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Abstract 

Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over 

the past three decades and are particularly low for patients with metastatic disease. We conducted 

a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants 

associated with overall survival in 632 patients with osteosarcoma including 523 patients of 

European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated 

hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, 

with and without adjustment for metastatic disease. The results were combined across the 

European and Brazilian case sets using a random-effects meta-analysis. The strongest association 

after meta-analysis, was for rs3765555 at 9p24.1, which was inversely associated with overall 

survival (HR=1.76; 95% CI 1.41-2.18, P = 4.84×10−7). After imputation across this region, the 

combined analysis identified two SNPs that reached genome-wide significance. The strongest 

single association was with rs55933544 (HR=1.9; 95% CI 1.5-2.4; P=1.3×10−8), which localizes 

to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and 

Brazilian case sets. Using publicly available data, the risk allele was associated with lower 

expression of IL33 and low expression of IL33 was associated with poor survival in an 

independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 

locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. 

Further studies are needed to confirm this association and shed light on the biological 

underpinnings of this susceptibility locus. 
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INTRODUCTION 

Osteosarcoma is the most common primary bone cancer in children and adolescents.1–4 The 

introduction of effective neo-adjuvant and adjuvant chemotherapy in the 1980s resulted in 

improved long-term survival for non-metastatic osteosarcoma patients, increasing survival 

from 20%–30% to more than 70%.4–7 However, over the past three decades, there has been 

little improvement in survival rates for patients with metastatic disease at diagnosis8 with 5- 

year overall survival rates remaining at 25-30%.9, 10 Several factors have been suggested to 

influence survival of patients with osteosarcoma11, including age at diagnosis, metastatic 

disease at presentation, tumor histology, blood alkaline phosphatase levels, tumor size and 

location, and response to chemotherapy (estimated by the percentage of tumor necrosis after 

chemotherapy).12–14 Recently, we reported that germline genetic variants in the NFIB gene 

locus (9p23-9p22.3) are associated with metastatic disease at osteosarcoma diagnosis, 

suggesting that genetic susceptibility could contribute to survival.15 

There is growing interest in whether germline genetic variants could influence outcomes of 

patients with cancer. A population-based family study showed that cancer-specific survival 



 

 

can be partly related to inherited factors within families, suggesting there are germline 

genetic determinants of survival.16 While earlier candidate gene studies have identified 

variants associated with prognosis that have not been confirmed, more recent large genome- 

wide association studies (GWAS) have identified associations between common SNPs and 

survival in adult cancers of the pancreas,17 breast,18–23 ovary,24 and in a rare pediatric 

cancer, neuroblastoma.25–27 There have also been exploratory pharmacogenomic studies of 

pediatric Ewing sarcoma and osteosarcoma that have identified SNPs associated with 

response to treatment and survival,28–31 although most await further validation. We 

performed a GWAS in order to explore whether germline genetics may contribute to survival 

in patients with osteosarcoma. 

 
METHODS 

Study populations 

A summary of the participating studies is provided in Supplemental Table 1. Previously, we 

reported 689 histologically confirmed osteosarcoma patients of >80% European ancestry 

based on a STRUCTURE analysis32 employing principal components analyses of a set of 

12,000 unlinked markers (pairwise r2 < 0.004).15, 33 A subset of 523 European ancestry 

osteosarcoma patients had available data on mortality (European set) for a survival analysis. 

After performing the GWAS for survival in this data set, we evaluated the most promising 

SNPs from the European set (P < 10−4) in 109 Brazilian osteosarcoma patients from the 

Instituto de Oncologia Pediátrica GRAACC/UNIFESP and Universidade Federal de Sao 

Paulo, Brazil (Brazilian set; Supplemental Table 1). Participating subjects provided informed 

consent under the auspices of local Institutional Review Boards. 

 

Genotyping and quality control 

All subjects were previously genotyped as part of our osteosarcoma susceptibility GWAS 

(dbGaP Study Accession: phs000734.v1.p1).33 In brief, genotyping was conducted on the 

Illumina OmniExpress BeadChip, SNPs included in the analyses were autosomal with a 

minor allele frequency (MAF) of 5% or more; had a 90% or more completion rate; and no 

evidence of deviation from Hardy-Weinberg equilibrium (P > 10−7). SNPs were also 

excluded if they had abnormal heterozygosity values. After quality control assessment, 

510,856 SNPs were advanced in our survival analysis. 

 

Statistical analyses 

We conducted a time-to-event analysis to investigate the effect of genetic variation on 

overall survival. The outcome variable of interest was time until the event of death. The 

overall survival time was calculated as the time from the date of osteosarcoma diagnosis 

until the date of death for those deceased or the last date known to be alive; patients were 

censored at the last date known to be alive or when lost to follow-up. All events were 

identified and verified through medical record review and/or death certificates at each 

participating study center. We modeled each genome-wide association between one or more 

SNPs and survival using Cox proportional hazards regression and estimated hazard ratios 

(HR) and 95% confidence intervals (CI) per copy of the minor allele (log-additive genetic 

model).34 We tested the hazards proportionality assumption (i.e., the hazard ratio is constant 



 

 

over time)35 of the Cox model using Schoenfeld’s residuals;36, 37 we did not detect 

nominally significant violations of the proportional hazards assumption. 

 

Cox models were adjusted for age at diagnosis, gender, significant principal components, 

and study/center (except for the Brazilian study, since all samples were from the same 

hospital). We did not adjust for metastatic disease agnostically at the genome-wide level, 

because some SNPs may be associated with metastatic disease and survival, as we have 

shown previously,15 and thus adjusting for potential intermediate factors that lie on the 

causal pathway could introduce bias.38–40 However, since metastatic disease is a prognostic 

factor for overall survival,12 we performed sensitivity analyses for the top signals by also 

adjusting for metastatic disease .41 We constructed Kaplan-Meier survival curves42 for the 

top SNPs under dominant models and compared their statistical equivalence for each model 

with the log-rank test. 

SNPs that reached P < 10−4 in the European set were followed-up in the Brazilian set. We 

used a random-effects meta-analysis with inverse-variance weighting to estimate the 

summary effect across the sets.43 We evaluated between-sets heterogeneity using Cochran’s 

Q chi-squared statistic and quantified heterogeneity with the I2 metric.44 SNPs that 

demonstrated significant between-set heterogeneity (P < 0.05) were excluded. 

 

Based on our GWAS results, we conducted region-specific imputation analysis of flanking 

SNPS, namely, 1 Mb region on either side of the strongest SNP using the IMPUTE2 

software and the reference data from the 1000 Genomes project (Phase 3 genotype data).45 

To investigate whether signals in the same genomic region represent independent 

associations, we conducted conditional analyses by adjusting the Cox models for the top 

SNP in each region as applicable. 

 

Statistical analyses were performed in Stata version 13 and R 3.0.2. All P-values are two- 

sided. 

 

eQTL and survival-expression analyses 

We performed expression quantitative trait locus (eQTL) based analyses using publicly 

available genotype and expression data from 29 osteosarcoma tumors (GSE33383)46 and 

separately in osteosarcoma tumors from 89 patients included in the Therapeutically 

Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset 

(http://ocg.cancer.gov/programs/target).47 The data used for TARGET are available at 

dbGaP accession phs000218, accession phs000468, in which we conducted survival- 

expression analysis.47 For the 127 patients from the combined dataset (Kuijjer et al46 and 

Buddingh et al48) survival-expression was analyzed using the R2: Genomics analysis and 

visualization platform (http://r2.amc.nl/).49 

 
Bioinformatic analyses 

Linkage disequilibrium (LD) was evaluated with r2 based on the 1000 Genomes Project 

(Phase 3 genotype data)45 using LDlink (http://analysistools.nci.nih.gov/LDlink/).23 

Chromosome location for human genome assembly hg19 was retrieved from the National 

http://ocg.cancer.gov/programs/target
http://r2.amc.nl/


 

 

Center for Biotechnology Information’s (NCBI) Gene database (http:// 

www.ncbi.nlm.nih.gov/gene/). Genomic annotation of SNP markers was conducted using 

the Encyclopedia of DNA Elements (ENCODE)50 tool HaploReg51 and RegulomeDB52 for 

all cell lines. Surrogate SNPs were identified using the 1000 Genomes data for individuals of 

European ancestry with an r2 > 0.4 and within ±500kb. LocusZoom53 was used to plot 

regional associations. 

 
RESULTS 

Patient characteristics 

Table 1 shows the characteristics of the patients included in this study. There were 632 total 

osteosarcoma patients included in the overall survival analyses. In the European set, there 

were 170 (33%) mortality events, and 37 (34%) in the Brazilian set. Age (P < 0.001) and 

presence of metastases at diagnosis (P < 0.001) were associated with patient survival (Table 

1, Supplemental Figure 1). 

 

SNPs associated with overall survival 

In a case-case analysis, 81 SNPs were associated with overall survival at P < 10−4 in the 

European set (Supplemental Table 2) and were followed-up in the independent set of 109 

osteosarcoma cases from Brazil. The strongest association with overall survival in the 

European set is at chromosome 5q11.1 tagged by rs1030228 (located 14kb 5' of NDUFS4) 

with a HR for mortality of 1.71 (95% CI 1.39-2.12, P = 7.10×10−7; Supplemental Figure 2, 

Supplemental Table 2). However, this SNP is not associated with survival in the Brazilian 

study (P=0.80). There is a large degree of between-set heterogeneity (Phet=0.052, I2=73.5%) 

for this variant (Supplemental Table 2). 

 

In the combined analysis, the strongest association was SNP rs3765555, which is inversely 

associated with overall survival (HR=1.76 per copy of the A allele, 95% CI 1.41-2.18, 

P=4.84×10−7; I2=0%; Table 2, Figure 1A). This SNP is located in intron 23 of the glycine 

dehydrogenase (decarboxylating) gene (GLDC) on chromosome 9p24.1. The MAF for 

rs3765555 in the European (MAF=0.26) and Brazilian (MAF=0.21) populations are similar 

and we did not observe significant between-set heterogeneity (Phet=0.34; Table 2, 

Supplemental Table 2). 

 

In a further exploration of the promising regions, we imputed SNPs across a 1 Mb region 

centered on rs3765555 to further evaluate this locus. After a random-effects meta-analysis 

for the imputed SNPs, we identified rs55933544 (Table 2, Figure 1A) as the SNP most 

strongly associated with overall survival (HR=1.89 per copy of the T allele, 95% CI 

1.50-2.37; P=4.81×10−8; I2=0%), which is in strong LD with rs3765555 (r2=0.86 in 

Europeans and r2=0.94 in admixed Americans). The results remained the same after 

adjustment for metastatic disease at diagnosis (Table 2), suggesting that the 9p24.1 locus 

marked by rs55933544 affects overall survival independent of metastatic disease at genome- 

wide significance (HR=1.92 per copy of the T allele, 95% CI 1.53-2.41; P=1.34×10−8; 

I2=0%). rs55933544 (chr9:6534080) was not correlated with SNP rs7034162 at 9p23-9p22.3 

http://www.ncbi.nlm.nih.gov/gene/
http://www.ncbi.nlm.nih.gov/gene/


 

 

(chr9:14190287) that we previously identified as associated with metastatic disease at 

osteosarcoma diagnosis (r2=0.0008, 1,000 Genomes Project CEU data).15 

A second SNP at 9p24.1, rs74438701 located approximately 25kb downstream of the 

interleukin 33 (IL33) gene, is also inversely associated with overall survival in the combined 

analysis (HR=2.00 per copy of the C allele, 95% CI 1.56-2.57, P=4.90×10−8; I2=0%; Figure 

1B). However, the conditional analysis showed that rs74438701 is not an independent signal 

(Figure 1C). 

 
Kaplan-Meier curve analysis indicate a statistically significant difference between survival 

rates over time (log-rank test P < 0.001) for both the dominant (Figure 1D) and a 

multiplicative model (data not shown) for rs55933544. In addition, we confirmed this 

association in an independent dataset of 89 cases (TARGET47; log-rank P=0.013; Figure 

2A). 

We examined the set of highly correlated surrogate SNPs (n=31) across the 9p24.1 region 

(based on an r2>0.4, 1,000 Genomes Project CEU data) to identify putative regulatory 

elements using the ENCODE data resource50 tools HaploReg51 and RegulomeDB52 

(Supplemental Table 3). A subset of the surrogate SNPs (n=29) are located in predicted 

promoter and/or enhancer histone marks, DNAse sensitivity regions, and/or transcription 

factor binding sites in a variety of different cell types and may have a functional impact 

(Supplemental Table 3). 

 
IL33 expression levels associated with survival 

We performed expression quantitative trait locus (eQTL) analyses to evaluate whether 

rs55933544 was associated with expression of GLDC, IL33 or other neighboring protein- 

encoding genes, using publicly available expression and genotyping data on osteosarcoma 

tumors. Interestingly, a previous eQTL was observed between rs55933544 and IL33 

expression in human skin54 and human brain tissue55 (Supplemental Table 3). We found that 

the risk allele (T) of rs55933544 was significantly associated with a decrease in IL33 

expression in both osteosarcoma tumor data sets from TARGET47 (N=83, P=0.041) and 

Kuijjer et al.46 (N=29, P=0.020) (Figure 2B and Supplemental Figure 3). In addition, lower 

expression of IL33 in osteosarcoma tissue was independently associated with worse 

osteosarcoma patient survival in TARGET47 (log-rank test P=0.023; Figure 2C) and Kuijjer 

et al.46 (raw P=7.9x10−3; Supplemental Figure 3). There was no association between 

rs55933544 genotypes and expression of GLDC or other nearby protein-encoding genes 

(TPD52L3, UHRF2 and KDM4C; data not shown). 

 
DISCUSSION 

We conducted a genome-wide association study for overall survival in osteosarcoma cases 

using data from a multi-stage, international collaborative effort.33 One locus, GLDC/IL33 at 

9p24.1, was associated with overall survival of patients with osteosarcoma, which suggests 

that germline genetics can influence osteosarcoma outcomes, independent of metastatic 

disease. Here we observed moderate to large effect sizes for a SNP associated with overall 

survival, a finding similar to that observed in our GWAS of metastatic disease at 



 

 

osteosarcoma diagnosis.15 The observed effect sizes are also comparable to GWAS of other 

pediatric and young adulthood cancers,25, 56–58 and higher than those observed in adult 

GWAS of common cancer susceptibility.59–61 

 
The most promising signal for overall survival in patients with osteosarcoma localizes to the 

9p24.1 region, downstream and independent of the NFIB gene locus (9p23-9p22.3) 

previously reported for metastatic disease.15 The SNP marker, rs55933544, in the GLDC 

gene region is associated with decreased survival. High expression of GDLC has been 

associated with poor survival in other cancers,62, 63 however, we did not detect an eQTL for 

rs55933544 and GDLC in osteosarcoma cells. Interestingly, rs55933544 alleles have also 

been associated with expression of the nearby gene, IL3354, 55 and we detected an eQTL 

with IL33 in osteosarcoma cells. In addition, lower expression of IL33 was associated with 

poor survival in patients with osteosarcoma. IL-33 is an inhibitor of bone reabsorption, 

blocking osteoclastic activity,64 which may be important in osteosarcoma. Lower levels of 

IL-33 have also been associated with worse prognosis or more advanced disease in several 

other tumor types,65–67 consistent with our data. 

 

This exploratory study requires further follow up and has limitations. Treatment likely varied 

among patients in our studies, but we could not control for this because treatment 

information was not available. However, it is unlikely that individual treatment modalities 

varied systematically by germline genotype. We also performed a combined analysis with 

osteosarcoma patients from Brazil, with a relatively small sample size. LD patterns differ in 

many parts of the genome between admixed Brazil populations and Europeans, and this 

could lead to false negative results in our analysis. This could explain the lack of replication 

in Brazilian patients of some of the top SNPs in the European osteosarcoma patients. 

However, an important strength, is that this two-stage design also reduces the likelihood of 

false positive results. 

In conclusion, we provide evidence that germline genetic variants are associated with overall 

survival in osteosarcoma patients. These findings warrant follow-up in additional 

populations and functional characterization to investigate the biologic mechanisms by which 

polymorphisms at this locus impact survival. 
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Novelty and Impact 

To date, few prognostic factors have been identified associated with survival in patients 

with osteosarcoma. The authors conducted a genome-wide association study (GWAS) of 

overall survival in two sets of patients with osteosarcoma. They identified a common 

single nucleotide polymorphism (SNP), rs55933544, located in the GLDC gene on 

chromosome 9, associated with poor survival. The rs55933544 risk allele was associated 

with lower expression of the nearby gene, IL33. These findings, if replicated in additional 

populations, form the foundation for future studies of the molecular basis of the 

association of the GLDC/IL33 (rs55933544) variant with survival in osteosarcoma. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. 

Regional plots of the combined association results, recombination hotspots and linkage 

disequilibrium (LD) for the 9p24.1 region that harbors rs55933544 and rs74438701 that are 

associated with overall survival. Results are shown for unconditional (A, B) and conditional 

(C) analyses. Also shown is the Kaplan-Meier curve (D) for overall survival for the strongest 

SNP (rs55933544) under a dominant model in the combined European and Brazilian sets. In 

panels A-C, Y-axes represent the statistical significance (−log10 transformed P values) of 

SNP association results from a trend test (left) and the recombination rate (right). SNPs are 

color-coded based on pairwise linkage disequilibrium (r2) with the most statistically 

significant SNP. The most statistically significant SNP is labeled and shown in purple. 

Allelic P values are the P-values from Cox models. Physical locations of the SNPs are based 

on NCBI human genome build 36, and gene annotation was based on the NCBI RefSeq 

genes from the UCSC Genome Browser. 



 

 

 
Figure 2. 

IL33 expression levels associated with survival in osteosarcoma patients. (A) Kaplan-Meier 

curve for overall survival by rs55933544 genotype; (B) eQTL of rs55933544 and IL33; and, 

(C) patient survival by IL33 low and high expression levels (independent of genotype), all 

using TARGET data. 



 

 
 

 

 
 

Patient characteristics in the European and Brazilian set 

Table 1 

 
 Endpoint European* Brazil  Combined Analysis  

Overall Survival N=523 N=109 N=632 75% ST† (years) P-value†† 

 Vital status, N (%)     

 Dead 170 (33) 37 (34) 207 (33) 2.8  

 Alive 353 (67) 72 (66) 425 (67)   

 Age (years)   <0.001  

 <25 432 (83) 93 (85) 525 (83) 3.3  

 ≥25 to<60 69 (13) 12 (11) 81 (13) 3.4  

 ≥60 21 (4) 0 (0) 21 (3) 4.3  

 Missing 1 (0) 4 (4) 5 (1)   

 Gender, N (%)   0.737  

 Males 295 (56) 58 (53) 353 (56) 2.9  

 Females 228 (44) 51 (47) 279 (44) 2.7  

 Metastasis at diagnosis, N (%)   <0.001  

 Yes 131 (25) 40 (37) 171 (27) 4.2  

 No 392 (75) 69 (63) 455 (72) 1.5  

*
All subjects included in the European set were of >80% European ancestry. 

†
Shows the time at which 75% of patients had not experienced the event of interest (i.e. death or progression). 

††
P-values are from log-rank test. 

ST: survival time; NA: non-applicable 

P
ag

e 1
6

 



 

 
 

 

 
 

SNPs associated with overall survival. 

Table 2 

 
 

Unadjusted for metastatic disease Adjusted for metastatic disease 
 

SNP* Method Gene Locus** Position† Set MAF HR (95% CI) P-value HR (95% CI) P-value 
 

rs3765555-C|A Genotyped GLDC Chr9: 6535956 European 0.259 1.67 (1.32–2.13) 2.70×10−5 1.71 (1.34–2.18) 1.60×10−5 
 

   Brazil 0.205 2.23 (1.31–3.81) 3.29×10−3 2.12 (1.27–3.53) 3.87×10−3 
 

 
 

rs55933544-C|T 

 
 

Imputed GLDC 

 
 

Chr9: 6534080 

Combined 

European 

 
 

0.231 

1.76 (1.41–2.18) 

1.85 (1.44–2.37) 

4.84×10−7 

1.58×10−6 

1.78 (1.43–2.21) 

1.91 (1.49–2.45) 

2.74×10−7 

3.20×10−7 

 

   Brazil 0.231 2.11 (1.21–3.69) 8.44×10−3 1.98 (1.16–3.38) 0.012  

   Combined  1.89 (1.50–2.37) 4.81×10−8 1.92 (1.53–2.41) 1.34×10−8 
 

*
Alleles are shown as major/minor. 

**
Gene locus information is based on the GENCODE data from HaploReg v2.  

†
Position is based on hg19. 

Hazard ratios are shown per copy of the minor allele in the discovery stage. 

MAF: minor allele frequency; HR: hazard ratio; CI: confidence interval 
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