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THE CENTER AND CYCLICITY PROBLEMS FOR QUARTIC
LINEAR-LIKE REVERSIBLE SYSTEMS

LEONARDO P. C. DA CRUZ, VALERY G. ROMANOVSKI, AND J. TORREGROSA

ABSTRACT. In this paper we study a family of quartic linear-like reversible polynomial
systems having a nondegenerate center at the origin. This family has degree one with
respect to one of the variables. We are interested in systems in this class having two
extra nondegenerate centers outside the straight line of symmetry. The geometrical
configuration of these centers is aligned or triangular. We solve the center problem
in both situations and, in the second case, we study the limit cycles obtained from a
simultaneous degenerate Hopf bifurcation in the quartic polynomials class.

1. INTRODUCTION

Let us consider a planar analytic system of ordinary differential equations defined in a
neighborhood of the origin, (#,9) = (f(z,v), g(z,y)). We are interested in the local struc-
ture of the solutions near an equilibrium point of nondegenerate center-focus type located
at the origin. That is, a point with the Jacobian matrix having nonzero determinant and
null trace. More specifically, assuming f(0) = ¢(0) = 0, if we write the eigenvalues of the
Jacobian matrix of (f,g) at 0 as a5, then o = 0 and § # 0. So, after a time rescaling,
we can assume that § = 1, and we can write the corresponding system in the canonical
form

(#,9) = (=y + falz, 9), 2 + gnlz,9)), (1)
where f,, and g, are polynomials of degree n, which do not contain neither constant nor
linear terms. The problem of distinguishing whether the singular point at the origin of (1)
is a center or a focus is known as the Poincaré center problem, the center-focus problem,
or just the center problem. Even this problem was partially solved by Lyapunov, see [20],
it has been studied for some fixed values of the degree n during more than a century
by many authors. The only family completely investigated is the quadratic one. The
study of this family was started by Dulac in 1908 in [11], and also performed by Kapteyn
some years later, see [18, 19]. Up to the work of Frommer ([14]), the coefficient center
conditions for existence of a center were not published. The problem was investigated
for the quadratic system in the real form and the computations were rather difficult.
The correct center conditions were published by Saharnikov ([28]) and later by Sibirskir
(|31, 32]). The center conditions are simpler and the center-focus problem is easier to solve
if the system is written in complex coordinates, see |[35]. For the complete cubic family
(when in (1) n = 3), the problem remains unsolved. Only particular families has been
studied, for example the linear plus cubic homogeneous in [33] or cubic with degenerate
infinity in [3]. Some recent works with other cubic families are [1, 7, 8, 29, 30|. For
higher degree systems, none of the homogeneous nonlinearity cases n = 4 and n = 5 are
completely solved, see [2, 13]. In last thirty years, there is a long list list of published
papers studying many particular polynomial families (see, for example, the references in
[13, 25]).
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In this work we are interested in the limit cycles bifurcating simultaneously from re-
versible centers with two extra symmetric centers out of the symmetry line. All considered
centers are nondegenerate. The aim is to do a similar study as the one done by Christopher
in [6] or by Prohens and Torregrosa in [24]. In this last work, the classification problem
for cubic systems having such properties was done. The natural continuation problem
is the study of the cyclicity of reversible quartic systems having a center at the origin.
These systems can be written as

&= —y+anzy + ans’y + aesy’ + am 2’y + arzy’, @)

U=+ agx” + agey® + azr’ + a1y’ + asr’ + anr’y? + aoy’.
Before starting with the simultaneous bifurcation it is necessary to solve the center-focus
problem for (2). This classification problem has been impossible to finish, as similar prob-
lems having too many parameters. We remark that the above system has 12 parameters.
In order to simplify and convert this problem to some tractable one, we propose a re-
stricted family following the ideas in [22]. We consider the quartic linear-like reversible
systems, that is, all polynomial systems with degree four, time reversible with respect to
the z-axis, and having degree one also in the variable z. This family of systems writes as

&= —y +anry + agsy’ + arsry’, 3)

J =T+ apy’ + ary’ + any’.
We recall that the above family is invariant with respect to the change of variables
(x,y,t) = (z,—y, —t).

In Section 3 we will prove that system (3), having two extra symmetric centers out of
the symmetry line, can be written in two different canonical forms. The first corresponds
to the case with three aligned centers over x = 0 and the second with three centers in
a triangular position. The following two results provide the answer to the center-focus
classification problem.

Theorem 1.1. The reversible quartic system (3) having three aligned singularities of
center-focus type can be written as
&= —y— (2c+ b)xy +y* + by’z,
, 1 (4)
g =1x—cy? — §(a2 + 4% 4 2)xy* + ey,

with a > 0 and ¢ > 0 (see Figure 1 right). Moreover, the above system has three aligned
centers at (0,0) and (0,£1) if and only if one of the following conditions holds:

(A1) c=0;
(As) b=a? —4c* +2 = 0.
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FIGURE 1. The two different configurations of centers of system (3)
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Theorem 1.2. The reversible quartic system (3) having three singularities of center-focus
type in a triangular position can be written as

(c+d)yzy (b+d)y* (c+b+d)zy?
- + + :
d d? d? (5)
(a*d + b*d + bed + 2¢)y?  (a*d + b*d — 2 ¢)xy?  (bd + 2)y?
2cd? 2cd? 244

with a > 0, ¢ # 0, and d > 0. See Figure 1 left. Moreover, the above system has three
centers, one al the origin and two more at (—1,%d), if and only if one of the following
conditions holds:

(T7) a*d —2c = b= 0;

bd + 2 = a* + a?b® — a’c® — 2a%cd — a’d? + 4a® + 4b* + 4bc — 4 = 0;

d> —bd+cd—4=2(a*>+b*)+bc—c*—cd =0
—2=c+1=a’4+0*-0b=0;

cd+4=b+c+d=a*>+d*>—4=0;

cd+d*+2=b+c+d=a%>—2c*+2d>+10 = 0;

cd+d* —2=a®+b*+ be = 0;

j=x+

)
)
) d
)
)
)
)Jd—2=b—c=a*+c*—c=0;
To) 2¢+3d =2b—d=d*—4a®> — 4 = 0;
Tio) b+ c+d = a’*d — 2d — 2cd®> — d® + 2¢ + 4d = 0;
)
)
)
)
)
)
)
)
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Ti1) cd+d*>—2=2b—d=d*>—4a*> — 4 =0;

Tio cd+d2—6—3b—c—d:9a —2c24+2d%* -6 = 0;

3) cd+d*>—2=0c2d—bd*> —d®+2b+4d =bc+ 2 —d*+4=a*+ > -2+ d* -4 =0
J)ed—2=b+c—d=ad’+d>*—4=0;

Ad?+2cd+d*—cd—2d? -2 = b+c+d = Ad—3cd® —2d*+-a® —2c2 —2cd+3d>*+-8 = 0;
cd—2=b=a—c=0;

7)ed+2d*> —8=2b—c=a*+d*>—4=0;
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g) > +cd+d®>=b+c+d=0.

The paper is structured as follows. In Section 2 we present some preliminary results on
the center conditions computation, the Darboux integrability, and the degenerate Hopf
bifurcation problem. Section 3 is devoted to deriving the canonical forms (4) and (5). The
center classification is done in Section 4. Finally, the simultaneous limit cycles bifurcation
in some systems with three centers listed above are studied in Section 5.

2. PRELIMINARIES

In this section we recall some classical concepts, necessary to state and prove the results
of this paper. In Section 2.1 we provide the definition and computational algorithm
to compute the center conditions which we use to study the center-focus problem. In
Section 2.2 we explain how the simultaneous degenerate Hopf bifurcations are done for
proving the results of Section 5. Finally, some results on the Darboux integrability are
given in Section 2.3.
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2.1. The center conditions. The approach to characterize when system (1) has a center
at the origin is based on the well known Poincaré—Lyapunov Theorem, see |21, 23|. Before
stating it, we recall the definition of first integral. We say that a nonconstant analytical
function defined in a neighborhood Q of the origin, ® : Q C R* — R?, is a first integral
of system (1) if it is constant along any solution ~y or, equivalently,

L0 0P

0. (6)

~

Theorem 2.1. System (1) has a center at the origin if and only if it admits a local
analytic first integral of the form

O(z,y) = 2° +y° + Z Gret"y". (7)
k+6>3
Moreover, the existence of a formal first integral ® of the above form implies the existence
of a local analytic first integral of the same form.

For a proof of this result we refer to [17, 25]|.

The necessary conditions for the existence of a first integral (7) for system (1) are ob-
tained looking for a formal series (7) satisfying (6). To start the computational procedure
for finding the first N conditions for integrability, we write down (7) up to order 2N + 2

N 2N+2
O(z,y) =2* +y° + Z o™yt (8)
k+£>3
Then, for each + = 3,...,2N + 2 we equate to zero the coefficients of terms of degree ¢ in
the expression
0% 0D oD o
e %, = (=y + fule, y)) 5 + (=2 + gula, y))a—y-

Starting at + = 3, we should solve in a recurrence way each linear system of ¢+ 1 equations
with 7 + 1 variables, g, such that k + ¢ = 7. All linear systems corresponding to odd
degrees, i = 25 + 1, have a unique solution in terms of previous values of g;,. As the
determinant of the linear system that corresponds to an even degree, ¢ = 25 + 2, vanishes,
we need to add an extra condition in order that the linear system has a unique solution.
In fact, at this step, we have one equation more than the number of variables. We add
suitable equations, for the terms 2%/*2 for example, in order that the derivative over the
associated vector field writes as

0P 0P N, i
e + ya—y = ; L;x™7=, (9)

Then, when at least one L; is different from zero ® it is a Lyapunov function in a neigh-
borhood of the origin. Then, system (1) has no local analytic first integral and we say
that the equilibrium point is a weak focus of order k if the first nonzero coefficient in (9)
is Lg. The coefficient L; in (9) is called the j-th Lyapunov quantity. The stability of the
origin is given by the sign of the first nonzero L;.

It is obvious that L; are polynomials in the parameters of system (1). Clearly, for N
big enough, the above algorithm provides a necessary set of conditions, {L; = 0 : j =
1,..., N}, for system (1) be a center. In other words, we can also say that the polynomials
L; represent obstacles for the existence of a first integral. In particular, system (1) admits
a first integral of the form (7) if and only if L; = 0, for all j > 1. Thus, the simultaneous
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vanishing of all focus quantities provides conditions which characterize when a system of
the form (1) has a center at the origin.
The next definition recalls the notion of Bautin ideal and the center variety.

Definition 2.2. The ideal defined by the real focus quantities, BX = (Ly, Lo, ...) C C[\],
where X\ represents all the parameters of system (1), is called the real Bautin ideal. The
affine variety VR = V(BR) is called the real center variety of system (1).

By the Hilbert Basis Theorem there exists a positive integer j such that B* = B} =
(L1,...,L;). The main difficulty is that there is no technique to get j a priori. Notice that
the inclusion V& = V(B®) C V(Bf) holds for any 7 > 1. The opposite inclusion, for a
fixed j, is verified finding the irreducible decomposition of V(B}), see [25], such that any
point of each component of the decomposition corresponds to a system having a center at
the origin. To find the irreducible decomposition of V(B]JR), we perform the computations
with the Computer Algebra System SINGULAR (|9, 10]). In Section 4 we explain this
procedure in more detail.

2.2. Degenerate Hopf bifurcation. Roughly speaking, we can say that the cyclicity of
an equilibrium point is the maximum number of isolated periodic orbits bifurcating from
it. We are interested only in the limit cycles bifurcating from nondegenerate monodromic
points, where the return map is well defined and analytic. Moreover, both unperturbed
systems and perturbations are polynomials of degree four in the variables x,y.

With the notation introduced above, the classical bifurcation known as the Hopf bifur-
cation is the emergence of a limit cycle from a weak-focus of first order varying the trace
of the matrix of the linearized system from zero to a small enough but nonzero value. We
will denote by Lo the trace of the perturbed system, clearly Ly = 0 for the unperturbed
one. More concretely, the origin of the unperturbed system is stable (resp. unstable) when
Ly <0 (resp. Ly > 0). Then, the perturbed system, when L is a small enough positive
(resp. negative) real number, a small stable (resp. unstable) limit cycle bifurcates from
the origin. This is because the monodromic property remains but the local stability of
the equilibrium point changes from stable to unstable. The degenerate Hopf bifurcation
is the natural generalization of this bifurcation phenomenon when k& small limit cycles
appear from a weak-focus of order k.

In general, the complete unfolding of £ limit cycles near a weak focus of order k is only
guarantied when the perturbation is analytic, see for example [27]. When the perturbation
is restricted to be polynomial of some fixed degree this property is not automatic. This
is the case in our problem. Our unperturbed systems (3) are of degree four and we are
perturbing them in the full quartic polynomial systems. This is the main reason why the
problem of finding the cyclicity of a center, for systems like (3), is so difficult. A way to
avoid this difficulties is to study lower bounds for the cyclicity. This is the aim of the
next result due to Christopher ([6]) that, as a direct application of the Implicit Function
Theorem, provides necessary conditions to get lower bounds for the cyclicity of a center.
In fact, there are similar previous results due to Chicone and Jacobs (|4, 5|). Also Han
([16]) applies them for Liénard families.

Theorem 2.3. Suppose that ¢ is a point on the center variety in the parameter space and
that the first Ly, . .., Ly Lyapunov quantities have independent linear parts (with respect to
the expansion of them with respect all perturbation parameters), then ¢ lies on a component
of the center variety of codimension at least k + 1, adding the trace parameter Lg, and
there are bifurcations which produce k limit cycles locally from the center corresponding
to the parameter value c.
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In particular, the above result shows the existence of a curve of weak-foci of order k
that unfold k£ hyperbolic limit cycles. The existence of this curve is obtained studying the
Taylor developments of the varieties L; = 0, for j =0, ..., k, that intersect transversally
along it but L is nonvanishing.

Finally, in [6] there are results about the existence of such transversal curves studying
the homogeneous higher order terms when the previous ones vanish identically. They will
be used in the future work to improve the results of this paper.

In this work we are interested in the simultaneous bifurcation of limit cycles in the three
center configuration that a system of type (3) has. We will explain how we use Theorem
2.3 for this purpose in Section 5.

2.3. Darboux integrability. More detailed versions of the next results can be found in
[12, 25]. Here we only remind the statement on Darboux integrability that we will need
for proving our classification results, together with some basic concepts and definitions.
Let (%,9) = (P(x,y),Q(x,y)) be a C-polynomial differential system of degree m. We
say that an algebraic curve f = 0 is invariant if the vector field associated to the polyno-
mial differential system is tangent along it. That is,
of of
Plx,y)=— x,y)— = K(x, z,y).
(,y) 5 + Q y)ay (@,9)f(z,y)
The polynomial K is known as the corresponding cofactor. Equivalently, exp(g/h) is
called an exponential factor, with the associated cofactor K¢, if it satisfies

ded/h ded/h
P —— =K° 9/h.
(@,9)—— + Qz,y) o (z,y)e
Theorem 2.4. Suppose that a C-polynomial differential system of degree m admits p
wrreducible invariant algebraic curves f; = 0 with cofactors K; fori=1,...,p and q ez-

ponential factors exp(g;/h;) with cofactors K5 for j =1,...,q. Then, there exist complex
numbers N; and p; not all zero such that Y7 | N K; + Z?Zl piK§ =0, if and only if the
(multivalued) function

v (e () (e ()

18 a first integral of the C-polynomial differential system of degree m.

3. CANONICAL FORM

As we have already mentioned, system (3) is time-reversible with respect to the z-axis,
and it has a nondegenerate equilibrium point of center-focus type at the origin. Clearly,
the reversibility condition and the linear part ensures that the origin will be always a
center. As we have explained in the introduction, the aim of this paper is the study of
system (3) having two extra nondegenerate centers out of the symmetry line. Then, as
they can be located at (zq, 2yo), there are two different possibilities, 2o = 0 and zq # 0.
In the rest of the section we will prove the first part of the statements of Theorems 1.1
and 1.2.

In the first case, 2o = 0, we can locate the equilibrium points at (0, +1) after a rescaling.
Then, imposing that the determinants of the Jacobian matrix at these points writes
as a positive number, a?, we get system (4). We notice that by the symmetry both
determinants coincide. We can also assume the condition ¢ > 0 doing, if necessary, the
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change (z,y) — (—x,—y). Hence, with the new variables (u,v) = (z, —14y), there exists
a first integral that writes

H(u,v) = (au)® + 4(cu — v)* + -+ - . (10)

In the second case, xy # 0, we can locate the equilibrium points at (—1,+d) after a
rescaling, if necessary. The symmetry provides the condition d > 0. Assuming that the
system has an equilibrium point with zero trace we get

d*ars + d*(ay; + 2a12) + 4

Qo2 =

2d? ’
B d*ay3 + ap; + 1
Qo3 = a2 )
d*ayz + d%ay; + 2
Aoy = — -

2d*

Then, adding the condition that it has a positive determinant, a?, we obtain
dﬁafg —+ 2d4a11a13 -+ dQCZ%l + GQ + 2&11 + 2

2d2(a11 + 1) .

Clearly, it is not restrictive if we assume a > 0. The above denominator never vanishes

a2 = —

because, when a;; = —1, the determinant, a® = —d*(ay3d> — 1)?, would be negative.
Finally, we introduce two new parameters (b, ¢) performing the linear change
_c+d _ctb+d
an=——b— G3=— g

Hence, with the new variables (u,v) = (1 + =, —d + y), there exists a first integral that
writes
H(u,v) = (adu)?® + (—bdu + 2cv)* + - - - . (11)
This expression can be easily transformed to (7). We remark that the condition ay;+1 # 0
is equivalent to ¢ # 0. From all the above transformations the system (3) changes to (5).
We notice that, although the last parameter change does not seem necessary, it will
help to obtain simpler expressions for the center conditions in the next section.

4. CENTERS CLASSIFICATION

This section is devoted to proving the center classification statements of Theorems 1.1
and 1.2. Because the proof of the second result is quite long we have written it separately
in Propositions 4.1 and 4.2. The obtained first integrals are globally defined and their
level curves provide, among may be others, the three period annuli.

4.1. Proving the center classification in the aligned case. The reversibility prop-
erty and the canonical form (4) ensures that the origin is a center. Then, by the sym-
metry, we only need to study the equilibrium point (0,1). First we check that the two
families of the statement satisfy the center conditions, and second we compute the ex-
plicit expressions of the first integrals, which are of Darboux type, H; = 1’\1 fg\z(eg)“
and Hy = f*(e9)". In both cases u = 1. We will denote by K, i = 1,2, and K, the
corresponding cofactors.

The change given by expression (10) allows us to use the algorithm described in Sec-
tion 2.1 to compute the first center conditions, that is, the first Lyapunov quantities.
Although they are polynomials in the parameters, the change (10) introduces some de-
nominators. Straightforward computations show that the denominators of L, and Ls
before the usual simplifications are a(a® + 4¢?)? and a®(a® + 4¢?)5, respectively, which



8 L. P. C. DA CRUZ, VALERY ROMANOVSKI, AND JOAN TORREGROSA
never vanish because a > 0. Hence, we can consider only the numerators, modulo positive
constants,
Ly =c(a®b* + 2a*be + 4b°c* + 8bc® — 2a* + 8¢* — 4),
Ly = — c(a® + 4¢ + 2)(a® + 8bc — 4c* + 2),
Ly =c®(a* + 4c® + 2)(a* — 4c® + 2)(6220800a*c™* + 24883200c'® 4 8121600ac™
+ 65664000c™ + 3124800a%¢!° + 51206400¢' 4 290800a°c® + 13476800
— 11200a%c® 4 620800 4 600a*c* — 36000c® — 52a?c? + 1840c¢* — a® + 60c?).

These values for L; are defined when the previous are zero. Moreover, Ly, L5 also vanish
if Ly = Ly = L3 = 0. The necessary part of the statement follows easily checking that the
real solutions of {L; = Ly = L3 = 0} are the families A; and As.

For the sufficient conditions we only list the functions to get the Darboux first integrals
for both families.
o Family A; satisfies ¢ = 0, then

fi==2+ (" +2)y,
Ja=br+1,
g = —b(a*+2)((a® + 2)x + y°b),
Ky = —(a® + 2)xy,
Ky, =b(y* — 1)y,
K, = b(a* + 2)(a*bx — (a* + 2)y* + a* + 2)y,
with A} = a?h? and \y = (a® + 2)°.
o Family A, satisfies b = 0 and ¢ = Va2 + 2, then
fi = —1—20z+2(a* + 2)y* + 20(a® + 2)ay® — (a® + 2)y*,
g = —2o0zx,
Ky = —20y(1 + oz — y?),
Ky =20y(1+ oz — ¢,
with 0 = Va2 + 2 and )\, = 1.
This, together with the canonical forms derived in Section 3, finishes the proof of
Theorem 1.1.

4.2. Proving the center classification in the triangular case.

Proposition 4.1. If the equilibrium point (—1,+d) of the quartic system (5) is a center
then the parameters (a,b,c,d) satisfy one of the conditions given in the statement of
Theorem 1.2.

Proof. As the system (5) is reversible with respect to the z-axis, the center conditions for
the point (—1, —d) are the same as for (—1, d). Thus, we only study this point. From the
canonical form computations done in Section 3, (—1,d) is a nondegenerate equilibrium
point of center-focus type, that is, the trace and the determinant of the Jacobian matrix
are zero and positive, respectively.

The proof follows computing a few first Lyapunov quantities and then solving the
obtained system to check that all the families are the ones described in the statement.

First, we translate the point to the origin, we do an affine change of coordinates,
see (11), and rescaling time. Then, we follow the approach described in Section 2.1 for
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the computation of the center conditions L; in (9). From the affine change, they are
rational functions with denominators of the form c*d‘. As usual, the four parameters,
(a,b,c,d), appearing in system (5) indicate that only the first four Lyapunov quantities
will be necessary to be computed, but as we will see, we use the first five. Instead of the
complete expression, for simplicity, we denote by L; only the numerators of the center
conditions, that are polynomials with integer coefficients in (a, b, ¢, d). Because of the size
of them, we only show the first one,

Ly =(cd® + d* — 4d)b* + (=8 + d* + 2¢cd® + (* — 2)d* — 4ed)b® + (a’cd® + a*d?
—2a%d — 12¢)0* + (a*d* + 2a*cd® + a*(c* — 2)d* — 8a? — 4c?)b + 2a*d — 4a’c.

The other four numerators are polynomials of degrees 19, 33, 49, and 67 with 317,1524,
4835, and 12152 monomials, respectively.

For the second step, we need to solve the algebraic system of equations S = {L; = Ly =
Ls = Ly = Ly = 0}. Although this system has only four variables and five equations the
usual mechanisms for solving it fails. Instead of finding the solutions directly, we will use
the Gianni-Trager—Zacharias algorithm, see [15], to determine the irreducible components
of the variety V. = V(Ly, Lo, L3, Ly, Ls). The main function used is minAssGTZ, it is
implemented in the library primdec.1ib included on the algebraic computational system
SINGULAR, see [9, 10]. However using the function directly we were not able to compute
the decomposition neither over the field of rational numbers nor in the finite field Z,,
with p = 32003. Hence, the irreducible components will be computed considering some
auxiliary polynomials obtained from some crossed resultants with respect to one of the
parameters, because the new polynomials have less variables (but higher degree) and
contain the solutions that we are interested.

Thus, we compute the four resultants with respect to the parameter ¢, Res(L1, Lo, ¢),
Res(Ly, Ls, ¢), Res(Lq, L4, ¢), and Res(Lq, Ly, c). We denote by Resjs, Resis, Resyy, and
Resys, the corresponding factorized expressions, leaving only one term, when they have
multiplicity bigger than one, and removing the nonvanishing terms, that is the powers of
a, d, and a® + b?. Then, we get

Resio =R -Ris, Resis=R-Riz, Resu =R -Rius, Resis=R- -Ris,
with the common factor R = R1R» - - - Rg, where
Ri=0b,
Ry =bd + 2,
Rs = a’d® + b*d® — 2bd + 2d°* — 8,
Ry = a*d + b*d — bd* + 20,
Rs = a’d — b*d — 2b + 2d,
Re = a’d* + b*d* — 4,
R7 = a® — bd,
Rg = a’d* + (bd + 2)* + 2d°.
We have not written, because of their size, the polynomials Ris, Ri3, Ria, Ri5. They
have degrees 6, 32, 62, 92 in (a,b,d) and 9, 293, 1642, and 4803 monomials, respectively.
With the above discussion, and taking into account that the surface Rg = 0 has no
real points because a,d > 0, the solution of § can be studied solving the eight algebraic

systems So = {Ly = Ly = L3 = Ly = Ly = Riz = Ri3 = Ry = Ri5s = 0} and
Si:{L1:L2:L3:L4:Ri:0}fOIizl,...,7.
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System &y is studied computing the two by two crossed resultants, first with respect
to d, then with respect to b. In each step we remove, as previously, all the multiple
factors and also the powers of the nonvanishing variables or factors (d a, a® + b2, a® + 2).
Finally, the last two polynomials have only one common factor a® — 1. Next, as a > 0,
we consider the system {Ri3 = Ri3 = Ris = Ri5 = a — 1 = 0}, that has, since d > 0,
only one solution {a = 1,b = 1/v/3,d = +/3}. Finally, S, has only two real solutions
{a=1,b=1/V3,c=2/V3,d=+/3} and {a = 1,b=1/V3,c = —4/v/3,d = v/3}. They,

satisfy the conditions of cases 7;7 and 75 of the statement, respectively.

Although some systems can be easily solved, as S§; that writes equivalently as the first
family, {b = a*d —2c = 0}, most of them need an accurate procedure. We will follow step
by step the algorithm described in [26].

The 18 families in the statement are obtained solving systems &;, for i =1,...,7.

For each i, except for i = 4, we use the mentioned Gianni-Trager—Zacharias algorithm
and we apply the routine minAssGTZ to the ideal B; = (R;, L1, Lo, L3, L4), for simplicity
we have not used Ls. That is, we obtain the necessary conditions to have a center finding
the irreducible decomposition of the variety of each ideal B;. We illustrate the procedure
only for one family, S;, the other follow similarly.

Working in Z,[a, b, ¢, d], with p = 32003, instead of Q|a, b, ¢, d], the minimal associate
prime ideals of By, provided by SINGULAR, are

(a,b), (a,d,b—16001c),
{cd 4 2d* — 8,b 4+ 16001c, a® + d* — 4), (cd — d* — 2,b + ¢, a* + d* + 2), (12)
(d®+c—2d,b+d,a*+ d*), (a® +cd+d* b+ c+d).

Next, we use the rational reconstruction algorithm provided by [34] to get a candidate
to be the minimal associate prime ideal but with rational coefficients. In fact, we should
apply the next function to each coefficient of the above polynomials.

Rational_Reconstruction(x,p)
u=[1,0,p]
v=[0,1,x]
while sqrt(p/2)<= v[3] do {
gq=floor(u[3]/v[3])
r=u-qv
u=v
v=r
}
if abs(v[2])>= sqrt(p/2) then error()
return(v[3]/v[2])

We recall that the floor function, |x], gives the greatest integer less than or equal to .
Given an integer x and a prime p, the rational reconstruction function defined above, pro-
vides a rational number y such that y = = (mod p) and, in absolute value, the numerator
and denominator of y are less than /p/2.

In the primary decomposition ideals of B7 given in (12) all the rational reconstructed
values are the same integers except 16001, which is —1/2. Consequently, the candidate
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to be the minimal associate prime ideals of B; are
Py = (a,b),
Py ={a,d,b+ (1/2)c),
Py = (cd +2d* — 8,b— (1/2)c,a* + d* — 4),
Py={cd—d*—2b+c,ad®+d+2),
Py ={(d®+c—2d,b+d,a*+ d?),
Ps=(a®+cd+db+c+d).

The next step is to show that v/P; = /By, where P, = (_, P, in Qla, b, ¢, d]. We have
denoted by v/P the radical of the ideal P. In general, it is simpler to verify the double
inclusion instead of computing the radicals. Adding a new artificial parameter w, this
property can be seen checking that {1} is the Grébner basis of the next list of ideals,
(1 —wLy, P;), for k=1,...,4 and (1 — wp, B;), for every p € Ps.

In the last step we check which ﬁk, for k =1,...,6, will appear in the statement. As
a, d, a®> + d?, a® + d? + 2 are nonvanishing, only f’g and é; are necessary conditions for

system (5) be a center. In fact, they are cases 717 and Tis, respectively.

Finally, we study the family S, = {R4, L1, Lo, L3, L4} with another procedure. Because,
for the rational reconstructed candidate to be the primary decomposition ideals we have
Vv Py # +/B4. As the condition b = 0 has been studied before, here we will assume that

b # 0.
We start again computing the four resultants but with respect to the parameter a,
RGS(R4, Ll, (l), RGS(R4, LQ, CL), RGS(R4, L37 a), RGS(R4, L4, CL).

We denote by f/{e\sl, ﬁe\sg, 1:/{%3, and Ee\s4, the corresponding factorized expressions. But
leaving only one term, when they have multiplicity bigger than one, and removing the
nonvanishing terms, that are powers of b, d. Then, we get

Res; = R-Ri, Res;=R-Rs, Resy=R-Rs Resi=R- Ry,

with the common factor R = cd + d? — 2. Hence, the solution {L1 = Ly = L3 = Ly =
Ry =R =0} is case (7).

As we have reduced the set of variables to (b, ¢, d), we can follow as before solving the
system {7%1 = 7/?\,2 = 7/?\,3 = 7/@4 = 0} by computing the crossed resultants Res(ﬁl,ﬁg, b),
Res(ﬁ,l, ﬁg, b), and Res(ﬁl, 7%4, b). Now,leaving also only one term, when they have mul-
tiplicity bigger than one, and removing the nonvanishing terms, that are powers of ¢, d,
d*> 42, d+2, and cd + d? — 2, we get

7/?\'12 :ﬁ'ﬁl% 7/?\/13 :7%'7%137 7/?\114 :75,-7544,

where R = (d—2)(d?>—2)(2c+3d)(cd+2d>—4)(d?—6). As Ry2 = d?+6 # 0, we have to check
that, for each factor D in ﬁ, the solution of Sp = {Ly =Ly =Ls =Ly =Ry, =D =0}
is in one of the cases listed in the statement. For example, for d = 2, we obtain the two
solutions {a* +b* —b=c+1=d—-2=0}and {a* +b* —b=c—b=d—2=0}. The
first is (4) and the second is (8). The other factors are found similarly. O

Proposition 4.2. For each family in the statement of Theorem 1.2, the quartic sys-
tem (5), which is reversible with respect to the x-axis, has a center at the origin and two
centers at the points (—1, £d).
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Proof. The origin of (5) is a nondegenerate center-focus point then, by the symmetry
property, it is a center. The points (—1, £d) are also nondegenerate equilibria of center-
focus type. The proof follows straightforward doing a case by case study. We compute
the first integrals, which are of Darboux type, and check that all of them are well defined
in a neighborhood of such equilibrium points. In particular, there are only four types of
first integrals:

Hy = fi, Hy= 1)‘1 2/\27 H3:ff‘1(e9)“, and H4:f1/\1f2/\2(eg)ﬂ-

In the rest of the proof we only show the explicit expressions of the polynomials fi, f2, g
and the real numbers \;, Ay, because p = 1. We also list the associated cofactors Ky, , Ky,,
and K, when their expressions are not so big. We recall that f; = 0 and f; = 0 are
invariant algebraic curves and €Y is an exponential factor.

The cases are listed grouped by the expression of the corresponding first integral.

o Cases corresponding to the Hamiltonian systems with the first integral H; = f; :
(73) In this case, we have a® = —(d*>c* 4+ 2d(d*> — 5)c + (d* — 4)?) and b = (cd + d* — 4)/d.
Then, as a® should be nonnegative, we have that (—d*+5—+v/—2d2 +9)/d < ¢ < (—d? +
5+ —2d%2+9)/d, and 0 < d < 3v/2/2. We remark that system (5) depends quadratically
in a. With these conditions, we get

fi = 2d*z? + 2d*y? + 2d%(c + d)xy? — (cd + 2d* — 4)y* — 2(cd + d* — 2)zy*.

(Ts) Here a* = c—c*, b = ¢, and d = 2. Hence, when 0 < ¢ < 1, system (5) is well defined.
Then,

fi = 1622 + 1692 + 8(c + 2)zy* — (c +2)y* — 2(c + Day*.

(T12) In this case, we have a? = 2(4 — d*)/d* b = 2/d and ¢ = (6 — d*)/d. Thus, when
0 < d < 2, system (5) is well defined and we get

fi = 2d*z? + 2d*y? + 12d%xy® — (d* + 2)y* — Sy’

(T14) Here, we have a®> =4 — d?, b= (d* — 2)/d and ¢ = 2/d. So, the condition 0 < d < 2
is necessary and we have

fi = d*s® + dY? + (d® + 2)dPay® — (4 — D)y* — dPay®.

(T17) In this case, we have a® = 4—d? b = (4—d?)/d, and ¢ = 2(4—d?)/d. Here, 0 < d < 2
and

fi = d*a? + d*y? — (d* — 8)dPxy® — 2y* + (d® — 6)ay™.

o Cases corresponding to Hy = i f3 :

(T1) We can write b = 0 and ¢ = a*d/2, for obtaining
fi = 2d® — 8d*x — (2a*d* + 4d® + 16)d*y* + (a*d® + 2d* + 8)y*,
fo =2+ (a* + 2)x,

4
Kfl = ﬁ(dQ - y2)y>
(GQ +2), 2
Ky, = -~~~/ _
f2 2d2 (d y >y7

with A\ = d?(a® 4+ 2), Ay = 8.
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(T16) Here we have a = 2/d, b = 0, and ¢ = 2/d. Then, we get \; = 1, \y = 4/(d* + 2),
and
fi=d® —4d*s — 2(d* + 6)d*y* + (d* + 6)y*,

fo=d*+ (d* + 2)x,

A(d® —y2)y

Kfl = A )
(& +2)(d” —y?)y
Ky, = — 7 .

o Cases corresponding to Hs = f" (e9)*, with =1 :
(72) In this case we have b = —2/d and
—a’d*c — 2a*cd* — 8cd® + a*d* — a*d* + 4a*d® +4a* — 4d* +16 = 0.

As a > 0, the discriminant o = (a® + 2)*(a?d* + 4) is positive for all a,d. Adding an
artificial variable, e, the curve o — e* = (a® + 2)%a*d? — €? + (2a* + 4)> = 0 is a hyperbola
with respect to the variables (d, e). Then, we can find a rational parameterization

4(a® +2)* —
2at(a? + 2)

such that o is a perfect square. Hence, we can isolate b, ¢ in terms of a, ¢:

(1% + 2(a® + 2)%t + 4(a® + 2)*)(t* + 4(a® + 2)?)
2at(4(a® +2)? — 2)(a? + 2)

4at(a® + 2)

2 —4(a? +2)%°

cla,t) = —

Y

bla,t) =

Then, we get Ay = —1 and
fi =4(a® + 2)°t*(2a* + t + 4)*a*xy?
—2(a® + 2)%a**(t* — 8(a® + 2)*(a* + 1)t* — 16(a* + 2)*)y?
—2(a® +2)%t(4(a* + 2)* — *)*(t* + 2(a® + 2)°t + 4(a® + 2)%)x
+ (2a% — t + )M (t? + 2(a® + 2)%t + 4(a® + 2)?)?,
4(a® + 2)3t%y? 2(a® + 2)*(2a* + t + 4)*tx

(202 —t+4)* (20> — t +4)%(t2 + 2(a® + 2)%t + 4(a® + 2)?)’

We remark that without the parameterization the expressions for f; and g are more
difficult to be found.

(T1) Here a®> = b(1 —b), c = —1 and d = 2. So, system (5) is well defined only when
0 < b< 1. Moreover, Ay = 4b and

fi=—4+ b+ 1)y
g=—(0b+1)((20+2)2* + (b+2)y* + (b + 1)ay?),
Ky = — (b+ 1)(@;2 + 431:)y7
b(b+ 1)(y* + 4x)y
5 .

K, =
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(Ts) For this case we have a? = 2(4 — d?)/d?, b = 2/d, and ¢ = —(d?® + 2)/d. So, when
0 < d < 2 system (5) is well defined. Additionally,

fi=d*2+ d*)?* — 8d*(d® + 2)x — 32d*y* + 64d*xy* + 16(d* + 2)y*,

8z
9= 21
. — 8(d* — 2d%x — (d* + 2)y?)y
h (@ + 2)d" ’
8(d* — 2d*x — (d* + 2)y?)y
K,=—

(d? +2)d*
and A\ = 1.
(T7) Here, a®> = b(d* — bd — 2)/d and ¢ = —(d*> — 2)/d. There are two cases such that
system (5) is well defined: (i) b >0, d < (b— Vb2 +8)/2 or (b+ V1?+8)/2 < d, and (ii)
b<0,(b—vVb?+8)/2<d< (b+Vb?>+8)/2. Independently, we have

fi = =2d% + (bd + 2)y?,

g = —(bd + 2)((bd® + 2d*)2* + (2bd + 2d*)y* + (2bd + 4)xy?),
(bd + 2)(y* + d*z)y

Kfl = 2 )
2b(d? — 2)(bd + 2)(y* + d*z)y
K, = 7 ,

with \; = 2bd3(d?* — 2).
(79) In this case, a® = (d* —4)/4, b = d/2, and ¢ = —3d/2. Hence, when d > 2 system (5)
is well defined. Here we get
f1 = 18d° — (12d° + 48d*)x — (4d° + 32d* + 64d*)y* + (2d° + 16d* + 32d°)xy?
+ (3d* + 24d* + 48)y*,
g1 = 2x(d* +4)/3d?,
(d® 4+ 4)(3y* + Pz — 2d?)y

Kfl = A )
(d* +4)(3y® + d*x — 2d*)y
Ky,=— i )

(T10) The discriminant with respect to ¢ of the second condition writes as o = 4(a®d? +
2d? + 1). Similarly, as for family 75, adding an artificial variable, e, from the rational
parameterization of the hyperbola ¢ — e? = 0, we know that

—2d* +t* -1
a=——
2dt

Then, the second condition allow us to write

2P 42 -2+ 1
N 2dt ’

2d%t +2d% + 12 — 2t + 1
B 2dt '

b
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In fact, the other solution is equivalent to changing ¢ by —¢, moreover system (5) depends
on a?. Hence,
fi=2d2d*(t + 1) + (t — 1)H? — 4d*t(2d® + (t + 1)*)(2d*(t + 1) + (t — 1)*)z
— 4d*(2d* + (t + 1)*)%y? + 2d*(2d* + (t — 1)?)(2d* + (t + 1)%)2xy?
+ A2 (t+ 1) + (t — 1)%)(2d° + (t + 1)*)*y*,
2P+ (t+ 1))z
I= 0@+ 1)+ (t—1)2
(2d? + (t + 1)} (2d* — d*>(2d*> + (t — 1)?)x — 2d?(ty? + 1) + (t — 1)H)y?)y

Kn= td* 2d2(t + 1) + (t — 1)?) !
o (2d% + (t + 1)) (2d* — d?(2d* + (t — 1)*)x — 2d*(ty* + 1) + (t — 1)*)y?)y
9 td4(2d2(t + 1) + (t — 1)2) '

(T11) In this case, as d > 0, we have b = Va?+1, ¢ = —(2a*> + 1)/Va?+ 1, and d =
2v/a? + 1. Then,

fi = =41 +a*) + (a® + 2)y°,
g = (a®>+2)((2a* + 6a® + 4)2* + (a® + 2)ay* + (3a® + 3)y?),
K — (@ +2) (e’ +d)z + ¢y
f 8(a2 + 1)2 ’
(20 + 1)(a? + 2)((40® + Dz + y*)y
2 Y

K,=—

with A\; = —4(2a® + 1)(a® + 1)2.
(T13) Here we have b = 4/d(d* — 2), c = —(d* — 2)/d, and (d* — 2)*a* — 4(d* — 4) = 0.
Last condition can be written equivalently as the rational parameterization

(a.d) = (8(2t —1)(2t + 1)t 2(4t* + 1) ) |

16t4 + 242 +1 7 (2t — 1)(2t + 1)
This expression simplifies the writing of
fi = =32t — 48t% — 2+ (16t* — 8% + 1)y,
g = —(512t% 4+ 512¢% 4+ 192t* + 326 + 2)a? — (3843 + 3845 + 272t + 24¢* + 3/2)y°
— (256t — 32t* + 1)xy?,
(487 — 1)%((64¢" + 3262 + 4)xy + (161 — 82 + 1)y?)

Ky =—

! 4(16t4 4 2412 4 1) (442 + 1)2 ’
o (487 — 1)2(16¢* + 24¢* + 1)((64t* + 32t2 + 4)zy + (16t* — 8¢* + 1)y?)
v 4(4t2 +1)2 ’

with Ay = (16t* + 24¢% + 1)2.

(T15) In this case, we have two solutions but, as a® > 0, only one corresponds to real
values:

s 2+ VAP +9+3 ; 1 —+4d% +9 —2d* +1—4d> +9
a” = =" >5; . ¢t= :
22 ’ 2d ’ 2d
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Then,
fi=2d°— (0 + 3)d* 4+ 8(c — 2)d*> — 120 + 36 — 2d*(0d* — d* — 20 + 6)x
— 4d*y? + 2d%(0 — V)ay? + (2d* + 0 — 1)y?,
(0 +1)d* — 20 — 6)z
d* —2d? — 2 ’
K. — (dHod* + d* — 20 — 6) + 2d*(—d* + o + 3)x — (d* — 2d* — 2)(0 + 3)y?)y
/i (dt — 242 — 2)d* ’
(d*(od? + d? — 20 — 6) + 2d*(—d* + 0 + 3)x — (d* — 2d* — 2)(0 + 3)y?)y

K,=—
g (d* — 242 — 2)d" ’

with 0 = V4d?2 +9 and \; = 1.

o Cases corresponding to Hy = f f32(e9)*, with p =1 :
(T5) Here, the parameters satisfy a®> = 4 — d? b = (4 — d?)/d, and ¢ = —4/d. Thus, the
condition 0 < d < 2 is necessary in order that system (5) is well defined. Then,

fi=d* +d*(d® —6)x + (d* — 6)y?,
fg = 2d2 + (d2 — 6)y2,

g = (d2 o 6)1’,
(@ —6)(d°z +y*)y
Kfl = 2 )
(d* - 6)(d* —y*)y
Kfz - = A )
(PO (P )P ay?)
g — )

4
with )\1 = —d2, )\2 = d2 — 4.
(T1s) In this case, we have b = a?/d and ¢ = —(a® + d?)/d. Then,
fi = —d' + &(@® + 2)x + (a® + 2)y?,
fo = —2d* + (a* + 2)y?,

g = (a*+2)x,
(@® +2)(d* — y*)y
Kfl = 4 )
oo (a® + 2)(d*x + y?)y
fa =™ 7 4 )
K — (@ + 2)(—=d* + a®d*x + (a* + d*)y?)y
9 — d4 ’
with )\1 = d2, )\2 = a2. ]

5. SIMULTANEOUS CYCLICITY

This section is devoted to studying the simultaneous degenerate Hopf bifurcation of
system (5) for different values of the parameters (a,b,c,d). Before stating and proving
the main result of this section, we recall in few words the bifurcation scheme presented
in [6] for first order perturbations and degree four systems. The unperturbed system (5)
has three centers located in the vertex of a triangle. As two of them are symmetric with
respect to the x-axis, we study only two simultaneous degenerated Hopf bifurcations. The
bifurcation will be done in two steps. First, we consider a perturbation which is symmetric
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with respect to the x-axis to get n symmetric hyperbolic small limit cycles surrounding the
symmetric centers using Theorem 2.3. With this first perturbation, the origin remains a
center. Second, we consider a general perturbation to get m small hyperbolic limit cycles
surrounding the origin, also by Theorem 2.3. We obtain in total 2n +m small limit cycles
in configuration (n,m,n).

Recently, the same procedure has been used in [24], but with a higher order develop-
ment, to some systems with degrees up to ten, improving the best global Hilbert numbers
known up to now for polynomial systems from degree four to ten. Here, as in [6], we only
study first order developments of the Lyapunov quantities introduced in Section 2.2. The
study of higher order perturbations will be done in a near future.

Proposition 5.1. There exist polynomial perturbations of degree four such that at least
13 small limit cycles bifurcate from the centers of system (5). They present at least two
different configurations varying the parameters (a,b,c,d): (4,5,4) and (3,7,3). Moreover
the phase portraits in the Poincaré disk for the unperturbed systems are also different. See
Figure 2.

Proof. The proof follows the bifurcation procedure described in the beginning of this
section. We will describe only the statement to get the 13 small limit cycles in con-
figuration (4,5,4), fixing the values of the parameters of the unperturbed center as
(a,b,c,d) = (1/2,1/2,—1,2). Tt corresponds to family 7;. The same result and con-
figuration can be found in family 77, fixing the parameters to (1/2,—1/2,1,1). The
phase portraits of the unperturbed systems are drawn in the two left pictures in Fig-
ure 2. In the same way, we can also obtain the 13 small limit cycles bifurcating from the
centers of families 75 and 75, fixing now the parameter values to (v/5/2,3/2,—9/2,3)
and (1,3v/7/7,—13/7/14,4/7/2), respectively. The configuration of limit cycles is now
(3,7,3). The respective phase portraits are drawn in the two right pictures in Figure 2.

First we take a perturbation of system (5), for the fixed values in 7; mentioned above,
keeping the reversible symmetry at the origin,

4
) 1 5 . 3
T=-y- gyt Eys + 1—6$?/3 + Z Srzer 2" y*

k+20+1=1
1, 3 3 - "
- Lo 9 o 9 4 k, 20
k+20=1

It is important to mention that it is not restrictive to assume that the origin remains as an
equilibrium point of center type. Then, we do a translation in (13) in order that the center
(—1,2) moves to the origin. Moreover, after the translation, the perturbation should start
with terms of degree 2. Because the last limit cycle appears moving the value of the trace
at (—1,2) in a usual Hopf bifurcation. This fact restrict the values of the perturbation
parameters fi . Now, we can compute and check that the linear developments of the first
four Lyapunov quantities are linearly independent. Hence, we have found at least four
small limit cycles surrounding (—1,2) and (—1, —2), respectively.

Second, it is enough to consider only a perturbation that does not respect the symmetry
around the z-axis,

4
. 1 5 3 3 3 k. 20
T =y 2xy+16y +16xy +k§2€k’%x Yy,
1 3 3 A (14
- Lo 9 o9 I 4 k, 20+1
g=o+ gyt = oot — oyt D e afy?T

k+20+1=2
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Here we compute and check, as above, that the linear developments of the first five
Lyapunov quantities are linearly independent. Then, we get five small limit cycles sur-
rounding the origin, via a degenerated Hopf bifurcation. We remark that the last limit
cycle also appear moving the trace at the origin from zero to a nonzero value, in a usual
Hopf bifurcation.

We remark that the parameters that control both bifurcations, (13) and (14), are in-
dependent. Considering all together we have at least 13 limit cycles in configuration
(4,5,4). O

We remark that, in the last result, we have not obtained more limit cycles from a first
order analysis because using more Lyapunov quantities we do not have a higher rank to
increase the number of limit cycles. Moreover, we have only stated the highest value for
the total cyclicity found, studying all the cases listed in Theorem 1.2. We have not done a
complete study and we have performed only up to a first order analysis. We have picked
a point (a,b,c,d) in each of the 18 families and we have obtained which are the ones
that provide the highest cyclicity value. The cases with 13 limit cycles, in configuration
(4,5,4), corresponds to families Ty, T7, Ti1, and 713 and, in configuration (3,7,3), to
families 71, T2, Ts, Ty, Ti5, and Tig. Other families provide less limit cycles. The families
75, Tio, and T1g exhibit 11 limit cycles in configuration (2, 7,2). Also 11 limit cycles appear
in configuration (3,5,3) for families 7s, 714, and 7q7. Finally, family 772 is the one with
less limit cycles, only 9 in configuration (2,5, 2).

FIGURE 2. Different phase portraits in the Poincaré disc of system (5)

The equilibrium points in Figure 2 are drawn following the local phase portraits: The
centers points in black, the stable nodes in blue, the unstable nodes in red, the saddles in
green and the degenerated ones in white. In these last equilibrium points some blowups
have been necessary to be done to get the local phase portrait. We remark that the two
left centers in Figure 2 have three period annulus while the two right ones have four.
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