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Abstract
Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical 
presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable 
expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused 
by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins pre-
sented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, 
epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, 
they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 
20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address 
whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, 
we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the 
relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 
50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides 
further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of 
the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.

Abbreviations
E1α  α Subunit of the E1 component of the pyruvate 

dehydrogenase complex
E1β  β Subunit of the E1 component of the pyruvate 

dehydrogenase complex
GTCS  Generalised tonic–clonic seizures

PDC  Pyruvate dehydrogenase complex
ULN  Upper limit of normal
WES  Whole-exome sequencing
XCI  X-chromosome inactivation

Introduction

The pyruvate dehydrogenase complex (PDC) is a large mito-
chondrial multienzyme complex that catalyses the oxidative 
decarboxylation of pyruvate to acetyl-CoA, a rate-limiting step 
for the aerobic oxidation of glucose in the brain and other tis-
sues. PDC contains multiple copies of three catalytic compo-
nents (E1 or pyruvate dehydrogenase, E2 or dihydrolipoamide 
acetyltransferase, and E3 or dihydrolipoamide dehydrogenase) 
and the non-catalytic E3 binding protein. E1 is a thiamine 
diphosphate-dependent enzyme formed by two α and two 
β subunits (abbreviated E1α and E1β), whereas E2 and E3 
consist of a single type of polypeptide chain. PDC activity 
is modulated by phosphorylation and dephosphorylation of 
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three serine residues of E1α performed by two enzymes, pyru-
vate dehydrogenase kinase (PDK) and phosphatase (PDP), 
which are also linked to the complex. All components of 
PDC are encoded by autosomal genes with the exception of 
E1α, encoded by the PDHA1 gene in the X chromosome (De 
Meirleir et al. 2016; Patel et al. 2014).

PDC deficiency represents a common cause of primary 
lactic acidosis and neurological disease in infancy and early 
childhood, with more than 400 cases reported to date (Sperl 
et al. 2015). Although mutations affecting E1β, E2, E3, and 
E3 binding protein and the regulatory enzyme PDP have been 
described, most cases are caused by mutations affecting E1α 
(Patel et al. 2012; Sperl et al. 2015). The clinical spectrum of 
PDC-E1α deficiency is broad. In males, three main presenta-
tions are recognised: (a) neonatal lactic acidosis and encepha-
lopathy, sometimes associated with brain malformations; (b) 
infantile or childhood-onset Leigh or Leigh-like syndrome; 
and (c) a childhood-onset milder/relapsing neurological dis-
order that often includes ataxia, dystonia, and peripheral neu-
ropathy. Heterozygous females appear to have a distinct clini-
cal presentation that frequently includes dysmorphic features 
and microcephaly, especially in neonatal forms, in addition to 
moderate or severe psychomotor delay, spastic di/quadriplegia, 
and epilepsy. Brain imaging may reveal cortical/subcortical 
atrophy, dilated ventricles, cysts, and corpus callosum agen-
esis. Lactic acidosis may be present (Barnerias et al. 2010; De 
Meirleir et al. 2016; DeBrosse et al. 2012; Imbard et al. 2011; 
Lissens et al. 2000; Quintana et al. 2010).

That males are hemizygous and all females reported thus 
far are heterozygous for PDHA1 mutations partly explains 
the clinical differences between sexes (Brown et al. 1994; 
Dahl 1995; Sperl et al. 2015). However, phenotypic vari-
ability among females with the same or functionally equiva-
lent mutations also exists, and the pattern of X-chromosome 
inactivation (XCI) has been proposed as an important fac-
tor contributing to this variability (Brown et al. 1994; Dahl 
1995; Dahl et al. 1992; Matthews et al. 1993). Here, we 
report for the first time female monozygotic twins with PDC-
E1α deficiency, caused by a novel missense mutation in exon 
11 of PDHA1. Both twins presented with a similar, primar-
ily neurological phenotype but showed clear differences in 
disease severity, residual PDC activities, and XCI ratios in 
blood. This observation broadens the clinical and genetic 
spectrum of PDC-E1α deficiency and provides support to 
the hypothesis that the pattern of XCI is a major determinant 
of the phenotype in heterozygous females.

Methods

The female twins were clinically evaluated in the Myopathy 
clinic and the Highly Specialised Service for Mitochondrial 
Disease clinic of the National Hospital for Neurology and 

Neurosurgery, London, UK. The study was granted ethical 
approval by the University College London (UCL) and UCL 
Hospital Joint Research Office (REC 09/H0716/76). Labo-
ratory, neurophysiological, and imaging studies and tissue 
biopsies were performed using standard diagnostic proto-
cols. Spectrophotometric assays of mitochondrial respira-
tory chain enzyme complexes in homogenised snap-frozen 
muscle samples were performed as previously described 
(Hargreaves et al. 2002). Total genomic DNA extracts from 
peripheral blood leukocytes and skeletal muscle biopsy 
were obtained for diagnostic purposes and used for research 
following informed consent. Diagnostic testing for point 
mutations and large-scale rearrangements of the mitochon-
drial DNA (mtDNA) was performed by restriction enzyme 
analysis, long-range PCR and Southern blotting on DNA 
extracted from skeletal muscle (Hammans et al. 1991; Muqit 
et al. 2008). For additional methods on molecular genetic 
studies, see the online Supplementary material.

Fibroblasts studies

Skin biopsies were performed following informed consent. 
Fibroblasts from the patients were established from skin 
explants. All cells were maintained at 37 °C and 5%  CO2 
under humidified conditions and cultured in high glucose 
Dulbecco’s Modified Eagle medium (Invitrogen) supple-
mented with 10% foetal bovine serum (Biowest), penicillin/
streptomycin, and 0.05 mg/ml uridine. Overall PDC activity 
was measured after maximal activation with dichloroacetate, 
using [1-14C]-pyruvate as substrate as described previously 
(Wicking et al. 1986). In this assay, the activity of normal 
control fibroblasts is 0.6–0.9 of 14CO2 produced/mg protein/
min. For immunocytochemical analysis, cultured fibroblasts 
were fixed and stained with antibodies to the PDC E1α subu-
nit and E2 enzyme as described previously (Lib et al. 2002). 
The anti-E1α antibody was detected with a secondary anti-
body labelled with Alexa Fluor 594 (red). The anti-E2 anti-
body was labelled directly with Alexa Fluor 488 (green).

Results

Case reports

The female monozygotic twins were born to non-consan-
guineous parents by caesarean section for preeclampsia 
at 31 weeks of gestation (Fig. 1a). The second twin (P2) 
was briefly ventilated after delivery but there were no other 
major complications and both twins were discharged from 
the neonatal unit after 6 weeks. In subsequent months, 
they were noted to have mild global developmental delay 
and, at age 15 months, both became febrile and hypotonic 
10 days after a vaccination, necessitating hospitalisation of 
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P2. They lost developmental milestones after the episode, 
although subsequently gradually recovered. At age 3 years, 
P2 became confused and lethargic during a febrile illness 
and was admitted to the hospital again. This second episode 
prompted referral to a specialist clinic and, at age 5 years, 
both twins were diagnosed with Leigh syndrome on the basis 
of increased CSF lactate concentrations and abnormal neu-
roimaging (signal changes in the globi pallidi and peritrigo-
nal white matter).

P2 continued to have episodes of acute encephalopathy 
triggered by infections, from which she recovered well. 
However, learning difficulties and impaired motor skills, 
coordination, and gait became apparent during the first dec-
ade of life, and repeated examinations revealed dysarthria, 
dysmetria, and dystonic posturing in the upper limbs, along 
with pyramidal tract signs in the lower limbs. She attended 
a special needs school and required a wheelchair for outdoor 
mobility during the teenage years. In adolescence, she suf-
fered from three generalised tonic–clonic seizures (GTCS) 
during an encephalopathic episode and subsequently devel-
oped recurrent GTCS and seizures with impaired aware-
ness and automatisms. Partial control of seizures was 
achieved with antiepileptic drug polytherapy. In her early 

20s, following two further encephalopathic episodes with 
seizures, she developed behavioural changes and her overall 
motor function deteriorated. Coenzyme  Q10 and quetiapine 
treatment was initiated at that time and symptoms slowly 
improved.

Aged 29 years, P2 was being treated with lamotrigine, 
levetiracetam, midazolam (as required), quetiapine, ribofla-
vin, thiamine, l-carnitine, and coenzyme  Q10. On exami-
nation, she was hypomimic and had moderate dysarthria 
and laterocollis to the left. Upgaze was markedly restricted, 
horizontal saccades were slow, and smooth pursuit was bro-
ken horizontally and vertically. Cranial nerve examination 
was otherwise normal. Tone was increased in limbs and 
there was mild weakness (MRC grade 4–4 +/5) distally in 
the upper limbs and proximally in the lower limbs. Deep 
tendon reflexes were all present (2/5) and plantar responses 
were extensor. She had a mild upper limb postural tremor 
and intention tremor with dysmetria, with an emphasis on 
the right side. There was also dystonic posturing and mild-
to-moderate bradykinesia of the upper and lower limbs with 
left-sided predominance. Pinprick sensation, vibration sense, 
and joint position sense were normal. Romberg’s test was 
negative and she had a narrow-based, dystonic–spastic gait.

Fig. 1  Family pedigree, DNA 
sequencing, and immunocyto-
chemistry. a Family pedigree. 
b Visualisation of the heterozy-
gous variant NM_000284.3 
(PDHA1): c.1100A>T 
(p.His367Leu) on whole-
exome sequencing. c Sanger 
sequencing electropherograms 
of nucleotide NM_000284.3 
(PDHA1) c.1100. The heterozy-
gous variant c.1100A>T is 
present in both twins and absent 
in their parents, confirming that 
the variant is de novo. d Mosaic 
expression of PDC E1α subunit 
in cultured fibroblasts from P1. 
Merged images of fibroblasts 
labelled with anti-E1α antibody 
(red) and anti-E2 antibody 
(green). Yellow cells express 
both the E2 component of the 
PDC (encoded in chromo-
some 11) and the E1α subunit, 
indicating that the active X 
chromosome in these cells 
contains the wild-type PDHA1 
allele. Green cells express the 
E2 component but are deficient 
in E1α subunit, indicating that 
the active X chromosome in 
these cells contains the mutant 
PDHA1 allele



 Human Genetics

1 3

P1 had similar, but milder symptoms and clinical course 
compared to her sister. Her second and third encephalopathic 
episodes occurred at ages 14 and 19 years in the context of 
acute infections and she recovered completely. She devel-
oped seizures with impaired awareness and GTCS in her 
mid and late teenage years, respectively, but good seizure 
control was achieved with carbamazepine monotherapy. As 
with her sister, she had mild learning difficulties and, after 
the seizures started, began complaining of memory problems 
and perseverative behaviour. Motor function was retained 
in the upper limbs, but there were walking difficulties from 
early childhood. Examinations from the age of 10 revealed 
mild dysmetria and dystonia in the upper limbs and pyrami-
dal tract signs in the lower limbs. She used a wheelchair 
outdoors since her early 20s.

Aged 29 years, P1 was being treated with carbamaze-
pine, riboflavin, thiamine, l-carnitine, and coenzyme  Q10. 
On examination, she had moderate dysarthria and mild lat-
erocollis to the left. Upgaze was moderately restricted, sac-
cades were mildly slowed, and smooth pursuit was broken 
horizontally and vertically. Cranial nerve examination was 
otherwise unremarkable. Tone was slightly increased in her 
lower limbs, but muscle strength was intact. Deep tendon 
reflexes were all present (3/5) and plantar responses were 
extensor. There was mild postural and intention tremor with 
mild dysmetria and dysdiadochokinesia in both upper limbs. 
There was also mild dystonic posturing of the upper limbs 
and mild bradykinesia of the left upper and lower limb. Pin-
prick sensation, vibration sense, and joint position sense 
were normal. Romberg’s test was negative. Gait was narrow 
based and mildly spastic.

Diagnostic studies

Following the initial clinical diagnosis at age 5 years, the 
twins were reinvestigated 5 years later and again in their 20s 
to determine their precise biochemical and genetic aetiology. 
At age 10 years, CSF and plasma lactate concentrations were 
increased (Supplementary Table 1). Electroretinography 
and visual evoked potentials were normal. Brain MRI scans 
of both twins were described as showing bilateral signal 
changes in the globus pallidum, peritrigonal white matter, 
and cerebellum. A cyst of the velum interpositum was also 
observed in P1. Needle muscle biopsy revealed type 2 fibre 
atrophy in P1 and slightly increased amounts of fine lipid 
droplets within the muscle fibres in the two twins. Histo-
chemical staining for mitochondrial enzymes was normal. 
Skin fibroblasts were obtained for biochemical analysis, but 
failed to grow in culture.

Between the ages of 17 and 28 years, routine blood tests 
were repeatedly normal except for mildly raised creatine 
kinase (190–210 IU/L; upper limit of normal 140 IU/L) and 
plasma lactate (Supplementary Table 1). Plasma ammonia, 

amino acids, and acyl-carnitines and urine organic acids 
were all within normal limits. White cell ubiquinone lev-
els and lysosomal enzymes activities were normal. ECG 
and echocardiography showed no abnormalities. Brain 
MRI scans revealed bilateral lesions in the basal ganglia, 
peritrigonal white matter, and cerebellum that were more 
evident in P2 than P1 (Supplementary Fig. 1). Interictal 
EEG recordings revealed no signs of epileptiform activity. 
Brainstem evoked responses were normal in P1 but poorly 
formed in P2, suggesting either VIII cranial nerve or brain-
stem involvement. Further neuro-otological evaluation of 
both twins revealed impairment of ocular smooth pursuit, 
optokinetic responses, and vestibulo-ocular reflex suppres-
sion, consistent with cerebellar dysfunction. In P2, nerve 
conduction studies showed mildly decreased conduction 
velocities in the upper and lower limbs and mildly reduced 
sensory amplitudes in the lower limbs. Similar but milder 
changes with a patchy distribution were observed in P1 
(Supplementary Tables 2 and 3). Quadriceps muscle biopsy 
of P1 at age 23 years only revealed features of denervation 
with reinnervation. The activity of mitochondrial respiratory 
chain complexes I, II + III, and IV was normal.

Genetic and biochemical studies

Based on the phenotype and MRI features suggestive of 
Leigh syndrome, P1 was screened for common point muta-
tions (m.3243A>G, m.8344A>G, and m.8993T>G/C) and 
large-scale rearrangements of the mtDNA extracted from 
muscle, which resulted negative. Whole-exome sequenc-
ing (WES) was subsequently performed in both patients. 
Their exomes were 93% concordant, supporting monozygo-
sity of the twin pair. Analysis focused on nonsynonymous, 
splice-site and coding indel variants with a minor allele fre-
quency < 0.1% in the Exome Aggregation Consortium data-
set (ExAC; http://exac.broad insti tute.org/). From a total of 
359 (P1) and 480 (P2) variants that met these filtering crite-
ria, nine of them were in genes listed in MitoCarta, an inven-
tory of genes encoding proteins with probable mitochondrial 
localisation (Supplementary Table 4) (Calvo et al. 2016). 
The nine candidate variants were individually reviewed and 
classified on the basis of gene-associated phenotypes and 
mode of inheritance (Supplementary Table 5). Only the 
heterozygous missense change NM_000284.3 (PDHA1): 
c.1100A>T (p.His367Leu) affected a gene known to cause 
lactic acidosis and/or Leigh syndrome, and was therefore 
considered the most plausible disease-causing variant 
(Fig. 1b). The presence of this heterozygous variant was 
confirmed by Sanger sequencing in both twins, but it was 
not detected in their parents, indicating that it had arisen de 
novo (Fig. 1c).

The c.1100A>T variant, located in exon 11 of PDHA1, 
is not reported in the Genome Aggregation Database 

http://exac.broadinstitute.org/
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(gnomAD; https ://gnoma d.broad insti tute.org/), but affects 
the same nucleotide and amino acid as c.1100A>C 
(p.His367Pro), which is registered in ClinVar as likely 
pathogenic based on two independent submissions (Clin-
Var accession number RCV000493915.1). c.1100A>T 
(p.His367Leu) is predicted as being deleterious by most 
of the pathogenicity prediction tools used (Supplementary 
Table 6) and affects an evolutionarily conserved histidine 
residue (Supplementary Fig. 2). Analysis of the structural 
changes caused by the p.His367Leu substitution shows a 
potential alteration of the conformation of the C-terminus 
of E1α and its interaction with E1β within the E1α2β2 het-
erotetramer. This is so because the side chain of p.His367 is 
involved in a direct hydrogen bond with the C-terminal car-
boxylate of p.Ser390 in the same E1α subunit; this carboxy-
late, in turn, hydrogen bonds to the side chain of p.Tyr131 
in the E1β subunit (Fig. 2). The first hydrogen bond cannot 
exist in the p.His367Leu variant and the second one is likely 
to be weakened in the face of competing interactions with 
water. In addition, the hydrophobic side chain of p.Leu367 
would tend to associate with the side chain of p.Leu137 in 
the E1β subunit (see Supplementary Figs. 3, 4 and 5 for 
details).

To confirm the functional impact of the variant, we meas-
ured the overall activity of PDC in cultured fibroblasts, 
which was moderately reduced in P1 and markedly reduced 
in P2 (Table 1). Immunocytochemical staining of E1α in 
fibroblasts revealed a mosaic pattern that appeared to cor-
relate well with the residual activity of the enzyme in each 
case (Fig. 1d and Table 1). To address whether differences 
in disease severity between the two twins could be explained 
by differences in the pattern of XCI, we determined this 

pattern in DNA extracted from peripheral blood by assessing 
the methylation status of two CCGG sites located < 100 bp 
upstream a polymorphic CAG repeat within the androgen 
receptor (AR) gene. After restriction digestion using the 
methylation-sensitive HpaII enzyme, the CAG repeats on 
the inactive (methylated, undigested) X chromosomes were 
PCR amplified. Peak heights (signal intensity) of the result-
ing PCR products were determined by fragment analysis and 
the relative proportion of the two inactive X chromosome 
CAG alleles was calculated (see supplementary methods 
for details). Results were consistent with a skewed pattern 
of XCI in P1 (> 75–80% inactivation of the same allele) 
(Minks et al. 2008), but not in P2 (Table 1 and Supplemen-
tary Table 7). Analysis of CAG repeat sizes in the mother 
indicated that the maternal allele was preferentially active 
in both twins.

Fig. 2  Three-dimensional 
structure of human pyruvate 
dehydrogenase (E1 component) 
of PDC. The four subunits 
are arranged tetrahedrally as 
a dimer of dimers and the 
tetramer possesses a 2-fold 
symmetry axis. The inset shows 
the location of p.His367 (grey 
sticks) at a loop position of E1α 
that is found at the interface 
with E1β. Hydrogen bonds 
are displayed as dashed lines. 
The small-sized labels on top 
of C-alpha carbons denote the 
PDB numbering scheme (as per 
entry 1NI4)

Table 1  Pyruvate dehydrogenase complex activity in cultured fibro-
blasts and X chromosome inactivation pattern in DNA extracted from 
peripheral blood

E1α E1α subunit of the E1 component of the pyruvate dehydrogenase 
complex, PDC pyruvate dehydrogenase complex, XCI X chromosome 
inactivation
a Range in normal controls: 0.6–0.9 nmol/mg protein/min
b Ratio of the two PCR-amplified CAG repeat alleles within the inac-
tive X chromosomes

Patient PDC  activitya 
(nmol/mg protein/
min)

Immunoreactive E1α XCI  patternb

P1 0.46 Moderate reduction 76:24
P2 0.17 Marked reduction 55:45

https://gnomad.broadinstitute.org/
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Discussion

This report describes the first set of female monozygotic 
twins with PDC-E1α deficiency. Monozygosity was estab-
lished on the basis of physical similarities and concord-
ance of WES data. Both twins presented with a primarily 
neurological disorder that included mild developmental 
delay and learning difficulties, episodes of hypotonia or 
encephalopathy triggered by vaccination and infections 
from early childhood, and later onset of epilepsy and 
signs of pyramidal, extrapyramidal, and cerebellar dys-
function leading to slowly progressive motor impairment. 
Brain MRI revealed lesions similar to those seen in Leigh 
syndrome that were more symmetrically distributed in 
P2 than in P1. They had no dysmorphic features and no 
history of lactic acidosis, although their plasma lactate 
levels were often mildly increased and associated with a 
lactate:pyruvate ratio < 20. This clinical picture was con-
sistent with previous descriptions of heterozygous females 
with PDC-E1α deficiency, but the impossibility to per-
form enzymatic assays at age 10 years due to failure of 
fibroblast culture caused a significant delay in the diag-
nosis. The molecular diagnosis was ultimately achieved 
using WES and the pathogenicity of the newly identified 
de novo mutation supported by biochemical and immuno-
cytochemical studies.

PDC-E1α deficiency has considerable allelic hetero-
geneity with over 100 mutations, mostly missense muta-
tions and small in-frame and frameshift indels, identified 
throughout the entire coding sequence of PDHA1 except 
exon 2 (Imbard et al. 2011; Lissens et al. 2000; Patel et al. 
2012; Quintana et al. 2010). Missense mutations are more 
common than indels and tend to localise to exons 3–9, 
whereas most indels are localised to exons 10–11. Hemizy-
gous males, in whom the defective enzyme is expressed 
in all cells and the residual PDC activity depends on the 
effect of the mutation, frequently have missense muta-
tions that allow the production of a partially functioning 
enzyme. In contrast, heterozygous females, in whom the 
defective enzyme is only expressed in a proportion of cells, 
can tolerate more severe mutations and have frameshift 
mutations more often than males. Heterozygous females 
harbouring missense mutations may be asymptomatic or 
have milder clinical phenotypes and survive into the sec-
ond or third decades of life, as illustrated by the present 
and other cases (Cameron et al. 2004; Fujii et al. 1994; 
Lissens et al. 1999; van Dongen et al. 2015; Willemsen 
et al. 2006). However, they can also be severely affected 
(Cameron et al. 2004; Patel et al. 2012; Quintana et al. 
2010; Willemsen et al. 2006), which likely reflects the 
differential effect of each mutation on E1α structure and 
function (Imbard et al. 2011; Korotchkina et al. 2004). 

In addition, heterozygous females can exhibit variable 
expression of the same missense mutation probably due 
to interindividual differences in the pattern of XCI (Brown 
et al. 1994; Dahl 1995; Dahl et al. 1992; De Meirleir et al. 
1993; Fujii et al. 1996; Otero et al. 1998).

The novel missense mutation we detected in exon 11 of 
PDHA1 (p.His367Leu) resides close to the C-terminal region 
of E1α, where other point mutations (e.g. p.Arg378Cys, 
p.Arg378His, and p.Trp383*) have been previously identi-
fied in female patients (Barnerias et al. 2010; Chun et al. 
1995; Fujii et al. 1996; Willemsen et al. 2006). Structural 
analysis of p.His367Leu indicates a potential deleterious 
effect of this amino acid substitution on the conformation 
of the C-terminus of E1α and its interaction with E1β. These 
changes result in E1α2β2 heterotetramer instability in neigh-
bouring regions that may lead to increased degradation of 
the unassembled subunits. This possibility is consistent with 
the observation of reduced steady-state levels of immunore-
active E1α in a proportion of cultured fibroblasts from both 
twins. A similar pathogenic mechanism has been proposed 
for the recurrent mutation p.Arg378His (Korotchkina et al. 
2004), which severely impairs E1 function in vitro and is 
associated with reduced or undetectable amounts of E1α 
and E1β in patient-derived fibroblasts despite normal levels 
of E1α mRNA (Hansen et al. 1991; Tripatara et al. 1999; 
Wexler et al. 1997). E1α deletion mutants lacking one to 
four of the C-terminal amino acids (including p.Ser390, 
which forms a hydrogen bond with p.His367) (Korotchkina 
et al. 2004) also show decreased amounts of E1α and E1β 
despite normal transcription and mitochondrial import of 
E1α, supporting that the integrity of the C-terminus of E1α 
is essential for the stability or assembly of the E1 enzyme 
(Seyda et al. 2000).

Although monozygotic, the twins exhibited different 
disease severity with P1 being less severely affected than 
P2. This clinical observation correlated well with residual 
PDC activities in cultured skin fibroblasts, approximately 
60% of mean control values in P1 and 20% in P2, and the 
corresponding reduction of immunoreactive E1α. Analy-
sis of WES data did not reveal mutations involving other 
components of the PDC in either twin. Therefore, we con-
sidered the possibility of constitutional unbalanced XCI 
favouring the wild-type allele in P1 and/or the mutant allele 
in P2 as the mechanism underlying their phenotypic differ-
ences. Using the AR assay in DNA extracted from periph-
eral blood, we detected a XCI ratio close to 50:50 in P2, 
indicating similar degree of activation of each X chromo-
some. In P1, in contrast, there was a significant bias in the 
relative activity of the two X chromosomes with a ratio of 
approximately 75:25. Based on these results and the fact 
that the proportion of normal and E1α-deficient fibroblasts 
appear to remain constant in culture (Brown et al. 1990), it 
is possible that XCI skewing was also present in fibroblasts 
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from P1, favouring the expression of wild-type E1α and, 
consequently, of fully functional PDC. It is well known that 
skewed XCI with ratios ≥ 80:20 biased towards the expres-
sion of the wild-type allele can lead to normal PDC activities 
in fibroblast from female patients (Brown and Brown 1993; 
Matthews et al. 1994; Willemsen et al. 2006). However, XCI 
ratios of 70:30–80:20 have also been associated with PDC 
activities of 60–65% of mean control values, both deter-
mined in fibroblasts (Brown and Brown 1993), similar to 
what we observed in P1 in different tissues.

We believe that differences in the pattern of XCI in the 
twins is the most plausible explanation for the observed 
phenotypic differences, and the results of the AR assay in 
blood provide indirect support for this hypothesis. A good 
level of concordance in the XCI pattern between haemat-
opoietic tissues and brain has been demonstrated in some 
female individuals (Bittel et al. 2008). If this were the case in 
P1, skewed XCI biased towards the wild-type allele in brain 
might account for her milder neurological disease. Neverthe-
less, due to inter- and intra-tissue variations in the pattern of 
XCI, we cannot exclude other scenarios such as skewed XCI 
favouring the mutant allele in fibroblasts or brain in P2, or 
variations in the XCI mosaic across different neuroanatomi-
cal regions in P1. The latter possibility has been observed in 
post-mortem brain tissue from one individual with Rett syn-
drome (Gibson et al. 2005), an X-linked neurodevelopmental 
disorder that mostly affects females, as well as in genetically 
engineered female mice expressing fluorescent reporters 
that allow visualisation of XCI at cellular resolution (Wu 
et al. 2014). Of note, lesion distribution on brain MRI was 
patchier in P1 than in P2, which might reflect topographic 
fluctuations in the pattern of XCI in P1, although we cannot 
discount the influence of other epigenetic or environmental 
factors on disease expression.

Distinct expression of X-linked disorders in monozygotic 
twin females has been widely reported in the literature (Ben-
nett et al. 2008; Costa et al. 1997; De Gregorio et al. 2005; 
Johnston-MacAnanny et al. 2011; Tiberio 1994; Watkiss 
et al. 1994; Willemsen et al. 2000). However, with a few 
exceptions (Devys et al. 1992; Ishii et al. 2001; Mittal et al. 
2011), most reported twin pairs exhibited discordant phe-
notypes, i.e. only one twin was clinically affected and the 
other twin was asymptomatic, with or without paraclini-
cal evidence of heterozygous carrier status (e.g. reduced 
α-galactosidase activity in Fabry disease or factor VIII pro-
coagulant activity in haemophilia A) (Bennett et al. 2008; 
Redonnet-Vernhet et al. 1996). In contrast, both members 
of the twin pair described here were clinically affected. 
PDC plays a pivotal role in energy production from glucose 
in all metabolically active tissues, especially in the brain, 
where it operates at high levels of activity even during fast-
ing states (Siess et al. 1971). Consequently, even relatively 
mild reductions in PDC activity in heterozygous females or 

mosaic individuals may have deleterious effects on normal 
brain development and function (Coughlin et al. 2010; Rid-
out et al. 2008). This most likely explains why a significant 
number of heterozygous females with PDC-E1α deficiency 
manifest a severe neurological phenotype and the co-occur-
rence of the disease in both twins.
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