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ABSTRACT
Cosmological studies of large-scale structure have relied on two-point statistics, not fully
exploiting the rich structure of the cosmic web. In this paper we show how to capture some
of this cosmic web information by using the minimum spanning tree (MST), for the first time
using it to estimate cosmological parameters in simulations. Discrete tracers of dark matter such
as galaxies, N-body particles or haloes are used as nodes to construct a unique graph, the MST,
that traces skeletal structure. We study the dependence of the MST on cosmological parameters
using haloes from a suite of COmoving Lagrangian Acceleration (COLA) simulations with
a box size of 250 h−1 Mpc, varying the amplitude of scalar fluctuations (As), matter density
(�m), and neutrino mass (

∑
mν). The power spectrum P and bispectrum B are measured for

wavenumbers between 0.125 and 0.5 h Mpc−1, while a corresponding lower cut of ∼12.6
h−1 Mpc is applied to the MST. The constraints from the individual methods are fairly similar
but when combined we see improved 1σ constraints of ∼ 17 per cent (∼ 12 per cent) on �m

and ∼ 12 per cent (∼ 10 per cent) on As with respect to P (P + B) thus showing the MST is
providing additional information. The MST can be applied to current and future spectroscopic
surveys (BOSS, DESI, Euclid, PSF, WFIRST, and 4MOST) in 3D and photometric surveys
(DES and LSST) in tomographic shells to constrain parameters and/or test systematics.

Key words: neutrinos – methods: data analysis – cosmological parameters – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

Over the years, a series of probes have emerged as standard
tools for cosmological parameter inference. Surveys of the cosmic
microwave background (CMB), large-scale structure (LSS), weak
lensing (WL), and distance ladder have dominated our knowledge
of cosmological parameters through measurements of the CMB
angular power spectra (e.g. Planck Collaboration VI 2018), galaxy
clustering (e.g. Loureiro et al. 2019), WL (e.g. Abbott et al. 2018;
Hildebrandt et al. 2017), Baryonic Acoustic Oscillation (BAO)
from galaxies (e.g. Alam et al. 2017) and Lyman alpha (e.g. de
Sainte Agathe et al. 2019), standard candles (e.g. Riess et al.

� E-mail: krishna.naidoo.11@ucl.ac.uk

2016) and, more recently, standard sirens (e.g. Abbott et al. 2017).
These techniques are relatively mature, well understood and most
importantly, reliable and trusted.

However, many of these techniques (but not all) rely on measuring
the two-point correlation function (2PCF) or its Fourier space
equivalent, the power spectrum. Studies that include higher order
statistics, such as the three-point correlation function (e.g. Slepian
et al. 2017) or bispectrum (e.g. Gil-Marı́n et al. 2017), have
already provided interesting constraints on cosmological param-
eters, demonstrating the need to go beyond the 2PCF. Despite
solutions to improve the speed of 2PCF and 3PCF estimators (see
Scoccimarro 2015; Slepian & Eisenstein 2016), going beyond the
3PCF is currently computationally intractable. The computational
cost of current N-point correlation functions (NPCF) estimators

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/2/1709/5612201 by Institute of C
hild H

ealth/U
niversity C

ollege London user on 16 D
ecem

ber 2019

http://orcid.org/0000-0002-9182-1802
mailto:krishna.naidoo.11@ucl.ac.uk


1710 K. Naidoo et al.

scales by O(nN ); for this reason this information remains to be
exploited.

The most attractive reason to explore methods that incorporate
higher order statistics is their potential to break existing parameter
degeneracies, to provide tighter constraints and to test system-
atics. Of growing interest to cosmologists is the total mass of
the three neutrino species,

∑
mν . Neutrinos are massless in the

standard model of particle physics; however this cannot be the
case since neutrinos oscillate (Fukuda et al. 1998; Ahmad et al.
2001). Fortunately, LSS is sensitive to the mass of these elusive
particles. As neutrinos are very light, they possess high thermal
velocities and dampen structure formation at scales below the free
streaming scale (set by when they become non-relativistic). This
effect is dependent on

∑
mν and although it can be measured,

the effect is small and highly degenerate with the matter density
(�m) and the variance of density perturbations (e.g. as measured at
8 h−1 Mpc (σ 8)). Currently, upper bounds of

∑
mν � 0.12–0.23 eV

(95 per cent confidence limits) (Palanque-Delabrouille et al. 2015;
Planck Collaboration XIII 2016; Alam et al. 2017; Loureiro et al.
2019) have been established from cosmology (specifically CMB and
galaxy surveys) whilst the lower bound of � 0.06 eV is given by
neutrino oscillation experiments. Future experiments will be able
to go further; in particular experiments such as the Dark Energy
Spectroscopic Instrument (DESI, DESI Collaboration et al. 2016)
are expected to probe below the lower bound of ∼0.06 eV, and are
expected to make a detection of the neutrino mass (see Font-Ribera
et al. 2014). However, this is to be achieved purely by a more precise
measurement of the 2PCF, not by the inclusion of extra information.

We know from N-body simulations that the universe at late
times appears as a cosmic web (Bond, Kofman & Pogosyan 1996).
Currently this cosmic web structure is not fully incorporated into
the inference of cosmological parameters. In this paper, we turn
to graph theory, looking specifically at the minimum spanning tree
(MST), to try to capture some of this rich information. The MST was
first introduced to astronomy by Barrow, Bhavsar & Sonoda (1985).
It has been typically used in cosmology for LSS classification, for
example to search for cosmic web features such as filaments (see
Bhavsar & Ling 1988; Pearson & Coles 1995; Krzewina & Saslaw
1996; Ueda & Itoh 1997; Coles et al. 1998; Adami & Mazure 1999;
Doroshkevich et al. 1999, 2001; Colberg 2007; Balázs et al. 2008;
Park & Lee 2009; Adami et al. 2010; Demiański et al. 2011; Durret
et al. 2011; Cybulski et al. 2014; Alpaslan et al. 2014; Shim &
Lee 2013; Shim, Lee & Li 2014; Shim, Lee & Hoyle 2015; Beuret
et al. 2017; Campana, Massaro & Bernieri 2018a,b; Libeskind et al.
2018; Clarke et al. 2019). It has also been used in other contexts
such as determining mass segregation in star clusters (Allison et al.
2009) and the generalized dimensionality of data points, fractals and
percolation analysis (see Martinez & Jones 1990; van de Weygaert,
Jones & Martı́nez 1992; Bhavsar & Splinter 1996). More recently,
the MST was used in particle physics to distinguish between
different classes of events in collider experiments (Rainbolt &
Schmitt 2017). The MST’s strength is in its ability to extract
patterns; this is precisely why it has been used to extract cosmic
web features (the type of information currently missing from most
cosmological studies). The MST’s weaknesses are that the statistics
cannot be described analytically and that they depend heavily on the
density of the tracer. This means any comparison of models via the
MST will be dependent on simulations. While this makes parameter
inference more challenging, the reliance on simulations is not new;
in fact parameter inference through artificial intelligence (AI) and
machine learning (ML) will be similarly reliant. Here, the MST

may provide a bridge between the traditional 2PCF and AI/ML,
allowing us to understand the information being extracted by these
AI/ML algorithms.

Our goal in this paper is to understand whether the MST could
be a useful tool for cosmological parameter inference for current or
future photometric and spectroscopic galaxy redshift surveys. These
include the Baryon Oscillation Spectroscopic Survey,1 Dark Energy
Survey,2 DESI,3 Large Synoptic Survey Telescope,4 Euclid,5 Prime
Focus Spectrograph,6 Wide Field Infrared Survey Telescope,7 and
4-metre Multi-Object Spectroscopic Telescope.8 With this in mind,
the paper is organized as follows. In Section 2, we describe the
MST construction and statistics and we summarize the suites of
simulations used in later sections. In Section 3, we demonstrate
that the MST is sensitive to higher order statistics (i.e. beyond two-
point). In Section 4, we explore relevant sources of systematics
and methods to mitigate them. In addition, we test the sensitivity to
redshift space distortions (RSDs). In Section 5, we explore the MST
statistics on an unbiased tracer, and try to determine what the MST
is actually measuring about the underlining density distribution.
Lastly, in Section 6, we compare the MST’s constraining power
to that of the more traditional power spectrum and bispectrum
measurements.

2 ME T H O D

In this section, we will describe:

(i) Some basic properties of graphs and the MST.
(ii) How the MST is constructed.
(iii) The statistics we measure.
(iv) Techniques for error estimation.
(v) The simulations used in this paper.

In mathematics, a graph is a set of nodes (points) together with a
set of edges, where each edge joins two distinct nodes; given any two
distinct nodes, there will be either zero or one edge between them.
In this paper, all graphs are undirected and weighted i.e. an edge
does not have an orientation, but it does have a (positive) weight
(which in this paper will be the distance (defined below) between the
nodes that it connects). A path is a sequence of nodes in which each
consecutive pair of nodes is connected by an edge (and no edge is
used twice); a path that returns to its starting point is a cycle. If there
is an edge (respectively, path) between any two distinct nodes then
the graph is complete (respectively, connected). Given a connected
graph G (not necessarily complete), one can discard edges to obtain
the MST of G. By definition this new graph is spanning (i.e. contains
all the nodes of G), is a tree (i.e. is connected and contains no cycles)
and is minimal in that the sum of the edge weights is minimal among
all spanning trees. Every connected graph has a (essentially unique)
MST.

In this work, we consider sets of points in various spaces, with
distance between points defined to be:

(i) In two and three dimensions: Euclidean distance;

1http://www.sdss3.org/surveys/boss.php
2http://www.darkenergysurvey.org
3http://desi.lbl.gov/
4https://www.lsst.org/
5http://www.euclid-ec.org/
6https://pfs.ipmu.jp/index.html
7https://wfirst.gsfc.nasa.gov/
8https://www.4most.eu/cms/
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Beyond 2PT: using the MST for cosmology 1711

Figure 1. The MST constructed from 100 random points. Left-hand panel: the MST edges are shown. Nodes are colour coded according to their degree, i.e.
the number of edges attached to them. Right-hand panel: the MST branches are colour coded according to their branch shape parameter (s). Edges that form
branch ends are indicated by solid lines while edges forming the middle of branches (branch mids) are indicated by dotted lines.

(ii) On the sphere (i.e. RA, Dec.): subtended angle;
(iii) Using RA, Dec., redshift: convert redshift to comoving dis-

tance (using the fiducial cosmology), then use Euclidean distance.

Given a set of points S we wish to investigate the MST of the
complete graph on these points (i.e. there is an edge between every
pair of points and all these edges are candidates for inclusion in the
MST); we refer to this as the MST of S. See Fig. 1 for an example of
such an MST. Now Kruskal’s (1956) algorithm (described below)
takes as input a connected graph (not necessarily complete) and
discards certain edges so as to find its MST. In theory, we should
input to this algorithm the complete graph on S. However this is
inefficient as the complete graph contains many edges (e.g. between
widely separated points) that are very unlikely to appear in the
output MST; it is sufficient to input to Kruskal’s algorithm a pruned
graph that retains only shorter edges.

To this end, we use as input to Kruskal’s algorithm the k nearest
neighbours graph (kNN), i.e. the graph in which each point has
an edge to its kNN. Here k is a free parameter (and should not be
confused with the wavenumber used in harmonic analysis). We
calculate this graph using the kneighbours graph function
from scikit-learn.9 Note that if k is too small then the kNN
graph need not be connected (it might consist of several isolated
islands); in most cases considered, k > 10 ensures that kNN will be
connected (but when applying scale cuts (see Section 4.2) a larger
k is needed).

We then apply the scipy minimum spanning tree10 func-
tion, which implements Kruskal’s algorithm. This algorithm re-
moves all the edges from the graph, sorts these removed edges
by length (shortest to longest), and then sequentially re-inserts
them, omitting an edge if its inclusion would create a cycle. This

9http://www.scikit-learn.org
10https://scipy.org/

continues until all points are connected into a single tree. The
Kruskal algorithm can be shown to scale as O(NE log NV) (see
Cormen et al. 2009, section on Kruskal’s algorithm) where NE is
the number of edges in the supplied spanning graph and NV is
the number of nodes. At most NE � N2

V but this can be greatly
reduced by using the kNN graph, which changes the scaling from
O(n2 log n), where n is the number of nodes, to O(kn log n). Since
usually k � n this greatly reduces computation time.

We tested the sensitivity to the choice of k by using a graph with
2563 points (HZ = High σ 8 and zero

∑
mν simulations at z = 0

explained later in Section 5). We compared the total length of the
MST when k = 50 (a proxy for k = ∞) and found a fractional
difference of ∼2 × 10−6 for k = 20, ∼2 × 10−7 for k = 30, and
∼3 × 10−8 for k = 40. It appears that k = 20 gives a good balance
between computation time and an accurate estimation of the MST,
so we use this value except where stated otherwise.

2.1 Statistics from the minimum spanning tree

Any given MST is a complex structure with many interesting fea-
tures. In this study, we are not interested in these individual features
but rather the overall properties and their relation to cosmological
parameters. Taking inspiration from Rainbolt & Schmitt (2017) and
Krzewina & Saslaw (1996) we measure the probability distribution
(i.e. histograms) of the following:

(i) Degree (d): the number of edges attached to each node.
(ii) Edge lengths (l): the length of edges.
(iii) From branches, which are chains of edges connected with

intermediary nodes of d = 2, we measure:

(a) Branch lengths (b): the sum of edges that make up the
branch.

(b) Branch shape (s): the straight line distance between the
branch ends divided by the branch length.

MNRAS 491, 1709–1726 (2020)
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These statistics are displayed in Fig. 1. Of course one could
consider other statistics to extract from the MST (see Alpaslan et al.
2014) but we choose to explore these as they have been shown to
successfully aid in the classification of particle physics interactions
(see Rainbolt & Schmitt 2017). The MST will have a total of n
− 1 edges (Kruskal 1956), where n is the number of nodes. Since
each edge has a node on either end, each edge contributes twice to
the total degree of the MST. Hence the expectation value for d will
be:

〈d〉 = 2(n − 1)

n
� 2. (1)

By definition the branch shapes satisfies 0 ≤ s ≤ 1. Often s is
near 1, so to facilitate visual comparison we frequently plot

√
1 − s

instead of s. Straighter branches correspond to
√

1 − s closer to
zero.

Additionally, it is useful in certain circumstances, particularly
when comparing MSTs that contain different number of nodes, to
look at the dimensionless parameters of:

(i) ln
(
l̄
)
, where l̄ = l/〈l〉 and 〈l〉 is the average edge length.

(ii) ln
(
b̄
)
, where b̄ = b/〈b〉 and 〈b〉 is the average branch length.

Comparing the distribution of these dimensionless parameters is
only appropriate if the distribution of points is scale-independent. In
cosmology, this is not necessarily the case for higher order statistics,
so these should be used sparingly.

2.1.1 Computational issues for finding branches

Once the MST is constructed, we know the edge lengths (l) and the
indices of the nodes at either end of the edges. These can be trivially
used to find the degree (d) of each node and edge end. To find
branches, we search for edges joining a d = 2 node to a d �= 2 node
(i.e. ‘branch ends’) and edges joining two d = 2 nodes (such edges,
which form the middle parts of branches, are referred to as ‘branch
mids’). To find the branches we begin with a branch end, search for a
branch mid that is connected to it, and continue to grow the branch
until no more branch mids can be added. At this point, we then
search for the branch end that finishes it. This is a computationally
expensive procedure but can be trivially made faster by dividing the
entire tree into sections and running the algorithm on the sections in-
dependently. Branches straddling the boundaries will be left incom-
plete, but can be completed by matching any remaining incomplete
branches.
MiSTree (Naidoo 2019), the PYTHON package to construct the

MST and derive its statistics, is made publicly available.11

2.2 Error estimation

Uncertainties for the MST statistics are generated in two ways.

(i) In the cases where many realizations of a data set can be
generated easily we will estimate the mean and standard deviation
from an ensemble of realizations.

(ii) If only a single realization is available we will use jackknife
errors. Here, we divide up our data set into n regions and run the
analysis n times, each time removing a single different region from
the analysis yielding an output θ i. The errors, �θ jack, are estimated

11https://github.com/knaidoo29/mistree

using

�θjack =
[

n − 1

n

n∑
i=1

(
θi − θ̄

)2

]1/2

, (2)

where θ̄ is the average of θ i.

2.3 Simulation summary

We use several simulations suites; these are summarized in Table 1.
We discuss these simulations in greater detail in the relevant sections
of the paper where they are used.

3 SENSITIVITY O F MST TO COSMIC WEB
PAT T E R N S

3.1 Heuristic argument

There are compelling reasons to believe the MST should be sensitive
to cosmic web patterns. Consider how the Kruskal algorithm
constructs the MST (see Section 2). An edge is added only if this
does not create a cycle; this means that the very construction of
the MST requires an awareness of neighbouring edges or more
generally the environment each edge inhabits. More generally
this means the inclusion of a single edge is not defined solely
by the 2PCF but by its local environment. Therefore, we should
expect the MST to contain more information than is present in
the 2PCF.

3.2 Illustris versus adjusted Lévy flight

Testing whether the MST is sensitive to higher order statistics
is rather challenging since at present there are no analytical
descriptions of the MST statistics.

To go around this theoretical limitation we instead carry out
an analysis similar to that of Hong et al. (2016), comparing the
Illustris12 (Nelson et al. 2015; Vogelsberger et al. 2014) simulations
(see Section 3.2.1) to an adjusted Lévy flight (ALF) simulation that
is tuned to have almost identical 2PCF but different higher order
information.

Lévy flights (Mandelbrot 1982) are random walk simulations
where the step size (the distance between one point and the next)
is given by a fat-tailed power-law probability distribution function
(PDF). This ensures that its 2PCF will follow a power law (see
Mandelbrot 1982) similar to that found for galaxies. However,
although a standard Lévy flight scheme may be able to replicate the
2PCF at large scales, at small scales, the 2PCF eventually plateaus
(see Hong et al. 2016). Since the MST is sensitive to small scales,
it is important that the Lévy flight simulation match that of the
Illustris sample at small scales. We are able to match the 2PCF of the
Illustris sample at all scales using an ALF simulation as explained
below.

3.2.1 Illustris galaxy sample

We use the subhalo catalogue of the Illustris-1 snap 100 sample and
follow Hong et al. (2016) to include only subhaloes which are large

12http://www.illustris-project.org
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Table 1. A summary of the simulation suites used in this study. For each simulation suite we list its name, the method used to produce it, the point
distribution used, and the use to which it is put.

Name Method Points Usage

Illustris Hydrodynamic Subhaloes Testing the sensitivity of the MST to higher order statistics (i.e. beyond two-point)
MICE N-body Galaxies Exploring the sensitivity to RSDs
νN-body N-body Dark matter particles and haloes Using an unbiased tracer we look to find what the MST is actually measuring
PICOLA COLA Haloes Comparing sensitivity of the MST to traditional methods

and dark-matter-dominated:

M∗ ≥ 108 M�,

M∗ < 0.63MDM, (3)

where M∗ and MDM are the stellar and dark matter mass of the
subhaloes respectively. We will refer to this as the Illustris galaxy
sample.

3.2.2 Adjusted Lévy flight

We generate an ALF simulation with the same number of ‘galaxies’
as our Illustris sample and (almost) the same 2PCF. For comparison
with Illustris we enforce periodic boundary conditions. The standard
Lévy flight has step sizes t with cumulative distribution function
(CDF),

CDF(t) =
⎧⎨
⎩

0 for t < t0,

1 −
(

t
t0

)−α

for t ≥ t0,
(4)

where t0 and α are free parameters. This yields a simulation with
a power-law 2PCF of the form C(t0, α)t3 − α at scales larger than t0

(where C(t0, α) is a constant determined by the free parameters),
below this scale the 2PCF plateaus (see Hong et al. 2016). To have
control of the 2PCF below scales of t0 we introduce an ALF model
with the following CDF:

CDF(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for t < ts,

β
(

t−ts
t0−ts

)γ

for ts ≤ t < t0,

(1 − β)

[
1 −

(
t
t0

)−α
]

+ β for t ≥ t0.

(5)

This introduces three new parameters: β, γ , and ts. Rather than
having a step size PDF that jumps from zero to a maximum at t0,
the ALF is constructed to have a slow rise to the maximum at t0. The
second piece of the CDF describes a transfer function that operates
between ts and t0 (where by definition ts < t0). Here, γ allows us to
control the gradient of this rise and β allows us to define the fraction
of step sizes below t0.

3.2.3 Comparison

The Illustris sample contains 63 453 galaxies. We create a sample
of the same size using an ALF model with parameters α = 1.5, t0 =
0.325, ts = 0.015, β = 0.45, and γ = 1.3 (where length-scales t0

and ts are given in h−1 Mpc). The two samples have approximately
equal 2PCFs down to scales of 0.01 h−1 Mpc by construction. The
2PCF was calculated on a single realization of the ALF model with
varying β, γ , ts, and t0 (α = 1.5 was kept constant, see Hong
et al. 2016). We then chose the parameters that produced the closest
match, i.e. by minimizing the sum of difference between the 2PCF

in log space. The Illustris and ALF sample show widely different
MST statistics (see Fig. 2), thereby demonstrating the sensitivity
of the MST to higher order statistics. The bimodal distribution
of edge and branch lengths shown in Fig. 2 occurs in over- and
underdensities (explored in more detail in Section 5). Note also that
we see differences in the shape of branches and the distribution of
degrees to a statistically significant level, although these differences
are not as striking as the difference in edge and branch length
distributions.

4 BOUNDARY EFFECTS AND REDSHI FT
SPAC E D ISTO RTIONS

We study possible sources of systematic errors that could affect
the MST. In particular we would like to establish to what extent
simulations need to replicate survey properties.

4.1 Boundary effects

Galaxy surveys often contain complex survey footprints with
regions masked due to stars and varying completeness and it is
important to understand how such footprints will affect the MST.
Imposing a mask on the data set results in two effects:

(i) Additional edges are included to join nodes near the bound-
aries. These would have otherwise been joined by nodes outside the
boundary in a larger MST.

(ii) New edges are located near the centre whose purpose appears
to be to unify the structure as a single spanning tree. In a larger
spanning tree, these separated regions would be connected through
routes that extend beyond the boundary.

The net result of these effects is to create a slight bias towards
longer edges and slightly longer branches. Interestingly, all edges
in the larger MST (within the boundary) are present in the
smaller MST. This property always holds, as can easily be proven
using the ‘cycle property’ of the MST (see Katriel, Sanders &
Träff 2003).

We investigate the effects of a realistic mask by using the
BOSS CMASS MD-Patchy mocks North mask (Rodrı́guez-Torres
et al. 2016), which includes masking for bright stars, bad fields,
centrepost, and collision priority.13 In Fig. 3, we demonstrate the
effects of this mask on random points placed within the CMASS
footprint (with the same density as the CMASS galaxies) with and
without a mask. The MST is then calculated on 1000 realizations
tomographically (i.e. on the sphere). The degree and branch shape
show little change but the distribution of edge lengths show a
significant tendency towards longer edges when a mask is used.
This is mirrored by a similar effect in the distribution of branch

13See http://www.sdss3.org/dr9/algorithms/boss tiling.php#veto masks
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1714 K. Naidoo et al.

Figure 2. Top panels: the left shows the Illustris galaxy sample and the middle panel shows one realization of the ALF. Visually these two simulations are
different in their distribution of galaxies. However they have virtually identical 2PCFs by construction (right-hand panel). Illustris measurements are shown
in blue and the mean for 100 realizations of the ALF is shown by the green dashed line; and green envelopes show the 1σ (darker) and 2σ regions. Bottom
panels: the histogram distributions of the MST statistics (from left to right): degree (d), edge length (l), branch length (b), and branch shape (s; note we plot
the

√
1 − s value instead because the distribution peaks towards 1 and it is easier to see the difference in this projection). The difference between the PDF is

displayed in the bottom subplots where zero on the y-axis corresponds to the mean counts for the ALF PDF. The measurements from the MST are significantly
different for each of these simulations. In particular, the distributions of edge lengths and branches show some bimodality for the Illustris sample which is not
present in the ALF. This demonstrates the sensitivity of the MST to patterns in the cosmic web as the bimodal distribution appears to be driven by void and
cluster environments (explored in Section 5.2.2).

Figure 3. The MST statistics, calculated tomographically on random points placed in the BOSS CMASS North footprint (placed with the same density as the
BOSS CMASS galaxies), with (red) and without (blue) using the CMASS mask. We see a significant shift towards longer edges in the MST performed with
the mask, with a similar effect seen in the distribution of branch lengths. For the degree and branch shape, the masking has no statistically significant effect.

lengths. This is because the mask eliminates shorter paths, forcing
the MST to include longer edges that would (without the mask)
have been excluded. This demonstrates that realistic masks with
holes do have an impact on the MST and must be included in any
future analysis.

4.2 Scale cuts

In cosmology, there is often a need to apply scale cuts in real
space. This can occur for a variety of reasons: theoretical uncertainty
at small scales both from simulation and from analytic formulae
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Beyond 2PT: using the MST for cosmology 1715

and also practically from fibre collisions in spectroscopic surveys.
For the 2PCF, this is rather simple to mitigate; you simply restrict
the domain of the 2PCF to exclude separations below the scale
cut. With the MST this is more complicated. Unfortunately, there
does not appear to be a way to deal with this after the MST has
been constructed; this is because the problematic smallest edges
will by construction be incorporated in the graph. To ensure that
problematic small scales are removed from the MST we alter the
kNN graph that is the input to the Kruskal algorithm by removing
edges whose length is below the desired scale cut.

4.3 Redshift space distortion on MICE galaxies

RSDs (Kaiser 1987), caused by the Kaiser and Fingers of God
effects, will distort the measured redshift of galaxies and thus
will impact the inferred comoving distance. Since this effect alters
the 3D distribution of galaxies, it will inevitably affect the MST
statistics.

We explore this effect by comparing the MST performed on
a subset of the MICE galaxy catalogue (Crocce et al. 2015) in
real and redshift space (i.e. with RSD). Here, we randomly draw
10 realizations of 500 000 galaxies with real comoving distances
between 1000 to 1500 h−1 Mpc. We ensure that the density of
galaxies is constant so that the number of galaxies ∝ D3

c , where Dc

is the radial comoving distance from the observer.
Fig. 4 shows the MST statistics with and without the RSD effect.

We see significant results in all the MST statistics demonstrating
the importance of including this effect in any future MST study.

5 W H AT D O E S TH E M I N I M U M SPA N N I N G
T RE E MEA SURE?

This section considers the following questions:

(i) What do the MST statistics look like on an unbiased tracer
(i.e. N-body dark matter particles)?

(ii) What does the MST statistics tell us about the underlining
density distribution?

(iii) What is the relation of MST statistics to 2PCF?
(iv) What happens when we change simulation resolution?
(v) How do the MST statistics change when measured on haloes

(i.e. a more galaxy-like tracer)?

5.1 νN-body simulations

Five N-body simulations (see Massara et al. 2015) were made
by running the TREEPM code GADGET-III (Springel 2005). The
following cosmological parameters were common to all simula-
tions: �m = 0.3175, �b = 0.049, �� = 0.6825, h = 0.6711,
and ns = 0.9624. See Table 2 for a list of the simulations used
and their respective cosmological parameters, particle numbers and
box sizes. The cold dark matter energy density is set to �c =
�m − �b − �ν where �ν h2 � ∑

mν/(94.1 eV). Cold dark
matter and neutrinos are both treated as collisionless particles.
They differ in their masses and in their initial conditions, where
the initial conditions for neutrinos receive an extra thermal ve-
locity obtained by randomly sampling the neutrino Fermi–Dirac
momentum distribution (Viel, Haehnelt & Springel 2010). These are
evolved from an initial redshift of z = 100. Table 2 summarized the
simulations used.

5.2 MST application to dark matter particles

An MST was constructed on the dark matter particles from the HZ,
LZ, and LN simulations (see Table 2), where errors were calculated
using the jackknife method (Section 2.2). Figs 5, 6, 7, and 9 use the
same colour scheme: HZ in blue, LZ in orange, and LN in green.
We boost the speed of the MST calculation by allowing this to be
done in parallel, breaking the N-body snapshots into 64 cubes. We
then implement the scale cut strategy discussed in Section 4.2 and
partition the data set into four groups (to dilute the sample to look
at larger sales) and apply a scale cut of lmin = 2 h−1 Mpc.

5.2.1 Features in the minimum spanning tree statistics

In Fig. 5, we plot the MST statistics for these different simulations
at redshifts z = 2, 1, 0.5, and 0. The plots display how the MST
statistics evolve over cosmological time, as discussed below:

(i) Degree: the distribution of degree remains relatively similar
in all simulations and does not appear to evolve greatly over
redshift, although differences between the simulations become more
pronounced at lower redshifts.

(ii) Edge length: overall we see that the distribution shows a high
sensitivity to redshift, evolving from a single distribution into a
bimodal one at smaller redshift.

(a) l ≥ 3 h−1 Mpc: a broad peak is seen in the distribution at
l � 4 h−1 Mpc. This feature dampens at lower redshift with the
peak consistently highest for LN, followed by LZ, and then HZ.

(b) l < 3 h−1 Mpc: a secondary peak emerges and dominates
at lower redshift, which rises against the scale cut limit of
lmin = 2.

(c) l ∼ 3 h−1 Mpc: between the two peak features is a region
where seemingly all three distributions appear to converge
and the orderings of the peaks above and below this point
switch.

(iii) Branch length: the evolution appears virtually identical to
the edge length distribution except at larger scales.

(iv) Branch shape:

(a) A broad peak at
√

1 − s = 0.6 which is present in all
simulations. This peak is always highest for LN followed by
LZ and HZ.

(b) A subpeak at
√

1 − s ∼ 0.05 which dampens at lower
redshift. This suggests that some branches at low redshift are
fairly straight. Since the simulation we use are fairly low in
resolution we suspect that this feature is more an indication that
the particles have not undergone much mixing and are still very
close to their initial perturbed grid layout. This could be used as a
diagnostic to test whether N-body simulations have moved from
their perturbed gridded initial conditions.

(c) Lastly, we see the emergence of two bumps between√
1 − s ∼ 0.7 − 1 at low redshift. Comparison of the branch

shape statistics with and without a scale cut show this is caused
by the introduction of the scale cut, which forces some branches
to be more curved. Branch shapes without a scale cut rarely see√

1 − s > 0.8.

5.2.2 Exploring the minimum spanning tree relation to density

To gain a greater physical intuition of what these statistics are telling
us about cosmology, we subdivide the 1 h−1 Gpc cube into smaller
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1716 K. Naidoo et al.

Figure 4. The effects of RSDs on the MST statistics. From left to right: the MST statistics degree (d), edge length (l), branch length (b), and branch shape
(s). Bottom panels show the differences. Ten realizations of 500 000 MICE galaxies were generated and the MST were constructed on their true positions
(grey) and then the measured positions (red), i.e. the inferred positions based on their redshifts including RSD. The envelopes correspond to 1σ uncertainties.
Significant differences between the MST statistics show that the MST is sensitive to the RSD effect.

Table 2. Simulation and cosmological parameters for the N-body simulations. Massara et al. (2015) use different names, which we list here.

Name Reason for name Massara et al. (2015) Box size (h−1 Mpc) Ncdm Nν

∑
mν (eV) σ 8 109As

HZ High σ 8, zero
∑

mν L0 1000 2563 0 0 0.834 2.13
LZ Low σ 8, zero

∑
mν L0s8 1000 2563 0 0 0.693 1.473

LN Low σ 8, non-zero
∑

mν L60 1000 2563 2563 0.6 0.693 2.13
HZHR High σ 8, zero

∑
mν , high resolution H0 500 5123 0 0 0.834 2.13

LNHR Low σ 8, zero
∑

mν , high resolution H60 500 5123 5123 0.6 0.693 1.473

25 h−1 Mpc cubes. In these cubes, we calculate the density contrast
δ,

δ = NDM

〈NDM〉 − 1, (6)

where NDM is the number of dark matter particles in a particular
cube and 〈 NDM〉 is the average across all cubes. Fig. 6 illustrates
the relationship between the average degree (〈 d〉), edge length (〈
l〉), branch length (〈 b〉), and branch shape (〈 s〉) and the density
contrast inside these cubes.

(i) d versus δ: we see that the mean of the degree, d, is relatively
constant at d � 2 as a function of density. The variance shows a
strong dependence on density, with overdensities having very low
variance, i.e. predominantly d = 2, and underdensities showing a
much larger variance and a slight tilt towards d = 1. Of course,
we should expect high-density environment to form the main
‘backbone’ of the MST, since these are the areas where the edges
are shortest.

(ii) l and b versus δ: both the edge and branch length distri-
bution show a very similar relation to density. Shorter edges and
branches are mostly associated with overdensities and vice versa.
Furthermore as the simulations evolve in redshift this relation
becomes more pronounced. In both these statistics, we see that
HZ appears consistently to have more overdense and underdense
regions than the other two simulations. We also see that LN
appears to have marginally but consistently higher overdense and
underdense regions than LZ.

(iii) s versus δ: the mean of the branch shape appears centred
at 0.75 and shifts slightly to a mean of 0.7 for higher densities.
Furthermore, as with the degree, the biggest relation to density is
with the variance, which increases as the density lowers.

This analysis demonstrates a clear relation between MST statis-
tics and environment (i.e. the local density).

5.2.3 Relation to the matter power spectrum

In Fig. 7, we calculate the matter power spectra, P(k), measured from
these simulations. The dependence on redshift can be characterized
by a simple shift in amplitude. We see that (at all k) HZ has more
power, followed by LZ and then LN. At small k, LZ converges
to HZ while at large k, LZ converges to LN. Notice, that the
strength in P(k) at large k is matched by a tendency for shorter
edges in the MST, demonstrating the MST expected dependence on
clustering.

5.2.4 Simulation resolution

The MST of N-body simulations will be affected by the resolutions
used. To measure the sensitivity of the MST statistics to the
simulation resolution, we calculate the MST on higher resolution
versions of HZ and LN called HZHR and LNHR (see Table 2
for details of simulation properties). The resulting distributions
of the MST statistics are shown in Fig. 8. For comparison, we
additionally subsample these two simulation boxes by randomly
selecting particles in the simulation with equal number of particles.
In the more sparsely sampled version of HZHR and LNHR, the
more resolved extreme high- and low-density environments are still
imprinted. This can be seen by the fact that in the bottom panels
of Fig. 8 there appears to be more features at high and low values
of l. This illustrates the importance of high-resolution simulations
on the MST profiles inferred. We could also use high-resolution
simulations to calibrate the scale cut for low-resolution simulations
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Beyond 2PT: using the MST for cosmology 1717

Figure 5. From left to right: the distribution of degree (d), edge length (l), branch length (b), and branch shape (s). These are obtained by dividing the full 1
(h−1 Gpc)3 box into 250 (h−1 Mpc)3 cubes for speed. These are then partitioned into four groups to minimize the effect of applying a scale cut of 2 h−1 Mpc.
From top to bottom: distributions are shown with respect to redshift 2, 1, 0.5, and 0. These are further subdivided into a top subplot of the distributions
and a bottom subplot of the differences. Simulations shown are HZ (blue), LZ (orange), and LN (green). See Section 5.2.1 for a detailed explanation of the
distribution features, differences, and evolution.

by allowing the scale cut to vary until the MST statistics reach
agreement between the high- and low-resolution simulations. We
additionally measure the MST on a completely random set of points
(shown in grey) illustrating how the more sparsely subsampled data
set appears to be asymptotically approaching these profiles.

5.3 MST application to haloes

Halo catalogues were derived from the HZ, LZ, and LN simulation
snapshots. We study these to get a sense of what the MST statistics
will look like when performed on a biased tracer, such as galaxies.
We dropped the z = 2 snapshots as they contained too few haloes
to be meaningful. Unlike the N-body simulation, we do not apply
a scale cut since the density of haloes is quite low and the fraction
of edges below lmin = 2 h−1 Mpc is very low. The MST statistics
derived from the haloes is shown in Fig. 9. The number of haloes
varies both across simulations and across redshift snapshots (see
Table 3) – this is different from dark matter particles whose number
count is constant across redshift and simulations.

To mitigate this issue, for each redshift we match the number of
haloes to the lowest number found in the simulations (thus always

matching the number of haloes found in the LZ simulations). For
those with more haloes, we simply select the most massive haloes.
In Fig. 9, we find no real noticeable difference in the statistics
suggesting the degeneracies of the MST may be similar to that
found for P(k).

6 C OMPARI NG THE SENSI TI VI TY TO
C O S M O L O G Y O F P OW E R SP E C T RU M ,
BI SPECTRU M, AND THE MI NI MUM
SPANNI NG TREE

In this section, we compare the sensitivities to cosmological param-
eters of power spectrum P(k), bispectrum B(k1, k2, k3), and MST,
measured on the same halo catalogues, to establish whether the
MST can improve parameter constraints. Specifically, we compare
the constraints on As, �m, and

∑
mν for 10 sets of mock simulations.

To obtain reliable posterior distributions for the three methods and
their joint constraints, we would normally run a Markov Chain
Monte Carlo (MCMC) using an analytic expression for the data
vector. However, the MST statistics cannot be obtained analytically
and hence have to be obtained from simulations. P(k), B(k1, k2,
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1718 K. Naidoo et al.

Figure 6. Contour plots of the average density contrast (δ) is plotted against the MST statistics [from left to right: the average degree (〈d〉), edge length (〈l〉),
branch length (〈b〉), and branch shape (〈s〉)] in 25 h−1 Mpc cubes. The 1σ and 2σ contours are indicated by solid and dashed lines, respectively. The relation
for HZ is in blue, LZ in orange, and LN in green. See Section 5.2.2 for a detailed explanation of the relation and their evolution.

Figure 7. In the top panels, the matter power spectra, P(k), are plotted for redshift (from left to right) 2, 1, 0.5, and 0 for simulations HZ (blue), LZ (orange),
and LN (green). In the bottom subplots we plot the ratio with respect to the HZ power spectra. Solid lines correspond to the measured P(k) from the respective
simulations, while dashed and dotted lines correspond to the theoretical linear and non-linear P(k), respectively. The dashed grey lines shows the level at which
the measured P(k) will be affected by the shot noise of the simulation and the regions in red show the scales for which we apply a scale cut in the construction
of the MST. Here, we see (that at all redshifts) the power at all k is highest for HZ, and then LZ and lastly LN. Note that LZ is close to HZ at high k and close
to LN at low k.

k3), and MST are therefore estimated from a grid of simulations in
parameter space. To limit the noise in the estimates of the theory
we take the mean of five simulations rather than just one at each
point in parameter space. Additionally, since our simulation grid is

rather sparse we use Gaussian process (GP) regression to interpolate
the data vector. Finally, we use a corrected likelihood function (see
Sellentin & Heavens 2016; Jeffrey & Abdalla 2018) which accounts
for the use of an estimated covariance matrix.
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Beyond 2PT: using the MST for cosmology 1719

Figure 8. The distribution of degree (d), normalized edge and branch lengths (ln
(
l̄
)

and ln
(
b̄
)
), and branch shape (s) are displayed from left to right. Top

panel: the distributions of the high-resolution versions of HZ (dashed line) and LN (dotted line) (i.e. HZHR and LNHR) simulation are shown in red and
subsequently subsampled versions are shown in green and blue with dark matter particle densities (ρDM) 2563, 1283 and 643 per (h−1 Gpc)3 respectively.
Middle panel: the distribution for the HZ (dashed line) and LN (dotted line) simulation is shown. Bottom panel: the differences between the high-resolution
(top panel) and low-resolution (middle panel) simulations are shown. We additionally illustrate the distribution for random points (dashed grey).

Figure 9. The MST constructed on halo catalogues derived from the HZ (blue), LZ (orange), and LN (green) N-body simulations. From left to right are the
MST statistics: degree (d), edge length (l), branch length (b), and branch shape (s). They are plotted from top to bottom according to snapshots at redshift 1,
0.5, and 0. Corresponding shaded areas show the jackknife uncertainties in the measurements. The distribution of the MST statistics are indistinguishable from
each other at all redshifts, demonstrating that we should expect to see similar lines of degeneracy as power spectrum. Note N̄∗ = 103N̄ .
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1720 K. Naidoo et al.

Table 3. The number of haloes found in each simulation
(HZ, LN, and LZ) for each redshift (z) snapshot. The
number of haloes at z = 2 was far too little for a mean-
ingful MST and presumably would be uninformative.

Redshift HZ LN LZ

0 17911 11168 9892
0.5 6717 3017 2392
1 1585 458 262
2 16 2 1

6.1 COLA simulation suites

A suite of COLA (Tassev, Zaldarriaga & Eisenstein 2013) sim-
ulations were constructed using the MG-PICOLA software (Winther
et al. 2017, an extension to L-PICOLA by Howlett, Manera & Percival
2015) which, among other things, can model the effects of massive
neutrinos (Wright, Winther & Koyama 2017). This allowed us to
generate N-body-like simulations relatively cheaply (in terms of
computation time), albeit by sacrificing accuracy at small scales.
All simulations are run in boxes of lengths 250 h−1 Mpc, with
2563 dark matter particles and a discrete Fourier transform (DFT)
density grid of (3 × 256)3. The latter is set to satisfy a requirement to
produce accurate haloes from COLA simulations (Izard, Crocce &
Fosalba 2016). The dependence on As, �m, and

∑
mν are explored,

while h = 0.6711, �b = 0.049, and ns = 0.9624 are constant in all
simulations. Haloes and particles are outputted at redshift z = 0.5,
using 20 steps from an initial redshift z = 10. Further details on the
simulation suites are summarized in Table 4.

The reliability of these simulations is evaluated by comparing
the power spectrum, calculated on the dark matter particles from
the fiducial suite, to the non-linear power spectrum calculated from
CAMB. We plot the 1σ difference variation in the power spectrum
in Fig. 10. Although this test shows the simulations can be trusted
up to k < 0.7 hMpc−1, we apply a conservative scale cut of kmax <

0.5 hMpc−1 in Fourier space and lmin > 4π h−1 Mpc in real space.

6.2 Measurements

We use haloes from MG-PICOLA as a proxy for galaxies. These
are found using the friends-of-friends halo finder MatchMaker14

which was found to be consistent (for the heaviest haloes) to
the phase space halo finder ROCKSTAR (Behroozi, Wechsler &
Wu 2013). Unlike P(k) and B(k1, k2, k3) which are unaffected
by the density of tracers, the MST will exhibit different profiles
purely based on the different halo counts. Since different number of
haloes are produced from simulations with different cosmologies
we mitigate this issue by performing our measurements on only the
heaviest 5000 haloes. In practice such a restriction would not be
imposed on P(k) or B(k1, k2, k3) measurements, but here we wish to
simply establish whether the MST improves on the constraints of
P(k) + B(k1, k2, k3).

We will explore replicating realistic survey properties in later
work but in practice if we were simulating a galaxy catalogue, we
would have to use a halo occupation distribution (HOD) model
where we would tune the parameters of the HOD to have the
same galaxy density as the actual survey. What we do here is
a simplified version of that. The simulations constructed used
haloes with masses between 1012 and 1015 M�. The number density

14https://github.com/damonge/MatchMaker

(∼ 3.2 × 10−4 h−3 Mpc3) is similar to the BOSS LOWZ sample
between redshift 0.3–0.4 and to the CMASS sample between
redshift 0.5–0.6 (see fig. 1 of Tojeiro et al. 2014). Assuming a
linear bias of b2 = Phaloes(k)/P(k) we found the fiducial simulations
to have a bias of b ∼ 1.3; this is more similar to the bias observed
in eBOSS for emission line galaxies (b ∼ 1.4) than in BOSS for
luminous red galaxies (b ∼ 2).

6.2.1 Power spectrum and bispectrum

Power spectrum and bispectrum measurements are performed
through DFT algorithms as implemented by FFTW3.15 We use the
cloud-in-cell (CIC) mass assignment scheme using 643 Cartesian
grid cells to define a discrete overdensity field in configuration
space, later transformed into Fourier space. The size of the simula-
tion box is Lbox = 250 h−1 Mpc and therefore, the mass resolution
of the discrete over-density field is ∼ 3.9 Mpch−1. We compute the
power spectrum between the fundamental frequency, kf = 2π /Lbox,
and a maximum frequency, kmax = 0.5 hMpc−1, in bins of kf.

The power spectrum and bispectrum measurements are per-
formed using the code and estimator described in Gil-Marı́n et al.
(2017). For the bispectrum, we initially perform the measurements
in bin sizes of kf. In this case, we ensure that the three k-vectors of
the bispectrum form closed triangles, and without loss of generality
we define k1 ≤ k2 ≤ k3. We include all the closed triangles with k3

< kmax. The bispectrum data vector, B(k1, k2, k3), contains around
700 elements. In Fig. 11, the bispectra measured on dark matter
particles from the fiducial simulations are compared to theoretical
values, showing good agreement until we reach non-linear regimes
where the theory can no longer be trusted.

Using measurements of the power spectrum and bispectrum
on the haloes of the fiducial suite, we were able to determine
the skewness and kurtosis of the individual elements of the data
vector. We found that elements with k < 0.125 hMpc−1 contained
much higher than expected skewness and kurtosis (i.e. exceeded
the expected skewness and excess kurtosis of a Gaussian data set
by 2σ ) and as such we limit the power spectrum and bispectrum
measurements to k > 0.125 hMpc−1. This reduced the bispectrum
data vector from ∼700 to ∼500. We then use a maximal compres-
sion technique (based on the work of Tegmark, Taylor & Heavens
1997; Heavens et al. 2017) to compress the bispectrum data vector
to three elements (following Gualdi et al. 2018, 2019). Such a
compression allows us to estimate the covariance matrix for a
number of triangle configurations much larger than the number
of available simulations.

6.2.2 Minimum spanning tree

The MST measurements are made with a scale cut of lmin >

4π h−1 Mpc, which corresponds to the wavelength (λ = 2π /k) of the
largest k modes (kmax) probed by P(k) and B(k1, k2, k3). The MST
statistics are then binned, which presents a problems as counts are
discrete. For large counts, the distribution can be approximated by a
Gaussian and as such we only select bins which we found the mean
of our fiducial data vectors to have counts of greater than 50.

15Fastest Fourier Transform in the West, http://www.fftw.org
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Table 4. Properties of the simulations suites are shown above; including the reference names, cosmological parameters, realizations, and information on their
eventual uses.

Name 109As �m
∑

mν (eV) Realizations Notes

Grid [1, 3.5] [0.2, 0.5] [0, 0.6] 5 Simulations carried out at 216 points defined across a 6 × 6 × 6 grid in parameter space
Fiducial 2 0.3 0 500 Used to calculate covariance matrices
Mock 2.13 0.3175 0.06 10 Treated as real data

Figure 10. In the top panel, we compare the mean (blue) and 1σ distri-
butions (blue envelopes) of the power spectra calculated on dark matter
particles from our fiducial suite of simulations to the linear and non-linear
CAMB power spectra. In the bottom panels, we show the difference between
the measured and non-linear CAMB power spectra. The power spectra from
MG-PICOLA appears to be accurately reproduced up to about k = 0.7, but we
conservatively apply a scale cut of k < kmax where kmax = 0.5.

6.3 Parameter estimation

Using the noisy estimates of the theory dGrid (the mean of five grid
simulations at each point in parameter space) we can interpolate
using GPs (see Appendix A) from a 6 × 6 × 6 to a 20 × 20 ×
20 grid with theoretical data vectors μμμGP and uncertainty σσσGP

which is used instead of an MCMC due to the low dimensionality
of the parameters. The sample covariance matrix, S, is estimated
from 400 fiducial simulations (the other 100 fiducial simulations
are used to apply a coverage correction, Sellentin & Starck 2019).
The posterior for each of our ten mocks, denoted by the data vector
d, is evaluated using the likelihood function (which accounts for
an estimated sample covariance, see Sellentin & Heavens 2016;
Jeffrey & Abdalla 2018)

L(d|θθθ) ∝ det(C)−1/2

[
1 + (d − μμμGP)� · C−1 · (d − μμμGP)

N − 1

]− N
2

,

(7)

where the uncertainty in the GPs regression is added to the
sample covariance, i.e. C = S + SGP, where elements of (SGP)ij =
σσσ GP,iσσσ GP,jδk(vi, vj ) where δk is the Kronecker delta function and
vi and vj are only equal if the same GPs hyperparameters were
used to construct these elements of the data vector (following Bird
et al. 2019; Rogers et al. 2019, which assume maximal dependency
between elements of the data vector constructed from the same GPs
hyperparameters).

Finally, we apply a coverage correction (Sellentin & Starck 2019)
using 100 fiducial simulations not included in the calculation of
the covariance matrix. This accounts for unrecognized sources
of biases. We found that all methods exhibited overconfident
confidence contours. For P(k) and B(k1, k2, k3), this is believed to
have arisen due to non-Gaussian features in the data set. Although
we attempted to limit this by selecting regions of the data vector
that had fairly low skewness and kurtosis, we found that the
skewness for P(k) tended to be consistently positive, whilst the
excess kurtosis for the maximally compressed B(k1, k2, k3) was
always >1σ than expected if the data were Gaussian. For the
MST, this effect is larger which we suspect occurs due to two
reasons: (1) similar to P(k) and B(k1, k2, k3) the data vector is
non-Gaussian and (2) the scale cut adds an extra stochasticity
to the data vector that is not fully captured by the covariance
matrix.

6.4 Comparison

The posterior distributions are measured for the three statistics
and their combinations. Correlations between each statistic are ac-
counted for by using a covariance matrix that is not block diagonal.
In Figs 12–14, we show the posterior distributions measured on
the mean of the data vectors from 10 mocks allowing for better
visual comparison of the errors whilst improvement in parameter
constraints are stated according to the average improvement when
measured on the mocks independently.

6.4.1 Components of the minimum spanning tree

We compare the constraints from the four individual components of
the MST. The elements of the MST statistics are counts, and as such
they follow a Poisson distribution. We apply a cut on the data vector
based on where the mean of the fiducial MST statistics had counts
>50, where expect the Poisson distribution to be approximately
characterized by a Gaussian. In Fig. 12, we display the constraints
from the individual components of the MST. Of the four statistics s
is the least constraining and provides very little information; this is
followed by d which, although it has very broad posteriors, appears
at least to rule out parts of the parameter space (low As, �m,
and high

∑
mν). The MST statistics l and b provide constraints

having similar degeneracies with l providing somewhat tighter
constraints.

6.4.2 P(k), B(k1, k2, k3), and MST

In Fig. 13, we compare the constraints from P(k), B(k1, k2, k3) and
MST. All three appear to have similar degeneracies and as such are
unable to establish meaningful constraints on As and

∑
mν . The

constraints on �m are more conclusive but are fairly similar. The
constraints on

∑
mν tend to show a broad peak towards the centre

of the prior range. Since the constraints on neutrino mass are poor
the kernel length-scale for

∑
mν of the GPs is quite broad and as
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1722 K. Naidoo et al.

Figure 11. In the top panel, we compare the mean (blue) and 1σ and 2σ distributions (blue envelopes) of the bispectrum calculated on dark matter particles
(from our fiducial suite of simulations) against theoretical bispectra calculated using the linear and non-linear CAMB power spectra. The x-axis displays triangle
index (generated by listing triangles in lexographic order based on sides k1, k2, and k3 where all elements are below kmax). In the bottom panel, we show
the significance between the measured and theoretical values. The theoretical bispectrum measurements are made using Gualdi et al. (2018) and will only be
accurate up to the quasi-linear regime; since we are pushing to more non-linear scales the discreprency for smaller triangles is expected. Using the non-linear
P(k) for the bispectrum is an approximation that only helps in partially reducing the discrepancy between the tree-level model and the measurements by using
loop corrections for the power spectrum. A better model would be given by using one-loop corrections to the bispectrum.

Figure 12. Posterior distributions on cosmological parameters as constrained by the individual components of the MST. On the left, we show those from the
degree and branch shape and on the right from edge and branch lengths. Branch shapes are the least sensitive, whilst the degree gives broad constraints but
rules out parts of the parameter space. Edge and branch length show similar posterior distributions with tighter constraints coming from edges.

such the estimates of the theory vector are smoother in the centre.
This creates a slight bias towards the centre of the parameter space.
This effect is also seen in Fig. 14.

6.4.3 Combining P(k), B(k1, k2, k3), and MST

In Fig. 14, we combine the statistics and compare their relative
constraints which is more clearly shown in Fig. 15. In combining

P(k) and B(k1, k2, k3), we find an improvement of ∼ 6 per cent
in the constraints of �m and ∼ 3 per cent for As. When combined
with the MST the constraints on �m improve by ∼ 17 per cent and
on As improve by ∼ 12 per cent with respect to (with respect to)
P(k) (∼ 12 per cent for �m and ∼ 10 per cent for As with respect to
P(k) + B(k1, k2, k3)). Since we have ensured the same scale cuts, i.e.
kmax = 0.5 hMpc−1 for P(k) and B(k1, k2, k3) and lmin = 4π h−1 Mpc,
we can be fairly certain that the additional information is not coming
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Beyond 2PT: using the MST for cosmology 1723

Figure 13. The posterior distributions are shown for power spectrum (P(k),
shown in grey), bispectrum (B(k1, k2, k3), shown in blue) and MST (shown
in red). The tightest constraints on As and �m are given by the MST, whilst
B(k1, k2, k3) provides better constraints on

∑
mν .

Figure 14. The posterior distributions for cosmological parameters as
constrained by (a) power spectrum (P(k), shown in dark grey), (b) power
spectrum and bispectrum (P(k) + B(k1, k2, k3), shown in blue) and (c)
power spectrum, bispectrum, and MST (P(k) + B(k1, k2, k3) + MST, shown
in purple).

Figure 15. The 1σ constraints on As and �m are shown for P(k) (dark
grey), P(k) + B(k1, k2, k3) (blue), and P(k) + B(k1, k2, k3) + MST (purple).
This plot shows how including the MST improves constraints on As by
∼ 12 per cent (∼ 10 per cent) and on �m by ∼ 17 per cent (∼ 12 per cent)
with respect to P(k) (P(k) + B(k1, k2, k3).

from the MST having access to smaller scales. Furthermore, the
maximally compressed B(k1, k2, k3) has been shown by Gualdi et al.
(2018) to improve parameter constraints by allowing the inclusion
of many more triangle configurations than standard bispectrum
analysis. Therefore, we can be fairly certain that the additional
information is coming from the MST’s detection of patterns in the
cosmic web, information which would be present in higher order
functions such as the trispectrum, thus confirming the heuristic
arguments made in Section 3.1.

7 D ISCUSSION

In this paper, we have sought to understand whether the MST can be
used for parameter inference in cosmology. Until now, the MST has
been predominantly used to search for large-scale features. This
type of information has largely been overlooked as traditionally
two-point statistics are completely insensitive to phase information.
In constructing the MST we hope to pick up patterns in the cosmic
web and use this to improve parameter constraints.

In Section 3, we argue heuristically why the MST should be
sensitive to higher order statistics (i.e. three point and beyond).
This is demonstrated using simulated galaxies (from the Illustris
N-body simulation) and a random walk simulation (produced using
an adjusted Lévy Flight algorithm) with virtually identical 2PCF by
design but different higher order statistics.

In Section 4, we look at the effects of boundaries and masks,
RSD, and scale cuts. Boundaries and masks16 tended to produce
longer edge lengths, whilst the degree and branch shape appeared
to be unaffected. RSD is shown to have a significant impact on the
MST statistics and thus should be incorporated in any future study.
Lastly, we develop a strategy to impose a scale cut on the MST.
This is done by removing edges below a set length in the kNN
graph and then constructing the MST from this. Unfortunately this
creates some artefacts in the degree and branch shape distributions.
It is also believed that this method distorts some of the information
we are trying to learn. As such alternatives or improvements to this
method should be explored.

In Section 5, we look to determine what the MST actually
measures, finding the MST to be highly sensitive to its local density.
This is demonstrated by the fact that nodes in overdensities tended
to have a degree of 2.

Lastly in Section 6, we determine whether the MST provides
information not present in power spectrum and bispectrum. We do
this by obtaining parameter constraints on As, �m, and

∑
mν for

10 halo mock catalogues. To keep the density of haloes the same
in all our simulations we use only the most massive 5000 haloes
and measure the power spectrum P(k), bispectrum B(k1, k2, k3), and
MST statistics. The individual methods provided similar constraints
although due to the degeneracies with �m we were unable to obtain
meaningful constraints on

∑
mν . We found that combining the three

methods narrows the 1σ constraints on �m by ∼ 17 per cent and
on As by ∼ 12 per cent with respect to P(k) and ∼ 12 per cent on
�m and ∼ 10 per cent on As with respect to P(k) + B(k1, k2, k3),
thus showing that the MST is providing information not present in
the power spectrum or bispectrum. We expect this to improve with
improved implementation of scale cuts and greater statistical power
from larger samples.

The MST provides several advantages over existing methods but
has some important limitations. The main advantages are: (1) it

16Boundaries can be thought of as a survey’s footprint, whilst the mask
would also include holes and varying completeness levels.
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is sensitive to patterns in the cosmic web and (2) the algorithm is
computationally inexpensive. The naive brute force implementation
of N-point statistics for n points is an O(nN ) process. While
there exist faster implementations of the 2PCF and 3PCF (see
Scoccimarro 2015; Slepian & Eisenstein 2016), there are no such
methods for higher order statistics. On the other hand, the MST
is sensitive to higher order statistics and the Kruskal algorithm
used here is approximately an O(n log n) process. In the MST, we
have a window into these higher order statistics but at a fraction
of the computational cost. The main limitations of the MST: (1)
we need simulations to estimate the statistics and (2) the statistic is
dependent on the density of the tracer. This means we will need to
create simulations that both match the survey properties as well as
the density of the tracers used.

In future work, we look to apply the MST to current and future
galaxy redshift surveys. In doing so we hope to better understand
how to implement scale cuts and mitigate any of the resulting
effects that occur as a result. One thing we have not studied in
this paper is the effect of galaxy bias which should be explored in
future. This could be achieved by varying HOD parameters. Lastly,
ML algorithms and AI are powerful new tools to cosmology (see
Ravanbakhsh et al. 2017; Fluri et al. 2018), however it is difficult
to gain an intuition into what these algorithms are learning. Since
the MST is relatively simple this could be used to gain insight into
this work, providing a bridge between the traditional two-point and
a full ML/AI approach.

Finally, the MST statistics presented in this paper have been
produced by the PYTHON module MiSTree (Naidoo 2019), which
implements the procedures detailed in Section 2. The module is
made publicly available (see https://github.com/knaidoo29/mistree
for documentation) and can handle data sets provided in 2D and 3D
Cartesian coordinates, spherical polar coordinates, and coordinates
on a sphere (either celestial RA, Dec., or simply longitude and
latitude).
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APPENDIX A : G AU SSIAN PROCESS
INTER P OLATION

We will be modelling data vectors following a method similar to that
of Rogers et al. (2019) and Bird et al. (2019) in which they emulated
the 1D flux power spectrum of the Lyman-α forest using GPs. In
this section, we provide a brief introduction to GPs and outline their
usage in this paper. A comprehensive overview of GPs and their
applications can be found in Rasmussen & Williams (2006), while
an overview of their implementations for vectors can be found in
Alvarez, Rosasco & Lawrence (2011).

A1 Introduction

GPs are a non-parametric kernel-based regression and interpolation
method. In GPs we model the desired function f(x) as a stochastic
process with a prior probability over all parametric functions. For
a finite input data set XXX = {x1, ..., xn}, this can be modelled as a

multivariate Gaussian,

GP = N
(
mmm(XXX),K

(
XXX,XXX′)) , (A1)

with mean mmm(XXX) and covariance K(XXX,XXX′). Given training data YYY 1

at XXX1, we model the posterior of the function f(x) at new positions
XXX2 as a multivariate Gaussian,

P (YYY 2|XXX1,YYY 1,XXX2) = N
(
μμμ2|1,S2|1

)
, (A2)

with mean μμμ2|1 and covariance S2|1. Assuming that both YYY 1 and YYY 2

are drawn from the same multivariate Gaussian, as our prior on the
function indicates (see equation A1), we can write the relation[
YYY 1

YYY 2

]
∼ N

([
μμμ1

μμμ2

]
,

[
K11 + Iσ 2

n K12

K21 K22

])
, (A3)

where I is the identity matrix and σ n is the standard deviation of
the training data YYY 1 (which is either known or fitted later). Thus,
assuming the mean function is zero we arrive at the predicted mean
and covariance,

μμμ2|1 =
[(
K11 + Iσ 2

n

)−1
K12

]�
YYY 1, (A4)

S2|1 = K22 −
[(
K11 + Iσ 2

n

)−1
K12

]�
K12, (A5)

where the dependence on K21 has been removed due to the
symmetry K12 = K�

21. Note that in practice we determine the GPs
mean and standard deviation at a single new position and thus the
standard deviation is simply a scalar – this means that K12 and K21

reduce to vectors and K22 to a scalar.

A2 Kernel

GPs use kernels to weight the interdependency of points in param-
eter space. In our model, we use a Gaussian kernel,

κ(θi, θj) = σ 2
GP exp

(
− r2

2

)
. (A6)

Here,

r = |θi,1 − θj,1|2
2l2

GP,1

+ |θi,2 − θj,2|2
2l2

GP,2

+ |θi,3 − θj,3|2
2l2

GP,3

; (A7)

σ GP, lGP, 1, lGP, 2, and lGP, 3 are GPs hyperparameters to be fitted with
independent scale terms for each axis in the parameter space; and
θθθ = [

109As, �m, mν

]
. The covariance matrix K is then defined to

have elements

(K)ij = κ(θi, θj) + σ 2
n δk(θi, θj), (A8)

with an additional noise term σ n.

A3 Hyperparameter optimization

The hyperparameters φφφ = [σGP, lGP,1, lGP,2, lGP,3] are optimized by
maximizing the likelihood function

L(DDD|θθθ,φφφ) =
n∑
i

L(ddd i|θθθ,φφφ), (A9)

where DDD are the ensemble of training data vectors, ddd i is an element
of a specific data vector and

L(ddd i|θθθ,φφφ) = −1

2
ddd�

i K
−1ddd i − 1

2
log |K| − n

2
log 2π. (A10)
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Figure A1. The positions in parameter space of simulations (grid, valida-
tion, fiducial, and mocks) used in Section 6. Note that for the grid simulations
each cross marks the point of five simulations.

A4 Implementation and validation
The GPs hyperparameters are trained on the measurements of P(k),
the maximally compressed B(k1, k2, k3), and the MST statistics d, l,
b, and s (see Section 6.2 for further details on these measurements)
from the grid simulations separately. In Fig. A1, we show the
placement of the grid, fiducial, mock, and validation (used only
in this section) simulations in parameter space. To test that our
GPs interpolation is emulating the statistics accurately we calculate
the residuals between the grid simulations (using the mean of five
realizations made at each point in parameter space),

σσσ Residual = d − μμμGP√
σσσ 2

Fiducial + σσσ 2
GP

, (A11)

where μμμGP and σσσ GP are the GPs mean and standard deviation
evaluated at the same points in parameter space as d. We plot
histograms of the residuals for the grid data vectors in Fig. A2
shown in orange. Notice that since the grid simulations are the mean
of five simulations, the distribution follows a Gaussian with mean 0
and standard deviation 1/

√
5 (illustrated by the black dotted line).

Furthermore to test that our GPs interpolation produces a good
fit to simulations not present in the training data, we generate 25

new simulations (called the validation simulations) with randomly
drawn cosmological parameters (shown in Fig. A1). We then again
compare the residuals to that of our GPs interpolation and find a
good agreement (with the exception of B(k1, k2, k3)) with a Gaussian
with mean 0 and standard deviation 1 illustrated by the black full
lines.

Figure A2. The residuals between the statistics of P(k) (top left), maximally
compressed B(k1, k2, k3) (top right), MST degree (middle left), edge length
(middle right), branch length (bottom left), and branch shape (bottom right)
for the grid (shown by the orange histograms) and validation (shown by the
blue histograms) simulations calculated from equation (A11). Since the grid
data vectors are the mean of five realizations the residuals are expected to
follow a normal distribution ofN (0, 1/

√
5) (shown by the dotted black line),

whilst the validation data vector are expected to follow a normal distribution
of N (0, 1). We see that for most of the statistics the agreement is fairly
good, with the exception of B(k1, k2, k3) which shows more spread than is
expected.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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