(2) 
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Appendix 6. GWAS1 and GWAS2 power and sample size curves 
 

GWAS1 power and sample size curves 

 

All calculations assume a co-dominant model, prevalence of DRE in the epilepsy population 
0.3, r2 of 1.0 between a causal variant and a genotyped marker, and a genome-wide statistical 
significance threshold 5*10-8. 
Specific parameters: 

— RR 2; disease allele frequency 0.1; marker allele frequency 0.1; control to case ratio 0.6 

— RR 2; disease allele frequency 0.05; marker allele frequency 0.05; control to case ratio 0.6 

— RR 1.5; disease allele frequency 0.1; marker allele frequency 0.05; control to case ratio 0.6 

— RR 1.5; disease allele frequency 0.05; marker allele frequency 0.05; control to case ratio 1 

— RR 1.3; disease allele frequency 0.1; marker allele frequency 0.1; control to case ratio 1 

— RR 1.3; disease allele frequency 0.1; marker allele frequency 0.1; control to case ratio 1 
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GWAS2 power and sample size curves 

 

The following assumptions were used for all power calculations: a co-dominant model, 
prevalence of DRE in the epilepsy population 0.0015, r2 of 1.0 between a causal variant and a 
genotyped marker, and a genome-wide statistical significance threshold 5*10-8. 
Parameters specific to individual calculations: 

— RR 2; disease allele frequency 0.05; marker allele frequency 0.05; control to case ratio 3.3 

— RR 1.5; disease allele frequency 0.1; marker allele frequency 0.1; control to case ratio 3.3 

— RR 1.5; disease allele frequency 0.05; marker allele frequency 0.05; control to case ratio 3.3 

— RR 1.2; disease allele frequency 0.1; marker allele frequency 0.1; control to case ratio 3.3 
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Appendix 7. MDS analyses of cases and controls included in 
GWAS1 and GWAS2 
 

 

MDS analysis of drug-resistant cases and drug-responsive controls 
included in GWAS1 

 

 

o Drug-resistant epilepsy cases 

o Drug-responsive epilepsy controls 

C1 = principal coordinate 1, C2 = principal coordinate 2. 
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MDS analysis of drug-resistant cases and healthy controls included in 
GWAS2 

 

 

o Drug-resistant epilepsy cases 

o Healthy controls 

C1 = principal coordinate 1, C2 = principal coordinate 2. 

 

 

 

 

 

 

 



311 
 

Appendix 8. GWAS1 and GWAS2 statistics for SNPs in genes previously associated with drug resistance in 
epilepsy 

Gene 
 
 

SNP Base pair 
position 

Chr Allele 1, 
allele 2 

MAF 
(minor allele) 

P-value 
(FaSTLMM) 
GWAS1  

OR (95% CI) P-value 
(FaSTLMM) 
GWAS2  
 

OR (95% CI) 

CYP2C9 rs9332104 96698690 10 T, C 0.2165 (C) 8.57*10-01 1.00 (0.97-1.02) 2.90*10-01 0.99 (0.98-1.00) 
 rs9332108 96699980 10 T, C 0.0724 (C) 9.42*10-01 1.00 (0.96-1.04) 3.38*10-01 0.99 (0.97-1.01) 
 rs2253635 96700537 10 C, T 0.3766 (C) 2.12*10-01 0.99 (0.97-1.01) 4.67*10-01 1.00 (0.99-1.01) 
 rs1799853 96702047 10 C, T 0.1213 (T) 4.23*10-01 0.99 (0.96-1.02) 2.69*10-01 1.01 (0.99-1.02) 
 rs4086116 96707202 10 C, T 0.1939 (T) 5.46*10-01 0.99 (0.97-1.02) 7.72*10-01 1.00 (0.99-1.01) 
 rs17443251 96707890 10 T, C 0.1232 (C) 4.25*10-01 0.99 (0.96-1.02) 1.99*10-01 1.01 (1.00-1.02) 
 rs10509679 96708226 10 G, A 0.1734 (A) 8.82*10-01 1.00 (0.98-1.03) 9.01*10-01 1.00 (0.99-1.01) 
 rs4918766 96711884 10 G, A 0.3692 (A) 6.37*10-01 1.00 (0.97-1.02) 7.35*10-01 1.00 (0.99-1.01) 
 rs2475376 96712400 10 A, G 0.1573 (A) 6.99*10-01 0.99 (0.97-1.02) 9.09*10-01 1.00 (0.99-1.01) 
 rs7897079 96720518 10 A, G 0.2163 (G) 8.18*10-01 1.00 (0.97-1.02) 2.75*10-01 0.99 (0.98-1.01) 
 rs2153628 96723424 10 A, G 0.2163 (G) 8.18*10-01 1.00 (0.97-1.02) 2.75*10-01 0.99 (0.98-1.01) 
 rs4917639 96725535 10 A, C 0.1940 (C) 5.65*10-01 0.99 (0.97-1.02) 7.54*10-01 1.00 (0.99-1.01) 
 rs12569850 96727160 10 A, G 0.1734 (G) 8.75*10-01 1.00 (0.97-1.03) 9.02*10-01 1.00 (0.99-1.01) 
 rs9332168 96731292 10 C, T 0.2166 (T) 8.59*10-01 1.00 (0.97-1.02) 2.50*10-01 0.99 (0.98-1.01) 
 rs9332169 96731310 10 A, G 0.0726 (G) 9.25*10-01 1.00 (0.96-1.04) 3.20*10-01 0.99 (0.97-1.01) 
 rs9332172 96731788 10 A, G 0.1946 (G) 5.63*10-01 0.99 (0.97-1.02) 6.92*10-01 1.00 (0.99-1.01) 
 rs9332174 96732097 10 A, G 0.2166 (G) 8.59*10-01 1.00 (0.97-1.02) 2.50*10-01 0.99 (0.98-1.01) 
 rs17110288 96732599 10 G, A 0.0726 (A) 9.25*10-01 1.00 (0.96-1.04) 3.15*10-01 0.99 (0.97-1.01) 
 rs1856908 96732731 10 T, G 0.3758 (T) 2.54*10-01 0.99 (0.97-1.01) 4.81*10-01 1.00 (0.99-1.01) 
 rs9325473 96734582 10 G, A 0.0726 (A) 9.25*10-01 1.00 (0.96-1.04) 3.11*10-01 0.99 (0.97-1.01) 
 rs1057910 96741053 10 A, C 0.0726 (C) 9.25*10-01 1.00 (0.96-1.04) 3.15*10-01 0.99 (0.97-1.01) 
 rs1934967 96741426 10 C, T 0.2157 (T) 3.72*10-01 1.01 (0.99-1.04) 3.47*10-01 1.01 (0.99-1.02) 
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 rs1934968 96741817 10 A, G 0.1101 (A) 7.95*10-01 1.00 (0.97-1.04) 8.80*10-01 1.00 (0.98-1.01) 
 rs9332214 96743108 10 T, C 0.0726 (C) 9.25*10-01 1.00 (0.96-1.04) 3.20*10-01 0.99  (0.97-1.01) 
 rs9332217 96743228 10 A, C 0.0726 (C) 9.25*10-01 1.00 (0.96-1.04) 3.15*10-01 0.99 (0.97-1.01) 
 rs9332220 96743943 10 G, A 0.1939 (A) 5.80*10-01 0.99 (0.97-1.02) 7.08*10-01 1.00 (0.99-1.01) 
 rs9332222 96744064 10 G, A 0.1220 (A) 3.99*10-01 0.99 (0.95-1.02) 3.23*10-01 1.01 (0.99-1.02) 
 rs9332227 96745180 10 T, G 0.0726 (G) 9.25*10-01 1.00 (0.96-1.04) 3.14*10-01 0.99 (0.97-1.01) 
 rs2298037 96746078 10 C, T 0.1732 (T) 8.52*10-01 1.00 (0.97-1.03) 8.87*10-01 1.00 (0.99-1.01) 
 rs9332238 96748492 10 G, A 0.1940 (A) 5.74*10-01 0.99 (0.97-1.02) 8.14*10-01 1.00 (0.99-1.01) 
          
CYP2C19 rs12768009 96525865 10 G, A 0.1511 (A) 5.27*10-01 1.01 (0.98-1.04) 8.64*10-01 1.00 (0.99-1.01) 
 rs6583954 96534263 10 C, T 0.1534 (T) 4.51*10-01 1.01 (0.98-1.04) 9.42*10-01 1.00 (0.99-1.01) 
 rs7916649 96534584 10 G, A 0.4417 (A) 9.63*10-01 1.00 (0.98-1.02) 2.56*10-01 0.99 (0.98-1.00) 
 rs4388808 96536056 10 A, G 0.1767 (G) 8.06*10-01 1.00 (0.97-1.02) 8.37*10-01 1.00 (0.99-1.01) 
 rs7068577 96536708 10 C, T 0.2185 (T) 7.60*10-01 1.00 (0.97-1.02) 3.87*10-01 1.00 (0.98-1.01) 
 rs17878673 96539144 10 A, G 0.0695 (G) 8.00*10-01 1.01 (0.96-1.05) 4.28*10-01 0.99 (0.97-1.01) 
 rs4304697 96540889 10 G, A 0.0695 (A) 8.15*10-01 1.00 (0.96-1.05) 4.43*10-01 0.99 (0.97-1.01) 
 rs7088784 96541373 10 A, G 0.0715 (G) 8.75*10-01 1.00 (0.96-1.04) 4.63*10-01 0.99 (0.97-1.01) 
 rs4244285 96541616 10 G, A 0.1511 (A) 5.27*10-01 1.01 (0.98-1.04) 9.94*10-01 1.00 (0.99-1.01) 
 rs12571421 96541982 10 A, G 0.1512 (G) 5.00*10-01 1.01 (0.98-1.04) 9.96*10-01 1.00 (0.99-1.01) 
 rs35390752 96543823 10 T, G 0.1511 (G) 5.27*10-01 1.01 (0.98-1.04) 9.79*10-01 1.00 (0.99-1.01) 
 rs12767583 96547463 10 C, T 0.1511 (T) 5.27*10-01 1.01 (0.98-1.04) 9.67*10-01 1.00 (0.99-1.01) 
 rs4494250 96563757 10 G, A 0.3423 (A) 4.85*10-01 1.01 (0.99-1.03) 1.53*10-01 1.01 (1.00-1.02) 
 rs12772672 96566889 10 A, G 0.1510 (G) 5.32*10-01 1.01 (0.98-1.04) 9.64*10-01 1.00 (0.99-1.01) 
 rs4641393 96567386 10 C, T 0.1512 (T) 5.06*10-01 1.01 (0.98-1.04) 9.94*10-01 1.00 (0.99-1.01) 
 rs1322179 96575242 10 C, T 0.1511 (T) 5.27*10-01 1.01 (0.98-1.04) 9.84*10-01 1.00 (0.99-1.01) 
 rs10509678 96576190 10 A, C 0.0692 (C) 7.53*10-01 1.01 (0.97-1.05) 4.59*10-01 0.99 (0.98-1.01) 
 rs10786172 96581094 10 A, G 0.3423 (G) 4.77*10-01 1.01 (0.99-1.03) 1.50*10-01 1.01 (1.00-1.02) 
 rs11592737 96603414 10 A, G 0.2189 (G) 8.43*10-01 1.00 (0.97-1.02) 3.92*10-01 1.00 (0.98-1.01) 
 rs1322181 96609064 10 G, A 0.4420 (A) 8.81*10-01 1.00 (0.98-1.02) 2.36*10-01 0.99 (0.98-1.00) 
 rs4917623 96609568 10 T, C 0.4809 (T) 6.68*10-01 1.00 (0.98-1.03) 2.51*10-01 1.01 (1.00-1.02) 
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 rs17878382 96610631 10 T, C 0.0692 (C) 7.53*10-01 1.01 (0.97-1.05) 5.76*10-01 1.00 (0.98-1.01) 
 rs12779363 96612040 10 G, A 0.2191 (A) 8.28*10-01 1.00 (0.97-1.02) 4.26*10-01 1.00 (0.98-1.01) 
 rs12268020 96612371 10 C, T 0.2189 (T) 8.43*10-01 1.00 (0.97-1.02) 4.00*10-01 1.00 (0.98-1.01) 
          
ABCB1 rs17149699 87141751 7 C, T 0.0367 (T) 9.67*10-01 1.00 (0.95-1.06) 4.93*10-01 1.01 (0.98-1.03) 
 rs4148751 87143153 7 T, C 0.0364 (C) 9.29*10-01 1.00 (0.95-1.06) 4.37*10-01 1.01 (0.99-1.04) 
 rs4148750 87143275 7 T, C 0.0370 (C) 9.71*10-01 1.00 (0.94-1.06) 4.66*10-01 1.01 (0.98-1.03) 
 rs1922243 87143504 7 C, T 0.0370 (T) 9.71*10-01 1.00 (0.94-1.06) 4.88*10-01 1.01 (0.98-1.03) 
 rs4148740 87152103 7 A, G 0.1283 (G) 7.46*10-01 1.00 (0.96-1.03) 7.69*10-01 1.00 (0.99-1.01) 
 rs2373588 87153160 7 G, A 0.0325 (A) 6.12*10-01 1.02 (0.96-1.08) 2.62*10-01 1.02 (0.99-1.04) 
 rs10280101 87153585 7 A, C 0.1287 (C) 6.97*10-01 0.99 (0.96-1.03) 8.25*10-01 1.00 (0.99-1.02) 
 rs10225473 87154646 7 A, G 0.1286 (G) 7.39*10-01 0.99 (0.96-1.03) 8.07*10-01 1.00 (0.99-1.02) 
 rs7787082 87157051 7 G, A 0.1615 (A) 8.65*10-01 1.00 (0.97-1.03) 4.50*10-01 1.00 (0.99-1.02) 
 rs2032583 87160561 7 A, G 0.1289 (G) 6.85*10-01 0.99 (0.96-1.03) 8.66*10-01 1.00 (0.99-1.02) 
 rs2032582 87160618 7 A, C 0.4532 (A) 2.16*10-01 1.01 (0.99-1.04) 7.00*10-01 1.00 (0.99-1.01) 
 rs4148739 87161049 7 T, C 0.1289 (C) 6.85*10-01 0.99 (0.96-1.03) 8.66*10-01 1.00 (0.99-1.02) 
 rs11983225 87161520 7 T, C 0.1289 (C) 6.85*10-01 0.99 (0.96-1.03) 8.66*10-01 1.00 (0.99-1.02) 
 rs11760837 87163016 7 T, C 0.1289 (C) 6.85*10-01 0.99 (0.96-1.03) 8.66*10-01 1.00 (0.99-1.02) 
 rs10274587 87164483 7 G, A 0.1289 (A) 6.85*10-01 0.99 (0.96-1.03) 8.73*10-01 1.00 (0.99-1.02) 
 rs10248420 87164986 7 A, G 0.1615 (G) 9.18*10-01 1.00 (0.97-1.03) 4.23*10-01 1.01 (0.99-1.02) 
 rs2235040 87165750 7 C, T 0.1289 (T) 6.85*10-01 0.99 (0.96-1.03) 8.73*10-01 1.00 (0.99-1.02) 
 rs12668877 87167004 7 C, T 0.0186 (T) 2.39*10-01 0.95 (0.88-1.03) 6.64*10-01 0.99 (0.96-1.03) 
 rs3789246 87168027 7 C, T 0.0186 (T) 2.40*10-01 0.96 (0.88-1.03) 6.57*10-01 0.99 (0.96-1.03) 
 rs7795817 87169037 7 C, T 0.0187 (T) 2.24*10-01 0.95 (0.88-1.03) 6.32*10-01 0.99 (0.96-1.03) 
 rs12720067 87169356 7 C, T 0.1277 (T) 8.35*10-01 1.00 (0.97-1.03) 7.16*10-01 1.00 (0.99-1.02) 
 rs4148737 87171152 7 T, C 0.4168 (C) 4.86*10-01 1.01 (0.99-1.03) 4.67*10-01 0.99 (0.99-1.01) 
 rs4148736 87171383 7 G, A 0.4169 (A) 4.96*10-01 1.01 (0.99-1.03) 4.53*10-01 1.00 (0.99-1.01) 
 rs10276603 87171527 7 T, C 0.1286 (C) 7.33*10-01 0.99 (0.96-1.03) 8.35*10-01 1.00 (0.99-1.02) 
 rs6961419 87172136 7 T, C 0.4167 (C) 4.95*10-01 1.01 (0.99-1.03) 4.63*10-01 1.00 (0.99-1.01) 
 rs4148735 87172881 7 C, T 0.4167 (T) 5.04*10-01 1.01 (0.99-1.03) 4.69*10-01 1.00 (0.99-1.01) 
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 rs2235046 87174066 7 T, C 0.4545 (T) 6.40*10-01 1.01 (0.98-1.03) 5.97*10-01 1.00 (0.99-1.01) 
 rs2091766 87174504 7 C, T 0.3856 (T) 8.34*10-01 1.02 (1.00-1.04) 7.81*10-01 1.00 (0.99-1.01) 
 rs2235013 87178626 7 C, T 0.4834 (T) 8.07*10-01 1.00 (0.98-1.02) 8.11*10-01 1.00 (0.99-1.01) 
 rs2235035 87179086 7 G, A 0.3147 (A) 8.54*10-02 1.02 (1.00-1.04) 4.46*10-01 1.00 (0.99-1.01) 
 rs2235033 87179143 7 A, G 0.4834 (G) 8.07*10-01 1.00 (0.98-1.02) 8.12*10-01 1.00 (0.99-1.01) 
 rs1128503 87179601 7 A, G 0.4382 (A) 8.54*10-01 1.00 (0.98-1.02) 4.07*10-01 1.00 (0.99-1.01) 
 rs10276036 87180198 7 C, T 0.4381 (C) 8.32*10-01 1.00 (0.98-1.02) 4.01*10-01 1.00 (0.99-1.01) 
 rs12704364 87181175 7 C, T 0.4833 (T) 8.25*10-01 1.00 (0.98-1.02) 8.08*10-01 1.00 (0.99-1.01) 
 rs6961665 87181418 7 C, A 0.4832 (A) 8.50*10-01 1.00 (0.98-1.02) 8.08*10-01 1.00 (0.99-1.01) 
 rs1922240 87183354 7 T, C 0.3138 (C) 1.04*10-01 1.02 (1.00-1.04) 4.46*10-01 1.00 (0.99-1.01) 
 rs1922241 87185894 7 G, A 0.3146 (A) 8.19*10-02 1.02 (1.00-1.04) 4.83*10-01 1.00 (0.99-1.01) 
 rs868755 87189930 7 T, G 0.4233 (T) 5.36*10-01 1.01 (0.99-1.03) 6.90*10-01 1.00 (0.99-1.01) 
 rs2235023 87190452 7 C, T 0.0783 (T) 9.04*10-01 1.00 (0.96-1.04) 2.49*10-01 0.99 (0.97-1.01) 
 rs11975994 87192731 7 G, A 0.4374 (G) 8.89*10-01 1.00 (0.98-1.02) 4.26*10-01 1.00 (0.99-1.01) 
 rs4148734 87193597 7 G, A 0.2910 (A) 3.44*10-01 1.03 (1.00-1.05) 3.45*10-01 1.01 (0.99-1.02) 
 rs1202170 87195106 7 C, T 0.4783 (C) 8.95*10-01 1.00 (0.98-1.02) 8.28*10-01 1.00 (0.99-1.01) 
 rs1202169 87195850 7 T, C 0.4371 (C) 9.38*10-01 1.00 (0.98-1.02) 4.34*10-01 1.00 (0.99-1.01) 
 rs1202168 87195962 7 G, A 0.4370 (A) 9.15*10-01 1.00 (0.98-1.02) 4.54*10-01 1.00 (0.99-1.01) 
 rs1202167 87197059 7 C, T 0.4371 (T) 8.73*10-01 1.00 (0.98-1.02) 5.03*10-01 1.00 (0.99-1.01) 
 rs1024409 87198367 7 G, A 0.3768 (A) 2.04*10-01 0.95 (0.88-1.03) 9.75*10-01 1.00 (0.97-1.04) 
 rs2235015 87199564 7 C, A 0.2058 (A) 9.27*10-01 1.00 (0.97-1.03) 7.43*10-01 1.00 (0.99-1.01) 
 rs10259849 87200842 7 C, T 0.4150 (C) 3.70*10-01 0.98 (0.95-1.00) 4.03*10-01 1.00 (0.99-1.01) 
 rs2520464 87201086 7 C, T 0.0187 (T) 8.72*10-01 1.00 (0.98-1.02) 5.96*10-01 1.00 (0.99-1.01) 
 rs10280623 87202544 7 T, C 0.1980 (C) 9.16*10-01 1.00 (0.97-1.03) 8.67*10-01 1.00 (0.99-1.01) 
 rs10264990 87202615 7 C, T 0.2929 (C) 5.22*10-01 0.99 (0.97-1.02) 5.90*10-01 1.00 (0.99-1.01) 
 rs1202180 87203840 7 C, T 0.4370 (C) 1.79*10-01 0.99 (0.96-1.01) 9.09*10-01 1.00 (0.99-1.01) 
 rs1202179 87204279 7 C, T 0.1957 (T) 2.00*10-01 0.99 (0.96-1.01) 9.16*10-01 1.00 (0.99-1.01) 
 rs1989830 87205663 7 A, G 0.3324 (A) 2.11*10-01 0.99 (0.96-1.01) 9.39*10-01 1.00 (0.99-1.01) 
 rs1202175 87209150 7 G, A 0.3467 (G) 2.23*10-01 0.99 (0.96-1.01) 9.17*10-01 1.00 (0.99-1.01) 
 rs1202172 87210974 7 C, A 0.3432 (C) 2.64*10-01 0.99 (0.97-1.01) 9.52*10-01 1.00 (0.99-1.01) 
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 rs4148733 87213232 7 A, G 0.3422 (G) 4.49*10-01 1.01 (0.98-1.04) 5.56*10-01 1.00 (0.99-1.02) 
 rs1202185 87213384 7 C, T 0.3416 (C) 2.31*10-01 0.99 (0.96-1.01) 9.54*10-01 1.00 (0.99-1.01) 
 rs1202184 87213901 7 C, T 0.3429 (C) 1.94*10-01 0.99 (0.97-1.01) 7.66*10-01 1.00 (0.99-1.01) 
 rs1202182 87215304 7 G, A 0.1431 (G) 2.31*10-01 0.99 (0.96-1.01) 9.49*10-01 1.00 (0.99-1.01) 
 rs1202181 87216150 7 G, A 0.3418 (G) 2.19*10-01 0.99 (0.96-1.01) 9.26*10-01 1.00 (0.99-1.01) 
 rs12535512 87220334 7 T, C 0.4990 (C) 8.80*10-01 1.00 (0.98-1.02) 9.57*10-01 1.00 (0.99-1.01) 
 rs1858923 87221216 7 A, G 0.3418 (G) 2.22*10-01 0.99 (0.97-1.01) 3.51*10-01 1.00 (0.99-1.01) 
 rs17149792 87224251 7 C, T 0.3419 (T) 8.68*10-02 0.94 (0.88-1.01) 4.18*10-01 0.99 (0.96-1.02) 
 rs2214104 87224429 7 A, G 0.4350 (G) 6.00*10-02 0.93 (0.88-0.98) 4.70*10-01 0.98 (0.95-1.00) 
 rs2188525 87224772 7 C, A 0.4739 (A) 4.58*10-01 0.92 (0.88-0.98) 2.16*10-01 0.97 (0.95-1.00) 
 rs3213619 87230193 7 A, G 0.0235 (G) 4.58*10-01 0.92 (0.87-0.98) 3.99*10-01 0.97 (0.95-1.00) 
 rs4728709 87233602 7 G, A 0.0390 (A) 7.96*10-02 0.93 (0.89-0.97) 3.90*10-01 0.97 (0.95-1.00) 
 rs17149810 87233989 7 C, T 0.0389 (T) 7.90*10-02 0.93 (0.89-0.97) 3.88*10-01 0.98 (0.96-1.00) 
 rs17328288 87237187 7 T, C 0.0389 (C) 3.59*10-01 0.92 (0.87-0.97) 1.82*10-01 0.97 (0.95-0.99) 
 rs28381787 87237759 7 C, T 0.0621 (T) 3.56*10-01 0.92 (0.87-0.97) 2.10*10-01 0.97 (0.95-1.00) 
 rs4148731 87239329 7 G, A 0.0621 (A) 6.06*10-02 0.94 (0.87-1.00) 3.52*10-01 0.99 (0.95-1.02) 
 rs4148730 87239351 7 A, G 0.0390 (G) 6.06*10-02 0.94 (0.87-1.00) 3.65*10-01 0.99 (0.95-1.02) 
 rs28381780 87246595 7 A, G 0.0390 (G) 3.47*10-01 0.92 (0.87-0.97) 1.66*10-01 0.97 (0.95-0.99) 
 rs28381779 87246983 7 G, A 0.0232 (A) 8.22*10-01 1.00 (0.97-1.04) 2.45*10-01 1.01 (0.99-1.02) 
 rs28381775 87247873 7 T, C 0.0232 (C) 6.84*10-02 0.94 (0.87-1.00) 3.76*10-01 0.99 (0.95-1.02) 
 rs17328447 87260146 7 T, C 0.0391 (C) 3.30*10-01 0.92 (0.87-0.97) 1.61*10-01 0.97 (0.95-0.99) 
 rs28381767 87260242 7 G, A 0.1264 (A) 3.30*10-01 0.92 (0.97-0.87) 1.61*10-01 0.97 (0.95-0.99) 
 rs10231033 87261580 7 A, G 0.0232 (G) 7.77*10-02 0.94 (0.88-1.01) 3.99*10-01 0.99 (0.96-1.02) 
 rs10276499 87261736 7 T, C 0.0391 (C) 7.39*10-02 0.93 (0.89-0.97) 2.79*10-01 0.98 (0.96-1.00) 
 rs10264856 87262581 7 G, A 0.0391 (A) 7.35*10-02 0.93 (0.89-0.97) 2.88*10-01 0.98 (0.96-1.00) 
 rs17250003 87262723 7 A, G 0.0233 (G) 3.28*10-01 0.92 (0.87-0.93) 1.59*10-01 0.97 (0.94-0.99) 
 rs17149840 87262943 7 G, A 0.0626 (G) 7.38*10-02 0.94 (0.87-1.01) 3.81*10-01 0.99 (0.95-1.02) 
 rs2214101 87269497 7 T, C 0.0626 (C) 4.73*10-01 0.92 (0.88-0.97) 1.31*10-01 0.98 (0.96-0.99) 
 rs2188532 87273134 7 C, T 0.0391 (T) 3.25*10-01 0.92 (0.87-0.97) 1.94*10-01 0.97 (0.95-1.00) 
 rs10275831 87275107 7 C, T 0.0233 (T) 7.68*10-02 0.94 (0.88-1.01) 3.86*10-01 0.99 (0.96-1.02) 
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 rs10267099 87278760 7 G, A 0.0624 (G) 3.16*10-01 0.99 (0.96-1.01) 8.95*10-01 1.00 (0.99-1.01) 
 rs12539395 87279856 7 C, T 0.0391 (T) 7.15*10-02 0.93 (0.89-0.97) 2.90*10-01 0.98 (0.96-1.00) 
 rs28746492 87287880 7 A, G 0.0233 (G) 7.66*10-02 0.94 (0.88-1.01) 3.86*10-01 0.99 (0.96-1.02) 
 rs6951067 87288324 7 T, C 0.2413 (C) 7.14*10-02 0.93 (0.89-0.97) 2.90*10-01 0.98 (0.96-1.00) 
 rs6957599 87315881 7 G, A 0.0626 (A) 7.53*10-02 0.94 (0.88-1.01) 3.81*10-01 0.99 (0.95-1.02) 
 rs17250255 87322386 7 A, G 0.0233 (G) 2.90*10-01 0.92 (0.87-0.97) 1.41*10-01 0.97 (0.95-0.99) 
 rs17328880 87323145 7 C, T 0.0626 (T) 2.91*10-01 0.92 (0.87-0.97) 1.26*10-01 0.97 (0.94-0.99) 
 rs7796247 87324386 7 G, A 0.0233 (A) 7.53*10-02 0.94 (0.88-1.01) 4.34*10-01 0.99 (0.96-1.02) 
 rs6465118 87330423 7 G, A 0.0392 (A) 4.33*10-01 0.92 (0.88-0.97) 1.84*10-01 0.98 (0.96-1.00) 
          
SCN1A rs10208529 27786188 2 A, T 0.2774 (T) 7.24*10-01 1.00 (0.98-1.03) 2.09*10-01 0.99 (0.98-1.00) 
 rs4989185 10123918 2 A, T 0.2025 (T) 5.04*10-01 0.99 (0.97-1.02) 2.83*10-01 0.99 (0.98-1.01) 
 rs55722221 101611283 2 G, C 0.1355 (C) 3.90*10-01 1.01 (0.98-1.05) 3.11*10-01 1.01 (0.99-1.02) 
 rs4849269 114486907 2 T, C 0.4422 (T) 1.93*10-01 0.99 (0.97-1.01) 1.54*10-01 0.99 (0.98-1.00) 
 rs4849266 114455116 2 C, T 0.4424 (C) 2.13*10-01 0.99 (0.97-1.01) 1.58*10-01 0.99 (0.98-1.00) 
 rs4849264 114454908 2 T, G 0.4422 (T) 2.26*10-01 0.99 (0.97-1.01) 1.76*10-01 0.99 (0.98-1.00) 
 rs4849265 114455006 2 T, C 0.4423 (T) 2.36*10-01 0.99 (0.97-1.01) 1.79*10-01 0.99 (0.98-1.00) 
 rs4849268 111694330 2 G, A 0.2931 (G) 3.84*10-01 1.01 (0.99-1.03) 1.88*10-01 1.00 (0.99-1.01) 
 rs4849267 114469325 2 A, T 0.1285 (T) 7.49*10-01 1.01 (0.97-1.04) 2.67*10-01 1.00 (0.99-1.01) 
 rs4849262 114452256 2 G, A 0.4219 (A) 9.05*10-01 1.00 (0.98-1.02) 6.47*10-01 1.01 (1.00-1.02) 
 rs4849260 114449695 2 T, C 0.3738 (C) 9.34*10-01 1.00 (0.98-1.02) 8.81*10-01 1.00 (0.99-1.02) 
 rs4849263 114454721 2 A, T 0.4102 (T) 9.40*10-01 1.00 (0.98-1.02) 9.10*10-01 0.99 (0.98-1.00) 
 rs1813502 166846016 2 G, A 0.4190 (A) 6.98*10-01 1.00 (0.97-1.02) 5.65*10-02 1.01 (1.00-1.02) 
 rs10497275 166846730 2 A, G 0.1354 (G) 2.25*10-01 0.98 (0.95-1.01) 5.29*10-01 1.00 (0.99-1.02) 
 rs552878 166853054 2 T, C 0.2901 (C) 9.19*10-01 1.00 (0.98-1.02) 3.11*10-02 1.01 (1.00-1.02) 
 rs10497276 166857000 2 C, A 0.1355 (A) 2.40*10-01 0.98 (0.95-1.01) 5.27*10-01 1.00 (0.99-1.02) 
 rs16851356 166860634 2 T, C 0.1348 (C) 2.58*10-01 0.98 (0.95-1.01) 3.94*10-01 1.01 (0.99-1.02) 
 rs577306 166871905 2 C, A 0.3032 (A) 7.81*10-01 1.00 (0.98-1.03) 3.36*10-02 1.01 (1.00-1.02) 
 rs565348 166873299 2 A, C 0.3016 (C) 7.97*10-01 1.00 (0.98-1.03) 2.40*10-02 1.01 (1.00-1.02) 
 rs10182473 166873723 2 T, C 0.2713 (C) 6.16*10-01 1.00 (0.97-1.02) 9.14*10-01 1.00 (0.99-1.01) 



317 
 

 rs498631 166877177 2 C, T 0.4194 (C) 7.03*10-01 1.00 (0.97-1.02) 3.84*10-02 1.01 (1.00-1.02) 
 rs1020853 166879782 2 G, T 0.2711 (T) 6.26*10-01 1.00 (0.97-1.02) 6.65*10-01 1.00 (0.99-1.01) 
 rs10208532 168818426 2 C, T 0.1414 (T) 9.44*10-01 1.00 (0.97-1.03) 9.06*10-01 1.00 (0.98-1.01) 
 rs536744 166881890 2 T, C 0.3571 (C) 7.31*10-01 1.00 (0.98-1.03) 2.63*10-02 1.01 (1.00-1.02) 
 rs478389 166882828 2 A, G 0.4512 (G) 6.67*10-01 1.00 (0.97-1.02) 4.62*10-02 1.01 (1.00-1.02) 
 rs1834840 166885720 2 C, T 0.1414 (T) 6.41*10-01 1.00 (0.97-1.02) 1.29*10-02 0.99 (0.98-1.00) 
 rs692995 166885949 2 C, A 0.3008 (A) 2.31*10-01 0.97 (0.91-1.02) 5.99*10-01 0.99 (0.97-1.02) 
 rs2298771 166892788 2 C, T 0.4181 (T) 5.68*10-01 0.99 (0.97-1.02) 1.16*10-02 0.99 (0.98-1.00) 
 rs6732655 166895066 2 T, A 0.2200 (A) 5.86*10-01 0.99 (0.97-1.02) 1.22*10-02 0.97 (0.94-1.01) 
 rs2126152 166896143 2 G, A 0.3013 (A) 5.67*10-01 0.99 (0.97-1.02) 1.16*10-02 0.99 (0.98-1.00) 
 rs6432860 166897864 2 G, A 0.0352 (A) 5.67*10-01 0.99 (0.97-1.02) 1.16*10-02 0.99 (0.98-1.00) 
 rs6731591 166898249 2 T, C 0.3017 (C) 3.71*10-01 1.01 (0.99-1.04) 7.80*10-01 1.00 (0.99-1.01) 
 rs538921 166903188 2 A, C 0.3017 (C) 2.20*10-01 0.97 (0.91-1.02) 6.31*10-01 0.99 (0.97-1.02) 
 rs13421166 166903756 2 C, A 0.3017 (A) 5.65*10-01 0.99 (0.97-1.02) 1.21*10-02 0.99 (0.98-1.00) 
 rs1461193 166904346 2 G, A 0.1922 (A) 5.65*10-01 0.99 (0.97-1.02) 1.21*10-02 0.99 (0.98-1.00) 
 rs1542484 166905375 2 A, G 0.0353 (G) 8.47*10-01 1.00 (0.98-1.02) 3.52*10-03 0.99 (0.98-1.00) 
 rs3812718 166909544 2 C, T 0.3017 (T) 8.45*10-01 1.00 (0.98-1.02) 3.46*10-03 0.99 (0.98-1.00) 
 rs3812719 166909559 2 C, A 0.3017 (A) 5.39*10-01 0.99 (0.97-1.02) 1.07*10-02 1.00 (0.98-1.00) 
 rs1972445 166910209 2 G, A 0.4379 (A) 8.45*10-01 1.00 (0.98-1.02) 3.46*10-03 0.99 (0.98-1.00) 
 rs922224 166911912 2 G, A 0.4379 (A) 8.44*10-01 1.00 (0.98-1.02) 3.40*10-03 0.99 (0.98-1.00) 
 rs16851382 166913475 2 G, A 0.3018 (A) 4.53*10-01 0.99 (0.96-1.02) 5.49*10-01 1.00 (0.99-1.02) 
 rs545331 166913962 2 G, A 0.4379 (A) 9.28*10-01 1.00 (0.98-1.03) 1.16*10-02 1.01 (1.00-1.03) 
 rs10930201 166915335 2 C, A 0.4379 (A) 5.30*10-01 0.99 (0.97-1.02) 1.02*10-02 1.00 (0.98-1.00) 
 rs10930202 166915605 2 T, C 0.1614 (C) 2.65*10-01 0.98 (0.95-1.01) 4.49*10-01 1.01 (1.00-1.02) 
 rs10188577 166915897 2 T, C 0.2665 (C) 7.72*10-01 1.00 (0.98-1.02) 1.13*10-02 0.99 (0.98-1.00) 
 rs4667866 166916033 2 A, G 0.3017 (G) 2.40*10-01 0.98 (0.95-1.01) 4.79*10-01 1.01 (0.99-1.02) 
 rs4667867 166916043 2 A, G 0.1361 (G) 5.30*10-01 0.99 (0.97-1.02) 1.02*10-02 0.99 (0.98-1.00) 
 rs7609055 166916253 2 T, C 0.3615 (C) 7.25*10-01 1.00 (0.98-1.03) 6.37*10-03 0.99 (0.98-1.00) 
 rs16851400 166919528 2 T, G 0.1355 (G) 2.07*10-01 0.98 (0.95-1.01) 4.72*10-01 1.01 (1.00-1.02) 
 rs11674130 166919643 2 A, C 0.3017 (C) 2.18*10-01 0.98 (0.95-1.01) 4.43*10-01 1.01 (1.00-1.02) 
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 rs2217198 166919976 2 G, A 0.4437 (A) 6.82*10-01 1.00 (0.97-1.02) 9.21*10-01 1.00 (0.99-1.01) 
 rs1841548 166920430 2 A, G 0.1355 (G) 5.59*10-01 1.01 (0.98-1.03) 5.77*10-01 1.00 (0.98-1.00) 
 rs7607455 166920752 2 T, C 0.1360 (C) 5.69*10-01 1.01 (0.98-1.03) 6.20*10-01 1.00 (0.99-1.00) 
 rs1427651 166920813 2 T, C 0.3365 (C) 2.31*10-01 0.98 (0.95-1.01) 4.15*10-01 1.01 (0.99-1.02) 
 rs557222 166920909 2 G, A 0.2005 (A) 9.01*10-01 1.00 (0.98-1.02) 7.78*10-03 1.01 (1.00-1.02) 
 rs492299 166921698 2 A, G 0.2153 (G) 9.19*10-01 1.00 (0.98-1.03) 1.20*10-02 1.01 (1.00-1.03) 
 rs13397210 166922028 2 C, T 0.1360 (T) 5.59*10-01 1.01 (0.98-1.03) 5.85*10-01 1.00 (0.98-1.01) 
 rs12998913 166922755 2 T, C 0.1355 (C) 1.98*10-01 0.98 (0.95-1.01) 5.24*10-01 1.00 (0.99-1.02) 
 rs1824549 166924971 2 T, G 0.3731 (G) 6.71*10-01 1.00 (0.97-1.02) 9.89*10-01 1.00 (0.99-1.01) 
 rs11692675 166926428 2 T, C 0.2669 (C) 7.62*10-01 1.00 (0.97-1.02) 3.02*10-03 0.98 (0.97-0.99) 
 rs1020852 166927659 2 C, T 0.2005 (T) 5.39*10-01 1.01 (0.98-1.04) 5.91*10-01 1.00 (0.98-1.01) 
 rs2169312 166927896 2 A, G 0.1363 (G) 3.71*10-01 1.01 (0.99-1.04) 7.58*10-01 1.00 (0.99-1.01) 
 rs12613942 166933023 2 A, C 0.3367 (C) 2.48*10-01 0.98 (0.95-1.01) 4.99*10-01 1.00 (0.99-1.02) 
 rs484926 166937584 2 G, A 0.3605 (A) 4.63*10-01 0.99 (0.96-1.02) 6.08*10-01 1.00 (0.99-1.02) 
 rs11884723 166938268 2 C, T 0.2774 (T) 4.86*10-01 1.01 (0.98-1.04) 2.99*10-03 1.02 (1.01-1.03) 
 rs497594 166941773 2 A, G 0.2003 (G) 6.01*10-01 0.99 (0.97-1.02) 9.07*10-01 1.00 (0.99-1.01) 
 rs13004083 166945367 2 A, G 0.1013 (G) 9.25*10-01 1.00 (0.98-1.03) 4.61*10-03 1.02 (1.01-1.03) 
 rs580041 166950510 2 C, T 0.0497 (T) 3.87*10-01 0.99 (0.97-1.01) 2.62*10-03 0.99 (0.98-1.00) 
 rs498918 166951160 2 G, A 0.1941 (A) 5.88*10-01 0.99 (0.97-1.02) 1.07*10-02 0.99 (0.98-1.00) 
 rs12469308 166953372 2 C, T 0.1366 (T) 8.49*10-01 1.00 (0.98-1.03) 5.74*10-01 1.00 (0.99-1.01) 
 rs10930204 166955439 2 T, C 0.2931 (C) 8.40*10-01 1.00 (0.98-1.03) 5.75*10-01 1.00 (0.99-1.01) 
 rs535533 166959505 2 T, C 0.3738 (C) 5.42*10-01 1.01 (0.99-1.03) 3.00*10-01 1.00 (0.98-1.00) 
 rs12999167 166969347 2 C, A 0.4219 (A) 6.55*10-02 1.04 (1.00-1.08) 5.22*10-02 1.02 (1.00-1.03) 
 rs666833 166982290 2 C, T 0.4102 (C) 5.11*10-02 0.97 (0.94-1.00) 9.27*10-03 0.98 (0.97-1.00) 
 rs533202 166983181 2 A, C 0.4422 (A) 1.05*10-01 0.97 (0.94-1.01) 1.32*10-02 0.98 (0.97-1.00) 
 rs515090 166986354 2 T, C 0.4423 (T) 1.10*10-01 0.97 (0.94-1.01) 1.48*10-02 0.98 (0.97-1.00) 
 rs16851582 166989841 2 A, G 0.4424 (G) 9.56*10-01 1.00 (0.93-1.08) 3.63*10-01 1.01 (0.98-1.05) 
 rs7593275 166991386 2 G, T 0.1285 (T) 7.40*10-01 1.01 (0.95-1.07) 4.11*10-01 1.01 (0.98-1.04) 
 rs4233806 166996841 2 A, G 0.4422 (G) 8.67*10-01 1.00 (0.97-1.02) 5.11*10-01 1.00 (0.99-1.01) 
 rs6746010 167004057 2 A, C 0.1921 (C) 8.95*10-01 1.00 (0.97-1.02) 5.14*10-01 1.00 (0.99-1.01) 



319 
 

 
 rs6749736 167004685 2 A, G 0.2303 (A) 8.16*10-01 1.00 (0.98-1.03) 8.38*10-01 1.00 (0.99-1.01) 
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