
SERIEs (2018) 9:27–64
https://doi.org/10.1007/s13209-017-0164-y

ORIGINAL ARTICLE

Contribution of demography to economic growth

Miguel Sánchez-Romero1 · Gemma Abio2 ·
Concepció Patxot2 · Guadalupe Souto3

Received: 15 January 2017 / Accepted: 3 October 2017 / Published online: 12 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract From 1850 to 2000, in Western European countries life expectancy rose
from 30–40 to 80years and the average number of children per woman fell from 4 to
5 children to slightly more than one. To gauge the economic consequences of these
demographic trends, we implement an overlapping generations model with hetero-
geneity by level of education in which individuals optimally decide their consumption
of market- and home-produced goods as well as the time spent on paid and unpaid
work. We find that around 17% of the observed increase in per-capita income growth
from 1850 to 2000 was due to the demographic transition. Around 50% of the demo-
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graphic contribution is explained by the increase in the average productivity perworker
(productivity component), which arises from the change in the population’s age struc-
ture and the rise in households’ saving rate. The remaining 50% is explained by the
higher growth rate of workers relative to the total population (translation component).

Keywords Demographic dividend · Fertility, Mortality · Per-capita income growth ·
Overlapping generations

JEL Classification D58 · E27 · J11 · N30

1 Introduction

The importance of the demographic transition on per-capita income growth was
neglected for a long time, mainly because of a myriad of inconsistent correlations
between population and economic growth (Kelley 1988).1 It was not until the 1990s,
using empirical convergence models à la Barro (1991, 1997), that several scholars
were able to better isolate the effect of demography on economic growth (Kelley
and Schmidt 1995; Bloom and Williamson 1997, 1998). Their main finding was that
demography has a strong and positive effect on economic growth when the working-
age population grows faster than the dependent population, known asfirst demographic
dividend. Later on, Kelley and Schmidt (2005) added an important contribution by
considering, in their convergence model, that changes in the age distribution of the
population (known as the translation component) were likely to affect the productivity
of workers (the productivity component). By doing so, they estimated demography to
account for 20% of the per-capita income growth worldwide between 1965 and 1990,
which was validated for the EU by several scholars (Prskawetz et al. 2007).

Despite these recent findings there are stillmanyunanswered questions (Williamson
2013). For instance, to what extent does demography influence economic growth over
a longer time span?What is the historical impact of demographic changes on economic
growth? The demographic dividend literature has extensively used cross-country panel
data for the period 1950–2010, which historically coincides with the period of most
rapid population growth. However, as far as we know, there has been no study on the
impact of demographic change on economic growth starting in the nineteenth century,
exactly at the onset of the demographic transition in Europe (Livi-Bacci 2000; Lee
2003).

The aim of this paper is to assess the impact of the demographic transition on per-
capita income growth along the period 1850–2000. We focus our analysis on Spain,
since it is of great interest to economists, demographers, and historians due to the
availability of historical data and the similarities with the East Asian “tiger economies”
in the second half of the 20th century (Prados de la Escosura and Rosés 2010a). Spain
started the demographic transition later than northern European countries (Livi-Bacci
2000). In 1850 the Spanish population size was around 15 million inhabitants, the

1 We use per-capita income growth and economic growth interchangeably in this article. The demographic
transition refers to the transition from high birth and death rates to low birth and death rates.

123



SERIEs (2018) 9:27–64 29

1850 1875 1900 1925 1950 1975 2000
Year

0

1

2

3

4

5

6

7

(a) (b)

1850 1875 1900 1925 1950 1975 2000
Year

0

10

20

30

40

50

60

70

80

90

Fig. 1 Spanish total fertility rate (TFR) and life expectancy at birth: Period 1850–2000. a Total fertility
rate (TFR), b life expectancy at birth. Source Authors’ estimates. Notes The TFR is the average number of
children that would be born to a woman over her lifetime

average woman expected to have between four and five children, and life expectancy
at birth was close to 30years—due to an extremely high infant mortality—(Ramiro
Fariñas and Sanz-Gimeno 2000). In 2000, the Spanish population was over 40 million
people, the average woman expected to have 1.23 children, and life expectancy at birth
was close to 80years (see Fig. 1). The Spanish population also witnessed an economic
revolution during this period. According to Prados de la Escosura and Rosés (2009)
the average labor income per worker rose from the equivalent of 3.000–3.500 euros
per year in 1850 to more than 33.500 euros in 2000.2 Moreover, the average number
of hours worked declined by 36% points and the entrance into the labor market was
delayed due to the educational expansion. Indeed, 64% of the cohort born in 1850 was
illiterate and 34% had only primary education (Nuñez 2005). In 2000, by contrast, the
average number of years of schooling was 8.4 for adults (Barro and Lee 2013). Thus,
the increase is even more remarkable if we focus on the wage rate per hour worked
which rose from the equivalent of 1.2 euros in 1850 to 19.2 in 2000 (Prados de la
Escosura and Rosés 2009).

The literature has frequently used convergence models to show the role of demo-
graphic change on economic growth.However, the results of these econometricmodels
usually suffer from endogeneity problems (Feyrer 2007). More importantly, it is not
possible to extend this kind of analysis further in the past because of the lack of data.
A new approach to answer this old question is to estimate the demographic dividend
using overlapping generation models (OLG) since the accumulation of capital and
labor are modeled endogenously. For instance, Sánchez-Romero (2013) followed this
strategy to analyze the evolution of the demographic dividend in Taiwan. He inves-

2 All figures are measured at constant prices of 2010.
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tigates the economic impact of different demographic scenarios in order to assess
the demographic dividend, obtaining similar results to those obtained using growth
regression models.

In this paper, we follow a similar strategy by implementing an OLG model. Nev-
ertheless, our paper differs from Sánchez-Romero (2013) in two main aspects. First,
the period of analysis increases from 40 to 150years. Second, the model is extended
by introducing household production and non-homothetic preferences. We follow the
works of Greenwood et al. (2005) and Ramey (2009) in order to account for the
impact of technological progress on the value of time. In addition, we follow the work
of Restuccia and Vandenbroucke (2013), that assume non-homothetic preferences,
in order to assess the impact of the increase in longevity and technological progress
on the simultaneous reduction in hours worked and the increase in schooling time
during the last hundred and fifty years in the US. Thus, the combination of home-
production with non-homothetic preferences allows us to account for the historical
reduction in paid hours. The costs of rearing children to households are introduced in
the utility function through the family size (Browning and Ejrnæs 2009) and in the
time constraint. Given that we have detailed demographic information for the period
1850–2000, our family size not only changes over time but also by age of the house-
hold head. The units of equivalent adult consumption of market and home-produced
goods rely on the AGENTA database (Vargha et al. 2015; Rentería et al. 2016). In
addition, to control for the educational dividend caused by the educational transition
(Crespo-Cuaresma et al. 2014), we introduce heterogeneous agents that differ in their
educational attainment, using data from the Wittgenstein Data Explorer (Wittgenstein
Centre for Demography and Global Human Capital 2015). Hence, the model takes
as exogenously given inputs the evolution of vital rates (fertility and mortality) and
human capital investments, ignoring their feedback effects.

Comparing our baseline scenario to a hypothetical economywhose population faces
fertility and mortality rates which were prevailing in Spain in 1800, we find that the
changes in the age structure of the population accounts for 16.8% of per-capita income
growth for the period 1850–2000. This result lies within the possible range of values
(i.e., 16–44%) found in the literature for the period 1950–2010 (Kelley and Schmidt
2005). Additional counterfactual experiments show that fertility explains 14.5% of
the impact of demographic changes in per-capita income growth, while mortality
explains 6.4% of the impact of demographic changes in per-capita income growth.
Moreover, we have further decomposed the contribution of demography to per-capita
income growth in the translation component (the difference between the growth rate
of workers and the total population) and the productivity component (the growth rate
of output per worker). Our results suggest that over this period of one hundred and fifty
years, the translation component accounted for 50% of the total income growth, while
the productivity component accounted for 50%. The growth rate of output per worker
is explained by two main factors. First, the transition from a young age structure to an
aging population, since this demographic process leads to an increase in the average
age of asset holders—older households own more assets than younger households—
and in the average age of workers—older households have a higher income. Second,
through a rise in the propensity to save due to the longer life expectancy.
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The paper is organized as follows. Section 2 details the theoretical model and its
main theoretical implications. Section 3 presents the Spanish demographic transition,
the economic data, and the model calibration. The contribution of the demographic
transition on the per-capita income growth rate is presented in Sect. 4 and the impact
of different model assumptions on our results are discussed in Sect. 5. Section 6
concludes.

2 The model

We implement a large-scale OLG model à la Auerbach and Kotlikoff (1987) in which
heterogeneous households by level of education endogenously choose consumption
and the times spent in the market and in home production. Demographics, the edu-
cational attainment, and technological progress are exogenous. Firms are assumed to
operate in perfectly competitive markets and produce under constant returns to scale.
To account for the full effect of demography on the economy, we assume Spain to be
a closed economy. Hence, changes in the population structure might have an impact
on input prices. Moreover, to better capture the accumulation of capital over time, we
consider the historical evolution of public pension expenditures. Thus, our individuals
contribute a fraction of their labor income to the pension system and receive pension
benefits when retired.

2.1 Household preferences and home production

For expositional purposes, in this subsection we abstract from time subscripts. House-
holds may belong to any of the three possible levels of education that we denote by
e ∈ E = {primary or less; secondary; tertiary}. Households derive utility from con-
sumption of market-produced goods cm , home-produced goods ch , and leisure z. The
period utility of a household, whose head has a level of education e ∈ E, is given by

uhe (c
m, ch, z) = φm

e log

(
cm

1 + η(n)
− c̄m

)
+ φh

e log

(
ch

1 + η(n)
− c̄h

)

+φz
e
z1−

1
σe − 1

1 − 1
σe

, (1)

where η(n) is a function that transforms the number of children in the household by
age (n) to the number of equivalent adult consumers, c̄i > 0 is the subsistence level
of consumption of type i ∈ {m, h}, φi

e > 0 is the relative weight of good i ∈ {m, h, z}
on the period utility, and σe > 0 is the elasticity of substitution on leisure. The set
of parameters {φm

e , φh
e , φz

e , σe} depends on the level of education in order to better
account for differences in the labor supply.

Home production requires intermediate goods and labor

f (cx , h) =
[
θ

(
cx

) ρ−1
ρ + (1 − θ) (h)

ρ−1
ρ

] ρ
ρ−1

, with ρ ≥ 0, (2)
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where cx stands for goods purchased in the market and used as intermediate goods for
home production, h is the time spent on home production, θ is assumed to be positive
and between zero and one, and ρ is the elasticity of substitution between the home
input factors. According to Eq. (2) technological progress has an impact on home
production through intermediate goods. Moreover, we implicitly assume that home-
produced goods are always consumed in the household and not sold in the market;
i.e., ch = f (cx , h).

2.2 Household problem

In each year t households are heterogenous by their educational attainment (e), age
( j), year of birth (t − j), assets accumulated (a), and the number of children raised
at home (n). We denote by xe, j,t = {ae, j,t , n j,t } the state variables of a household
with a level of education e at age j in year t . Each household at age j in year t faces
a probability to surviving to the next age of π j+1,t+1, which is independent of other
household characteristics.3 Individuals can live to a maximum of 100years. Children
are raised by the household between age 0 and 15 and do not work either in the
market or at home.4 At the age of 16 (J0) children start making decisions, leave their
parents home, and establish their own households. After age 65 (JR) all individuals
retire. Adults are endowed with one unit of time that they distribute between market
work (�), household chores (h), child rearing (hυ(n)), and leisure (z). Hours worked
in the market are supplied in exchange of a (net of taxes) wage rate, whereas the
time spent producing goods and rearing children is unpaid. Function υ(n) denotes the
time spent rearing n children per unit of time devoted to home production. Hence,
the functional form hυ(n) assumes, ceteris paribus, that individuals who either spend
more hours producing goods at home or have more children also devote more time to
childrearing and less time to labor. Annuitymarkets are absent and accidental bequests
are distributed by the government to all households in the economy.

Households optimally choose their consumption ofmarket goods, homeproduction,
intermediary goods, leisure time, and time spent on home production by maximizing
their lifetime utility (V ). Let the control variables of a household with a level of
education e at age j in year t be ce, j,t = {cme, j,t , che, j,t , cxe, j,t , he, j,t , ze, j,t } ∈ C. Thus,
the household problem is equivalent to solving

Vj,t (xe, j,t ) = max
ce, j,t∈C

{
uhe (c

m
e, j,t , c

h
e, j,t , ze, j,t ) + π j+1,t+1Vj+1,t+1(xe, j+1,t+1)

}
(3)

3 Although the literature shows that there exists a positive correlation between educational attainment and
longevity, we do not have information on death rates by educational attainment for the period analyzed
(Lleras-Muney 2005).
4 This assumption is necessary for reducing the complexity of the model. Existing studies for families
working at the textile sector in Catalonia show that children above the age of 5 or 6 were progressively
substituting themarket work of their mothers as the number of offspring in the household increased (Camps-
Cura 1998). Indeed, this pattern was common to many other countries (Bengtsson 2004). Moreover, the
literature suggests that children between ages 0 and 17 in the US supplied on average 4h per week doing
household chores, which represents one-sixth of the total average time devoted to such work by a prime-age
adult (Ramey 2009).

123



SERIEs (2018) 9:27–64 33

subject to the budget constraint

ae, j+1,t+1 =
{
Rtae, j,t + tr j,t + (1 − τt )we, j,t�e, j,t − cxe, j,t − cme, j,t for J0 ≤ j ≤ JR ,

Rtae, j,t + tr j,t + bt − cxe, j,t − cme, j,t for j > JR ,
(4)

the time constraint

�e, j,t + he, j,t [1 + υ(n j,t )] + ze, j,t = 1, (5)

and the standard boundary conditions

ae,J0,· = 0 and ae,100,· ≥ 0. (6)

Parameter R is the capitalization factor, tr is the accidental bequests distributed by the
government to the household, τ is the social contribution rate to the pension system,
we, j,t = r Ht εe, j is the wage rate per hour worked of an individual with education e at
age j in year t , which depends on the wage rate per efficient unit of labor (r Ht ) and
the age-specific productivity by educational attainment (εe, j ), and bt is the pension
benefit received in year t .

The optimal consumption path of market goods can be characterized by the Euler
condition augmented by household size and subsistence level (see “Appendix A”):

C̃m
e, j+1,t+1

/
C̃m
e, j,t = π j+1,t+1Rt+1 with C̃

m
e, j,t = cme, j,t − c̄m[1 + η(n j,t )]. (7)

Equation (7) indicates that households smooth the consumption above the subsistence
level c̄m for all household members. The introduction of c̄m and η(n j,t ) are key for
explaining the historical decline in the number of hours worked. This is because when
labor productivity is low and the number of children is high, households need to
work more hours in the market in order to finance the minimum consumption level of
goods. Afterwards, as productivity rises, households need less hours in the market to
finance the minimum consumption expenditure (Restuccia and Vandenbroucke 2013).
Moreover, given that the equivalent adult consumers multiply c̄m in (7), the same
reasoning applies to η(n j,t ). Thus, increases in the number of equivalent consumers
force individuals to supply more hours to the market. However, this effect might be
offset by the subsequent increase in the demand for childrearing within the household
as we will explain below.

The optimal hours worked in the market (or intensive labor supply) are given by the
difference between the total available time and the sum of leisure and unpaid work,

�e, j,t = 1 − ze, j,t − he, j,t [1 + υ(n j,t )], (8)

where the optimal conditions of leisure and unpaid work are

ze, j,t =
(

φz
e

φm
e

C̃m
e, j,t

cme, j,t

cme, j,t
(1 − τt )we, j,t

)σe

, (9)
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he, j,t = φh
e

φm
e

che, j,t

C̃h
e, j,t

C̃m
e, j,t

cme, j,t

cme, j,t

yhe, j,t +
(

θ
1−θ

yhe, j,t

)ρ , (10)

respectively. The term yhe, j,t = (1 − τt )we, j,t [1 + υ(n j,t )] is the opportunity cost of

an hour devoted to home production and C̃h
e, j,t is equal to che, j,t − c̄h[1 + η(n j,t )].

The non-homotheticity between market consumption and leisure, see Eqs. (1) and (9),
implies that a rise in productivity leads to an increase in leisure and a decline in paid
hours. This is reflected in the second ratio inside the parenthesis in Eq. (9). The strength
of this positive effect on leisure is nonetheless liable to diminish as households become
wealthier, since C̃m

e, j,t will converge toward cme, j,t .
Equation (10)makes explicit the importance of theminimumconsumption of home-

produced goods (c̄h) and the elasticity of substitution between home input factors
(ρ) for the evolution of home labor. For example, if we assume that c̄h = 0 (i.e.
che, j,t = C̃h

e, j,t ) and that ρ = 1, then an increase in productivity leads households to
increase their time spent on unpaid work. However, for a sufficiently high value of
c̄h > 0, an increase in productivity will make the marginal utility of home-produced
goods to decline faster, which reduces the time spent on unpaid work. Similar to
the effect of c̄m on paid hours, a rise in productivity leads to a drop in home labor,
since individuals substitute home labor for intermediate goods. Indeed, in the interior
solution, the ratio of intermediate goods to labor in home production is

cxe, j,t
he, j,t

=
(

θ

1 − θ
yhe, j,t

)ρ

. (11)

Equation (11) shows that either a rise in wages, or the time spent rearing children
per hour of home production, or a drop in the contribution rate, raises the ratio of
intermediate goods to home labor for any ρ > 0.

The parameter ρ is also crucial for explaining the impact of υ(n) on both the total
unpaid work (i.e. h[1 + υ(n)]) and paid work. We can distinguish three cases. If
ρ < 1, an increase in the time spent rearing children per unit of home labor will
raise the number of total unpaid hours worked and reduce that of paid hours. This is
because the increase in the marginal cost of home labor cannot be offset with the rise
in intermediate goods, given that cx and h are close complements. Moreover, given
that leisure does not depend on υ(n), the increase in υ(n) has the opposite effect on
paid hours. If ρ = 1, the increase in υ(n) will have no effect on the total time devoted
to unpaid labor, since households offset the rise of υ(n) with a proportional increase
in intermediate goods. And if ρ > 1, a rise in υ(n) leads to a drop in the total number
of unpaid hours because households substitute home labor for intermediate goods.

Finally, households can, in addition to supplying labor to the market, specialize
in home production when the marginal rate of substitution between leisure and con-
sumption is greater than the effective wage rate per hour worked:

∂uhe
∂ze, j,t

/ ∂uhe
∂cme, j,t

> (1 − τt )we, j,t . (12)
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As a consequence, households with a low (net) wage rate—that is, those with lower
education—have a higher incentive to leave the labor market.

2.3 Firms

In order to obtain clear-cut results for the contribution of demography on economic
growth, we use a simple production setting. Firms operate in a perfectly competi-
tive environment and produce one homogenous good combining capital and labor,
according to a standard Cobb–Douglas production function

Yt = K αt
t (At Lt )

1−αt , (13)

where αt denotes the share of capital in year t , Kt is the stock of physical capital,
At is labor-augmenting technology, and Lt is the stock of human capital. Output can
be either consumed, used as an intermediary good for home production, or used as
an investment good. Labor-augmenting technology, At , is assumed to grow at the
exogenous rate of gA

t , i.e. At+1 = At (1 + gA
t ). Workers with different levels of

education are assumed to be perfect substitutes. Hence, the stock of human capital
is Lt = ∑JR

j=J0
N j,t

∫
E εe, j�e, j,t dEt− j (e). The rental price of physical capital (r Kt )

and human capital (r Ht ) equals their marginal products, i.e., r Kt = αt
Yt
Kt

− δt and

r Ht = (1− αt )
Yt
Lt
, respectively, where δt is the depreciation rate of physical capital in

year t .

2.4 Government

Our government has two objectives. First, the government distributes each period any
positive accidental bequests in a lump-sum fashion to the generation containing the
decedent’s children, if they are older than 16years.5 For those decedents younger
than age 44 (=28+16), their positive wealth is assumed to be distributed within the
same birth cohort, since by definition individuals below age 16 cannot inherit wealth.
Given that there are no other taxes, debts left at death are financed by social security
taxes. Second, the government runs a pay-as-you-go pension system. In each period
the government sets the social contribution rate τt that workers contribute to guarantee
the pension benefits received by pensioners in year t plus the debt left by individuals
dying in year t . The budget constraint of the pension system is then given by

τt r
H
t Lt =

∑
j>JR

bt N j,t + Dt for all t. (14)

5 According to the estimated age-specific fertility rates, the average generational gap between 1850 and
2000 was 28years. Similar modeling strategies have been followed by Wolff (1999).

123



36 SERIEs (2018) 9:27–64

The left-hand side of (14) is the total social contributions paid by workers in year t ,
while the right-hand side gives the total pension benefits claimed by pensioners plus
the debt in year t .

The definition of the market equilibrium is standard and can be found in
“Appendix B”.

3 Data and calibration

In this sectionwe first describe the exogenous information used in the overlapping gen-
erations model: Demographics, capital depreciation rates, labor shares, the evolution
of the educational distribution, age-specific productivities by educational attainment,
pension replacement rates, and our own reconstruction of the labor-augmenting tech-
nological progress. We conclude the section by briefly explaining the calibration
strategy and the model parameters.

3.1 Demographics

The economic model implemented in this paper requires demographic data by single
years of age ondeath rates, fertility rates, and population size for a time-span larger than
the period analyzed (1850–2000). Historical demographic information fromSpainwas
frequently incomplete and often inconsistent among different sources. Fortunately,
important efforts constructing homogeneous demographic time series have already
been made by several scholars. For instance, Maluquer de Motes (2008) provides
homogeneous total population series from 1850 to 2001, Ramiro Fariñas and Sanz-
Gimeno (2000) estimate infant and childhoodmortality time series from 1790 to 1960,
and Reher (1991) calculates for the historic region of Castilla La Nueva (New Castile)
vital series of births, marriages, and deaths by using parish registers from 1550 to
1900, among others.

To construct a demographic database consistent with our economic model (i.e.,
a unisex closed population), we combine two demographic methods widely used in
population reconstruction: Inverse Projection (IP) andGeneralized Inverse Projection
(GIP) (Lee 1985; Oeppen 1993). The IP method is used to calculate net migration
rates, while the GIP method is used to reconstruct consistent data on population size
by age N j,t and age-specific vital rates, i.e., age-specific fertility rates f j,t and age-
specific conditional survival probabilities π j,t . GIP is a non-linear optimization that
produces constrained demographic projections with a priori information (Oeppen
1993). The GIP method is explained in more detail in “Appendix C”. Both models are
implemented using census data for years 1857,1860,1877,1887,1900–1970 from INE
(2015b), 1981 from INE (2015c), and the years 1991 and 2001 from INE (2015d). Age-
specific fertility rates from 1922 to 2012 are taken from the Human Fertility Collection
(2015). Total population size from 1787 to 2000 is obtained combining data from INE
(2015b), the Human Mortality Database (2015), and Maluquer de Motes (2008). Data
on total births and deaths come from the INE (2015b) and from the Human Mortality
Database (2015).
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Figures 1 and 2 show the evolution of three aggregate measures from 1850 to 2000
obtained with our population reconstruction: (i) total period fertility rate (TFR), (ii)
period life expectancy at birth, and (iii) population distributions.Assuming that fertility
and mortality patterns in year t prevail throughout life, the TFR is the average number
of children that would be born to a surviving woman over her lifetime, while the life
expectancy at birth indicates the number of years a newborn infant would live. From
Fig. 1 we can observe that the levels of fertility and mortality in Spain were similar to
those of western Europe before 1800 (Lee 2003). In this period, TFR ranged between
four to five children per woman and life expectancy at birth was between 25 and
35years (Livi-Bacci 2000).Onemain consequence of the late onset of the demographic
transition in Spainwas the slower population growth relative to otherwesternEuropean
countries. Close to the end of the nineteenth and at the beginning of the twentieth
century, the TFR started a secular decline from five to values slightly higher than one
(Reher 2011), which was only interrupted during the Franco regime (1939–1975), and
mortality rates decreased, especially for infants and children. The decline in fertility at
the beginning of the twentieth centurywas triggered by improvements in child survival.
The change in the fertility pattern transmitted across generations was materialized
through duration-related fertility behavior, such as the delay in women’s age at first
birth and birth spacing (Reher and Sanz-Gimeno 2007; Reher et al. 2008). The decline
in fertility after 1975 was driven by a continuing delay in the mean-age at first birth
caused by multiple factors such as youth job insecurity, difficulties accessing housing,
low institutional support of childcare, the educational expansion, the use of modern
contraceptive methods, among other reasons (Kohler et al. 2002; Esping-Andersen
2013; Baizan 2016). The decline in mortality translated into a remarkable increase in
life expectancy at birth,whichdoubled from40 to80years during the twentieth century.
This trend was only transitorily stopped by drastic events: the Spanish flu of 1918, the
Civil War (1936–1939), and the subsequent famine. Nowadays, Spain is the country
with the second largest overall life expectancy at birth after Japan (OECD 2015b).

The demographic implications of the mortality and fertility processes summarized
in Fig. 1 can be easily seen in Fig. 2. From 1850 to 2000, the Spanish population
changed dramatically from a population clearly dominated by children and young
adults until 1975 to a population that ages rapidly due to the fertility decline that
started in 1975.

Combining the reconstructed fertility and mortality data with National Time Trans-
fers Accounts (NTTA) estimates, we calculate η(n j,t ) and υ(n j,t ) for a household at
age j in year t as follows

η(n j,t ) =
j∑

x=0

ξmj−x

NC∑
k=0

kPx,t (k), (15)

υ(n j,t ) =
j∑

x=0

ξ hj−x

NC∑
k=0

kPx,t (k), (16)

where ξ ix are equivalent units of scale referring to an individual of age x for goods
(i = m) and childrearing time (i = h), respectively, Px,t (k) is the probability of
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Fig. 2 Spanish population distribution (both sexes combined): Selected years 1850, 1900, 1950, 1975, and
2000. Source Authors’ estimates

having k surviving children in year t when the household was x years old, and NC is
the maximum number of children per year.We use a standard profile for ξmx that equals
0.4 from ages 0 to 4 and rises linearly with age until reaching 1 at the age of 18. The
time spent rearing a child of age x per unit of home labor (ξhx ) is calculated pooling
male and female time consumption profiles from age 0 to 18, taken from Rentería
et al. (2016), and dividing it by the unpaid work profiles (without childrearing) of
males and females combined between ages 28 to 46. This calculation suggests that a
new born baby requires 3.65 times the time spent on home production; afterwards, ξhx
exponentially declines to 0 at the age of 16.

Figure 3 shows the evolution over the lifecycle of η(n j,t ) andυ(n j,t ) for six selected
cohorts (all other cohorts are omitted for presentation purposes). A value of 2 in Fig. 3a
means that a household must finance the consumption of one additional adult.6 Over
the one and a half centuries we observe two clear trends. First, mainly due to the
postponement of childbearing, the age of the household at the maximum number of
equivalent adult consumers progressively shifted to older ages from 34 (birth cohort
born in 1820) to 42 (birth cohort born in 1970). Second, therewas a progressive decline
in the household size due to the drop in the total fertility rate (see left panel of Fig. 1).

Comparing Fig. 3a, b, we can notice that, for all cohorts, the maximum value of
each profile is attained at older ages in 3a than in 3b. Remember that the highest
value of ξm is attained at age 18, while the highest values of ξ h are concentrated in
the first years of life. As a result, we have the age at the maximum value of υ(n)

moving from 31 (for the cohort born in 1820) to 35 (for the one born in 1970). The
range of ages we have derived are in line with recent childcare profiles reported for

6 Since we assume a unisex model, one should multiply by two to approximate the values in Fig. 3a to a
household run by two adults.
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Fig. 3 Number of equivalent adults consumers and time spent rearing children per hour of household
chores for selected birth cohort. a Equivalent adult consumers, 1 + η(n), b time spent rearing children per
hour of household chores, υ(n). Source Authors’ estimates based on the population reconstruction and
AGENTA data. Note: Profiles calculated under the assumption that children leave the parental house at age
16

14 European countries in Vargha et al. (2015). Under the assumption that ρ is lower
than one (Ramey 2009), the difference between the peaks in η(n) and υ(n) implies
that there is a marginal tendency to allocate more time to home production early in life
and, later on, to market production. Another important process for the labor supply is
the drop in η(n) and υ(n) across cohorts. Figure 3b shows that υ(n) declined from
three (for the cohort born in 1820) to one (for the one born in 1970).7 A similar pattern
is observed in Fig. 3a.

7 To test how sensitive Fig. 3b is to different ξh profiles, we computed the value of υ(n) for different ξh

values. We found that a reduction in ξh0 of 60% (from 3.65 to 1.5) implies an overall reduction in v(n) of
30%.
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3.2 Stock of physical capital

The stock of physical capital (K̃t ) is derived applying the perpetual inventory approach
to gross fixed capital formation to the following categories: construction, transport
equipment, machinery and equipment, and intangible fixed assets.8 The information
on gross fixed capital formation for each category during the period 1850–2000 is
taken from Prados de la Escosura (2003). We apply the standard formula:

K̃t =
∑

i
K̃i,t with K̃i,t+1 = (1 − δi )K̃i,t + Ii,t ,

where K̃i,t is the stock of capital in category i in year t , δi is the depreciation rate of
category i , and Ii,t is the gross capital formation in category i in year t . The depreciation
rates applied to each category are 2.1, 18.2, 13.8, and 15%, respectively (Hulten and
Wykoff 1981).9 The total depreciation rate of capital (δt ) is calculated so as to satisfy
K̃t+1 = (1 − δt )K̃t + ∑

i Ii,t . Since the standard formula for calculating the initial
capital stock, K̃i,1850 = Ii,1850/(δi + gi ), where gi is the growth rate of investment in
the first 10years in category i , gives a suspiciously low value, we opted for choosing
an initial capital stock that minimized the difference between K̃i,1850 and K̃i,1890. A
similar strategy is shown in Prados de la Escosura and Rosés (2010a).

3.3 Stock of human capital

We reconstruct the stock of human capital L̃ t taking into consideration the following
components:

L̃ t = HWt

65∑
j=16

N j,t

∫
E
WPe, jLFe, j dEt− j (e), (17)

where HWt = average annual hours worked per worker in year t , N j,t = population
size at age j in year t , WPe, j = productivity per hour worked at age j with education
e (or efficient labor units), LFe, j = labor participation rate at age j for individuals
with education e, and Et− j (e) = educational distribution for the cohort born in year
t − j .

Time series on annual hours worked per worker are taken from Prados de la Esco-
sura and Rosés (2009) and adjusted from 1977 to 2000 with OECD (2015a) data on
hours work. The productivity per hour worked by educational attainment is calculated
deterministically by fitting a quadratic function to MTAS (2010) data on the average
wage rate per hour worked across age by educational attainment. We represent these
functions in Fig. 4b. Using data from INE (2015a), we calculate LF profiles by edu-
cational attainment as the average labor force participation rate between 1987 and

8 From now on, we use the symbol ˜ to distinguish the reconstructed stock variables based on actual data
from the stock variables obtained in our simulations.
9 A more sophisticated calculation of the stock of productive capital, which distinguishes between capital
input and capital quality along the period 1850–2000, can be seen in Prados de la Escosura and Rosés
(2009).
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Fig. 4 Decomposition of the stock of human capital by educational attainment (both sexes combined).aThe
educational distribution, Ec(e), b the endowment of efficient labor units, WP and c labor force participation
rates, LF. Sources Educational distribution data is taken from the Wittgenstein Centre Data Explorer
(Wittgenstein Centre for Demography and Global Human Capital 2015), the endowment of efficient labor
units comes from MTAS (2010), and the average labor force participation rate between 1987 and 2013 is
calculated using data from INE (2015a)
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Fig. 5 Labor force, Spain 1850–2000 (both sexes combined, in millions)

2013 for each educational group. The LF profile by educational attainment, shown
in Fig. 4c, is assumed to remain fixed in Eq. (17), while the supply of labor will
be endogenously chosen by households in the OLG model. We choose the period
1987–2013 because it includes two periods in which the unemployment rate declined
(1987–1991 and 1995–2007) and another two periods in which it increased (1991–
1994 and 2008–2013). The educational distribution by birth cohort Ec in Spain is
taken from the Wittgenstein Centre Data Explorer (Wittgenstein Centre for Demog-
raphy and Global Human Capital 2015) for two reasons. First, this database offers
information on historical reconstruction of educational attainment for the 20th cen-
tury, and second, it provides harmonized projections until 2100 of the population by
age and educational attainment (Lutz et al. 2014). We extract information for Spain
on the shares of population by levels of education for the period 1970–2100, which
allow us to calculate the educational distribution for each birth cohort born after year
1868.10 Since the available data is grouped by five-year age groups, we apply linear
splines to interpolate the educational distribution for intermediate cohorts. Last, but
not least, in order to guarantee an initial steady state, the educational attainment for
cohorts born before 1868 are assumed to coincide with that of the cohort born in year
1868.

To check the validity of our reconstruction of the stock of human capi-
tal L̂ t , we compare the labor force, which results from applying the formula∑65

j=16 N j,t
∫

E LFe, j dEt− j (e), to existing estimates of the labor force from 1850 to
2000. Figure 5 shows that our labor force estimates before 1950 are very similar to
those reported by Nicolau (2005) and it fits well to the most recent estimates from
widely used databases which validates our strategy.

10 Given the positive correlation between educational attainment and life expectancy, individuals born close
to 1868, who reached tertiary education are likely to be overrepresented. Nevertheless, due to the late onset
of the educational expansion in Spain, our main results are not affected.
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Fig. 6 Labor-augmenting technological progress, Spain 1850–2000. Source Authors’ calculations. Note
The ‘Loess’ smoothing profile was computed using a bandwidth of 0.05 and rescaled to give an annual
average growth rate of 1.40%

3.4 Labor-augmenting technology

The labor-augmenting technology is calculated using reconstructed input factors in
Sects. 3.2 and 3.3. We use OECD (2015c) data on the total number of workers from
1956 in order to account for the rise in unemployment. Our estimation of the labor-
augmenting technological progress is calculated applying the formula

Δ ln At = Δ ln(Ỹt/Nt ) − Δ ln(L̃ t/Nt ) − Δ
αt

1 − αt
ln(K̃t/Ỹt ), (18)

where Ỹt is the value added, L̃ t is the stock of human capital, and K̃t is the stock
of physical capital. From (18) we obtain that the annual average labor-augmenting
technological progress from 1850 to 2000 was 1.40%. We assume no productivity
growth before 1850 andwe also assume that our estimated average productivity growth
for the period 1850-2000 from 2012 onwards. Figure 6 shows the percentage change
in the estimated labor-augmenting technological progress At .

3.5 Calibration

To perform our quantitative experiment we need to find the parameters such that the
model is capable of reproducing some key historical facts of the Spanish economy.
We proceed as follows:

In our baseline, we use the annual physical capital depreciation rate δt estimated in
Sect. 3.2 and the labor share calculated by Prados de la Escosura and Rosés (2009).
Hence, our modeled depreciation rate is, on average, close to 0.057 and the average
labor share for the period 1850–2000 is 0.68. Since there is no information on the
average pension benefit across cohorts, we calculate it indirectly. First, we decompose
the ratio total public pension expenditures to compensation of employees using the
identity
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Pension expenditurest
Comp. employeest

= Avg. pension per indiv. 65+t
Avg. salary per indiv.16−64t

× Pop. 65+t
Pop.16−64t

. (19)

The first term on the right-hand side of (19) is the average replacement rate of the
pension system in year t , which hereinafter we denote by ψt . The second term on
the right-hand side is the old-age dependency ratio. Data on total public pension
expenditures from 1850 to 2000 is taken from Comín and Díaz (2005). Compensation
of employees is calculated by multiplying the labor share from Prados de la Escosura
and Rosés (2009) to the value added along the period analyzed. Second, the model
uses ψt to calculate the pension benefits received for all individuals above age 65 as
follows

bt = ψt∑
j>JR N j,t

r Ht Lt∑JR
j=J0

N j,t

for all t,

where the last term on the right-hand side is the average labor income of the working-
age population. The average replacement rate before 1850 and after 2000 is assumed
to stay constant at the levels observed in 1850 and 2000, respectively.

The model is comprised of sixteen parameters. Specifically, we have, for each edu-
cational group, the utility weights of each good on the household utility {φm

e , φh
e , φz

e}
and the intertemporal elasticity of substitution on leisure σe. Then, common to all
educational groups, we have the minimum consumption level for each good {c̄m, c̄h}
and the home-production technology {θ, ρ}. To reduce the dimension of the parameter
set, we impose without loss of generality that φm

e + φh
e + φz

e = 1 and that work at
home upon retirement accounts for 250min per day (Rentería et al. 2016). Thus, using
the first-order conditions, we can indirectly calculate φz

e as

φz
e = φh

e (1 − θ)
(1 − h)σe

h
,

with h = .26 or, equivalently, 250min per day out of 60min× (24–8) available hours.
Moreover, we rely on the estimates of Ramey (2009) and set ρ at 0.95. All remaining
behavioral parameters are structurally estimated using the model. Let us denote by λ

the 9 × 1 vector of parameters left to be determined:

λ = [λe, c̄m, c̄h, θ ]′ with λe = {φh
e , σe} for e ∈ E.

Further, we implement the following restrictions on the parameters, λ ∈ Λ. First,
the intertemporal elasticities of substitution σe must be in the interval between zero
and one. Second, the weight on the household utility of home-produced goods φh

e
must be non-negative. Third, the minimum consumption level of market- and home-
produced goods cannot be negative. And fourth, the share of intermediate goods on
home production θ must be in the interval between zero and one.

For a given λ, we solve the model in order to obtain the optimal labor supply of
individuals over their lifecycle, the average hours worked, the output per capita, and
the consumption per capita. Then, we compute the function F(λ) defined by
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Table 1 Model parameters

Parameter Symbol Values

Firms technology

Capital share αt Prados de la Escosura and Rosés (2010b)

Capital depreciation rate δt Prados de la Escosura and Rosés (2009)

Labor-augmenting technology At Authors’ estimates

Home production

Elasticity of substitution on labor ρ 0.952 Ramey (2009)

Factor share θ 0.430

Household preferences

Age at parental leave J0 16

Retirement age JR 65

Subsistence level market goods c̄m 0.121

Subsistence level home goods c̄h 0.067

Level of education

Primary or less Secondary Tertiary

IES on leisure σe 0.281 0.418 0.442

Weight of market goods φm
e 0.056 0.049 0.053

Weight of home goods φh
e 0.539 0.460 0.449

Weight of leisure φz
e 0.405 0.491 0.498

F(λ) =
65∑
j=16

∑
e∈E

Φ1
e, j (X;λ)2 +

2000∑
t=1851

∑
i={l,y,c}

Φ i
t (X;λ)2, (20)

where X denotes the exogenous information set of the economic model. The first term
corresponds to the difference between the labor supply by educational attainment,
shown in Fig. 4c, and the individual labor supply by educational attainment obtained
with the model, i.e., Φ1

e, j (X;λ) = γLFe, j − 1
27

∑2013
t=1987 �e, j,t . To transform the

participation rates to actual hours worked, we set γ to 0.32, which is equivalent to
working 36h per week out of a total of 112h per week. The second term captures the
difference between the observed average hours worked for the population between 16
and 65years, income per capita, and consumption per capita from 1850 to 2000, and
those obtained with the model. Thus, we search for the value of λ that minimizes the
function F(λ).

Table 1 reports the parameter values taken from the literature as well as those
structurally estimated with the model. We can highlight in Table 1 three key param-
eters: the elasticity of substitution between input factors in home production (ρ), the
subsistence level of market-produced goods (c̄m), and the subsistence level of home-
produced goods (c̄h). The fact that the subsistence level ofmarket- and home-produced
goods are positive implies that the income effect dominated over the substitution effect
when productivity was low. As a consequence, individuals had to work long hours in
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order to finance the consumption of both goods in the nineteenth century. A similar
result is obtained by Restuccia and Vandenbroucke (2013) analyzing the accumulation
of human capital and the evolution of labor supply in the US for cohorts born between
1870 and 1970. It is also worth mentioning that the income effect varies over the
lifecycle of the household, becoming stronger when the number of equivalent adult
consumers in the household rises, and weaker when productivity increases. Another
important remark is that c̄m and c̄h differ in magnitude. Hence, the rate of change
of market-produced goods relative to home-produced goods will differ over time as
productivity increases. This result has also been found recently by Moro et al. (2017).
The other key parameter is ρ, which we took from Ramey (2009) given that we did not
have enough data to estimate it structurally. Aswe have commented in Sect. 2.2 a value
of ρ lower than one implies that home labor increases as productivity is on the rise.
This effect is, however, offset by the existence of a positive minimum consumption of
home-produced goods. The other effect of assuming a ρ < 1 is that total unpaid hours
marginally fall and paid hours marginally rise with the decline in υ(n), see Fig. 3b.

Figure 7 shows the in-sample performance of the baseline model with respect
to the targeted time series. In Fig. 7a, we can see how well the model replicates
the average per-capita hours worked by level of education between 1987 and 2013.
Figure 7b compares the observed average fraction of hours worked by the working-age
population to that obtained in the baseline. The discrepancy between both figures from
1976 to 2000 is explained by the fact that we do not consider the risk of unemployment
in the model, whereas the unemployment rate rose to values over 20% during this
period. In Fig. 7c, d we show how well the model replicates the evolution of the
income per capita (or economic growth) and the consumption per capita from 1850 to
2000.

The next section will apply the calibrated OLG model to the Spanish data to dis-
entangle the contribution of demography to the observed economic growth.

4 Results

In this section we quantify the Spanish demographic dividend or, equivalently, the
contribution of demography to Spain’s economic growth from 1850 to 2000. In so
doing, we first need to realize that assessing the demographic dividend over a long
period of time by using the naïve demographic model

(Y/N )gr = (Y/W )gr + (W )gr − (N )gr , (21)

whereW stands forworkers and ‘gr’ denotes the average growth rate, gives an incorrect
measure, since the growth rate of the support ratio (i.e. (W/N )gr) is zero in the long
run. This is because in a stable population the growth rate of the population coincides
with the growth rate of workers (Lotka 1939).

Table 2 shows the decomposition of the growth rate of per-capita output in Spain
from 1850 to 2000. A naïve calculation using the first row of Table 2 suggests that only
5% (i.e., = (Wgr − Ngr)/ (Y/N )gr = (.80–.72)/1.62) of the Spanish economic growth
from 1850 to 2000 is explained by demographic changes. However, long-run demo-
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Fig. 7 In-sample performance of the model, Spain 1850–2000. a Fraction of per-capita hours worked
by educational attainment, average of the 1987–2013 period, b average hours worked by working-age
population, c income per capita (in logs) and d consumption per capita (in logs). Source See text on Fig. 4
for panels 7a, b. National accounts data are taken from OECD (2015c) and Prados de la Escosura and Rosés
(2009)

graphic changes are translated into economic growth through productivity effects,
known as the productivity component (Kelley and Schmidt 2005). For instance, some
possible channels for demography to impact on productivity are: scale economies,
population density, life-cycle savings, changes in the supply of labor, and changes in
the human capital accumulation, among others.

In order to control for some of the above mentioned channels, in this article, we fol-
low the same strategy as in Sánchez-Romero (2013) to assess the Spanish demographic
dividend. First, we show that our model is capable of reproducing the evolution of
per-capita income along the period 1850–2000. In this regard, Fig. 7c shows that our
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Table 2 Per-capita output growth in Spain: 1850–2000 (annual average logarithmic rates in percent) Source
Authors’ estimations and Prados de la Escosura and Rosés (2009)

Period Output per capita (Y/N )gr Output per worker (Y/W )gr Workers Wgr Population Ngr

1850–2000 1.62 1.54 0.80 0.72

1850–1950 0.68 0.48 0.88 0.68

1951–1974 5.05 5.48 0.69 1.13

1975–2000 2.06 1.88 0.69 0.50

Bold values indicate the main results

model mimics well the small growth of per-capita income for the period 1850–1925,
the period of stagnation from1925–1950, and the golden age of rapid economic growth
from 1950–1975. Second, based on the vital rates obtained for year 1800, we build a
set of different demographic scenarios (from now on ‘experiments’) to disentangle the
effect of demography for the period 1850 to 2000.11 We propose the following three
experiments:

• Experiment 1 In this experiment we cancel the effect of fertility and mortality.
This experiment gives the structure of the population in year 1800 under stable
conditions. Life expectancy at birth is fixed at 31.5years and the TFR is fixed
at a value slightly above 5, which implies a young population structure (see the
dotted line in Fig. 8a) and a constant annual population growth rate of 0.5% (see
Fig. 8b). By comparing the economic outcomes of the baseline simulation to those
of Experiment 1 we get the contribution of demography to economic growth.

• Experiment 2 In this experiment we cancel the effect of the increase in longevity.
This demographic scenario implies that the population would have increased until
1920 and it would have declined afterwards due to the fall in fertility below replace-
ment level (see Fig. 8b). As a consequence, the age distribution of the population
in year 2000 would have been older than under the baseline (see the triangle line
in Fig. 8a).

• Experiment 3 In this experiment we shut down the effect of the decline in fertility.
The population growth rate would have continuously increased over the twentieth
century until reaching a stable population growth rate of 3%. Thus, the age dis-
tribution of the population would have been even younger than under Experiment
1 (see circled line in Fig. 8a). Moreover, given the increasing population growth,
during the period 1850–2000 the population growth rate would have been larger
than the growth rate of the population between ages 16 and 65 (see Fig. 8b).

Notice that setting Experiments 2 and 3 allows us to separate, as completely indepen-
dent factors, the effect of fertility and mortality on economic growth.

Given these three experiments, Sánchez-Romero (2013) shows that the impact of
demography on per capita income growth can be easily estimated by calculating the
relative contribution of each demographic factor to the observed economic growth,

11 Sánchez-Romero (2013) shows that fixing birth and death rates at the levels prevailing at the beginning
of the period analyzed underestimates the demographic impact. Hence, a more correct approach is to fix
birth and death rates at least a generation before the period analyzed.
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Fig. 8 Population characteristics under different experiments, Spain 1850–2000. a Population distribution
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Notes Experiment 1 assumes a fixed TFR around 5 and a life expectancy at birth of 31.5years. Experiment
2 assumes a fixed life expectancy at birth of 31.5years and a TFR as in the baseline. Experiment 3 assumes
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which is replicated by our baseline model. To gain some intuition about our coun-
terfactual experiments, let us assume per capita income growth from time t0 to time
t , (Y/N )gr, is explained by an average exogenous increase in productivity (Agr), by
demographic changes (Dem), and by other exogenous factors (I ). Thus, per capita
income growth from time t0 to t is given by

(Y/N )gr = Agr + Dem + I. (Baseline) (22)

If we cancel—like in Experiment 1—the demographic changes (Dem), ceteris paribus
other exogenous information (i.e. Agr + I ), the new per capita income growth during
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the same period (̂Y/N )gr will be given by

(̂Y/N )gr = Agr + I. (Experiment) (23)

Thus, from (22) and (23) the contribution of demography to the observed per capita
income growth can be calculated as follows

(Y/N )gr − (̂Y/N )gr

(Y/N )gr
= Dem

Agr + Dem + I
. (24)

The same intuitive calculation can be done either for each demographic factor (i.e.
experiments 2 and 3) or for any other factor affecting per capita income growth. Next
we explain how demography affects per capita income and its relative contribution.
Mortality and fertility effects.FollowingKelley andSchmidt (2005) ourmodel captures
the effect of demography on per capita income through two main channels:

(i) the difference between the growth rate of workers and the growth rate of the
population, or translation component, and

(ii) through changes in the market labor supply and in household savings, caused
by the rise in life expectancy and the fall in fertility, or productivity component.
Notice the productivity component arises not only from changes in the behavior
of individuals, but also from changes in the population’s age structure.

Givenour economic setup, these twocomponents arewell-capturedby the following
decomposition of per capita income growth12

(Y/N )gr =
(

α

1 − α
K/Y

)
gr

+ (L/W )gr

︸ ︷︷ ︸
Productivity component

+ (W )gr − (N )gr︸ ︷︷ ︸
Translation component

+Agr. (25)

By comparing per-capita income growth in the baseline to that in the experiments, the
first term on the right-hand side of Eq. (25) mainly captures the change in household
savings, the second term L/W mainly reflects the change in the average hours worked,
and the third term W/N reflects the change in the support ratio.13

12 If we divide both sides of the Cobb–Douglas production function (13) by Yαt
t , solving for Yt , and

dividing both sides by the total number of workers Wt , we get

Yt
Wt

=
(
Kt

Yt

) αt
1−αt

At
Lt
Wt

.

The growth in output per worker comes from the growth in the capital-output ratio, the growth in human
capital per worker, and the labor-augmenting technological progress. Thus, substituting the output per
worker in (21) gives (25).
13 Given that the model does not distinguish at each age between intensive labor supply (i.e. hours worked)
and extensive labor supply (i.e. labor participation),W is the population between age 16 and 65 or working-
age population.
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Table 3 Source of per-capita output growth from 1850 to 2000 by demographic component (annual average
logarithmic rates in percent) Source Authors’ calculations based on the OLG model

Experiment

Baseline 1: Constant demography 2: Constant longevity 3: Constant fertility

I.a I.bb II.a I I.bb III.a I I I.bb IV.a I V .bb

(Y/N )gr 1.63 1.60 1.36 1.32 1.53 1.69 1.40 1.15

A: Input factors

(K/N )agr 0.61 0.49 0.48 0.27 0.55 0.50 0.52 0.22

(L/N )agr 0.08 0.18 − 0.06 0.10 0.04 0.24 − 0.06 − 0.01

TFPcgr 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

B.1: Productivity component

(K/Y )rma
gr 0.21 0.04 0.14 −0.15 0.17 0.02 0.18 − 0.15

(L/W )gr − 0.11 0.03 − 0.19 0.06 − 0.22 0.08 − 0.09 − 0.01

B.2: Translation component

(W/N )gr 0.14 0.14 0.00 0.00 0.18 0.18 − 0.10 − 0.10

Agr 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40

Experiment 1 shows the effect of fixing fertility and mortality at the level prevailing in 1800, Experiment
2 cancels the effect of the mortality decline, and Experiment 3 considers fertility rates to remain constant
over time
Bold values indicate the main results and italic values indicate the complementary results
aWeighted average growth rates using factor shares
bValues in ‘.b’ columns correspond to the average annual growth rate under the assumption that the endoge-
nous economic decisions observed in 1850 prevail until 2000. Therefore, the difference between the bold
and italic numbers for each column gives the contribution of the behavioral change
c TFPgr stands for the growth rate of total factor productivity, which is equivalent to the weighted growth
rate of the labor-augmenting technological progress ((1 − α)A)gr

We summarize the simulation results in Table 3, which shows the source of per-
capita income growth from 1850 to 2000. Column I reports the results obtained in the
baseline, while columns II–IV show the results obtained in each experiment. We split
Table 3 in two blocks of rows (A and B). The first block (A) shows the contribution
of each input factor—physical and human capital—, both in per capita terms, to the
growth rate of per-capita output. The second block (B) shows the decomposition of
per-capita income growth in terms of the productivity component and the translation
component; seeEq. (25). Recall that only by comparing the baseline to each experiment
gives the contribution of each demographic factor to per-capita income growth. This
is because the productivity component and the translation component are not only
influenced by demographic factors but also by other exogenous factors such as the
exogenous labor-augmenting technological progress (A), the educational expansion,
the introduction of a public pension system, etc. Moreover, we include an additional
(sub)column inTable 3, denotedwith the extension .b, which shows for each simulation
the decomposition of per-capita income growth that would result from holding the
household’ saving rate and the household labor supply in year 1850 constant. Thereby,
the difference between the values in columns .a and .b gives the contribution of the
behavioral changes to the growth rate of each ratio (·)gr.
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Table 3 shows that the average per-capita income growth rate from 1850 to 2000
in the baseline model is 1.63% per year, which is close to the actual 1.62% shown
in Table 2. The contribution of the per-capita stock of physical capital (K/N ) to the
growth of per-capita incomewas 0.61% per year in the baseline (see column I.a), while
the per-capita stock of human capital (L/N ) contributed around 0.08% per year. We
can also see in Table 3 that the growth rate of K/N is greater in column I.a (0.61%)
than in column I.b (0.49%). This difference suggests that households reacted to the new
economic and demographic environment by increasing their saving rate. In contrast,
the smaller growth rate of L/N reported in column I.a (0.08%) compared to that in
column I.b (0.18%) suggests that households reduced their labor supply during this
period.

To disentanglewhether the increase in savings and the decline in the labor supply are
explained by demographic factors, or by other exogenous variables, we compare the
experiments to the baseline. Thus, the difference in the growth rate of K/N between
columns I.a and II.a suggests that demography accounts for an average increase in
K/N of 0.13% per year (= 0.61−0.48) and for an increase in L/N of 0.14% per year
(= 0.08−(−0.06)). Looking at columns III.a and IV.a we can see that the contribution
to the increase in K/N of the decline in fertility (0.09% = 0.61 − 0.52) is greater
than the contribution of the increase in longevity (0.06% = 0.61 − 0.55). As shown
in Fig. 8a (compare the solid black line to the circled gray line), the greater positive
effect of fertility on K/N is explained by the aging of the population or, equivalently,
by the change in the age structure of the population. Since older households have more
wealth, the older population structure implies a greater per-capita wealth. In contrast,
the lower impact of longevity on savings during the period 1850–2000 is the result
of two opposite effects. First, a higher longevity negatively affects aggregate savings
because the fall inmortality increases the population growth rate and, as a consequence,
the average age of the population declines. Note that this effect is the opposite as the
one explained for the decline in fertility. Second, the rise in longevity also has a positive
effect on savings, since individuals increase their savings for retirement motive. Given
that the net effect of longevity from 1850 to 2000 is positive, the latter effect dominates
over the former effect during this period.

In order to analyze the impact of demography on the stock of human capital, we
focus on the stock of human capital per worker (L/W ) rather than on L/N . We can
highlight two interesting results in Table 3. First, when the population is stable—i.e.,
fertility rates and mortality rates are constant—we can see in column II.a that L/W
declines at a rate of 0.19% per year. This fall in L/W is explained by a reduction in the
labor supply caused by the increase in the labor-augmenting technological progress.
The intuition is simple. As productivity rises and households become richer, the non-
homothetic preferences in Eq. (1) imply that households devote a higher fraction
of their wealth to buy more leisure time and to reduce their working time. Second,
comparing column I.a to II.a, we can see that demography accounts for an average
increase in L/W of 0.08% per year (= −0.11− (−0.19)). However, unlike the result
obtained for the per-capita stock of physical capital, the positive effect of demography
on L/W is explained by the increase in longevity rather than by the decline in fertility.
From experiments 2 and 3 we get that the increase in longevity contributes to the
rise in L/W by 0.11% per year (= −0.11 − (−0.22)), while the decline in fertility
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Table 4 Demographic contribution to the growth rate of per-capita output (Y/N )gr from 1850 to 2000 by
demographic component (in percent) Source Authors’ estimates based on Table 3

Experiment Contribution (Y/N )gr Relative contribution

(K/Y )agr (L/W )gr (W/N )gr

1: Constant demography 16.8 4.0 4.4 8.4

2: Constant longevity 6.4 2.3 6.7 − 2.7

3: Constant fertility 14.5 1.8 − 1.5 14.2

The contribution rate is calculated as 100 × Baseline−Experiment
Baseline . The relative contribution is calculated as

100 × Baseline−Experiment
Baseline(Y/N )gr

Bold values indicate the main results and italic values indicate the complementary results
aAverage growth rates calculated using the weights of the corresponding factor share (α/(1 − α))

reduces L/W by 0.02 (= −0.11 − (−0.09)) percent per year. The positive effect of
longevity on L/W is due to the increase in the expected length of work, given that
more households survive to retirement. Similar results have been derived using US
data from 1850 to 1990 (Lee 2001). The negative effect of the decline in fertility on
L/W is caused by a fall in hours worked. This is because households use the positive
wealth effect from raising a lower number of children to purchase more leisure time.

Using the information displayed in Table 3 and applying Eq. (24), Table 4 reports
the contribution of demography to the growth rate of per capita income during the
period 1850–2000. The first row in Table 4 shows that demography contributed 16.8%
points (= (1.63 − 1.36)/1.63) to the per-capita output growth in Spain from 1850 to
2000, instead of 5% estimated using the naïve demographic model; that is, the growth
rate of the support ratio. The rise in longevity and the drop in fertility both had a
positive and significant effect on per-capita income growth (see the last two rows in
the first column of Table 4). In particular, the rise in longevity and the fall in fertility
explain 6.4 (= (1.63−1.53)/1.63) and 14.5 (= (1.63−1.40)/1.63) percentage points,
respectively, of the observed per-capita income growth between 1850 and 2000. Notice
that since each demographic factor has a non-linear effect on the economic outcomes,
the sum of both demographic components is not equal to the total effect. Moreover, the
relative contributions of the translation component and the productivity component are
reported in the last three columns of Table 4. The first row shows that the translation
component accounts roughly for 50% (i.e., = 8.4/16.8) of the demographic dividend
along the period 1850–2000, while the productivity component explains the remaining
50%. If we study the relative contribution by demographic component, the second and
third rows show that the rise in longevity mainly affected the productivity component
(i.e., (2.3 + 6.7)/6.4), whereas the drop in fertility mainly affected the translation
component (i.e., 14.2/14.5).

5 Discussion of the results

Besides demography and the labor-augmenting technological progress, we have intro-
duced in the OLG model four other exogenous sources of variation: (i) the increase in
the number of people with secondary and higher education, or educational expansion;
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Table 5 Contribution of other factors to per-capita income growth (Y/N )gr from 1850 to 2000 (in percent)
Source Authors’ estimates

Symbol t = 1850 Contribution (Y/N )gr Relative contribution(
α

1−α
K/Y

)
gr

(L/W )gr (W/N )gr

Education Et (·) 9.8 − 2.1 11.9 0

Pen. replacement ψt − 3.7 − 1.8 − 1.9 0

Capital share αt 7.1 7.4 − 0.3 0

Capital depreciation δt − 1.6 − 2.1 0.5 0

The contribution rate is calculated as 100 × Baseline−Experiment
Baseline . The relative contribution is calculated as

100 × Baseline−Experiment
Baseline(Y/N )gr

Bold values indicate the main results and italic values indicate the complementary results

(ii) the universalization of the pension system captured by a higher average replace-
ment rate (ψt ); (iii) the change in the capital share (αt ) over the period 1850–2000; and
(iv) the progressive increase in the capital depreciation rate (δt ). Under the assumption
that all exogenous factors are independent, in this section we study the contribution
of each factor to the growth rate of per-capita income. Hence, this exercise helps us to
assess the relative importance of demography with respect to other economic factors.

To study the impact of the educational expansion on our results, we have compared
our baseline simulation to a counterfactual experiment in which we fix the educational
distribution of all cohorts to that observed for the cohort born in 1850. Table 5 shows
that only 9.8% of the total increase in per-capita income growth from 1850 to 2000
is due to the educational expansion. This result does not imply that the contribution
of education is generally small, but that the expansion of education in Spain occurred
rather late compared to other European countries. Moreover, the value we obtain for
the contribution of education on per-capita income growth is on the lower bound since
we assumed education to have no impact on either the demographic transition (Murtin
2013; Crespo-Cuaresma et al. 2014) or the technological progress.

It is worth noting that the contribution of education to per capita income growth
could also be interpreted as a contribution of demography. Indeed, there is growing
evidence showing that changes in longevitymay explainmore than 30%of the increase
in the number of years of education (Restuccia and Vandenbroucke 2013; Sanchez-
Romero et al. 2016). Thus, demography may well account for 19.7% (i.e., = 16.8 +
0.3 × 9.8) of the observed per-capita income growth. Moreover, the model includes
exogenously the quantity-quality trade-off (Becker et al. 1990). According to this
theory, the decline in fertility can partly explain the increase in educational expenditure
and the number of years of education (Lee andMason 2009), whichwould yield values
higher than 20%.We cannot rule out either the possibility that population density may
also boost technological progress (Lee 1988; Kremer 1993; Galor and Weil 2000;
Jones 2001), which will lead to even higher values. Nevertheless, since the causal
relation between demography and education can go in both directions, in this article
we opted for having a neutral position by taking the observed trends in those variables
and ignoring their feedback effects.
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In a lifecycle model the main driver for the accumulation of capital is the lack of
income to finance the consumption during retirement, i.e., the savings for retirement
motive. To avoid an unrealistic savings profile, we introduced the historical evolution
of the social security system through our indirect estimation of the average replacement
rate. Thus, by setting the average replacement rate to the value derived for the year
1850, we can have a rough assessment of the importance of the pension system on
our results. Comparing the baseline to a counterfactual ψt = ψ1850 for all t , we get
that the expansion of the pension system has reduced per-capita income growth by
3.7%. Looking at Table 5we note that almost 50%of the overall reduction in per-capita
income is due to the fall in L/W and 50% to the reduction in K/Y . The decline in L/W
is explained by the negative effect that a tax on labor income exerts on hours worked,
while the reduction in savings is explained by the crowding out effect produced by the
social security system.

From 1850 to 2000, one of the engines of growth was the progressive conversion of
Spain froma rural economy to a system inwhich the industry and the tertiary sector play
the most important roles. Although most of the consequences of the industrialization
and tertiarization of the economy has already been captured by the labor-augmenting
technological progress, this process is also partly reflected by the change in the labor
share and the depreciation of capital. To capture the effect of the change in labor share
and capital depreciation on our results, we run two additional experiments assuming a
constant labor share of two-thirds, which corresponds to that reported by Prados de la
Escosura and Rosés (2010b) for 1850, and another with a constant capital depreciation
rate at the level of 1850. Prados de laEscosura andRosés estimate that the labor share in
Spainwas below two-thirds from the beginningof the twentieth century until the 1930s,
it was above two-thirds from 1930 until World War II, witnessed a sharp decline at the
beginning of the 1950s, and recovered to pre-Civil War levels after the Stabilization
Plan in 1959. The initial capital depreciation rate is estimated at 5.24%, while the
capital depreciation rate at the beginning of the twenty-first century is slightly above
6%. We also include in the capital depreciation series the estimated 7% productive
capital destruction during the Civil War (Prados de la Escosura and Rosés 2010a).
Table 5 reports that the change in the labor share over the period 1850–2000 positively
contributed by 7.1% points to per-capita income growth, whereas the increase of the
capital depreciation affected per capita income growth negatively by 1.6%.

As a final remark, it is also interesting to study what will be the impact of demog-
raphy if the model only considers the adult population, which is the standard practice
in many overlapping generation models. Provided the same parameter values reported
in Table 1, we obtain that the total contribution of demography on per capita income
growth in the model without children (aged 0–15) is only 6.5%. Thereby, we conclude
that the standard practice in OLG models underestimates the actual contribution of
demography on per capita income growth by 10% points.

6 Conclusion

In this paper we studied the contribution of changes in the demographic structure on
per-capita income growth. To shed light on this old topic, we used a new approach by
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considering an OLG model populated by households that are heterogeneous by level
of education, who optimally choose the consumption of market- and home-produced
goods, and the time spent working in the market and in home production. Then, we
validated our approachby showing that ourmodel is capable of replicating the observed
increase in income and consumption per capita, and the pronounced decline in hours
of work from 1850 to 2000.

Our main finding suggests that the rise in longevity and the drop in fertility account
for around 17% of the increase in per-capita income growth from 1850 to 2000. An
analysis by demographic component gives that the drop in fertility explains 14.5%
of the economic growth, while the rise in longevity explains 6.4%. We also studied
the contribution of the demographic transition in terms of the translation component
(population structure) and the productivity component (changes in labor supply and
capital accumulation). Our results suggest that the translation component accounts
for 50% of the total income growth from 1850 to 2000, and hence the productivity
component accounts for 50%. By running additional counterfactual experiments we
obtained two other key findings. First, we showed that, after productivity, demography
is the most important factor explaining per-capita income growth for the country
analyzed. Second, we showed that OLG models highly underestimate the impact of
demography on per-capita income growth when dependent children are not included.

Our estimated contribution of demography to economic growth from 1850 to 2000
should, however, not be taken as a fixed number. We believe the value around 17%
points is likely to be the minimum contribution of demography to per-capita income
growth. Indeed, there is growing evidence showing that changes in longevity may
explain to a large extent the educational transition and the change in labor supply
(Cervellati and Sunde 2013; Restuccia and Vandenbroucke 2013; Sanchez-Romero
et al. 2016). This figure could be even higher if we consider that population density
may boost technological progress (Lee 1988; Kremer 1993; Galor and Weil 2000;
Jones 2001; Croix et al. 2008). Thus, further research is needed to investigate other
interactions such as the interplay among demographic change, the education transition,
and productivity growth.
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Appendices

A Household problem

For notational simplicity and without lost of generality we get rid of subscripts that
denote the level of education e and time t . The optimal allocation of time and con-
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sumption of a household, whose head is of age j , is obtained by maximizing (3) with
respect to cmj , c

h
j , c

x
j , h j , and z j , subject to (4), the time constraint, and the boundary

condition.
The first-order conditions (FOC) are:

cmj : ∂uhe
∂cmj

= π j+1
∂Vj+1(x j+1)

∂a j+1
, (26)

chj : ∂uhe
∂chj

= ∂uhe
∂cmj

p∗
j + λ1, (27)

where p∗
j is the shadow price of home-produced goods and services in a household

whose head is age j and λ1 is the Lagrange multiplier associated to home production.

cxj : ∂uhe
∂chj

∂ f h

∂cxj
= ∂uhe

∂cmj
, (28)

h j , z j : ∂uhe
∂chj

∂ f h

∂h j
= ∂uhe

∂z j
(1 + υ(n j )) for all j. (29)

If households supply their labor in the market, the time spent on home production
satisfies

h j : ∂uhe
∂chj

∂ f h

∂h j
= ∂uhe

∂cmj

(
1 − τ j

)
w j (1 + υ(n j )). (30)

The envelope condition (EC) is

a j : ∂Vj (x j )

∂a j
= π j+1

∂Vj+1(x j+1)

∂a j+1
R j . (31)

Combining (26) and (31) gives (7). Equation (11) is obtained dividing (30) by (28).

B Market clearing conditions

Let j ∈ J = {0, . . . , 100}, t ∈ T = {1500, . . . , 2500}, and e ∈ E. Given
initial values {c̄m ,c̄h ,φm

e ,φ
h
e ,φ

z
e ,σe, θ ,ρ,αt ,δt ,gt ,ψt ,J0,JR}e∈E, j∈J,t∈T, demographics

{N j,t , n j,t , π j,t } j∈J,t∈T, the educational distribution Et (e) for cohorts born at time
t ∈ T, and the age-specific productivity endowment by educational attainment
{ε j,e}e∈E,t∈T, a recursive competitive equilibrium is a sequence of a set of house-
hold policy functions ce, j,t ∈ C, government policy functions {tr j,t , τt } j∈J,t∈T, and
factor prices {r Ht , r Kt }t∈T such that

1. Factor prices equal their marginal productivities.
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2. The government’s budget constraint (14) is satisfied and all accidental bequests
equal all transfers given

100∑
j=16

N j,t (1 − π j,t )

∫
E
ae, j,t dEt− j (e) =

100−28∑
j=16

N j,tπ j,t tr j,t

where

tr j,t = max{0, ξ j,t },

Dt =
100∑
j=16

N j,t max{−ξ j,t , 0}

with

ξ j,t =
⎧⎨
⎩

N j+28,t (1−π j+28,t )

N j,tπ j,t

∫
E ae, j+28,t dEt− j−28(e) + 1−π j,t

π j,t

∫
E ae, j,t dEt− j (e) if 16 ≤ j ≤ 44,

N j+28,t (1−π j+28,t )

N j,tπ j,t

∫
E ae, j+28,t dEt− j−28(e) if j > 44.

3. Given the factor prices and government policy functions, household policy func-
tions satisfy Eqs. (7)–(2), and the commodity of home production clears:

100∑
j=16

N j,t

∫
E
f (cxe, j,t , he, j,t )dEt− j (e) =

100∑
j=17

N j,t

∫
E
che, j,t dEt− j (e)

4. The stock of physical capital and the labor input are given by:

Kt =
100∑
j=16

N j,t

∫
E
ae, j,t dEt− j (e)

Lt =
100∑
j=16

N j,t

∫
E

εe, j�e, j,t dEt− j (e)

5. The commodity market clears:

Yt = Ct + St

where the total consumption of market goods Ct = ∑100
j=16 N j,t

∫
E cme, j,t +

cxe, j,t dEt− j (e) and St is gross savings in year t .
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C Population reconstruction

Time is discrete. Individuals are assumed to live for a maximum of 100years. Let the
survival probability to age j in year t be

S j,t =
j−1∏
x=0

πx,t−x with S0,· = 1, S100,· = 0, (32)

where π j,t is the conditional probability (of being alive at age j in year t) of surviving
to age j + 1 (with π j,· = 0, for all j ≥ 100). Let N j,t be the size of the population at
age j in year t . We assume a closed population. Thus, the population at time t + 1 is
given by the population in year t plus the total number of births in year t , denoted Bt ,
less the total number of deaths during the year Dt . The dynamics of the population can
be written in matrix notation using a Leslie matrix (Leslie 1945; Preston et al. 2002)

N(t + 1) = �(t)N(t), (33)

with

Γ j,1(t) = L0,t

2S0,t

(
f j,t + f j+1,t

L j+1,t

L j,t

)
f f ab,

Γ j+1, j (t) = L j+1,t

L j,t
, for j ∈ {1, . . . , 99} at time t,

(34)

where L j,t = S j,t+S j+1,t
2 is the person years lived by the cohort between ages j and

j + 1 in period t , f j,t is the age-specific fertility rate at age j in year t , f f ab is the
fraction of females at birth (we assume f f ab = 0.4886, which is the standard value
in the demographic literature).

To reconstruct the population in Eqs. (33) and (34), we use a simplified version of a
GIPmodel thatmatches the specific characteristics of our economicmodel: one gender
without distinction between parity and region of birth, among others. The objective
function used to solve the problem is:

min
{α1

t ,α
2
t ,α

3
t ,μt ,βt }

∑
t∈D

(
1 − D̂t/Dt

)2 +
∑
t∈B

(
1 − B̂t/Bt

)2 +
∑
t∈N

(
1 − N̂t/Nt

)2

+
∑
t∈E

(
1−ê0,t/e0,t

)2+∑
t∈T

(
1− ˆTFRt/TFRt

)2+∑
t∈C

Ω−1∑
a=0

(
(Na,t − N̂a,t )/Nt

)2

+
T∑

t=t0

2∑
i=0

(
αi
t+1 − αi

t

)2 +
T∑

t=t0

(μt+1 − μt )
2 +

T∑
t=t0

(βt+1 − βt )
2 , (35)

subject to Eqs. (33)–(34) and to

3∑
k=1

αk
t f

(k)
j = f j,t with

3∑
k=1

αk
t = 1, (36)
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Fig. 9 In-sample performance of theGIPmodel to existing demographic data. Spain: Selected year between
1787 and 2000. aLife expectancy at birth,b total fertility rates, c total births and deaths and d total population

j−1∏
x=0

πx,t = e2(μt+βt Y 1(x)+(1−βt )Y 2(x))

1 + e2(μt+βt Y 1(x)+(1−βt )Y 2(x))
with βt ∈ [0, 1], (37)

where {α1
t , α

2
t , α

3
t , μt , βt } are the corresponding parameters for fertility andmortality,

respectively; f (i)
x and {Y 1(·),Y 2(·)} are actual age-specific fertility rates and twoBrass

logit model standards—where Y 1(·),Y 2(·) are associated to high mortality and low
mortality rates, respectively–; and I ≡ {D, B, N, E, T, C} are the sets of deaths,
births, total population, life expectancy, total fertility rates, and censuses used in the
calculation. Crude migration rates are obtained using inverse population projection
and are exogenous to the GIP model. Since GIP suffers from weak ergodicity, we use
an initial population growth rate consistent with historical data prior to 1800 based on
Livi-Bacci and Reher (1991) and Reher (1991).

Figures 9 and 10 show the in-sample performance of our population reconstruction
with the existing demographic information. The demographic information used in Eq.
(35) is depicted in these two figures. Specifically, in Fig. 9 we plot the life expectancy,
total fertility rate, total number of births, total number of deaths, and the total popu-
lation; whereas in Fig. 10 we compare the population distribution for some selected
census years to the associated censuses.

123



SERIEs (2018) 9:27–64 61

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

20

40

60

80

100

Population size (in millions)

Ag
e

 

 

Data
GIP

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10 In-sample performance of the GIP model to existing census data. Spain: Selected year between
1857 and 2002. a Census 1857, b census 1877, c census 1900, d census 1920, e census 1940, f census
1960, g census 1980 and h census 2002
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