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Abstract

When an explosive burns, gaseous products are formed as a result. The interaction of the burning solid and gas is
not well understood. More specifically, the process of the gaseous product heating the explosive is yet to be explored
in detail. The present work is aimed towards filling that gap using mathematical modelling: this aims to track the
temperature profile in the explosive and the gas’s response.

This work begins by modelling with finite difference methods the reaction-diffusion process assuming single step
reactions using the simple Arrhenius model. An alternative asymptotic approach is also employed. There is close
agreement between the results for the full reaction-diffusion problem and the asymptotic problem. The model is
then extended to include three step reaction kinetics, where we again apply asymptotic analysis in addition to direct
computation. Further work outlined briefly at the end includes the motion of gas being incorporated in the existing
model with temperature and pressure distributions considered.

1 Introduction

High Explosives (HEs) store energy which can have disastrous effects if released accidentally. Thus safe
handling and storage of HEs is a matter of utmost concern [1]-[2]. When a HE is subjected to significant
heating it reacts, i.e. it burns to form gaseous products. The interaction of the burning solid and gaseous
products formed is not well understood. More specifically, the process of the gaseous product heating
explosives is yet to be explored in detail.The present work does much to fill that gap using mathematical
modelling: this aims to track the temperature and volume profiles, as well as pressure distributions in the
explosive and the gas response.

A detailed discussion on the technology of explosives can be found in [1] and [2], where the physical
processes involved in explosives are explored in detail. This includes an insight into the chemical processes
which occur as well as the mechanics of the burning process and detonation.

Modelling the combustion of explosives is a topic which has been studied for several decades [3], [4]
and has received a lot of attention in recent years . It is widely accepted that the combustion process
occurs in several stages which need to be studied. In particular the process of burning to detonation, or
the deflagration-to-detonation transition (DDT) [5], is one which is not yet fully understood due to the
complex chemistry involved. Understanding the DDT process is highly important for the development, as
well as the safe handling and storage of explosives. The burning of primary explosives is often used as a
detonation device for secondary explosives [1]. Most primary explosives readily detonate through thermal
stimulus. Similarly secondary explosives can be used to detonate tertiary explosives. Unfortunately, however,
understanding the time to detonation of the secondary explosive is much more complex. Often large time
delays are encountered. There have been various theories on the mechanisms which drive the DDT process;
[6] suggest the formation of shock waves ultimately result in detonation.

McGuire and Tarver [7] use a thermal conduction model to predict time to detonation compared with
reciprocal temperature. It is well documented in the literature [8] that time to detonation cannot be predicted
accurately with the single step Arrhenius reaction. The authors of [7] predict time to detonation for several
confined explosives, namely; HMX, RDX, TATB and TNT. The reaction of explosives can be broken down
into three processes, which are: an endothermic reaction, a slightly exothermic reaction and an extremely
exothermic reaction. McGuire and Tarver [7] model these processes using a three step chemical decomposition
model for the four explosives. The time to detonation compared is accurately predicted and verified against
experimental results.

In the present article a brief description is provided of research currently in progress involving a col-
laboration between AWE and University College London. This is based on a doctoral project [17] by the
first-named author and is supported by AWE and EPSRC UK through an Industrial CASE award. The
article focusses on mathematical modelling, and its following sections address successively, within the context
of a two-dimensional slab model, first the governing equations and then the solutions with a single reactant
present, the solutions here being based on direct computation and /or the use of asymptotic analysis: com-
parisons between the two are included. Subsequently the work is extended to the more realistic or studied
case of three reactants. Further work is also discussed.
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2 The Governing Equations

In dimensional terms the governing equations of interest for the reaction-diffusion problem with a single
reactant involved take the form

ρcv
∂u

∂t
= κ

∂2u

∂x2
+ ρΩ

∂α

∂t
, (1)

∂α

∂t
= A(1− α) exp

(
− E

Ru

)
, (2)

where ρ represents the density, cv the specific heat, κ the conductivity, Ω the heat of the reaction, A the pre-
exponential constant, E the activation energy required for the reaction to begin, while u is the temperature
and α is the reaction rate. Some of these parameters take extremely large or small values in practice and for
that reason we will turn to a non-dimensional form of the governing equations shortly. Meanwhile a sample
of three solutions of the system (1)-(2) obtained numerically from a finite-difference treatment that preserves
second-order accuracy is presented in Figure 1. To describe the treatment in brief, we observe that a semi-
implicit method for the present nonlinear evolution problem is appropriate here for the sake of numerical
stability coupled with accuracy; a three-point backward differencing scheme is applied to facilitate the second
order accuracy in time whereas a centred difference procedure is used for the second-order accuracy spatially.
For instance the contribution from the time derivative in (1) is discretised according to

∂u

∂t
≈ 3Uj,i − 4Uj,i−1 + Uj,i−2

2∆t
(3)

in a schematic sense, and similarly for the other terms in the governing equations. The results indicate
boundary-layer-like effects are taking place, i.e. the numerical solution varies considerably (abruptly) in thin
layers very close to the edges of the computational domain. Outside those layers the development of the
numerical solutions for u, α is much more gradual and smooth, with the temperature eventually increasing
to comparatively high values as time progresses further.

In order to deal with the effects of the many parameters involved we introduce the non-dimensional/scaled
variables t̄ and ū that satisfy

t = A−1t̄, u =
E

R
ū, (4)

having recognised the fact that A is likely to be responsible for change in u and α happening on different time
scales, and that E

R is relatively large. Note that we do not need to scale α since it is already non-dimensional
and O(1).

Substituting the scalings (4) into the PDEs above yields the new scaled system of non-dimensional PDEs

∂ū

∂t̄
= κ̄

∂2ū

∂x2
+ Ω̄

∂α

∂t̄
, (5)

∂α

∂t̄
= (1− α) exp

(
− 1

ū

)
, (6)

where κ̄ := κ
ρcvA

, and Ω̄ := ΩR
cvE

. The boundary and initial conditions now become

ū(−1, t) = ū(1, t) = B̄, for 0 < t̄ ≤ Tmax,

ū(x, 0) = D̄, for − 1 < x < 1,
(7)

where B̄ := RB
E and D̄ := RD

E . Here B is the Dirichlet boundary condition, B = 570 at x = ±1, D is the
initial condition D = 293 and Tmax is the period of time over which we model the event. Note that the
initial condition for α remains unchanged.

A sample solution of (5)-(6) derived numerically using the same approach as previously is presented
in Figure 2. Also however by scaling or non-dimensionalising the variables u and t, we have successfully
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Fig. 1: The numerical finite difference solutions to u (left) and α (right) from the PDEs (1)-(2). We chose the
discretisation parameters ∆t = 0.0001, Nx = 1000, 10000, 100000 (top–to–bottom) and Tmax = 0.05.
Note how α is extremely sensitive to our choice of Nx.

scaled out most of the extreme parameters and reduced the PDEs (1)-(2) to (5)-(6) with coefficients that
are approximately O(1) (excluding κ̄). The corresponding boundary conditions are also O(1) along with the
unscaled variable α. To address the effects of the very small parameter κ̄ that still features in the scaled PDE
and is non-dimensional we may now also take a different approach. It can be shown through asymptotic
expansions of ū and α [9] that by equating the coefficients of like powers of κ̄ and taking O(1) terms only,
the term ∂2ū

∂x2 is unlikely to have any substantial effect for a long time, except near the boundaries, since the
reaction term dominates. Hence, asymptotically, the problem can now be viewed as the interaction of two
problems; a problem in thin wall layers at both ends of the domain and a problem in a core.

3 Comparison between direct computation and asymptotic analysis

Concerning the analysis, in the core, the term ∂2ū
∂x2 in (5) has virtually no effect and therefore we may instead

study the reduced PDE

∂u

∂t
= Ω

∂α

∂t
, (8)
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Fig. 2: The numerical finite difference solutions to ū (left) and α (right) from the PDEs (5)-(6) with mild
physical parameters.

which, to our favour, admits a simple analytical solution. We have that

ū = Ω̄α+ c1, (9)

in the core, where c1 is a constant of integration to be determined. By the term ‘core’ we mean that
−1 + ε < x < 1− ε for some ε� 1. In other words, the core solution is valid on practically all of the domain,
except for thin layers of width O(ε) near the boundaries, where ∂2ū

∂x2 does influence the solution (see below).
In terms of matched asymptotic expansions we comment that we would expand ū = ū0 + ..., α = ᾱ0 + ... and
equate terms of equal orders in the original governing equations to obtain equations for the subscript-zero
quantities but the latter equations at leading order turn out to be the same as the two equations displayed
above, Equations (8) and (9).

Applying the initial conditions ū(x, 0) = D̄ and α(x, 0) = 0 yields

ū(x, t̄) = Ω̄α(x, t̄) + D̄, (10)

for −1 + ε < x < 1− ε and t̄ of order unity, and thus the equation (6) becomes (in the core)

∂α

∂t̄
= (1− α) exp

(
− 1

Ω̄α+ D̄

)
. (11)

Note that since the initial condition α(x, 0) = 0 is independent of x, (11) as it stands is also independent of x
and essentially represents a non–linear ODE for α that is valid for −1 + ε < x < 1− ε, including at the edge
of the thin wall layer as x closely approaches −1 and 1. (We remark in passing here that x-dependence in the
initial conditions at t = 0 would be reflected in D̄ in (10), (11) and similarly α(x, 0) being given functions
of x; this could be of future interest.) As a result, the core solutions provide ‘inside’ boundary conditions
for corresponding ū and α that satisfy the accompanying wall problems (to be discussed in the following
section). The ODE (11) is nontrivial to solve and so we use ODE45 in MATLAB to integrate numerically.
The core reaction α may then be substituted back into (10) to determine the leading order u in the core.

In Figure 3 we plot the core solutions ū and α that satisfy (10) and (11), respectively, using the mild
parameter values E = 10 and A = 200 as well as D = 15 which is required for the initial condition of ū.
The asymptotic analysis is still valid using these mild parameters since the corresponding value of κ̄ is still
exceptionally small. We use mild parameters for now so that in a sense we may validate (see Figure 6) the
asymptotic analysis against the finite difference solutions given in Figure 2, before proceeding to employ the
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Fig. 3: The numerical approximations (using ODE45 in MATLAB) to ū and α in the core satisfying (10) and
(11) with the mild parameter values E = 10, A = 200 and D = 15 and hence D̄ = 12.471, Ω̄ = 3319.5.

full parameter values.

The core equations have no spatial dependence and are in fact only initial value problems. As a result,
the loss of the derivative term in x means that the underlying boundary conditions in (7) cannot be satisfied
in the core, in the general case. Hence we seek an accompanying solution to the core solutions by considering
the system (5)-(6) near the boundaries. As alluded to previously, we term this second problem the wall or
wall layer problem.

To handle the extreme parameter κ̄ we set, near the left hand boundary,

x = −1 + κ̄
1
2 x̄

and transform the problem (5)-(6) on −1 ≤ x ≤ 1 to a problem on 0 ≤ x̄ < ∞ that essentially provides a
solution in the thin wall layer there. A representative value of κ̄ is of the order O(10−20) and in a sense this
tends to reflect the relatively poor conductivity of the slab material in many cases. From substitution, the
system (5)-(6) becomes

∂ū

∂t̄
=
∂2ū

∂x̄2
+ Ω̄

∂α

∂t̄
,

∂α

∂t̄
= (1− α) exp

(
− 1

ū

)
, (12)

in the wall layers, where Ω̄ = ΩR
cvE

again. Essentially the same system also applies at the edge layer near
x = 1 after scaling.

It is notable that since the core problem is independent of x, the solutions at the inside edges of the wall
layers (that is, at large x̄) are valid across the entire core. In other words, the solutions ū and α satisfying
(12) coincide with the core solutions at x̄ =∞. We therefore subject (12) to the boundary conditions

ū(∞, t̄) = ū in the core, α(∞, t̄) = α in the core,

for 0 < t̄ ≤ T̄max or t̄ of O(1). Here T̄max(� 1) is the period of time over which we model the event. It also

6



Fig. 4: The wall solution ū satisfying (12) with the mild parameters E = 20; A = 200; D = 15 and B = 45.
Note that the x̄ range has been truncated to facilitate a numerical implementation.

Fig. 5: The wall solution α satisfying (12) with the mild parameters E = 20; A = 200; D = 15 and B = 45.
Note that the x̄ range has been truncated to facilitate a numerical implementation.

holds that

ū(0, t̄) = B̄, B̄ =
RB

E
, (13)
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Fig. 6: Finite difference solutions to the full non–asymptotic problem shown in Figure 2 (top) and the asymp-
totic wall problem (bottom) using the mild parameters E = 20; A = 200; D = 15 and B = 45. For
the non–asymptotic problem we set Tmax = 0.005. In order to compare the solutions directly we
multiply the non asymptotic u by R

E and Tmax by A (resulting in 0.005 × 200 = 1, i.e. the time
durations now match).

and the boundary conditions for α at the wall x̄ = 0 can be determined by solving the second equation in
(12) using the condition (13). That is, we simply solve

∂α

∂t̄
= (1− α) exp

(
− E

RB

)
,

which yields, at the wall,

α(x̄, t̄) = 1− exp

(
−t̄ exp

(
− E

RB

))
, (14)

for x̄ = 0 and 0 < t̄ ≤ Tmax. We also have the initial conditions

ū(x̄, 0) = D̄, α(x̄, 0) = 0, 0 < x̄ <∞.

We observe that there is a similarity solution for small times t̄ near x̄ = 0. To solve numerically the system
(12) we use the finite difference scheme of the previous section. In Figures 4 and 5 we plot the finite difference
approximations to ū and α using the mild parameters E = 20; A = 200; D = 15 and B = 45. In Figure 6 we
compare the full non–asymptotic solutions given in Figure 2 (top) with the new asymptotic wall solutions
(bottom). The spatial uniformity observed in many of the figures is largely due to the initial conditions, as
explained by the accompanying study of asymptotic properties holding for small values of κ̄.

We finish here by remarking that the present asymptotic methodology could serve as a reasonable alter-
native to the use of full numerical simulations in the diffusion-reaction systems of interest.
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4 Multi-kinetics

The single reactant case serves as a reasonable first model for generating ideas for example but on the other
hand it is well established in the literature that single reactants have many limitations when modelling the
combustion of explosives. One such limitation is the over simplification of the chemical processes which
take place during combustion. In this section we introduce a multi kinetic reaction process into our model.
This provides a better representation of the physical and chemical processes which occur, see [1] for detail.
Following the work of [7], [10] and [11] for example, we consider a three step reaction to model the endothermic
and exothermic chemical processes. Consider the model equation

ρcv
∂u

∂t
= κ

∂2u

∂x2
+ (15)

+NAQ1Z1 exp
(
− E1

Ru

)
+NBQ2Z2 exp

(
− E2

Ru

)
+N2

CQ3Z3 exp
(
− E3

Ru

)
which describes the diffusion process with a three-step reaction. We have the following ODEs, describing
the rate of change of the reactions NA, NB and NC respectively

ṄA = −NAZ1

ρ
exp

(
− E1

Ru

)
, (16)

ṄB =
NAZ1

ρ
exp

(
− E1

Ru

)
− NBZ2

ρ
exp

(
− E2

Ru

)
, (17)

ṄC =
NBZ2

ρ
exp

(
− E2

Ru

)
− N2

CZ3

ρ
exp

(
− E3

Ru

)
, (18)

where dots denote derivatives with respect to time.
Computational solutions for the three-reactant case are given in Figure 7. Asymptotic analysis not

discussed in detail here but founded on the techniques described previously in section 3 provides further
understanding again.

Fig. 7: Finite difference solutions to the full non–asymptotic problem shown using mild parameters.
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5 Final comments

Keeping the final comments brief at this stage, we remark first that the combined use of direct computation
and analysis for the model problems in this article appears to be promising as far as understanding of the
physical processes is concerned. It remains to be seen whether the above combination works well in regard
to reasonable prediction of events that occur in practice. Second, there is still much intriguing work to be
done to fulfill that promise for the present model tasks. Third, future studies in particular on an extension
of the present approach to allow for fluid-dynamical influences in the interactions are planned.
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