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Making multi-omics data accessible 
to researchers
Ana Conesa   1* & Stephan Beck   2

A special collection on multi-omics data sharing, launched today at Scientific Data, offers 
to the scientific community a compendium of multi-omics datasets ready for reuse, which 
showcase the diversity of multi-omics projects and highlights innovative approaches for 
preprocessing, quality control, hosting and access.

Omics technologies are defined as high-throughput biochemical assays that measure comprehensively and 
simultaneously molecules of the same type from a biological sample. For example, genomics profile DNA, 
transcriptomics measure transcripts; proteomics and metabolomics quantify proteins and metabolites, 

respectively. The “omics” notion refers to the fact that all or nearly all instances of the targeted molecular space are 
measured in the assay, and therefore they provide holistic views of the biological system. Initially, omics exper-
iments used to concentrate on one type of assay (i.e. transcriptomics) and provide single-omics data. However, 
more recently researchers have combined multiple assays from the same set of samples to create multi-omics 
datasets. The limited insights of early single omics projects, such as the Human Genome Project, and the pro-
liferation of facilities that offer affordable omics assays on a service basis, have driven the development of many 
new multi-omics projects. The added power of multi-omics has been evident for some time, but the complexity 
of managing and integrating such multi-dimensional data continues to be a challenge. Data storage, quality con-
trol and statistical analysis are all more complex for these datasets, and compliance with the FAIR principles1 
is inherently more difficult. Moreover, complete multi-omics datasets (where the same set of omics assays are 
obtained for all study samples) are difficult to generate. Consequently, researchers who may want to benefit from 
the multi-platform nature of these data frequently face limitations in accessing full data records or identifying 
suitable multi-omics datasets for their research questions.

In this Comment, we describe Scientific Data’s collection on multi-omic data and discuss how the authors 
of the included Data Descriptors have addressed these challenges for their datasets. Beyond the value of these 
datasets for deriving new biological and biomedical insights, this collection provides a novel opportunity for 
bioinformaticians and statisticians to access well-documented multi-omics datasets for the development of inte-
grative analysis approaches.

Description of the Collection
At time of launching this collection, six papers are included, representing a wide variety of experimental settings 
and scientific goals (Table 1). Three datasets deal with human diseases, eitherusing human samples (ColPortal2) 
or mouse models (Sleep Deprivation3, Fibrotic Kidney4), while another manuscript describes the pilot data of 
the UK Personal Genome Project (PGP-UK5). One dataset targets a plant model of virus infection (PVY6) and 
another paper models B-cell differentiation in mouse (STATegra7). Additionally, experimental designs include 
time series data for the multidimensional modeling of biological processes. Two papers profile human cohorts 
with multi-omics data: the PGP-UK manuscript does this on healthy individuals to describe human heterogeneity 
while ColPortal analyzes colorectal cancer samples to identify markers of disease subtypes. Though the combina-
tion of omics technologies is very variable, all Data Descriptors share the inclusion of gene expression data. Gene 
expression is further combined with genomics and epigenomics data (PGP-UK), epigenomics and microbiome 
(ColPortal), metabolomics (Sleep Deprivation), proteomics and microRNAs (PVY and Fibrotic Kindey) and 
nearly all of the above in the case of STATegra. In all studies, except for STATegra and Fibrotic Kidney, additional 
multivariate phenotypic data has been collected and presented together with the omics datasets.

All papers carefully describe experimental designs, data acquisition and preprocessing pipelines, and share 
similar data management issues that are particularly relevant for this kind of studies, which we discuss below.
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Hosting of multi-omics data.  The increasing complexity and size of multi-omics data has emerged as a 
major challenge with respect to hosting and accessing multi-omics analyses, as there is currently no unified public 
repository for multi-omics data. Consequently, none of the studies presented in this collection have deposited 
all their raw datasets into a single repository. The main reason for this is that most of the current omics data 
repositories were created in response to particular technologies available at the time, rather than with the vision 
of how such multi-dimensional data could be cohosted. Hence, public repositories have been designed according 
to data type (genomics, metabolomics, proteomics etc.) and assay type (array, sequencing, imaging etc.) and 
projects that generate all these multi-omics data have to deposit them accordingly. Moreover, well-defined repos-
itories to host multivariate phenotypic data that may be collected in multi-omics projects do not exist. Although 
cross-referencing between repositories is possible and has already been implemented in many cases, this is still 
not available at the individual sample level, which is needed for many integrative analysis approaches. Establishing 
such links is not trivial. Many experimental designs are possible in multi-omics projects, as evidenced by this col-
lection where we found matching across omics established for individual samples, for experimental conditions, 
and for multiple experimental batches or pooled samples. This current lack of public infrastructure has created an 
opportunity for commercial innovations such as cloud-based hosting and analysis platforms. Examples of such 
private initiatives include Lifebit (https://lifebit.ai/), Seven Bridges Genomics (https://www.sevenbridges.com/)  
and others who are already providing cloud-based platforms for hosting multi-omics data for integrative anal-
ysis. Software applications such as STATegraEMS8 have also been developed to address this same problem. To 
showcase the power of this approach, multi-omics data presented in the collection are being hosted on the Lifebit 
platform (https://opendata.lifebit.ai/) with free access. The field, however, is still in need of consistent standards 
and database protocols for hosting multi-omics data that can meaningfully address the complexity of all possible 
experimental designs.

Completeness of multi-omics data.  Multi-omics is essentially open-ended, so it is not surprising that 
most papers, excluding the PGP-UK pilot study of ten individuals, did not present a ‘complete’ multi-omics 

Dataset Omics
Experimenal 
Design Organism Sample

Block 
factor

Phentotypic 
data

Full 
multiomics 
data? Raw data

Processed 
data

Scripts 
available

Name and 
Goal of 
specific 
software 
development

Stategra

RNA-seq, 
microRNA-
seq, ChIP-seq, 
RRBS, 
Dnase-seq, 
ATAC-seq, 
scRNA-seq, 
scATAC-seq, 
proteomics, 
metabolomics

Time course, 
3 replicates, 
6 points, 
Treatment 
and Control 
Samples, 1  
cell line

Mouse B3 cell line

Cell 
culture. 
Different 
batches for 
different 
omics

NO NO
GEO, Proteome- 
Xchange, 
Metabolomics,

STATegraKB, 
Lifebit, 
Figshare

YES
STATegraKB, 
Integrative 
analysis

Personal 
Genome 
Project-UK 
(PGP-UK)

RNA-seq, 
WGBS, 450 K 
Methylomics, 
WGS

10 individuals Human Blood Individuals YES YES ENA, 
ArrayExpress Lifebit YES PGP-UK 

portal

ColPortal

Mehylation 
450k 
arrays, 16 S 
sequencing, 
expression 
arrays, 
microRNA 
arrays

167 
individuals, 
3 histological 
cancer 
subtypes 
(Serrated, 
Convencional, 
hMSI), CR 
polyps and 
surrounding 
healthy tissue

Human Colon tissue Individuals YES NO ENA, GEO Figshare, 
ColPortal YES

ColPortal, 
Integrative 
analysis

Potato 
Virus Y 
(PVY)

Expression 
arrays, 
smallRNA-
seq, 
Degradome-
seq, 
Proteomics

Time course, 
7 time points, 
triplicates, 2 
leaf types, 2 
genotypes

Potato Leaf Plant YES NO GEO fairdomhub YES NA

Sleep 
Deprivation

RNA-seq, 
Metabolomics

Treatment-
control; 32 
genotypes, 3 
bio replicates

Mouse
Cortex and 
Liver, (RNAs-
seq). Plasma 
(metabolomics)

Individual YES an uses 
HPO YES GEO, Figshare Group’s 

server YES DGO, Analysis 
reproducibility

Fibrotic 
Kidney

RNA-seq, 
microRNA-
seq, 
proteomics

Time course,  
4 time points, 
2 treatments, 
2–4 bio 
replicates

Mouse Kidney Individual NO Nearly GEO, Proteome- 
Xchange GEO YES

Mouse Kidney 
FibrOmics 
browser, 
Search for 
expression 
patterns across 
omics

Table 1.  Overview of Data Descriptors in the Scientific Data multi-omics data collection.
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dataset for all samples included in the study. Sample availability, budget limitations or simply experimental con-
straints alone, frequently result in datasets with missing data for some omics. Similarly to the links across plat-
forms, readily identifiable information of dataset completeness is important for reuse, as certain data analysis 
approaches will require complete or balanced designs. Although not included in this collection, imputation of 
missing data has improved significantly over the past years and may help to address this issue in the future9,10. 
Data hosting resources that provide adequate links across samples will help to identify the completeness of the 
multi-omics dataset. Alternatively, tools for data filtering as a function of the available information, in combina-
tion with phenotypic data, are extremely valuable for the reuse of these datasets. The Lifebit (https://lifebit.ai/) and 
ColPortal resources provide these functionalities.

Quality control of multi-omics data.  Quality control (QC) of the data is an essential requirement for a 
Data Descriptor and can be demonstrated by showing reproducibility of replicated measurements. In the case 
of multi-omics data, additional QC metrics should be considered that assess the relationship between datasets. 
These additional quality metrics are vital as omics technologies may vary in their accuracy, technical noise or sig-
nal dynamic range, and valid conclusions on integrative analysis can only be drawn when consistent quality is 
achieved across platforms. While all papers included in this collection include QC analyses, it is interesting to 
note how differently this was approached by the different studies, largely motivated by the type of project and goal 
of the study.

The PGP-UK paper focused on sample matching in large experiments to tackle the problem of potential mis-
labeling when processing many samples. Both the US Food and Drug Administration (FDA) and the National 
Cancer Institute (NCI) have recognized this problem and have recently launched a call to the scientific com-
munity to develop computational algorithms to detect and correct mislabeled samples in multi-omics datasets 
(https://precision.fda.gov/challenges/5). PGP-UK presents a strategy based on matching by genetic variability 
using single nucleotide polymorphisms (SNPs). Though matching by genotyping is possible for sequencing data, 
this strategy is only an option when the different omics are measured in the very same biological sample and there 
is genomic diversity among the samples – i.e. experiments do not use inbred organisims or cell lines. Moreover, 
this strategy would only work for sequencing, not for metabolomics or proteomics data.

Other approaches to demonstrate quality included showing agreement across omics in data variability pat-
terns, such as by Principal Component Analysis, PCA (STATegra, ColPortal, Fibrotic Kidney). These results are 
interesting and valid when presented, but may not always be applicable, as there is no fundamental reason to 
believe that experimental factors will always affect different molecular levels in the same way. This was actually 
the case in the collection papers, where the PCA plots show similar, but not identical, grouping of samples by 
experimental condition.

Another type of validation presented by STATegra and Fibrotic Kidney was providing a proof that the dataset 
was able to recapitulate previous knowledge across multi-omics data for specific genes. Although, in a similar way, 
this might not be always possible in all multi-omics studies, it is very unlikely that a multi-omics study will be 
conducted on a system for which no previous knowledge exists and hence this type of validation data is broadly 
useful to check the consistency of the multi-omics dataset.

Code.  All papers include the code of their preprocessing or analysis pipelines as scripts. This adds important 
value to the collection, since the analysis code is not frequently included in genomics papers as this is not required 
by most journals in the field, hindering reproducibility of results. Providing analysis code as scripts, however, 
may not be as straight-forward as it seems, especially when different programming languages or platforms are 
combined in the analysis pipeline. For example, initial steps in proteomics or metabolomics data analysis typ-
ically use specialized or commercial software. Consequently, in these cases, only software parameters, but not 
the actual code can be reported. The collection addresses this software platform heterogeneity in different ways. 
STATegra provides full pipelines as consolidated text files where software parameters, command lines, and dif-
ferent languages are combined. This ensures full documentation. The code for each language, however, needs to 
be extracted from each script to be run. ColPortal and PVY only provide R scripts with statistical analysis code 
while previous steps are simply described in the methods section. An elaborated solution is presented in the 
Sleep Deprivation project, where the analysis pipeline differentiates code at three levels of preprocessing. The 
low-level layer is composed of scripts with heterogeneous languages tailored for each omics, while medium and 
high layer scripts include the statistical analysis performed in the same platforms. This facilitates reproducibility 
and re-running of analysis pipelines with different parameters or software versions.

Resources for integrative data exploration.  There are a large variety of tools for the integrative visu-
alization of multi-omics datasets11–16, and large genomics projects have implemented solutions to visualize their 
multi-layered data. However, in this collection several papers include specific software developments that inte-
grate data through molecular IDs (i.e., gene, protein or metabolite IDs) to facilitate browsing and visualization 
of the multi-layered information. This suggests that current public solutions that fundamentally focus on data 
deposition fall short in serving as portals for querying fully interconnected muti-omics data structures. This high-
lights once more the need of novel resources for improved accessibility and interoperability in the multi-omics 
data space.

Conclusions and prospects.  At a moment where multi-omics data structures are growing quickly and are 
being deployed for genomics medicine, this collection presents a unique compendium of datasets that can be 
used as a workbench for the development of software tools required by this type of data. Minimum information 
standards, currently available for single omics individually, are absent for multi-omics experiments. These should 
be created to capture the diversity in the relationship between samples, technologies, and data files that may be 
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present in multi-omics projects. Additionally, novel hosting options that embrace the nature of the multi-platform 
and multi-layered data should become available. Note that this collection presents datasets that were obtained 
under a defined experimental setting and by one research team, hence data are comparable. Hosting multiple 
omics data types under the same umbrella will create opportunities to create multi-omics datasets by combining 
single-omics data from several studies. This will create new challenges for meta-data harmonization and control 
of batch effects that will need specific solutions. Finally, guidelines for quality and validation of data consistency 
need to be established to preserve the value of these datasets. This collection sets a precedent as to how to deal 
with these issues and hopefully will boost adoption of practices for better accessibility of multiomics datasets 
among the genomics community.
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