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Abstract

We quantify the impact of typhoons on manufacturing plants in China. To this
end we construct a panel data set of precisely geo-located plants and a plant-level
measure of typhoon damage derived from storm track data and a wind field model.
Our econometric results reveal that the impact on plant sales can be considerable,
although the effects are relatively short-lived. Annual total costs to Chinese plants from
typhoons are estimated to be in the range of US$ 3.2 billion (2017 prices), or about 1
per cent of average turnover. When we examine the channels by which plants react to
a storm event we find that there is some buffering through an increase in debt and a
reduction in liquidity. In terms of propagating the shock through foreign or domestic
channels, our estimates suggest that 28 plants prefer to reduce sales to domestic buyers
more than foreign buyers and purchases from foreign rather than domestic suppliers.
We also find some evidence of a negative indirect effect on turnover through spillovers
from customers and a positive effect through damage to very nearby competitors.
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1 Introduction

For those countries that are susceptible to tropical cyclone strikes, the prediction that their
intensity may increase with climate change underlines the importance of understanding and
being able to quantify the economic consequences of these storms (Knutson et al., 2010;
Emanuel, 2013). Much of the existing literature on the impact of tropical cyclones has
tended to focus on national or regional effects and the results have been rather mixed.1

However, while insightful, these macroeconomic studies are fairly limited in terms of provid-
ing useful information for formulating policies to build resilience. More specifically, tropical
storms, as with most natural disasters, are inherently very local in nature and the local
impact will likely be, at least to some extent, ‘aggregated out’ if a too broader regional unit
of analysis is used.2 Hence, it is argued that any real understanding, and therefore what to
target in terms of disaster management policy, can only be derived from more micro-level
studies at the level of the individual, household, or firm. However, to date, the existing
evidence in this regard is relatively scarce and also provides inconsistent results due in part
to different methodological approaches (see e.g., Leiter et al., 2009; Coelli & Manasse, 2014;
Ando & Kimura, 2012; Tanaka, 2015; Basker & Miranda, 2017; Cole et al., 2019).

The challenge for researchers wishing to conduct a micro-level analysis of tropical storms
is threefold. First, the economic unit of analysis needs to be observed before and after a storm
event, and any possible relocation tracked in order to be able to derive plausible inference.
Second, it is important to model the impact of the storm locally, which means considering
the complex spatially heterogeneous nature of storms to enable one to capture the fact that
relatively small differences in distance can result in considerable differences in damage. To
this end there has been considerable progress in the economics literature as research has
evolved from using simple event indicators or likely endogenous ex-post measured damages
to employing physical models to approximate the local impact (see e.g., Strobl, 2012). The
remaining, and perhaps greatest challenge, is being able to precisely localize the economic
agents of interest so that they match the spatial heterogeneity of the storm impact. The
difficulty with localizing economic agents, however, is that the majority of available firm,
household or farm data used in existing micro-level studies, do not provide exact locations

1The early literature has tended to take a cross-country macroeconomic approach to examine the im-
pact of a disaster on growth. Examples include Loayza et al. (2012), Strobl (2012), Ahlerup (2013), and
Crespo Cuaresma et al. (2008). Intuition would suggest the impact of a disaster should be “naturally nega-
tive” (Felbermayr & Gröschl, 2014) and the results of Hsiang and Jina (2014) suggest a long-term negative
impact of cyclones on growth. However, other studies have recorded an overall positive effect in cases where
there is an element of creative destruction as a result of “building back better” Albala-Bertrand (1993). In a
recent study, using a stochastic endogenous growth model, Bakkensen and Barrage (2018) attempt to bridge
the gap between macro and micro evidence on the impact of climate shocks on growth by estimating the
impact of cyclones on the structural determinants of growth. See Noy and duPont IV (n.d.) for a summary
of the macroeconomic studies.

2A number of papers investigate the “aggregation problem” by using satellite derived nightlight data to
measure the impact of hurricanes and typhoons. For example, using yearly data Strobl (2011), Bertinelli
and Strobl (2013) and Elliott et al. (2015) show that for hurricanes and typhoons, national level regressions
can mask much of the impact at the local regional level. More recently Del Valle et al. (2018) use monthly
nightlight intensity for the first time to measure the local impact of tropical cyclones within a given year for
Guangdong province in Southern China.
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and instead rely on fairly broad administrative regions.3

This paper attempts to overcome the aforementioned challenges by explicitly spatially
modeling potential damages from typhoons (the name given to tropical cyclones in the
Northwestern Pacific region) using features of the storm and linking these to a panel of Chi-
nese manufacturing plants while also controlling for potentially climatic confounding factors
(local rainfall and temperature). China arguably represents an ideal country to study as
it is subject to around 5.8 damaging storms per year and, importantly, these storms have
caused considerable damage to its coast where much of the recently expanded manufactur-
ing activity is located. Q. Zhang et al. (2009) show that total economic losses and hence
vulnerability to tropical cyclones in China have been increasing over time and Fischer et al.
(2015) estimate economic losses from tropical cyclones in China for our period 2000-2006 to
be in the region on US$ 9.05 billion (2017 prices) annually.4

Our contribution to the current literature is three-fold. First, we follow previous studies
that model damages due to tropical cyclones locally via a physical wind field model, but are
able to do so much more precisely by identifying the exact location of each plant by using de-
tailed address information.5 Second, using our geo-localized panel of Chinese manufacturing
plants and the associated typhoon damages we are the first that are able to not only quantify
the impact of these storms on various aspects of plant performance, but also identify the
channels by which plants react to the exogenous shock, including changes to liquidity and
debt ratios, depletion of inventories, and imports of intermediate inputs and exports.6 Fi-
nally, we contribute to the literature on local supply chains by generating a number of spatial
spillover indices to capture the typhoon damage on suppliers, customers and competitors and
to estimate whether possible spatial linkages indirectly impact the performance of our plants.

There are a number of studies that are related to what we do in this paper. One of the
closest is Leiter et al. (2009) who examine the impact on firms of being located within a
flood hit region. However, although they are able to control for individual firm level char-
acteristics they are not able to identify whether any particular firm was inundated (they

3Broad administrative regions are used in, among others, Paxson and Rouse (2008), Leiter et al. (2009),
Craioveanu and Terrell (2016), and Groen, Kutzbach, and Polivka (2017).

4The numbers in Fischer et al. (2015) are from the CMA National Survey of Economic Losses at County
Level (1984-2003) (2014), the China Climate Impact Assessment Reports (2001-2010) (2014), and from the
Yearbooks of Meteorological Disaster (2011-2013) (2014) and have been used to calculate direct economic
loss for affected populations due to land falling tropical cyclones that strike mainland China (including
Hainan). An illustrative case is the 2006 Typhoon Saomai which struck the provinces of Zhejiang and Fujian
and left thousands of building destroyed, power cuts in six cities, the sinking of thousands of boats and the
evacuation of up to 1.7 million people with costs estimated by the Chinese government to be in the region
of $US 4.3 billion (2017 prices). Han et al. (2016) provide a summary of China’s major disasters and their
associated damages between 1985 and 2014 and Lixin et al. (2012) provide an integrated risk assessment of
multiple hazards in China. For a description and analysis of China’s disaster management planning system
see the Natural Disaster Data Book published by Asian Disaster Reduction Center and studies by Shi et al.
(2007), Lixin et al. (2012), and Z. Wang et al. (2016).

5For examples of different wind-field modelling approaches see Strobl (2012) and Hsiang and Jina (2014).
6Tol (1999) argues that to understand the impact of disasters on firms at the local level it is important

to consider firm specific characteristics.
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assume their broad flood measure captures the cumulative impact of the flood on inputs and
productivity). Their results show that firms in flooded areas experience stronger growth in
employment and capital accumulation in the short-run compared with unaffected firms al-
though they also find a short-term negative impact on productivity. In another paper on the
impact of flooding on firm performance, Coelli and Manasse (2014) find that the value added
of Italian firms hit by a flood was 6.9% higher than unaffected firms two years later driven in
part by government aid that contributed around 2% to this additional growth. This finding
is consistent with a build back better effect and the notion that if more capital is destroyed
than labor in a local area, the return to capital may increase leading to a short-term growth
impact.7

Cole et al. (2019) is also close in spirit to our paper in using a plant specific measure of
damage, although this is constructed using ex-post measured damages from a ground survey
and thus possibly subject to omitted variable bias. In their study of the 1995 Kobe earth-
quake the main finding is that building level damage significantly and negatively impacts the
probability that a manufacturing plant will survive, with this effect lasting up to seven years
after the earthquake. They also find a small temporary increase in productivity following
the earthquake consistent with a build back better effect.8 Business survival is also looked
at by Basker and Miranda (2017) in the aftermath of the Hurricane Katrina, again using an
ex-post assessment of damage at the plant location level, and discover that establishments
in large chains were more likely to recover from major structural damage and that estab-
lishments located close to banks had better recovery rates. Likewise, for Hurricane Katrina,
Craioveanu and Terrell (2016) consider the impact of storms on firm survival using a spatial
Bayesian analysis to show that firms with less damage and larger firms in general are more
likely to survive.9

A further, but little researched, mechanism by which natural disasters can impact firms,
that we also investigate in our paper, is through international trade. Of the few studies
that examine the trade channel, Gassebner et al. (2010) show, in a study of global disasters
between 1962 and 2004, that an additional disaster reduces imports and exports by 0.2%
and 0.1% respectively. In contrast, Parsons (2016) shows that Hurricane Katrina had no
noticeable effect on US imports. Finally, in a detailed study of the impact on Japanese trade
following the Great East Japan earthquake of 2011, Ando and Kimura (2012) find a fairly
dramatic short-term decline in exports while at the same time imports increased substan-
tially.

7In a related paper that uses a post-disaster field study following the Sri Lanka tsunami De Mel et al.
(2012) show that aid helped retailers to recover but not manufacturing firms. In a study of Vietnam using
province level data Vu and Noy (2018) also investigate how disasters affect firms’ retail sales. For a detailed
study of the impact of disasters on labor market outcomes see Kirchberger (2017).

8Also for the Kobe earthquake, Tanaka (2015) finds a short term negative impact on employment and
value added although they assume that all firms in given parts of the city were equally damaged.

9In other studies of Hurricane Katrina, Groen et al. (2017) use geo-coded damage data from wind and
floods to capture the impact of damage heterogeneity on employment and earnings and LeSage et al. (2011)
take a spatial probit approach and find spatial dependence behind the decision of businesses to reopen.
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Finally, there is a small literature that considers the impact of natural disasters on supply
chains that we address in this paper through our calculation of a number of spatial spillover
indices. Theoretically, Henriet et al. (2012) show how a firm’s “connectedness” and its ability
to find new customers and clients as well as the role of imports to replace domestic suppliers
can either dampen or magnify the effect of a natural disaster. One of the first studies in
this literature was by Altay and Ramirez (2010) who demonstrate that disasters impact all
sectors within the supply chain and that the impact on turnover is dependent on a firm’s
position within that chain. More recently, Hamaguchi (2013) in a study of manufacturing
establishments in the prefectures affected by the Great East Japan earthquake finds that
establishments did change parts suppliers (without a loss in product quality but with an
increase in cost and distance). Similarly, Inoue and Todo (2017) in a study of Japanese firm
supply chains discover that firms tend to substitute damaged for undamaged suppliers and
that the size of any direct impact of damage differs greatly depending on the structure of the
supply network in an economy. Finally, Hayakawa et al. (2015) show that the 2011 floods
in Thailand affected Japanese owned affiliates in Thailand. Although the overall effect was
small, firms reduced their local procurement from other Japanese affiliates in Thailand and
imports increased from China and Japan (for old and young firms respectively).

To briefly summarize our results, we show that the impact of typhoon damage on firm
performance is considerable, resulting in a fall in turnover and profits, although the effect
is relatively short-lived, lasting no longer than a year after the shock. Annual total costs
to Chinese plants from typhoons are estimated to be in the region of US$ 3.2 billion (2017
prices), or about 1 per cent of average turnover. While the impact can be sizable if a storm
is large, our results suggest that the economic impact can be mitigated by plants drawing
down on their inventories and through the use of debt instruments and a reduction in existing
cash balances. We also find that on average, plants reduce sales to the domestic market to
a greater extent than they do to foreign markets and increase their imports of intermediates
a year after the storm following a small fall in the year of the storm. Exports in contrast
grow considerably in the year after the storm perhaps as a result of damage to local buyers.
In terms of labor market outcomes, we also find a small increase in employment in the year
after the storm and a reduction in the total value of wages paid in the year of the storm.
Finally, we find indirect effects through damages to customers, and competitors, where the
largest negative impact is via damage to local domestic customers.

The remainder of the paper is organized as follows. In Section 2 we describe our data,
the construction of our plant level panel and our baseline estimating equation. In Section 3
we present our econometric results. We construct and allow for spatial spillovers in Section
4. The final section provides some concluding remarks and discusses the policy implications.
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2 Data and Methodology

2.1 Geographic Region

We focus our analysis on the effect of typhoons on plants located in China although the plants
that are most likely to be damaged are those geographically located in the coastal areas.
Although we could have restricted our sample to coastal plants, for completeness we took the
data intensive decision to include all plants to ensure that we captured all possible typhoon
damage.10 Not surprisingly, the major coastal cities tend to be in the most economically
important provinces and include Shanghai, Tianjin, Guangzhou, Dalian (Liaoning province),
Qingdao (Shandong province), Hangzhou (Zhejiang province) and Xiamen (Fujian province).

2.2 Plant Level Data

The plant level data is from the Chinese Annual Survey of Industrial Firms database (CASIF)
released by the National Bureau of Statistics (NBS) of China for the period 2000-2006. We
restrict our sample to those plants that are active within a 4-digit manufacturing industry
code (GB T4754-2002) (corresponding to standard industry classification codes SIC-1310
to SIC-4229) and where the number of employees is greater than eight.11 By combining
plant name, 6-digit administration code and 4-digit industry code, we are able to generate
a unique firm ID for each plant across our sample period that also allows us to follow plants
over time.12 The CASIF includes a number of firm level variables relevant for our analysis,
including turnover, inventories, liquidity ratio, debt ratio, fixed assets, number of employees,
total wages, intermediate inputs and profits. In addition, we estimate total factor produc-
tivity (TFP) following Levinsohn and Petrin (2003), which takes account of the potential
endogeneity of inputs. Finally, we merge the CASIF with Product-level Transaction Data
(GACC) to obtain information on plant level imports and exports following the matching
process outlined in Liu (2016). All monetary values are deflated to 1998 prices using 4-digit
sector deflators (see e.g., Brandt et al. (2014, 2017) for details of the deflation process). To
generate our local spillover variables, we use a 2002 input-output table for China.13 Defini-
tions and sources for all plant level variables are provided in Table A1 in the Appendix.

10Typhoons lose speed and destructive power fairly quickly once they make landfall due to the roughness
of the surface and the loss of the warm ocean water that fuels them. In previous research Polyzos and
Tsiotas, (2012) suggest a 40 km wide zone in a study of Greece, Elliott et al. (2015) use a buffer of 50km
in a previous study of China and Nicolls et al. (2006) use 100km (and an elevation of 100m). Strobl (2011)
shows in a US study that tropical storms have no effect on counties that lie inland from the coast.

11We follow Brandt et al. (2012), Upward et al. (2013) and Brandt et al. (2017) in using this cut-off since
the few firms below this threshold fall under a different regime of self-employed firms, which are generally
not covered by the CASIF.

12For each Administrative Region (SAR), the third and fourth digits are associated with the prefecture
(Diqu in Pinyin), autonomous prefecture, Mongolian league, municipal city district or county. The fifth and
sixth digits represent the county level divisions which are city districts, county-level cities and the banner
areas of Inner Mongolia. The final two-digits represent the street block level.

13The IO tables consist of 122 sectors that are equivalent to 3-digit Chinese Industrial Classification (CIC)
level. We follow Brandt et al. (2012) and link each 4-digit CIC code to an IO sector.
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2.2.1 Geo-Location of Plants

A critical task for our analysis is to determine the exact geo-location of plants. To do this
we use information on the address of each plant for the first year that they are in the data.
This gives us a unique geo-location (longitude and latitude) for each year for around 55% of
our plants. The remaining 45% of plants share an address.14 For plants where the address
information was missing we used an internet search to find the address and these plants were
subsequently included in our sample.15 All remaining plants for which we could not find suf-
ficient information were dropped. One complicating factor is that plants may relocate within
our study period. This is further complicated by poor address information for some of the
earlier years of our sample which may make it appear, incorrectly, that a plant has moved.16

To prevent any possible miss-classification we used data for those years with higher quality
data (2000, 2003, 2004 and 2006) and calculated the Euclidean distance to the address of the
other years for any given plant such that if the distance was within 1 km we assumed there
was no change of address. Our results reveal that there were 60,357 plant moves within our
sample where a mover is classified as those with more than one geo-location during our time
period (6.5% of the total number of observations of 932,723).

After geo-locating plants and excluding any observations where we were unable to con-
struct all of our performance indicators our final sample of plants consists of 251,828 unique
plants over 186,618 unique locations meaning that we dropped approximately 2% of plants.
For our study period 2000-2006, the locations of the plants in our sample are shown in Figure
1. As can be seen, plants are disproportionately located along the coast. One may want
to note in this regard that this distribution pattern also coincides with the distribution of
population within China.

2.3 Plant Level Typhoon Damages

The damage caused by a typhoon depends mainly on three related aspects: wind-speed,
flooding/excess rainfall, and storm surge. A simplifying, and commonly adopted assumption
in the literature is that the latter two effects, which are much more difficult to model, are
highly correlated with wind speed and thus one can use wind speed as a proxy for the
potential damage due to a typhoon strike.17 Here we also adopt this convention.

14Plants may share an address if, for example, they are located in a newly established industrial park that
has a temporary land-use code and name, or if the address is a village without detailed road names or door
numbers. The largest number of replications that we keep in our sample is 50. In cases where the number
is over 50 we use manual internet searches to obtain more accurate address information and accounts for
23,949 observations and 8,703 plants across our time period.

15In each case we referenced the address with the administration code and postcode provided in the CASIF
to confirm the address found on the websites.

16Some address information in the earlier years only included a general county name and lacked more
detailed village or street information.

17See Emanuel (2011) for a more detailed discussion on the relationship between wind speed and flood-
ing/storm surge.
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2.3.1 Typhoon Tracks

To model typhoon damage we use storm tracks from the Regional Specialized Meteorological
Centre (RSMC) which provides six hourly (i.e. every six hours) data on all tropical cyclones
that formed in the West Pacific since 1951. The information available includes the position
of the eye of the storm and the maximum wind speed during a storm’s lifetime. We linearly
interpolate the six-hourly data into hourly estimates for each longitude and latitude along
the Chinese coast. We also restrict the set of storms to those that came within 500 km of the
coast of China (since tropical cyclones generally do not exceed a diameter of 1,000 km) and
that at some stage during their lifetime achieved at least typhoon strength. Figure 1 shows
the tracks of typhoons and other tropical storms that formed in and around the Chinese
coast between 1998 and 2006. The solid red lines represent the segment of the storm when
it reached typhoon strength and would have caused the greatest damage.18

Our wind field model is calculated for the period 1998 to 2006 using the typhoon track
data described above. A total of 58 damaging storms struck China during this period and
45 between 2000 and 2006 (the storms, their maximum wind speed and damage estimates
are provided in Table A2).

2.3.2 Local Typhoon Wind Speed

An important factor when it comes to measuring the damage to an individual plant is the
wind speed that a plant experiences during a typhoon and will depend on the exact location
of the plant relative to the movement and features of the storm. To model this we apply
the Boose, Serrano, and Foster (2004) version of the well-known Holland (1980) wind field
model, according to which the approximate local wind speed at any point i, for storm k, in
time t is given by:

vikt = GF

[
Vmax,kt − S (1− SIN(Tikt))

Vh,kt
2

][(
Rmax,k,t

Rit

)Bkt

exp

(
1−

[
Rmax,k,t

Rit

]
Bkt

)] 1
2

(1)
where Vmax is the maximum sustained wind velocity anywhere in the typhoon, T is the

clockwise angle between the forward path of the typhoon and a radial line from the typhoon
center to the point of interest i, Vh is the forward velocity of the tropical storm, Rmax is the
radius of maximum winds and R is the radial distance from the center of the tropical storm
to point i, G the gust factor, and F , S, and B are the scaling factors for surface friction,
asymmetry due to the forward motion of the storm, and the shape of the wind profile curve,
respectively.

In terms of implementing equation (1) the maximum wind speed VMAX is taken from
the RSMC, Vh can be calculated following the movement path of the storm, while R and T
can be determined by using the relative position between the eye of the typhoon and our

18Although our plant level data is from 2000-2006 we include storms from 1998 to allows us to include a
small number of lags.
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point of interest i. We set G equal to 1.5 and S equal to 1 following Paulsen and Schroeder
(2005) and Boose et al. (2004), respectively. For the surface friction indicator F , Vickery
et al. (2009) suggest that in open water the reduction factor is around 0.7 and a reduction
in wind-speed of around 14% on the coast and 28% 50 km inland. Following Elliott et al.
(2015) we linearize the reduction factor to capture the friction effect of the typhoon as it
moves inland. In terms of the pressure profile parameter B and the radius maximum winds
Rmax we adopt Holland (2008)’s approximation method and the parametric model of Xiao
et al. (2009).

2.3.3 Damage Function

As noted by Emanuel (2011), there are energy dissipation reasons to assume that the relation-
ship between wind speed experienced and damage incurred is to the cubic power. Moreover,
there is unlikely to be any damage for winds that fall below 92 km/hr. Incorporating these
features and to ensure that the percentage of damage varies between 0 and 1, Emanuel (2011)
proposes the following damage function for wind of storm k experienced at location i:

fik =
v3ik

1 + v3ik
(2)

where

vik =
MAX [(vik − vthresh), 0]

vhalf − vthresh
(3)

where vik is the maximum wind speed of storm k experienced at point of interest i, vthresh
is the threshold below which no damage occurs, and vhalf is the threshold at which half of
the property is damaged. Following Emanuel (2011) we assume values of 92 km/h and 204
km/h for vthresh and vhalf , respectively.

Note that equation (1) is defined in terms of the percentage of damage caused per storm.
Given that our plant data is annual, any given plant could feasibly be hit by several storms
in a year. Hence, to account for the possibility of multiple strikes we assume that damages
can accumulate over a year, but restrict the impact of additional storms to have less than
a simple cumulative effect. Rather, under the assumption that weak and fragile structures
get destroyed first, leaving more resistant structures, we allow damage to be multiplicative
for storms k = 1, ..., K within a year t as follows:

fit =
K∑
k=1

k∏
i=1

fik (4)

2.4 Nightlight Intensity

In order to proxy economic activity at the local level we follow a large literature, such as
Henderson et al. (2012), and use data derived from satellite images of nightlights. More
specifically, we use nightlight imagery provided by the Defense Meteorological Satellite Pro-
gram (DMSP) satellites. In terms of coverage each DMSP satellite has a 101 minute near-
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polar orbit at an altitude of about 800km above the surface of the earth, providing global
coverage twice per day, at the same local time each day at about the 1km resolution.

2.5 Climatic Controls

Auffhammer et al. (2013) demonstrate that different climatic phenomenon can impact eco-
nomic activity. Likewise, in a recent paper P. Zhang et al. (2018) examine the impact of
temperature changes on the productivity of Chinese plants and find that output could fall
by 12% based on 2050 predictions of climate change under the assumption of no adaptation.
High temperatures have also been linked to lower economic activity by Hsiang (2010) and
Chen and Yang (2018). Hence, to control for other potentially confounding factors we con-
struct localized measures of rainfall and temperature to include as additional controls in our
estimations.

2.5.1 Rainfall

To capture local rainfall we use the satellite derived Tropical Rainfall Measuring Mission
(TRMM)-adjusted merged-infrared precipitation (3B42 V7) product. These 3 hourly pre-
cipitation estimates are generated by first using the TRMM Visible and Infrared Scanner
(VIRS) and TMI orbit data (TRMM products 1B01 and 2A12) and the TMI/TRMM Com-
bined Instrument (TCI) calibration parameters (from TRMM product 3B31) to produce IR
calibration parameters. The derived IR calibration parameters are then employed to adjust
the merged-IR precipitation data, which consists of GMS, Geostationary Operational Envi-
ronmental Satellites (GOES-E and GOES-W), Meteosat-7, Meteosat-5, and NOAA-12 data.
The final gridded, adjusted merged-IR precipitation (mm/hr), data have a 3 hourly temporal
resolution and a 0.25-degree by 0.25-degree spatial resolution and extend from 50 degrees
south to 50 degrees north latitude. They are available from 1998. Matching each plant to
the nearest centroid of the TRMM grid cells we calculate its yearly mean daily rainfall.

2.5.2 Temperature

To construct yearly mean daily temperature for each plant we take data from the National
Climatic Data Center (NCDC) at the National Oceanic and Atmospheric Administration
(NOAA), which provides daily data for several hundred weather stations across China. When
we use the temperature observations to spatially interpolate values to the location of plants
there are two potentially important factors that we need to consider. First, temperature
can vary considerably with changes in elevation. A common solution is to estimate lapse
rates between stations, which mean estimating the relationship between temperature and
elevation and then spatially interpolating temperature according to suggested variation in
temperature with changes in altitude.19 A second potentially pertinent feature of spatial
variation in temperature is that temperature is likely be higher in urbanized areas due to
human activity, also known as the urban island heat effect. To incorporate these two aspects
into our spatial interpolation we follow Li et al. (2013) and specify a lapse rate equation,
but control for the urban island heat effect via:

19For applications related to China see Fang and Yoda (1988) and Tang and Fang (2006).
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temperaturewnt = α + β1latitudew + β2longitudew + β3altitudew + β4heatislandwt+

β5heatislandwt × altitudew + εwnt

(5)

where subscripts w, m, and t stand for weather station w, month n, and year t, tempera-
ture is the average daily temperature at station w, in year t, in month n, latitude, longitude,
and altitude are the geographic coordinates and altitude of the station, respectively, and
heatisland is our proxy for urban heat islands, the effect of which we also allow to vary with
altitude. To measure elevation we use the digital elevation model from the Shuttle Radar
Topography Mission, which has a resolution of 90m, and assume a station’s altitude to be
the value of the cell closest to it. To proxy the urban heat island effect, we follow Chen
and Nordhaus (2011) and Henderson et al. (2012) and use information from the DMSP
satellite, which has provided normalized annual nightlight intensity (between 0 and 63) at
roughly 1km grid cell level size since 1992. More specifically, for each weather station for
each year we take the pixel value whose centroid is closest to the station, and, following Yang
et al. (2014), we set this equal to its given value if the value is at least 12, and zero otherwise.

In order to be able to implement equation (4) we keep only those months of data for a
station which had no more than one day of temperature missing and for which we had a
complete series over the period 1992-2006. This leaves us with data for 365 stations. Equation
(4) was then estimated for individual months since the lapse rate has been shown to vary
substantially across seasons (Li et al., 2013). The estimated lapse rate was found to be on
average around -0.0043, suggesting a fall in temperature of 4.3 degrees for a rise in altitude
of 1000m, which lies well within the range found for China (see e.g. Li et al. (2013)). The
coefficient on heatisland was positive and significant and that on heatisland× altitude was
negative and significant, indicating the existence of a heat island effect but that the effect was
lower at higher altitudes. The estimated parameters were then used in conjunction with the
altitude and local level of urban agglomeration (i.e., the value of local nightlight intensity) of
stations and plants to generate daily temperature by month for each plant. More specifically,
for every plant we identified the temperature value of the weather stations located within
200km of the plant, calculated the difference in altitude and heat island between each of these
stations and the plant, predicted the average daily temperature suggested by estimates of
equation (4), created the distance weighted average across all stations within the 200 km
vicinity, and then averaged resultant monthly series into annual average daily degrees.20

2.6 Summary Statistics

Table 1 provides summary statistics for our sample for the main variables we use in our
regression analysis. As can be seen, turnover varies considerably across plants, ranging from
RMB 800 to RMB 167,145,800,000 with a mean of RMB 72,000,000. One may want to note
that of the 251,828 unique plant in our final data set, 30.53% experienced some damage from
a typhoon at least once during the period of our study, and that the level of damage for

20We linearly interpolated nightlight intensity values between years to generate monthly values. Results
from the estimation of equation (4) are available upon request.
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these incidences was 4 per cent, but with considerable variation. This is further attested to
in the histogram of non-zero values21 of f (which constitute 16.4% of the sample), shown in
Figure 2, where the distribution is characterized by a fat tail, as is common with extreme
weather events. In terms of our other variables one can see that plants have on average a
debt equal to 59 per cent of their annual turnover. Also, about 11 per cent of turnover is
exported, while about 90 per cent of inputs are sourced locally, in that they purchased from
local rather than foreign suppliers.

2.7 Baseline Regression

Our benchmark specification to investigate the impact of typhoon strikes on Chinese manu-
facturing plants is given by:

Yit = α +
L∑
l=0

βflfit−l +
L∑
l=0

βClCit−l + πt + TrendD + µi + εit (6)

where Y is our dependent variable of interest for plant i at time t. One should note that
since many of the dependent variables we experiment with have a non-negligible amount
of zeros and are fat (right) tailed distributed, we, as suggested by Burbidge, Magee, and
Robb (1988), use an inverse hyperbolic sine transformation to take account of this. Thus
coefficients on our explanatory variables can be interpreted as in log-level equations. f is
our damage index, potentially lagged l times, C our climatic controls (average daily tem-
perature and rainfall), and ε the error term. Time dummies πt are included to account for
time varying effects common to all plants. We take account of time invariant plant specific
unobservables, µi, by using a fixed effects estimator. TrendD are geographic D specific time
trends, where we divide China into a regional grid according to each 1 degree of longitude
and each 0.1 degree of latitude (resulting in a total of 138 grids).22 In order to allow for
serial and spatial correlation we calculate Driscoll and Kraay (1998) standard errors.

Arguably, our coefficients of interest, namely the contemporaneous and lagged effects of
typhoon damage, βfl, are unbiased from an economic decision-making perspective. More
specifically, plant fixed effects will control for any time invariant firm and location specific
factors that may be related to typhoon exposure. The relatively high spatial resolution of
the geographic specific time trends, on the other hand, will likely capture any firm specific
trends related to local trends in typhoon occurrence. Our climatic controls capture any
other confounding factors that might be correlated with typhoons (Auffhammer et al., 2013).
Therefore, f will, after all of these controls, arguably simply be random realizations drawn
from the local typhoon damage distribution. One may want to note that our specification
above includes essentially no time varying plant specific controls. This is because all plant

21

22Making the grid vary more across latitude rather than longitude was done because (i) our large sample
limited the number of locality specific time trends we could include in the estimation, and (ii) for China
typhoons vary much more in latitude rather than longitude, since friction on land reduces their strength
considerably.
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level variables we have could arguably be affected by typhoon damage, and thus would
potentially constitute “bad regressors” (Angrist and Pischke (2009)).

3 Results

3.1 Turnover

Table 2 presents the results for the impact of a typhoon on plant turnover for our sample of
manufacturing plants from estimating equation (5). In the first three columns we show the
results without any climatic controls and systematically including a greater number of lags
of f . As can be seen, typhoon damage reduces an affected plant’s turnover, but only in the
year of the strike. In Columns (4) through (6) we do the same exercise but this time include
climatic controls and their appropriately lagged values to coincide with the number of lags
of f . Accordingly, we still only find a contemporaneous effect of typhoon damage on plant
turnover, but this effect is 22% smaller. Thus, not controlling for potentially confounding
climatic variables other than the typhoon by itself may result in an upward downward bias
in the estimated damage effect of typhoons on plant turnover.

Using the estimate on f in the fourth column as our benchmark specification the implied
coefficient suggests that when an average damaging typhoon (3.7% damage) occurs, Chinese
manufacturing plants experience around a 1 per cent reduction in turnover. If we consider the
largest plant specific value of typhoon damage observed in our data set (75.5%), this would
have caused a 19 per cent reduction in output. If we take the total damages experienced by
Chinese plants due to typhoons over our seven-year period, our results imply that on average
annual turnover was reduced by 21.4 billion RMB, or 3.2 billion US$ (in 2017 prices).23

3.2 Robustness Checks

We also conduct a number of robustness checks. One concern may be that our findings are
driven by a single storm. To investigate this we systematically took each of the 58 storms,
and set the damages for this storm to zero, and then re-estimated the impact on turnover
of this new f the same as the specification of Column (4) in Table 2. The estimated coef-
ficient on ft ranged from -0.183 to -0.160. Importantly, all of these coefficients were highly
significant, where the t-statistic ranged from -18.8 to -8.0.

In a second robustness check we implemented a Fisher type randomization test, where we
randomly reshuffled the years in our panel data, breaking the temporal link between dam-
ages and turnover. This allows us to compute the probability of observing our significant
estimates compared to randomly assigning years. A histogram of the estimated t-statistic
for ft is shown in Figure 3. As can be seen, compared to the distribution the significance on
these coefficients the t-statistic on our estimated coefficient of f , shown by the red vertical

23To illustrate how we calculated our economic values, the % reduction in turnover = [mean of f index
(f>0) * coefficient from column 4 of Table 2]/mean of turnover (only for obs with f>0) = [3.7%*(-0.167)] /
66.95266 = 0.92289089% = approximately 1%.
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line, is unlikely to be random. As a matter of fact, the permutation p-value is 0.005.

One concerns may be that feasibly outliers could be driving our results, as the largest
value of turnover in our data is more than 4 standard deviations above the mean. To explore
this further we excluded observations above and below the 95th and 99th percentile of the
turnover distribution. This produced (statistically significant at the 1% level) coefficients of
-0.183 and -0.165, respectively. We additionally calculated Cooke’s standardized residuals
from our main specification with the full sample and re-ran it excluding those observations
whose residual was greater than 4/N, where N is the total number of observations (see
Cook (2000)). Again, the corresponding coefficient on ft remained statistically significant at
the 1 % level and fairly close in value (-0.138) to the coefficient from the total sample (-0.167).

We also conducted a placebo test where we assumed that the typhoon damages occurred
a year earlier than their actual occurrence. The results of this are shown in Column (7)
of Table 2. Accordingly, there is, somewhat surprisingly, a marginally significant positive
effect. One reason may be that we are including an additional storm year of data (2007)
and ignoring a storm year (2000) in order to preserve our sample size. As a matter of fact,
examining the distribution of non-zero values of ft+1 in Figure 4 one may want to note that
2007 was a particularly inactive and 2000 a particularly active year, and thus shifts the
distribution somewhat to lower values of f compared to Figure 2, In view of this, to exam-
ine how robust the significant effect on ft+1 is we conducted a Fisher type randomization
test as above, randomly reshuffling the years in our data. The histogram of the resultant
t-statistics, shown in Figure 5, and the permutation p-value of 0.288, however, suggest that
we cannot rule out the possibility that the positive impact is likely random rather than causal.

The reason that we excluded other plant specific control variable available form our data
set thus far, apart from plant specific and time fixed effects, regional time trends, and cli-
matic controls, is that these could potentially constitute ’bad controls’ if they were affected
by typhoons themselves. To circumvent this problem we estimated our main specification
with lagged employment as an additional control, as shown in the final column Table 2.
However, as can be seen doing so has little effect on the estimates of f .

A final concern may be that plants that drop out of our sample, either because they shut
down operation or become too small could be driving our results. To indirectly investigate
this we investigated whether a plant dropping out of our sample could be predicted by ty-
phoon damage by running a linear probability model, including all controls from our main
specification. The coefficient (-0.093) was, however, insignificant.

3.3 Financial Health and Labor Market Outcomes

In Columns (1) to (3) of Table 3 we investigate the implications of a drop in turnover due to
typhoon damage shown in Table 2 for a plant’s financial health, by replacing the dependent
variable in equation (5) with, alternatively, a plant’s profits, debt ratio and liquidity ratio.
Since for none of these, or any of other dependent variables that we subsequently use, there
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was an effect beyond t−1, we simply report the results including only up to a t−1 lag. Col-
umn (1) shows that total profits fall only in the year after the typhoon strike that translates
into about 3 per cent for an average storm. In contrast, we can see an immediate negative
effect on TFP, as shown in Column (2), although one may want to note that the reduction
is marginal, where for the average plant productivity for the average damaging storm falls
by just 0.14 per cent.

In terms of our financial health variables, we find that liquidity decreases for up to one
year after a damaging typhoon (shown in Columns (3)), with roughly similar falls at t and
t− 1. At the same time plants increase their debt for up to a year after the storm as shown
in Column (4). Reducing liquidity and increasing debt can both be considered as forms of
buffering in the event of a negative external shock with funds (either borrowed or spent from
resources) being used to try and ensure that the business bounces back as quickly as possible
and is able to carry on with business as usual.

In Columns (5) and (6) we investigate the effect of typhoon damage on labor market
outcomes, namely the average wage and employment levels. Our results show that plants
have a lower total wage bill in the year that the typhoon strikes, but that there is no
immediate effect on employment. A year later wages have returned to their pre-storm level,
but employment has temporarily increased. This employment effect may be because storm
damaged plants become more labor intensive as a result of damage to their capital such
that labour is substituted for capital (Coelli & Manasse, 2014). A fear that workers may
leave a damaged plant to find alternative work appears unfounded or if they do replacement
workers are hired within the same year. In terms of wages, the initial fall in wages in the year
of the strike may be a result of substitution of highly paid workers for lower paid workers
leading to a fall in total wages paid or alternatively that a plant stops paying wages when a
factory temporarily shuts down hence reduces total wages for the year but not the number of
employees (if for example the factory pays piece rates). Taking the significant coefficient on
lagged employment at face value the results suggest that for average typhoon damages there
were an additional 2 workers hired per plant (or a 0.8 per cent increase), while maximum
observed damage implies hiring an extra 38 employees.

3.4 Inventories and Internationalization

In Table 4 we investigate other channels by which a plant may adjust to reduced output.
Column (1) of Table 4 considers whether plants draw down on previously produced, but not
yet sold output, i.e. inventories, to meet consumer demand as a means of mitigating the
direct impact from lost output due to lost production capacity. As can be seen, there is an
immediate negative impact on inventories followed by a positive impact at t− 1, suggesting
that the fall in profits in the year after the strike may not only be due to a fall in production
but in a rise in unsold output, which shows up in the following years inventory or simply
that the firm is making a conscious effort to rebuild inventories. Quantitatively, the estimate
suggest that inventories for the average (maximum) observed damages in our sample inven-
tory would in that year have fallen by 1 (21) per cent. When we examine the expenditure
on intermediate inputs, Column (2) shows that there is no significantly negative impact on
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the purchase of intermediate inputs due to typhoon damage.

Given China’s close association with global supply chains it is useful to understand how
natural disasters can impact patterns of internationalization. More precisely, given that
about a fifth of the plants in our sample export, it is of interest to see whether, in the face of
a production shock, plants reduce sales to foreign buyers more or less than to domestic buy-
ers. More precisely, we break down the production into that which is exported and output
that is sold domestically, the results of which are shown in Columns (3) and (4). Our results
show that domestic sales fall only in the year of the strike (matching the total turnover
results), where the quantitative effect is somewhat larger than the latter (for the equivalent
specification for Turnover in Table 2 the coefficient was -0.117).24 In contrast, while total
exports also fall in the year of the strike they do so by a smaller amount.25 Moreover, exports
increase the year after the strike by an amount that is a multiple of the drop in exports at t.
This result suggests that as plants recovery they target overseas markets perhaps as a result
of a reduced demand from domestic buyers some of which may have been damaged by the
typhoon, because customers were lost to undamaged competitors, or as part of a strategy to
hedge the risk against future strikes.

In a similar spirit to the role of exporting, we examine whether, when facing a fall in
production due to the typhoons, plants are more likely to reduce their purchase of foreign or
domestic inputs. As can be seen from Columns (5) and (6), there is a small negative impact
on imported inputs in t and a similar but much smaller increase than that of exports in
t− 1. One explanation is that damage to ports or other transport infrastructure may reduce
imports in the short term and delivery is delayed until the following year. In contrast, plants,
when damaged by a typhoon, tend to maintain their domestically sourced inputs in both
time periods. The significantly estimated coefficient suggests that for an average storm the
immediate effect on imports and exports is relatively small, though, only about a half of a
percentage point as plants presumably attempt to maintain their international networks and
partnerships.

4 Spatial Spillover Effects

4.1 Spatial spillover variables

Plants may not only be affected directly by a damaging storm, but also indirectly through
damages incurred by the local economy to which they are linked. More specifically, a plant
may be impacted by local typhoon damage, irrespective of any damage incurred directly, in
three possible ways: (i) if its intermediate suppliers are damaged so that a plant is unable to
source some of the inputs needed for the production process, (ii) if the production lines of
those plants that a plant normally supplies are damaged and they subsequently reduce their
purchase of intermediates, and/or (iii) if other competitors producing the same product have
been damaged so that the plant is able to capture part of their market share as customers

24A z-test statistic of the difference was 2.2
25A z-test strongly suggested that these were statistically significantly different.
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strive to find alternative sources of supply. To incorporate these local linkages, we calcu-
late three spatial damage spillover proxies based on three different plant distance differences.

To proxy the extent of any spillovers from plants competing in the same local market,
for each plant i we first identify the other j 6= i plants operating in the same product sector,
s, that are located within distance, m, of it, i.e., plants j 6= i for which distanceij ≤ m. We
then use their lagged turnover at time t− 1 relative to the total output of all plants in this
sector s within m distance of plant i at time t− 1 to generated a turnover weighted average
typhoon damage index, OUTPUTSP (m):26

OUTPUTSP (m)it =
Ns∑
j 6=i

fj,t
1s × 1m ×OUTPUTj,t−1∑Ns

i 1m ×OUTPUTi,t−1
; (7)

1m =

{
1 distanceij ≤ m
0 distanceij > m

1s =

{
1 sj = si
0 sj 6= si

where OUTPUTj,t−1, j 6= i ∈ Ns, is the turnover of all plants j other than i operating in
the same sector s, 1s is an indicator function that takes plant j is in the same sector s as
plant i, and zero otherwise, and 1s is an indicator function plant plant j is within m km of
plant i, and zero otherwise. In other words, OUTPUTSP (m)it is the damage ratio of out-
put from all other firms in sector s within distance m of firm i, and can vary between 0 and 1.

To capture typhoon damage to nearby plants that may potentially supply inputs to
plant i we first construct the importance of input sectors r to a plant i’s sector s by using
information on the share of inputs sourced across sectors from the 2002 input-output table
for China, defined as INPUTrs

INPUTs
, where INPUTs is the total inputs to sector s and INPUTSrs

are the inputs into sector s sourced from sector r. With this in hand we can then calculate
the average (lagged at t − 1) output weighted typhoon destruction index for each of plant
i’s input sourcing sectors r within a chosen distance m from the plant:

INPUTSP (m)it =
R∑

r=1

INPUTrs
INPUTs

Nr∑
j 6=i

1m × fj,t
OUTPUTj,t−1∑Nr

i 1m ×OUTPUTj,t−1
(8)

INPUTSP (m)it is thus the damage ratio of output from all firms within distance m of
firm i that operate within sectors R that supply inputs to firms in the same sector as firm i,
weighted by the average importance of these upstream sectors to sector s.

Finally, we also use the 2002 input-output table to proxy the share of supply of inputs
from a plant i in sector s to other plants in sectors k, i.e., SUPPLYsk

SUPPLYs
, where SUPPLYs is

the total supply of sector s to other sectors and SUPPLYsk the supply of sector s to sector
k. These are then used to proxy the average local (within distance m) demand for plant i’s
output by:

26We use weights constructed from t − 1 in order to ensure that these are not affected by the typhoon
itself.
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SUPPLY SP (m)it =
K∑
k=1

SUPPLYsk
SUPPLYs

Nk∑
j 6=i

1m × fj,k,t
OUTPUTj,t−1∑Nk

i 1m ×OUTPUTj,t−1
(9)

where SUPPLY SP (m)it is the damage ratio of output from all firms within distance m
of firm i that operate within sectors K that purchase inputs from firms in the same sector
as firm i, weighted by the average importance of these downstream sectors to sector s.

4.2 Spillover Regression

We incorporate our spillover variables for our base specification as follows:

Yit = α + βffit + βOUTPUTSP (m)OUTPUTSP (m)it + βINPUTSP (m)INPUTSP (m)it

+βSUPPLY SP (m)SUPPLY SP (m)it + βNL(m)NL(m)it + βCCit + πt + TrendD + µi + εit;

m = 1, ...,M

(10)

One should note that to estimate the role of spillovers on the impact of typhoon de-
struction with the indices above we necessarily need to exclude the year 2000, since we need
lagged turnover to weight plants for the three spillover variables.27 In order to control for
local agglomeration economies we also include lagged values of nightlight intensity, NL(m),
adjusted to coincide with the chosen distance m of our spillover variables.

A priori we have no reason to prefer any particular cutoff distance M and thus begin
with using m = 1km and then systematically increasing it up to 200km, after which the
construction of spillover variables became too computationally intensive. Importantly, one
should also note that our spillover variables could only be defined in terms of the plants in
the data set. To limit this as much as possible, we included all plants that had non-missing
turnover to construct our indices regardless of whether they were included in the regressions
or not. Nevertheless, it must be acknowledged that we are still missing plants that fall below
the inclusion threshold.

4.3 Results

Our results for the coefficients on the three spillover variables as well as on f are shown in
Figure 6. As can be seen from panel (a), the coefficient on the typhoon damage index remains
significant no matter what cut-off distance we set for our spillover variables, only decreasing
slightly. Thus the significant impact of plant’s own damage on turnover is not actually solely
driven by spillovers from other nearby plants. Examining the competition spillover variable,
OUTPUTSP (m), in panel (b), one finds that there is a small positive impact on a plant’s
turnover if other plants it competes with suffer typhoon damage, although this is limited to

27Excluding the year 2000 produced a reassuringly statistically significant coefficient of -0.166 on f for the
equivalent regression in Column (4) of Table 2.
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just a few kilometers. Somewhat surprisingly there is a negative impact on turnover if one
considers damage to plants in the same sector that are located within 38 and 65km. One
possibility is that this is capturing damage to transportation infrastructure used by nearby
plants in the same sector. While we are unable to test this directly, we did calculate out the
distance between plants and their nearest mode of transport, measured as either highway or
port, and indeed found this to be on average around 48km.

In terms of spillovers effects via damage to plants operating nearby in the typical input
sectors, INPUTSP (m), except for a somewhat peculiar very small positive impact when
input supplying firms are in close proximity, we find no significant impact until from around
140km onwards. Thus it appears that firms may be generally relying on inputs from firms
relatively far away, and experience a negative turnover shock, likely due to input shortages,
when these are damaged. The negative impact that firms experience when firms they typi-
cally supply to are damaged occurs at a closer proximity, starting from 76km onwards and
rising steadily as we increase the cutoff distance m. More generally our results tentatively
suggest that Chinese manufacturing firms turnover may be affected indirectly by typhoons
if these storms affect downstream and upstream firms, even if these are located far away.

5 Conclusions

In this paper we use the exact location of establishments and a physical typhoon wind field
model to quantify the impact of typhoon damages on various aspects of performance for a
panel of Chinese manufacturing plants many of which are located in China’s coastal regions.
In one of the first studies of its type, our general finding is that the impact on plant’s can be
large but is relatively short-lived. For example, the average damaging storm is likely to re-
duce a plant’s turnover by 1 per cent the year of the strike. If we consider our sample period,
2000 to 2006, our estimations suggest that turnover for Chinese manufacturing plants fell by
around 3.7 percent due to typhoon activity. These are damages that can be considered over
and above the direct costs due to infrastructure and property damage. The total damage is
therefore estimated to be in the region of US3.2 billion per year or over US$ 21 billion over
the seven years of our sample (in 2017 prices).

By investigating the channels by which plants respond to typhoon damage we are able to
show that plants are able to partially temporarily buffer these negative shocks by reducing
inventories, taking on additional or new debt, and reducing their liquidity. There is also
a preference to buffer typhoon damages through foreign markets in terms of sales, while
imports and exports show increases in the year after the storm. Moreover, our analysis in-
dicates that plants are also indirectly affected by damages to plants that they compete with
and are supplied from, although this depends on how one spatially restricts these spillovers.
The main negative impact is through domestic suppliers of intermediate inputs and may
explain the increase in imports to compensate.

Our findings arguably have important policy implications. Although the number of newly
established manufacturing plants in the hinterland of China is growing, China’s coastal
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regions still remain the center of manufacturing activity. Given the potential for an increase
in the frequency and/or intensity of future tropical cyclones it is important for the Chinese
government to understand the potential damage to plants and how to mitigate these future
losses. One should note in this regard that disaster relief in China tends to be fairly rapid with
local government agencies offering funds and loans to help rebuild damaged infrastructure.
This could be one reason that we do not find any long-term effects on plants in China,
although a lack of data has not allowed us to investigate this further. Nevertheless, in
2017 China published the “Report on the Development of Urban Public Safety in China,
2016-2017” that emphasized the further need for natural disaster prevention and mitigation
in urban areas. In this regard a central pillar of any policy to build resilience to natural
disasters is the establishment of a standing natural disaster reaction department working
together with related academic and research institutes to provide information on disaster
forecasting, prevention, mitigation and resilience at different stages of any emergency. It is
also important for China to establish a comprehensive insurance market, which does note yet
exist, to help reduce the financial burden on the central government. For example, in 2001,
only 5% of commercial and industrial property was insured J. Wang (2010). Other possible
mitigation provincial governments could take include improved sea defenses, the building and
maintenance of urban drainage systems and the provision of emergency shelters (Chengcheng
et al., 2014) all of which will help plants to become more resilient to future shocks.
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Figures

Figure 1: The Geographic Distribution of Manufacturing Plants in China (Regression Sam-
ple)
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Figure 2: The Distribution of ft: 1998-2006
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Figure 3: Fisher Type Randomization Test – Distribution of t-statistic on ft
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Figure 4: The Distribution of ft+1: 1998-2006
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Figure 5: Fisher Type Randomization Test – Distribution of t-statistic on ft+1
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Figure 6: Spillover Regressions Results

(a) : f (b) : OUTPUTSP (m)

(c) : INPUTSP (m) (d) : SUPPLY SP (m)
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Tables

Table 1: Summary Statistics

Variable Mean Std.Dev.
Turnover 72.52 607.49
f 0.01 0.04
f(f > 0) 0.04 0.09
Profits 3.59 54.83
TFP 6.27 1.13
Liquidity 0.05 0.35
Debt 0.59 0.33
Wages 12.17 79.60
Employment 268.03 979.87
Inventory 11.77 98.04
Intermediate Inputs 54.66 479.37
Domestic Turnover 64.75 523.57
Exports 7.77 240.61
Imported Inputs 5.60 192.84
Domestic Inputs 49.57 406.23

Notes: (1) Turnover, Profits, Domestic Turnover, Exports, Wages, Intermediate Inputs, Inventory, and

Domestic Inputs are given in 000’000s of RMB. (2) Liquidity and Debt are defined as ratio of turnover.
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Appendices

A Detailed Data Description

A.1 Firm Level Data

CASIF data includes all firms with over 5 million RMB in annual turnover and all state
owned enterprises. In this paper we focus only on manufacturing firms and hence exclude
firms from the mining sector and electric power, gas and water production and supply,
and the firms from the tobacco, handicrafts and recycling industries. We then match the
manufacturing firms’ data with the Chinese Customs data, which provides comprehensive
trade transaction records. Following Manova and Zhang (2012), we also exclude firms that
act as trading agents, who those are not engaged in the production of good and hence only
provide various kinds of trading services, such as exporting or importing products for other
firms, or temporarily storing or shipping products for other firms. The data cleaning rules
for users of the CSIF data are now fairly well established, see ? (?), and we follow these
closely in that we exclude firms with less than 8 employees. Additionally we do the following:

For completeness we outline our cleaning rules below. Firms with variables exhibiting
the characteristics listed as below are also excluded from our sample:
1. Firms with missing location information, specifically without a region code.
2. Firms that report missing, zero or negative values for any of the financial variables related
to final outputs, intermediate inputs, sales, revenue, profits, total capital and wages.
3. Firms that report missing or negative values for any of the financial variables related to a
firm’s ownership structure, e.g. a firm with a negative value for its foreign capital is invalid,
but a firm with zero foreign capital is valid, which may be a result of no foreign investment.
4. Firms with missing or negative values of exporting final outputs and importing interme-
diate inputs.
5. Firms where the value of production is less than the export value.
6. Firms where the total value of inputs used in production is less than the import value of
intermediate inputs.
7. Firms with missing values for employment or have less than eight employees.
8. Firms who report missing values for any of the financial variables related to assets.
9. Firms whose liquid assets are higher than total assets; or firms whose total fixed assets
are higher than total assets; or firms whose net fixed assets are higher than total assets. 10.
Firms whose birth year or established year is missing and invalid.
11. Firms ID based on the industrial data set system is missing.
12. Processing firms with non-zero values of processing exports or processing imports.

In terms of linking plants via their unique ID over time, there were 109,530 plants that
appear only once in our sample period, constituting approximately 29.8% of all plants, and
we necessarily dropped these. As a result of the cleaning process just described we have an
unbalanced panel with 932,723 observations for 251,828 unique firms for 2000-2006. Finally,
one should not that we use 4-digit output and input deflators from Brandt et al. (2012) to
deflate all monetary variables and then convert those deflated values into millions RMB in
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1998 prices. The average exchange rate between the RMB and the USD during our sample
period (2000-2006) is around 8.22 RMB to 1 USD.

A.2 Input-Output Table

The 2002 Input-Output Table includes 122 sectors and there are 6 sectors for agriculture,
6 sectors for mining, 71 sectors for manufacturing, 1 sector for scrap and waste, 3 sectors
for electricity, gas and water production and supply, 1 sector for construction, 9 sectors for
transport and warehouse, 1 sector for post, 1 sector for wholesale and retail trade services, 1
sector for food serving services, and 22 sectors for other services. The manufacturing sectors
are:
13 Manuf. agricultural products
14 Manuf. food products
15 Manuf. drink products
17 Manuf. textile products
18 Manuf. apparel, footwear etc.
19 Manuf. leather products, fur etc.
20 Manuf. wood and wood products
21 Furniture manufacturing
22 Manuf. paper, paper products
23 Printing and reproduction media
24 Manuf. cultural and entertainment products
25 Processing crude oil, nuclear fuel
26 Manuf. chemical raw materials
27 Manuf. pharmaceuticals
28 Manuf. chemical fibres
29 Manuf. rubber products
30 Manuf. plastic products
31 Manuf. non-metal products
32 Manuf. ferrous metal casting
33 Manuf. non-ferrous metal casting
34 Manuf. metal products
35 Manuf. universal equipment
36 Manuf. special equipment
37 Manuf. transportation equipment
39 Manuf. electric machines, appliances
40 Manuf. electronic equipment
41 Manuf. instruments, appliances

B Additional Tables
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Table A1: Definitions of our economic indicators

Economic Indicator Definition

TFP LP Total Factor Productivity calculated following Levinsohn-Petrin (2003).

Exports Value of exports (million RMB).

Imports Value of imports (million RMB).

Turnover Value of sales (million RMB).

Inventories Value of inventories (million RMB).

Intermediate Inputs Value of intermediate inputs (million RMB).

Domestic Output Value of domestic outputs (million RMB).

Domestic Inputs Value of domestic inputs (million RMB).

Mean Wage Average wage per employee (thousand RMB).

Debt ratio Total liabilities over total assets.

Liquidity ratio (Liquid assets – Current liabilities) over total assets.

Profits Total profits (million RMB).

Employment Number of employees (all employees).

Note: All monetary values are deflated to 1998 prices using 4-digit sector deflators (see Brandt et al. 2014
and Brandt et al. 2017 for details).
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Table A2: Damaging Typhoons in China 2000-2006

Name Year Max. Wind Speed (km/hr) Damage (bln. RMB) Damage ($US bln.)
Bilis 2000 203 8.40 1.243
Jelawat 2000 157 0.481 0.071
Prapiroon 2000 130 4.74 1.273
Saomai 2000 176 3.316 0.891
Wukong 2000 139 1.398 0.376
Maria 2000 130 2.628 0.706
Kai-tak 2000 139 0.675 0.181
Chebi 2001 120 4.61 1.214
Durian 2001 111 6.572 1.730
Nari 2001 139 0.06 0.016
Toraji 2001 139 3.463 0.912
Utor 2001 111 16.965 4.467
Yutu 2001 102 0.882 0.232
Fitow 2001 74 1.972 0.519
Trami 2001 65 0.041 0.011
Hagupit 2002 84 0.35 0.092
Kammuri 2002 102 5.7 1.492
Mekkhala 2002 102 1.1 0.288
Sinlaku 2002 148 8.1 2.120
Vongfong 2002 102 2.9 0.759
Dujuan 2003 148 2.49 0.635
Krovanh 2003 120 3.18 0.811
Imbudo 2003 167 3.3 0.842
Nepartak 2003 111 1.63 0.416
Koni 2003 111 0.19 0.048
Vamco 2003 65 0.07 0.018
Malou 2004 55 0.031 0.007
Aere 2004 148 3.231 0.771
Rananim 2004 148 20.295 4.840
Haima 2004 75 0.053 0.013
Mindulle 2004 167 0.408 0.097
Damrey 2005 148 12.21 2.802
Haitang 2005 194 10.78 2.474
Khanun 2005 157 14.11 3.239
Longwang 2005 176 7.81 1.793
Matsa 2005 148 18.04 4.141
Talim 2005 176 15.35 3.523
Sanvu 2005 93 3.01 0.691
Washi 2005 83 0.04 0.009
Chanchu 2006 176 8.386 1.852
Jelawat 2006 83 0.03 0.007
Kaemi 2006 148 5.752 1.270
Prapiroon 2006 120 7.865 1.737
Saomai 2006 194 19.658 4.341
Bilis 2006 204 34.829 7.692

Data source: List of damaging tropical storm to China and direct Economic Loss is collected from China
Yearbooks of Meteorological Disaster; Maximum wind speed is collected from Regional Specialized Meteoro-
logical Centre (RSMC); Annual China GDP deflators and exchange rate between RMB and US dollars are
from Federal Reserve Bank of St Louis. Damage estimates are in 2017 prices.
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