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Abstract. We classify the global phase portraits in the Poincaré
disc of the quadratic polynomial Liénard differential systems

ẋ = y, ẏ = (ax + b)y + cx2 + dx + e,

where (x, y) ∈ R2 are the variables and a, b, c, d, e are real param-
eters.

1. Introduction

A quadratic polynomial differential system is a system of the form

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in the variables x and y, and the
maximum of the degrees of P and Q is two.

The quadratic polynomial differential systems and their applications
have been studied intensively these last thirty years, see for instance
the exhaustive bibliography about these systems in the books of Reyn
[37] and Ye Yanqian [44]. More concretely, classes of quadratic systems
that have been studied are: homogeneous (see [13, 31, 33]), bounded
(see [15, 11, 17]), having a star nodal point (see [6]), chordal (see [20,
21]), with a weak focus of second or third order (see [4, 5, 29, 26]),
with four infinite critical points and one invariant straight line (see
[39]), Hamiltonian (see [2]), gradient (see [10]), having a focus and one
antisaddle (see [3]), integrable quadratic systems using Carleman and
Painlevé tools (see [22]), having a center (see [41] and [29]), ...

On the other hand a polynomial Liénard differential system is a sys-
tem of the form

ẋ = y, ẏ = f(x)y + g(x),

where f and g are polynomials in the variable x.
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The polynomial Liénard differential systems and their applications
also have been analyzed by many authors these recent years. Thus
some authors studied their limit cycles (see for instance [14, 16, 19, 23,
24, 36, 38]), or their algebraic limit cycles (see [25, 28, 34]), or their
invariant algebraic curves (see [8, 7, 45]), or their canard limit cycles
(see [40]), or the shape of their limit cycles (see [42]), or the period
function of their centers (see [43]), or their integrability (see [9, 27]).

Roughly speaking the Poincaré disc D2 is the closed unit disc cen-
tered at the origin of coordinates of R2, where its interior is identified
with R2 and its boundary S1 is identified with the infinity of R2, i.e.
in the plane we can go to infinity in as many as we directed points for
the circle S1. So a polynomial differential system in R2 (i.e. in the
interior of D2) is extended analytically to the whole D2. In this way we
can study the dynamics of the differential system in a neighborhood of
infinity. For details on the Poincaré disc see section 3, and chapter 5
of [18].

Up to now the phase portraits in the Poincaré disc of the quadratic
polynomial Liénard differential systems have not been studied, their
study is the goal of this paper. More precisely, our objective is to
classify the different topological phase portraits in the Poincaré disc of
the systems

(1) ẋ = y, ẏ = (ax+ b)y + cx2 + dx+ e,

where (x, y) ∈ R2 are the variables and a, b, c, d, e are real parameters.

We denote by X = (y, (ax + b)y + cx2 + dx + e) the vector field
defined by system (1). We observe that since we are interested in the
quadratic polynomial Liénard differential systems we must assume that
the parameters satisfy a2 + c2 6= 0 and a2 + b2 6= 0 in order to avoid the
non–quadratic systems and in order to be of Liénard type respectively.
Moreover we need that c2 + d2 + e2 6= 0, otherwise y = 0 is a straight
line filled of equilibria and the system can be reduced to a linear one.

Two phase portraits in the Poincaré disc D2 are topologically equiv-
alent if there exists a homeomorphism h : D2 → D2 which sends orbits
of one of the phase portraits into orbits of the other phase portrait,
preserving or reversing the orientation of all the orbits.

Our main result is the following one.

Theorem 1. A quadratic polynomial Liénard differential system (1)
has a phase portrait in the Poincaré disc topologically equivalent to one
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of the phase portraits of Figures 3, 4, 5, 6, 7, 8, 9 . That is, there are 17
different topological phase portraits in the Poincaré disc for system (1).

In order to prove Theorem 1 we will make use of the normal forms
of system (1) in section 2, which simplify in somehow the envolved
calculations. Afterthat in section 3 we analyze the appearance and be-
haviour of the infinite singular points at those normal forms. Finally
in section 4 we study the appearance and behaviour of the finite sin-
gular points in each normal form given in section 2, and the proof of
Theorem 1 is given in section 4.

For studying the local phase portraits at the finite and infinite singu-
lar points of the compactified quadratic polynomial Liénard differential
systems we use notations and results presented in chapters 2, 3 and
5 of [18]. For classifying the global phase portraits of the quadratic
polynomial Liénard differential systems in the plane R2 extended to
infinity we follow the notations and results on Poincaré disc in chap-
ter 5 in [18], and with the result due to Markus [30], Neumann [32]
and Peixoto [35], which guarantees that we only need to classify only
all the different configurations of separatrices of the compactified qua-
dratic polynomial Liénard differential systems, in order to obtain their
phase portraits in the Poincaré disc.

2. Normal forms

The next result will simplify the study of the phase portraits of
system (1) in the Poincaré disc.

Proposition 2. All systems (1) are topologically equivalent to one of
the normal forms (i)− (vi) in Table 2, where A,B,C,D,E,G,H, I are
paremeters.

Proof. Fixed α, β, γ 6= 0, after the linear change of coordinate (x, y) 7→
(αX, βY ) and the time rescaling t 7→ γT , system (1) becomes

(2)
dX

dT
=
γβ

α
Y,

dY

dT
= c

γα2

β
X2 + aαγXY + d

αγ

β
X + bγY + e

γ

β
.

We study six cases separately. In each case, we assume

(3)
γβ

α
= 1.
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Table 1. Normal forms for system (1).

System (1) Normal Form

(i) a 6= 0 c 6= 0 ẋ = y, ẏ = x2 + xy + Ax+By + C

(ii) a = 0, bc 6= 0 ẋ = y, ẏ = x2 + y +Dx+ E

(iii) ab 6= 0, c = 0 ẋ = y, ẏ = xy + y +Gx+H

(iv) a 6= 0, b = c = 0, d > 0 ẋ = y, ẏ = xy + x+ I

(v) a 6= 0, b = c = 0, d < 0 ẋ = y, ẏ = xy − x+ I

(vi) a 6= 0, b = c = d = 0, e 6= 0 ẋ = y, ẏ = xy + 1

Case (i): ac 6= 0. After the above change of coordinate we can take

(3), c
γα2

β
= 1 and aαγ = 1. These conditions are satisfied if α =

c

a2
,

β =
c2

a3
and γ =

a

c
. System (2) becomes

dX

dT
= Y,

dY

dT
= X2 +XY + AX +BY + C,

where A =
d

c2
, B =

ab

c
and C =

a4e

c3
.

Case (ii): a = 0 and bc 6= 0. Then we assume (3), c
γα2

β
= 1 and

bγ = 1, and the solution is α =
b2

c
, β =

b3

c
and γ =

1

b
. System (2)

becomes
dX

dT
= Y,

dY

dT
= X2 +DX + Y + E,

where D =
dc

b5
and E =

ec

b4
.

Case (iii): ab 6= 0 and c = 0. Then we assume (3), aαγ = 1 and
bγ = 1. System (2) becomes

dX

dT
= Y,

dY

dT
= XY + Y +GX +H,
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where G = d/b2 and H = eb/a.

Case (iv): a 6= 0, b = c = 0 and d > 0. Then we assume (3),

aαγ = 1 and d
αγ

β
= 1. System (2) becomes

dX

dT
= Y,

dY

dT
= XY +X + I,

where I = ± ae

d3/2
.

Case (v): a 6= 0, b = c = 0 and d < 0. Then we assume (3),

aαγ = 1 and d
αγ

β
= −1. System (2) becomes

dX

dT
= Y,

dY

dT
= XY −X + I,

where I = ± ae

|d|3/2 .

Case (vi): a 6= 0, b = c = d = 0 and e 6= 0. Then we assume (3),

aαγ = 1 and e
γ

β
= 1. System (2) becomes

dX

dT
= Y,

dY

dT
= XY + 1.

This complete the proof of the proposition. �

3. Infinite singular points

In this section we study the infinite singular points of the quadratic
polynomial Liénard differential systems using the notation and results
of chapter 5 in [18].

3.1. Infinite singular points in the local charts U1 and V1. From
equation (5.2) in [18], we obtain that the expression of the Poincaré
compactification p(X ) of system (1) in the local chart U1 is

(4)
u̇ = c+ au+ dv + buv + ev2 − u2v,
v̇ = −uv2.

Proposition 3. If a = 0 there is no infinite singular points in U1. If
a 6= 0 there is a unique equilibrium point at U1 and another unique
equilibrium point at V1 as described in Figure 1.
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Proof. Taking v = 0 in (4), which correspond to the points of boundary
S1 of the Poincaré disc, the infinite singular points are the solutions of
the system

(5) u̇ = au+ c = 0, v̇ = 0.

So, if a 6= 0 at infinity there is a unique singular point, namely (u, 0) =
(−c/a, 0). When a = 0 there are no infinite singular points in the local
chart U1 because a2 + c2 6= 0.

At the singular point (−c/a, 0) the Jacobian matrix has trace a and
determinant 0. From section (1.5) in [18] we know that (−c/a, 0) is
a semi–hyperbolic singular point, and using Theorem 2.19 in [18] we
obtain that it is a saddle-node such that when c > 0 it has in v > 0
the unstable parabolic sector, and in v < 0 there are two hyperbolic
sectors, recall that the infinity v = 0 is invariant. When c < 0 the
sectors of the saddle-node interchange their localization with respect
the line of the infinity.

Since the phase portrait in the local chart V1 of the Poincaré sphere
is the symmetric phase portrait with respect to the center of the sphere
reversing the sign of all coefficients, so we have that the infinite singular
point (−c/a, 0) in V1 when c > 0 has in v > 0 the two hyperbolic
sectors, and in v < 0 the parabolic sector. When c < 0 the sectors of
the saddle-node interchange their localization with respect the line of
the infinity.

When c = 0 the origin is the unique infinite singular point and it is
a semi–hyperbolic singular point. Again, by Theorem 2.19 of [18] we
obtain that (0, 0) is either a saddle if ad < 0, or an unstable node if
ad > 0 or a saddle–node if d = 0 and e 6= 0.

�

3.2. The origin of the local charts U2 and V2. Once we have stud-
ied the infinite singular points in the local charts U1 and V1, it only
remains to study if the origin of the local charts U2 and V2 are infinite
singular points.

Again using the results stated in [18], chapter 5, we obtain the ex-
pression of the Poincaré compactification p(X ) of system (1) in the
local chart U2, i.e.

(6)
u̇ = v − au2 − buv − cu3 − du2v − euv2,
v̇ = −auv − bv2 − cu2v − duv2 − ev3.
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c > 0 c < 0

c = d = 0 c = 0 and
ad > 0

c = 0 and
ad < 0

Figure 1. Local phase portraits in the Poincaré disc at
the chart U1 and V1.

Clearly the origin (u, v) = (0, 0) is an infinite singular point of this
system.

Proposition 4. The local phase portrait at the origin of U2 and V2 is
described in Figure 2 .

Proof. The Jacobian matrix of system (6) at the singular point (0, 0)
has trace and determinant equal to zero, but it is not the zero matrix.
So according to the definitions of section (1.5) in [18] the origin of
system (6) is a nilpotent singular point, and we can study its local
phase portrait using Theorem 3.5 of [18]. Doing that we get that if
a 6= 0 then the local phase portrait at the origin is formed by two
sectors one elliptic and one hyperbolic, of course separating these two
sectors we can consider two parabolic sectors. When a = 0 we have
that c 6= 0, and then the origin is a stable node if c > 0, and an unstable
node if c < 0.

In order to know the position of the invariant straight line of the
infinity v = 0 with respect to the elliptic and hyperbolic sectors when
a 6= 0, we need to do the changes of variable known as blow up’s, see
for more details chapter 3 of [18]. Doing such changes we get that
the elliptic sector is in v > 0 and the hyperbolic sector is in v < 0.
Moreover there are no parabolic sectors in v < 0. �

In short we have completed the description of the local phase por-
traits at the infinite singular points.
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a 6= 0 a = 0 and
c > 0

a = 0 and
c < 0

Figure 2. Local phase portraits in the Poincaré disc at
chart U2 and V2.

4. Finite singular points for each normal form

In this section we study the local behavior of the finite singular points
for each normal form of system (1) presented in Table 1. To analyze
the local phase portraits of every finite singular point we use the results
of [18].

Case (i) Then system (1) is

(7) ẋ = y, ẏ = x2 + xy + Ax+By + C.

If A2 − 4C < 0 this system has no finite singular points. Assume
A2 − 4C ≥ 0 and the finite singular points of system (7) are p± =(
(−A±

√
A2 − 4C)/2, 0

)
, and the Jacobian matrix in each singular

point has determinant ∆± = ∓
√
A2 − 4C and trace T± = B + (−A±√

A2 − 4C)/2.

When A2 − 4C = 0 we get ∆ = 0 and there is a unique singular
point, that is, p = (−A/2, 0) which is nilpotent if T = B−A/2 = 0, or
semi-hyperbolic if T 6= 0. Applying Theorem 2.19 of [18] in the semi-
hyperbolic case we get that p is a saddle-node. For the case nilpotent
we apply Theorem 3.5 of [18] and conclude that p is a cusp.

When A2 − 4C > 0 there are two singular points, that is, p±. Since
∆+ < 0 we have that p+ is a saddle, and p− is either a focus, or a
node. If T 2

−− 4∆− < 0 then p− is either a stable focus if T− < 0, or an
unstable focus if T− > 0. If T 2

− − 4∆− > 0 then p− is either a stable
node if T− < 0, or an unstable node if T− > 0. See these local phase
portraits in Figures 3, 4 and 5.

All these local phase portraits are achievable with the respective
parameters shown in Table 2.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Local phase portraits in the Poincaré disc of
Case (i) when A2−4C > 0. In (a) T− > 0, in (b) T− = 0
and in (d), (e) and (f) T− < 0.

B − A/2 > 0
(a)

B − A/2 = 0
(b)

B − A/2 < 0
(c)

Figure 4. Phase portraits in the Poincaré disc of Case
(i) when A2 − 4C = 0.

A2 − 4C < 0

Figure 5. Phase portraits in the Poincaré disc of Case
(i) when A2 − 4C < 0.

As we can see in all the above local phase portraits there exists at
most one limit cycle for the Liénard differential system that we are
analyzing. This is a known result which can be found in [12]. More
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A2 − 4C > 0 A = 3, B = 5, C = 1 Figure 3 (a)
A = 0, B = 1, C = −3/2 Figure 3 (b)

by continuity Figure 3 (c)
A = 3, B = 2, C = 1 Figure 3 (d)

by continuity Figure 3 (e)
A=3, B=1, C=1 Figure 3 (f)

A2 − 4C = 0 B − A/2 > 0 A = −1, B = 1/2, C = 1/4 Figure 4 (a)
B − A/2 = 0 A = 2, B = 1, C = 1 Figure 4 (b)
B − A/2 < 0 A = 3, B = 1, C = 9/4 Figure 4 (c)

A2 − 4C < 0 A = 2, B = 1, C = 2 Figure 5

Table 2. Parameters of Case (i) realizing all the possi-
ble phase portraits in the Poincaré disc.

precisely, in [12], the author proved the following. By considering the
Liénard equation

(8) x′′ − f(x)x′ + g(x) = 0,

or the equivalent system

(9)
x′ = F (x)− y,
y′ = g(x),

where

F (x) =

∫ x

0

f(ξ)dξ,

he proved:

Theorem 5. Let f and g be continuously differentiable functions on
the open interval (a, b), where a < 0 < b, such that

(i) g(x) > 0 (resp. g(x) < 0) according as x > 0 (resp. x < 0),
(ii) f(x) > 0 (resp. g(x) < 0) according as x > x0 (resp. x < x0),

where x0 < 0,
(iii) the simultaneous equations

(10)
F (x1) = F (x2)

f(x1)/g(x1) = f(x2)/g(x2)
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have at most one solution (x1, x2) = (ξ1, ξ2) with a < ξ1 < x0
and 0 < ξ2 < b,

(iv) if F (ξ0) = 0 for some ξ0 < x0, then f(x)F (x)/g(x) is a decreas-
ing function for a < x < ξ0.

Then system (9) has at most one periodic orbit and, if it exists, it has
a negative characteristic exponent, i.e. it is a stable limit cycle.

In this Case (i), when α2 = A2−4C, α > 0 and −A+2B−α = 0, the
singular point (−b, 0) is a weak focus. In fact, it is always an unstable
focus, and never a center, since the first Lyapunov constant no zero is
equal π/4β5 > 0, with β2 = α. As Theorem 5 ensures that the Liénard
differential system that we are analyzing has at most one periodic orbit,
with B = (A+

√
A2 − 4C)/2, we have a Hopf bifurcation.

Case (ii) Then system (1) becomes

(11) ẋ = y, ẏ = x2 + y +Dx+ E.

The finite singular points of system (11) are p± = ((−D±
√
D2 − 4E)/2, 0),

and the Jacobian matrix at p± is

J |p± =




0 1

±
√
D2 − 4E 1


 ,

which has trace T = 1 and determinant ∆ =
√
D2 − 4E for p−, and

∆ = −
√
D2 − 4E for p+. First we observe the necessary condition

D2−4E > 0 for the existence of the equilibrium points p±. If D2−4E =
0 we get a unique singular point which is semi-hyperbolic. Applying
Theorem 2.19 of [18] at this semi-hyperbolic singular point we get that
this singularity is a saddle-node.

If D2 − 4E > 0 we obtain two singular points, i.e. p±. In this case
p+ is a saddle because T = 1 and ∆ = −

√
D2 − 4E < 0, and the other

equilibrium point p− is an unstable node if 0 < D2− 4E ≤ 1/16, or an
unstable focus if D2 − 4E > 1/16. See these local phase portraits in
Figure 6.

All these local phase portraits are achievable with the respective
parameters shown in Table 3.

Case (iii) Then the correspondent normal form is

(12) ẋ = y, ẏ = xy + y +Gx+H.
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D2 − 4E > 0
(a)

D2 − 4E = 0
(b)

D2 − 4E < 0
(c)

Figure 6. Phase portraits in the Poincaré disc of Case (ii).

D2 − 4E > 0 D = 3, E = 2 Figure 6 (a)
D2 − 4E = 0 D = 3, E = 9/4 Figure 6 (b)
D2 − 4E < 0 D = 3, E = 3 Figure 6 (c)

Table 3. Parameters of Case (ii).

If G = 0 there is no finite singular point for system (12). And, if G 6= 0,
this system has a unique finite singular point (−H/G, 0).

Consider G 6= 0, then the Jacobian matrix at this singular point
(−H/G, 0) is

J |(−H/G,0) =

(
0 1
G 1−H/G

)
.

Then J |(−H/G,0) has trace T = 1 − H/G and determinant ∆ = −G.
Hence, if G > 0 then ∆ < 0 and the singular point (−H/G, 0) is a
saddle. When G < 0 we get ∆ > 0 and in this case we have to analyse
two possibilities. More precisely we can have

(i) T 2 ≥ 4∆⇔ H2 − 2GH +G2 + 4G3 ≥ 0,
(ii) 4∆ > T 2 > 0⇔ H2 − 2GH +G2 + 4G3 < 0.

In case (i) the singular point is a node and in case (ii) the singular
point is a focus. In both cases the singular point is stable if H > G
and unstable if H < G.

For all these local phase portraits see Figures 7 and 8.

All these local phase portraits are achievable with the respective
parameters shown in Table 4.

Case (iv) The correspondent normal form is

(13) ẋ = y, ẏ = xy + x+ I,
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G > 0
(a)

G = 0
(b)

Figure 7. Phase portraits in the Poincaré disc of Case
(iii) when G ≥ 0.

Figure 8. Phase portrait in the Poincaré disc of Case
(iii) when G < 0 and G < H. If G > H then the phase
portrait is the same but reversing the orientation of all
its orbits.

G > 0 G = 1, H = 1 Figure 7 (a)
G = 0 G = 0, H = 1 Figure 7 (b)
G < 0 G = −1, H = −2 Figure 8

Table 4. Parameters of Case (iii).

which has a unique finite singular point (−I, 0). The Jacobian matrix
at this singular point is

J |(−I,0) =

(
0 1
1 −I

)
.

Since J |(−I,0) has trace T = −I and determinant ∆ = −1 we conclude
that the singular point (−I, 0) is a saddle. This local phase portrait is
topologically equivalent to that ones presented at Figure 7 (a).

Case (v) The correspondent normal form is

(14) ẋ = y, ẏ = xy − x+ I,
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which has a unique finite singular point (I, 0). The Jacobian matrix at
this singular point is

J |(I,0) =

(
0 1
−1 I

)
.

which has trace T = I and determinant ∆ = 1. If I = 0 then the
singular point (0, 0) is a center non-hyperbolic because in this case the
system is reversible with involution given by (x, y, t) 7→ (−x, y,−t) (see
Figure 9). If I 6= 0 there exist two possibilities

(i) T 2 ≥ 4∆ > 0⇔ I2 ≥ 4 > 0⇔ I ≤ −2 or I ≥ 2,
(ii) 4∆ > T 2 > 0⇔ 4 > I2 ⇔ −2 < I < 2.

In case (i) the singular point (I, 0) is a stable node if I ≤ −2, or an
unstable node if I ≥ 2. In case (ii) the singular point (I, 0) is a stable
focus if −2 < I < 0, or an unstable focus if 0 < I < 2. These local
phase portraits are topologically equivalent to that ones presented at
Figure 8.

I = 0

Figure 9. Phase portraits in the Poincaré disc of Case
(v) when I = 0.

Case (vi) The correspondent normal form is

(15) ẋ = y, ẏ = xy + 1,

which has no finite singular point. This local phase portrait is topo-
logically equivalent to the one of Figure 5.
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