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Abstract

The Epoch of Reionization (EoR) is a fascinating time in the Universe’s history.

Around 400,000 years after the Big Bang, the Universe was full of neutral atoms.

Over the following hundred million years or so, these atoms were slowly ionised by

the first luminous objects. We have yet to make precise measurements of exactly

when this process started, how long it lasted, and which types of luminous sources

contributed the most. The first stars and galaxies had only just started to form, so

there were precious few emission sources. The 21cm emission line of neutral hydro-

gen is one such source. The next generation of radio interferometers will measure

for the first time three-dimensional maps of 21cm radiation during the EoR. In this

thesis I present four projects for efficient modelling and analysis of the results of

these EoR experiments. First I present my code for calculating higher-order clus-

tering statistics from observed or simulated data. This code efficiently summarises

useful information in the data and would allow for fast comparisons between theory

and future observations. Secondly I use machine learning techniques to determine

how physical EoR properties are related to the three-point clustering of simulated

EoR data. Thirdly I fit an analytic clustering model to simulated 21cm maps. The

model gives approximate predictions for the start of the EoR, but is unable to ac-

count for the widespread overlap of ionised regions for later times. Finally I use

and compare machine learning techniques for replacing the semi-numerical simu-

lations with trained emulators. My best emulated model makes predictions that are

accurate to within 4% of the full simulation in a tiny fraction of the time.



Impact Statement

Cosmologists have yet to find compelling answers to a number of questions about

the Epoch of Reionization (EoR). Upcoming experiments such as the Square Kilo-

metre Array will help shed some light on these questions. The projects in this thesis

are part of a global effort to lay the groundwork for analysis of these experiments’

results. The datasets from these experiments will be so large that compression will

be needed. My high-order clustering calculation code will be useful for this, not

only allowing faster comparisons between data and theories, but also retaining more

information than other methods such as the power spectrum. This has the potential

to break degeneracies which would otherwise lead to ambiguous interpretations of

the data.

Efficiently making testable predictions from our theories is vital. Current pre-

dictions come either from analytic models or from simulations. Analytic models

are faster but less detailed than simulations. My halo model is a middle-ground be-

tween semi-numerical simulations and analytic models. My final model makes use

of intermediate results from pre-calculated simulations to accelerate the modelling

speed. The resulting approximate predictions could be useful for comparing data

from upcoming experiments, but would likely need to be improved before giving

decent comparisons.

In two other projects I use machine learning to extract information about the

EoR from simulated data. In one of these projects, I train models to extract in-

formation about the progress of the EoR directly from simulated data. The good

accuracies of these models show that the 3PCF is a useful summary statistic for

EoR data, and should certainly be used in future analysis of the 21cm signal. In the



other project I emulate the full behaviour of the simulations directly, from inputs to

outputs, without fitting any intermediate steps. This project has the greatest poten-

tial for immediate impact, and if EoR data were available now then my published

best surrogate model would be able to replace simulations efficiently and accurately.

It is likely that advances in computing power will give even better surrogate models

in the near future. The major contribution of this project is as a road map for future

researchers: I highlight many of the common stumbling blocks for training such

EoR emulators. The project also demonstrates the power of surrogate models in

the wider context of any high-cost simulations such as the engineering and design

sector.
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Chapter 1

Introductory material: Cosmology

Two and half thousand years ago Greek philosophers stood in fields and discussed

the origins of the Universe. They drew pictures in the sand and argued over obser-

vations made by looking at the night sky with the naked eye. Today we still seek

answers to the same great cosmic riddle — how the Universe came to exist — but

over time our questions have evolved and, crucially, we have found ways to quan-

titatively test the plausibility of our answers. Hundreds of millions of pounds are

spent on next-generation multinational experiments which will churn out terabytes

of raw data every second. As our questions and experiments have become more

sophisticated, so too have the tools that we use to analyse and interpret their results.

We have no hope of exploiting these data without continued advances in statistical

methods for data analysis. In this thesis I present my work on two crucial aspects of

this analysis for Epoch of Reionization (EoR) experiments: compression techniques

to extract the most useful information from data; and fast theoretical modelling in-

cluding mathematical models and machine learning techniques. Armed with these

tools we can tackle the formidable datasets from future experiments, and find an-

swers to the remaining unsolved questions about the EoR.



Chapter 1. Introductory material: Cosmology

1.1 History of the Universe

Our understanding of the Universe’s history is constantly changing with every new

experiment. In this section I review the current best model for the evolution of the

Universe. In the following section I will review the mathematical aspects of this

best model. Throughout both sections I will present the main observations which

have led to this model being so widely accepted by modern cosmologists.

The idea that the Universe is expanding has been popular since Edwin Hubble’s

observations of nearby spiral galaxies (Hubble, 1929). Hubble saw that several of

the nearby galaxies are moving away from us and, crucially, that the speed of the

movement increased linearly with distance. The most compelling explanation for

these observations is that the Universe is expanding. This belief has been com-

pounded by other even stronger evidence, such as the abundance of light elements

in the Universe (see Burles et al. 1999 for a review) and irregularities of relic radi-

ation from the Big Bang (Planck Collaboration, 2018). It is safe to say that most

modern cosmologists would disregard any theory which does not include an ex-

panding universe, describing such models as worthy of being sent “from the pages

of physics journals to the far reaches of radical Internet chat groups” (Dodelson,

2003).

If the Universe has been continually expanding then, in the past, it was much

smaller than it is today. By measuring the rate of expansion over the past few billion

years, we can extrapolate the Universe’s size back until it took up a tiny point in

space. This event — the appearance of all the Universe’s energy — is what we call

the Big Bang. Until around 10−43 seconds after the Big Bang (hereafter written

‘at 10−43s’), the energy levels were so high that our current theories of gravity

and the other fundamental forces are effectively useless. This time scale is known

as the Planck time after Planck (1899) suggested a fundamental quantum of time.

Figure 1.1 shows a schematic of the main epochs of the Universe from the Big Bang

until the present, according to the current prevailing model.

Starting at around 10−36s it is extremely likely that the Universe underwent

a sudden and dramatic period of expansion known as inflation, first proposed by
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Figure 1.1: Schematic of the main epochs during the history of the Universe, according to
the ΛCDM model. Labels above the schematic show the names of each epoch.
Labels below show times after the Big Bang.

Guth (1981). In a tiny fraction of a second the Universe grew by at least sixty ‘e-

folds’ or sixty factors of e (Liddle and Leach, 2003) which is roughly 1026. The

most compelling evidence for inflation is the startling homogeneity of the Universe,

as measured by relic radiation from the Big Bang. The near-perfect black body

spectrum of this radiation strongly suggests that the entire Universe was in thermal

equilibrium (Mather et al., 1994). The edges of the observable Universe are too far

apart to have been in thermal equilibrium unless it underwent a period of superlumi-

nal expansion in its past – which we call inflation. Inflation also helps resolve two

otherwise inexplicable observations: the low abundance of magnetic monopoles,

and the geometric flatness of the Universe.

At around 10−12s the Universe consisted of a plasma of quarks and their ex-

change particles known as gluons. This is known as the Quark Epoch and is the

closest time to the Big Bang that we have been able to recreate with particle ac-

celerators, see for example O’Luanaigh (2015). At around 10−6s the continued

expansion and cooling of the Universe allowed the quarks to coalesce into individ-

ual hadrons (protons, neutrons) and their antiparticles. This era is known as the

Hadron Epoch. Protons are slightly lighter than neutrons which meant that around

seven protons were formed for each neutron (Ghosh et al., 2015). The particles

and anti-particles quickly annihilated until around 1s when only matter remained,
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probably due to a very slight under-abundance of anti-matter (the matter-antimatter

asymmetry problem, see Canetti et al. (2012) for a review). Around this same time,

the ultra-lightweight particles known as neutrinos decoupled from baryonic mat-

ter. These neutrinos are still travelling today since they interact weakly with the

rest of the Universe but, for the same reason, direct observation is unlikely without

dramatic increases in equipment sensitivity, see for example Faessler et al. (2016).

Instead, we have indirect evidence for these neutrinos based on their interaction

with the Big Bang relic radiation.

Between 1s and 10s, the same annihilation process occurred for leptons during

the Lepton Epoch: electrons and anti-electrons annihilated, leaving behind only

electrons. From 10s to 1000s, the Universe cooled enough that protons and neutrons

were able to bind and form the first atomic nuclei. This process has been modelled

by Alpher et al. (1948) from which it is possible to predict the relative abundance

of various different nuclei: 75% hydrogen; 25% helium-4; and less than 0.01% of

deuterium and lithium.

For many hundreds of thousands of years the Universe continued to expand

and cool, with efficient scattering of photons maintaining thermal equilibrium be-

tween the soup of nuclei and electrons. After 380,000 years the Universe became

cold enough that electrons could bind with the nuclei: the first atoms came into ex-

istence. This event is known as recombination. After recombination, photons scat-

tered less and streamed freely in the same direction as their last scattering event.

These photons form a spherical last scattering surface which we observe today

as the Cosmic Microwave Background (CMB) radiation. This radiation was first

observed by Penzias and Wilson (1965) who published the result as an “Excess An-

tenna Temperature” of around 3 Kelvin. Many discoveries have since been made

by comparing observations of the CMB with predictions from theory. In particular

analysis of its spectrum (Mather et al., 1994) and inhomogeneities in its tempera-

ture and polarisation (Planck Collaboration, 2018). Figure 1.2 shows the spectrum

of the CMB from several observations including the COBE satellite (NASA God-

dard Space Flight Center, 2019) with the fitted black body spectrum.
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Figure 1.2: Spectrum of the CMB as measured by several instruments including the COBE
satellite. This spectrum is strong evidence in favour of the Big Bang model as
it shows the Universe was much hotter and denser in the past.

For around 150 million years after recombination the Universe went through

a period known as the Dark Ages. Although the photons from the CMB were still

able to travel freely, the first stars and galaxies had yet to form and the Universe re-

mained dark because precious few new photons were emitted. New emissions came

almost exclusively from neutral hydrogen and the spontaneous spin-flip transition

between the electron and proton. This event has a very low transition rate of around

10−15 seconds and, given the presence of many other sources at the same frequen-

cies, observing these rare photons requires highly sensitive radio telescope arrays.

The Dark Ages finished at the start of the Epoch of Reionization (EoR), when the

action of gravity had caused hydrogen to collapse into the first stars and galaxies.

The radiation from these first luminous structures caused the remaining surrounding

hydrogen to ionise. Bubbles of ionised hydrogen grew around ionising sources over

time and, around 1 billion years after the Big Bang, eventually overlapped to fill the

entire Universe. From 1 billion years onwards the Universe looked much as it does

today, with stars clustered into groups or galaxies, and galaxies into clusters.
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1.2 ΛCDM cosmology
In this section I review the status of the prevailing cosmology model known as

ΛCDM (“Lambda Cold Dark Matter”). ΛCDM is a Big Bang model which pa-

rameterises the expansion of the Universe and everything it contains. The model

includes both dark matter and dark energy.

1.2.1 Expanding Universe

The expansion of the Universe causes the physical distance between objects to in-

crease over time. The scale factor a(t) is used to parameterise this expansion: a(t)

gives the ratio of the physical distance between objects as a function of time. By

convention, the scale factor is normalised so that the current value of a(t) is unity.

For cosmological models in which the Universe is continually expanding, values

of a(t) in the past are then less than one, and values in the future will be greater

than one. Expansion causes nearby galaxies to move away from us. Any emitted

light from these galaxies will be stretched out when we observe it. The extent of

stretching depends on the speed of recession. The redshift of an observed source

is defined as the extent of stretching relative to the emitted wavelength. Formally,

redshift is the fractional increase in wavelength between the observed and emitted

wavelengths,

z≡ λobs−λemitted

λemitted
, (1.1)

or 1+ z =
λobs

λemitted
. (1.2)

A distinction is made between redshift due to the peculiar radial movement of galax-

ies (as described above), and cosmological redshift which arises from the expansion

of space itself. The cosmological redshift is directly related to the scale factor by

1+ z(t) =
1

a(t)
. (1.3)

The expansion rate of the Universe is usually quantified using the Hubble pa-
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rameter,

H(z) =
da(z)/dt

a(z)
. (1.4)

The present value of the Hubble parameter is written H0, with the subscript ‘0’ being

a frequent shorthand in cosmology for the current value of a quantity which changes

with time. Current best values for H0 differ depending on which observational probe

is used. Planck Collaboration (2018) observations of the CMB give

H0 = 67.4±0.5kms−1Mpc−1; (1.5)

supernovae measurements from the Dark Energy Survey (Macaulay et al., 2018)

give

H0 = 67.77±1.30kms−1Mpc−1; (1.6)

and measurements of Cepheid variables from the Hubble space telescope Riess et al.

(2018) give

H0 = 73.24±1.7kms−1Mpc−1. (1.7)

There is a surprisingly large inconsistency between the last value and the other two

values. This ‘tension’ is the subject of much debate among cosmologists. In July

2019, a workshop was held at the Kavli Institute for Theoretical Physics specifically

to discuss this topic. After the workshop, Verde et al. (2019) compiled the differ-

ent values for H0 and summarised the values in Figure 1.3. The tension is quoted

as being between roughly 4σ and 6σ , a significant result that certainly warrants

continued investigation. Indeed, many attempts have been made at explaining the

discrepancy. Bernal et al. (2016) consider the effect of early- and late-time physics

on this tension, particularly noting that the CMB-inferred value for H0 depends on

both early- and late-time assumptions. Bernal et al. (2016) also consider possible

non-ΛCDM physics such as extra relativistic particles other than the three stan-

dard neutrinos, but state that these models are not favoured by Planck Collaboration
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(2018). Mörtsell and Dhawan (2018) investigated whether the tension could indi-

cate a new or different type of dark matter. Extra dark energy components at early

times cause a faster pre-CMB expansion which, in turn, would cause over-estimates

of H0. They conclude that extra components are unlikely to resolve the tension,

although current data cannot completely rule this out. Data from Planck Collabora-

tion (2018) strongly indicates that the Universe has a near-zero spatial curvature, but

Bolejko (2018) use a ray-tracing simulation to show that allowing a time-evolving

spatial curvature could ease the tension.

The value H0 is often parameterised using the h parameter (pronounced ‘little

h’), with H0 = 100.0hkms−1Mpc−1. For instance the first value above would then

be quoted as h = 0.674± 0.005. The units for the Hubble parameter indicate the

method of original measurement, using the recession speed of galaxies (in kms−1)

and dividing by their distance (in Mpc).

1.2.2 Energy in the Universe

Much of modern cosmology is based on solutions to the Einstein field equations.

Einstein suggested that the geometry of spacetime is related to the contents of the

Universe. This statement is most succinctly summarised by

Gµν = 8πGTµν , (1.8)

a simple equation which hides a wealth of information in the four-dimensional ten-

sors on each side. The left-hand side represents the geometry of spacetime. The

Einstein tensor Gµν summarises the curvature and expansion of space over time.

Gµν is related to the geometry of spacetime through a series of connected equa-

tions: starting with the metric gµν for the coordinate system for an expanding uni-

verse, this tensor is transformed and combined into the Christoffel symbols, which

are then combined again into the Ricci tensor and finally the Einstein tensor above.

The energy tensor Tµν on the right-hand side of Equation (1.8) summarises

the different energy components of the Universe. A solution to the Einstein field

equations for an expanding Universe model was found by Friedman (1922). The
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Figure 1.3: Hubble Constant predictions and measurements discussed at the July 2019
Kavli Institute for Theoretical Physics workshop, taken from Verde et al.
(2019). Two predicted values using early-Universe measurements are shown
at the top, using the results of Planck Collaboration (2018) and Abbott et al.
(2017). The measured values using late-Universe measurements are shown in
the middle section, and are generally larger than the early-Universe values (see
Verde et al. (2019) for the full set of references). The bottom section shows val-
ues using combined late-Universe measurements, explicitly listing the tensions
of these values with early-time measurements on the right side of the figure.
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solution allows us to write the evolution of the Universe’s expansion rate as a func-

tion of time,

H2(t) =
8πG

3

(
ρ(t)−

[
ρcrit−ρ0(1+ z)2]), (1.9)

where ρ0 is the current-day Universe energy density, G = 6.674× 10−11Nkg−2m2

is Newton’s gravitational constant, and ρcrit is the critical density of the Universe,

related mathematically to the current day expansion by

ρcrit =
3H2

0
8πG

. (1.10)

The critical density is the energy density that gives a geometrically flat universe.

If the energy density of the Universe is greater than the critical density then the

Universe is closed and will collapse in the future. If the energy density is lower

than the critical value, then the Universe is open and parallel lines will slowly di-

verge from one another. A flat universe lies between these two extremes: parallel

lines stay parallel and the Universe will continue to expand. The current best value

from Planck Collaboration (2018) is ρcrit = 1.87847×10−29h2gcm−3, equivalent to

around five protons per cubic meter. The energy stored in the various components

of the Universe are usually quoted as density parameters. The density parameter Ωi

of a component ‘i’ is the ratio of the component’s energy density ρi to the critical

density,

Ωi = ρi/ρcrit. (1.11)

1.2.3 Dark matter

All things we can see and touch on the Earth are made of normal baryonic matter:

protons and neutrons. We would be forgiven for thinking that the entire Universe is

made up of such matter, but this is almost certainly false. Zwicky (1933) observed

the rotation speeds of galaxies in the Coma Cluster. The velocities of these galaxies

were too high to be explainable by the presence of only the luminous matter in

stars. Zwicky suggested the presence of an alternate unseen massive component
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Figure 1.4: Rotation curves of 25 galaxies, taken from Faber and Gallagher (1979). The
flattening of these curves at higher radius can most easily be explained by the
presence of extra non-luminous dark matter.

– a dark form of matter. Since then, additional evidence from the movement of

stars with galaxies has led to the widespread acceptance of this alternate form of

matter. Figure 1.4 shows the rotation curves for 25 galaxies taken from Faber and

Gallagher (1979). The flattening of these curves at higher radius is most easily

explained by the presence of extra non-luminous matter. By observing the large-

scale structure of the Universe, we can determine the preferred clustering scale of

this dark matter. The clustering scale gives an indication of the temperature of dark

matter: hotter matter has higher pressure and gives rise to more widely spaced-out

structures, whereas colder matter is able to clump more effectively and form smaller

structures. The observed clustering scales of dark matter tell us that it is likely cold,

in that it moves at speeds much less than the speed of light.
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Rotation curve observations betrayed the existence of extra non-luminous mat-

ter but gave no indication as to its form. For this we turn to Big Bang nucleosyn-

thesis (BBN) analysis of the conditions in the early Universe. BBN gives an indica-

tion of the abundances of the light elements formed during the Hadron Epoch (see

Ghosh et al. 2015 and Section 1.1 earlier). The results of this analysis indicate that

baryonic matter can account for less than a quarter of the total matter in the Uni-

verse. Whatever the form of dark matter, it is almost certainly not baryonic. There

are many other possible candidates including Weakly Interacting Massive Particles

(WIMPS), slow-moving particles known as axions, and low-interacting sterile neu-

trinos.

1.2.4 Dark energy

In the late 1990s observations of supernovae recession speeds suggested that matter

was not the only constituent of the Universe (Riess et al. 1998 and Perlmutter et al.

1998). Einstein himself included the possibility of such an extra energy compo-

nent in the energy tensor Tµν . This cosmological constant term did not change with

the expansion of the Universe, unlike the densities of radiation and matter which

decrease as the Universe expands. Figure 1.5 shows a measured relationship from

Riess et al. (1998) for Type Ia supernovae, giving the observed intensity magni-

tude of supernovae as a function of their observed redshift. These types of figures

are known as Hubble diagrams. In addition to the data, Figure 1.5 shows the pre-

dicted relationship for three models of the energy components in the Universe, given

in terms of the density parameters for matter (ΩM) and the cosmological constant

(ΩΛ). The expansion history was seen to be most consistent with a non-zero cos-

mological constant. The concept of dark energy is an extension of the cosmological

constant, allowing for the energy density to change with time or location. Another

argument in favour of dark energy is from the total energy of the Universe. The

Universe is known to be almost perfectly flat from CMB anisotropies (for example

De Bernardis et al. 2000). The total energy density of a flat Universe should match

the critical density, but summing the contributions from baryonic and dark matter

only accounts for around one third of this amount.
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Parameter Symbol Fitted Value
Baryonic matter density Ωbh2 0.02237±0.00015
Total matter density ΩMh2 0.1430±0.0011
Dark energy density ΩΛh2 0.3107±0.0011
Current-day Hubble H0 67.36±0.54
Matter fluctuation amplitude σ8 0.8111±0.0060
Redshift of reionization zre 7.67±0.73
Optical depth to reionization τ 0.0544±0.0073

Table 1.1: Cosmological parameters as fitted to observations of anisotropies in the CMB
from Planck Collaboration (2018). Observations of the anisotropies in tempera-
ture (TT), polarisation (EE) and the cross-correlation between temperature and
polarisation (TE) were used for these best-fit values.

Equation (1.9) can be written in terms of the redshift-dependent density pa-

rameters Ωi(z) for the different constituents of the Universe,

(
H(z)
H0

)2

= ∑Ωi(z)

= ΩR (1+ z)4 +ΩM (1+ z)3 +ΩK (1+ z)2 +ΩΛ (1.12)

where the values ΩR and ΩK are the current-day density parameters for radiation

and spatial curvature.

1.2.5 Cosmological parameters

ΛCDM is a physical Big Bang model which can make quantitative predictions about

the history and fate of the Universe. Many aspects of the model are not derived from

fundamental principles of physics, but are left as free parameters to be matched

with observations. Several of these parameters have been mentioned already: the

density parameters for baryonic matter Ωb, total matter ΩM and dark energy ΩΛ;

and the current-day value of the Hubble parameter H0. Another important param-

eter is σ8 which quantifies the amplitude of density fluctuations on a specific scale

(8 h/Mpc). Table 1.1 shows the best values for some of the ΛCDM parameters from

observations of the CMB (Planck Collaboration, 2018). Many parameters are more

naturally quoted including the current-day Hubble parameter h.
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Figure 1.5: Hubble diagram using magnitudes of Type Ia supernovae from Riess et al.
(1998). The top panel shows Type Ia supernova magnitudes against redshift
with three possible cosmological models: two with zero cosmological constant
(ΩΛ = 0) and low- and high-mass universes ΩM = 0.3 and 1.0; and the best
fit model with ΩΛ = 0.76 and ΩM = 0.24. The bottom panel shows residu-
als relative to the lower-mass cosmology model, emphasising that the model
with non-zero cosmological constant fits the high-redshift measurements more
closely.
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1.3 Epoch of Reionization physics
This thesis is focused on the Epoch of Reionization. The Universe after recombina-

tion was filled with neutral hydrogen. This fully-neutral Universe can be observed

in the CMB around 400,000 years after the Big Bang. However observations of

quasars (see for example Becker et al. 2007 and Gunn and Peterson 1965) show

that the Universe was almost fully ionised at around 1 billion years after the Big

Bang. At some point in the intervening time the hydrogen in the Universe transi-

tioned from fully neutral to fully ionised. The most likely culprits of this dramatic

change are the earliest luminous sources. As soon as the first stars and galaxies be-

gan to form, they emitted radiation and started to ionise the surrounding regions of

neutral hydrogen. At first these ionised regions remained small and isolated around

each source, but they soon began to overlap. The overlapping regions allowed free

passage to any new ionising photons. These excess photons could travel further and

ionise ever more distant neutral regions. The growth of ionised regions thus ac-

celerated and eventually filled the entire Universe. Actually observing this process

requires distinguishing between ionised regions and neutral regions of space. One

of the most promising probes for this is the 21cm transition of hydrogen, which is

emitted exclusively by neutral hydrogen during the proton-electron spin interaction.

In this section I introduce the framework for analysing 21cm radiation.

1.3.1 21cm measurements

Transition from parallel to anti-parallel spin alignment between the proton and elec-

tron in neutral hydrogen causes an overall decrease in energy. This happens spon-

taneously — albeit with an extremely low probability — and leads to the emission

of a photon with a wavelength of 21cm. The low probability of emission means

that the probability of re-absorption is also small. These photons are able to travel

for billions of years and can eventually be observed by radio telescopes on Earth.

Measurements of the 21cm signal on the sky thus give us an image of the neutral

hydrogen in the Universe. By tracing this signal back through redshifts, we can
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Figure 1.6: The spontaneous spin-flip transition in neutral hydrogen leads to the emission
of a photon at 21cm.

extend these two-dimensional images into three-dimensional maps.

The observed 21cm intensity from a region in space depends on three factors:

the emitted intensity due to 21cm transitions of hydrogen; the background illumi-

nation intensity from other sources at the same wavelength; and absorption of radi-

ation during the journey to Earth. Consider the radiation from a distant background

source with specific intensity I0
ν . This radiation travels along the line of sight to our

detectors, passing through regions of space with varying absorption coefficients αν

and emission coefficients jν . The radiative transfer equation can be used to find a

solution for the observed intensity of radiation received at our detectors,

Iobs
ν = I0

νe−τν +
jν

αν

(
1− e−τν

)
, (1.13)

where jν
αν

is the net emission intensity along the path from the background source

to our detectors. The optical depth τν =
∫

S αν(s)ds quantifies the total absorption

along the ray path. The Rayleigh-Jeans law

Iν =
2ν2kBTb

c2 (1.14)

relates the specific intensity Iν at frequency ν to a brightness temperature Tb. The

value kB = 1.38× 10−23JK−1 is the Boltzmann constant. The intensities in Equa-

tion (1.13) can thus be converted to temperatures

T obs
b = T 0

b e−τν +T ex
b (1− e−τν ), (1.15)
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where T obs
b is the observed temperature at our detectors, T 0

b is the background illu-

mination temperature, and T ex
b is the net emission temperature along the path. If the

background illumination is the CMB temperature (TΓ) and the excitation tempera-

ture is from 21cm emissions, then we write

T obs
b = TΓe−τν +TS(1− e−τν ), (1.16)

where the excitation temperature TS is known as the spin temperature, defined by

n1

n0
= 3 exp

(
−∆E21cm

kBTS

)
. (1.17)

The spin temperature is controlled by the relative number densities of exited (n1)

and de-excited (n0) hydrogen atoms. Here ∆E21cm = 5× 10−6eV is the energy

change for the 21cm transition.

The 21cm differential brightness temperature δTb is then the difference be-

tween the observed temperature T obs
b and the background CMB temperature TΓ(z):

δTb = T obs
b −TΓ

= TΓ(e−τν −1)+TS
(
1− e−τν

)
= (TS−TΓ)

(
1− e−τν

)
=

TS−TΓ

1+ z

(
1− e−τν

)
(1.18)

with the last step introducing an explicit redshift dependence. The magnitude of δTb

specifies the extent of 21cm emission (δTb > 0) or absorption (δTb < 0) relative to

the CMB. The optical depth τν on the right-hand side of this equation is given by

the solution to

τν =
∫

S
σ01

[
1− exp

(
−∆E21cm

kBTS

)]
φ(ν) n0 ds. (1.19)

where σ01 = 3c2A10
8πν2 is the 21cm absorption cross section; A10 is the 21cm sponta-

neous emission coefficient with value 2.85× 10−15s−1; and φ(ν) is the 21cm line
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profile including the effects of thermal broadening, pressure broadening and bulk

motion of hydrogen. The value n0 is again the number density of de-excited hy-

drogen atoms. A full calculation (Furlanetto et al., 2006) yields the optical depth

as

τν =
3

32π

hc3A10

kBTSν2
xHInH

(1+ z)δrvr

≈ 0.0092(1+δ )
xHI

TS
(1+ z)3/2

[
H(z)/(1+ z)

δrvr

]
(1.20)

with the total hydrogen number density nH, and the radial velocity gradient

δrvr = dv‖/dr‖. The optical depth is small at all relevant redshifts, so that e−τν ≈

1− τν . Using this approximation and combining Equations 1.18 and 1.20 gives the

approximate relationship

δTb(r) = 27xHI(r)
[
1+δ (r)

](Ωbh2

0.023

)(
0.15

ΩMh2

)1/2

(1.21)(
1− TΓ

TS

)(
1+ z
10

)1/2( H(z)
H(z)+δrvr(r)

)
mK.

This approximation includes the effects of neutral hydrogen fraction fluctuations

xHI(r); total matter density contrast δ (r); cosmological parameters for the densities

of baryonic matter Ωb and total matter ΩM; the CMB temperature TΓ; the spin tem-

perature TS; the Hubble parameter H(z); and δrvr(r), the radial velocity gradient.

1.3.2 Ionisation fraction history

The progress of the EoR can be tracked by observing the redshift history of the

global ionisation fraction 〈xHII〉 or global neutral fraction 〈xHI〉. Over the course

of the EoR, the Universe transitions from completely neutral (〈xHII〉 = 0) to fully

ionised (〈xHII〉= 1.0). The precise speed and duration of this process depends on the

underlying physics. I summarise the main factors affecting the ionisation fraction

history, using the review in Furlanetto et al. (2006).
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The rate at which ionising photons are produced by galaxies is strongly af-

fected by three main properties. First, the star formation efficiency f∗, since higher

star formation rates will result in more ionising photons. Values of f∗ in the local

universe are on the order of 10% but typically models with 0.5% < f∗ < 50.0% are

considered (see for example Cohen et al. 2016). Secondly, the fraction fesc of ioniz-

ing photons that can escape their source galaxy and reach the inter-galactic medium

(IGM). Values of fesc for EoR redshifts from numerical simulations can vary be-

tween fesc < 10% (Razoumov and Sommer-Larsen, 2006) and fesc < 80% (Wise

and Cen, 2008). Finally, the number Nion of photons that are actually produced

by baryons in stars clearly affects the efficiency. The value of Nion is different for

Population II stars (Loeb and Furlanetto, 2013) or early metal-poor Population III

stars (Bromm et al., 2001), with typical values of 4000 and 104 respectively. The

ionising efficiency is then written the product of these properties, namely

ζion = AHe f∗ fescNion, (1.22)

where AHe is a correction factor that accounts for the presence of stellar helium,

given by AHe = 4/(4−3YP) with YP ≈ 0.25 being the mass fraction of helium. If all

galaxies have the same ionising efficiency, then the global ionisation fraction can be

written

〈xHII〉= ζion fcoll. (1.23)

After hydrogen atoms have been ionised, it is possible that they will recombine

with free electrons. A simple prescription to account for recombinations assumes

an average number of recombinations n̄rec for each ionised hydrogen atom. In this

case, the global ionisation fraction is given by

〈xHII〉= ζion fcoll/(1+ n̄rec). (1.24)

If these values are allowed to evolve over time, then the rate of ionisation can be

written in terms of both sources and sinks of ionising photons,
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Figure 1.7: Evolution of the global neutral fraction 〈xHI〉 = 1−〈xHII〉 adapted from Bana-
dos et al. (2018). The filled regions show the 1σ and 2σ constraints imposed
by several dataset in Planck Collaboration (2016). See Section 1.3.4 for a dis-
cussion of these constraints.

d〈xHII〉
dt

= ζion(z)
d fcoll

dt
−α C(z,xHII)xHII(z)ne(z). (1.25)

In this equation, α is the coefficient of recombination controlling the sink term.

The value ne is the average number density of electrons, and the clumping factor

C(z,〈xHII〉) = 〈n2
e〉/〈ne〉2 is a measure of the extent to which electron density varies

compared to its mean value. When the clumping factor is large, recombinations are

more likely and the ionising efficiency is lower. Efficient modelling of the clumping

factor is extremely difficult, since it depends on both small and large scales (see

for instance Mellema et al. 2006b, Gnedin 2014 and Kaurov and Gnedin 2018).

Figure 1.7 shows a typical range of neutral fraction histories, adapted from Banados

et al. (2018). A discussion of constraints on the the midpoint and duration of the

EoR is given later in Section 1.3.4.
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1.3.3 Spin temperature history

The spin temperature defined in Equation (1.17) can strongly affect the 21cm sig-

nal. If the spin temperature is the same as the background CMB temperature then no

signal will be observed (δTb = 0). If the spin temperature is greater than the CMB

temperature then an emission signal will be observed (δTb > 0). If the spin temper-

ature is less than the CMB temperature then an absorption signal will be observed

(δTb < 0). In this subsection I review the evolution of the spin temperature over the

history of the Universe, summarising the descriptions in Pritchard and Loeb (2012)

and Watkinson and Pritchard (2015). Three main processes affect the evolution of

the spin temperature. First, photon emission and absorption from the CMB. Sec-

ondly, collisions between neutral hydrogen atoms and electrons which can excite

or de-excite the hydrogen to different energy levels. Finally, the Wouthuysen-Field

(WF) effect (named after Wouthuysen 1952; Field 1958) in which photons of a dif-

ferent wavelength can trigger a transition in the neutral hydrogen. The overall spin

temperature is a combination of these effects,

T−1
S =

T−1
Γ

+ xαT−1
α + xcT−1

K
1+ xα + xc

(1.26)

with TΓ the CMB temperature; Tα the Lyman-α colour temperature for the WF

effect; TK the kinetic gas temperature for collisions; and coupling coefficients for

scattering of Lyman-α photons (xα ) and atomic collisions (xc). The Lyman alpha

temperature Tα is closely coupled to the kinetic gas temperature Tα ≈ TK by re-

peated scattering (Pritchard and Loeb, 2008). The evolution of the global spin tem-

perature depends on which effect dominates at each epoch of the Universe. Local

fluctuations in these effects can also affect the local spin temperature.

Figure 1.8 shows how the redshift evolution of the spin temperature is related

to the evolutions of the gas temperature and background CMB temperature. For

z > 200, the neutral hydrogen gas remains thermally coupled to the CMB so that

TK = TΓ. Collisional coupling dominates over the other effects at these times due to

the high gas density, so that TS = TK = TΓ and no 21cm signal is observed (δTb = 0).

Between 200> z> 40, the gas cools more quickly than it can be heated by the CMB
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Figure 1.8: Evolution of the spin temperature (red line) over redshift taken from Zaroubi
(2019) after changing the text labels to match the convention in this thesis. The
kinetic gas temperature TK (green line) and the background CMB temperature
TΓ (blue line) are also shown. The shape of the spin temperature line is de-
scribed in the text.

(TK < TΓ). Collisional coupling is still efficient and the spin temperature remains

coupled to the gas temperature, so that the spin temperature becomes cooler than the

background CMB temperature (TS < TΓ) and an absorption 21cm signal would be

observed (δTb < 0). Soon after, the expansion of the Universe causes a much lower

gas density. Collisional coupling becomes less efficient, so that the spin temperature

again couples to the CMB (TS = TΓ) and we again observe δTb = 0.

Figure 1.9 from Cohen et al. (2016) shows simulated redshift-histories of the

21cm signal for a standard range of reionization scenarios, starting at around z= 40.

These scenarios have varying parameters for the star formation efficiency ( f∗); the

efficiency of X-ray sources ( fX ); the X-ray spectral energy distribution (SED); and

the integrated optical depth to the CMB (τ); and various cooling mechanisms. The

efficiency of X-ray sources at high redshift is normally quoted around fX ≈ 1, al-

though Fialkov et al. (2015) use the unresolved X-ray background to show that the

favoured values of fX are one to two orders of magnitude higher than the standard

literature value. The solid line shows a standard case with atomic cooling of hydro-

gen, f∗ = 0.05, fX = 1.0, and a ‘hard’ X-ray SED (with more high-energy photons
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Figure 1.9: Cohen et al. (2016) range of reionization histories for common parameter space
restrictions. The use of frequency as x-axis means that more recent times are
to the right-hand side of this plot. The solid black line shows the history for
a standard scenario with standard atomic cooling of hydrogen, star formation
efficiency f∗ = 0.05, X-ray efficiency fX = 1.0, and the hard X-ray SED from
Fialkov et al. (2014).

and fewer low-energy photons) from Fialkov et al. (2014). The ‘high-z max’ point

occurs as just described, with increasingly inefficient collisional coupling giving a

small absorption signal rising to no signal (δTb = 0). This remains true until the

first stars appear and emit Lyman-α radiation. The spin temperature then couples

to the cold gas temperature (TK < TΓ), giving an absorption signal δTb < 0. This

can be seen in Figure 1.9 as the signal decreasing towards its minimum value at

the point labelled ‘min’. The highest density regions have the most sources and

emit the most Lyman-α photons, so local density fluctuations have a strong effect

on the spin temperature fluctuations during this time. Eventually, the widespread

formation of stars causes the Lyman-α flux to saturate. The gas temperature be-
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gins to heat slowly, eventually surpassing the background CMB temperature and

giving a 21cm emission signal, δTb > 0. This change from large absorption signal

to an emission signal can be seen in Figure 1.9, between the minimum point and

the low-z-max point. As the gas temperature continues to rise, the emission sig-

nal in Figure 1.9 also grows. Eventually the gas temperature greatly exceeds the

background CMB temperature (TK� TΓ) and so does the coupled spin temperature

(TS� TΓ). At these times, the spin temperature can be ignored in Equation (1.21),

since 1− TΓ

TS
≈ 1. For the redshifts in this thesis, the spin temperature is generally

larger than the background CMB temperatures. Other than Chapter 4, I ignore the

effect of local fluctuations in the spin temperature.

1.3.4 Current observations

Picking out individual local stars from the interstellar medium is easy: the radiation

from stars is so much brighter than emissions from the interstellar medium that

stars are clearly visible on the sky, even to the naked eye. Observational difficulties

have so far prevented us from doing the same with 21cm radiation. The intensity of

emitted 21cm radiation from neutral regions is much weaker than other foreground

sources at similar frequencies. It is difficult to extract the actual 21cm signal from

these foregrounds. Past and ongoing experiments have begun to place limits on the

overall intensity of the signal.

The Giant Metrewave Radio Telescope1 (GMRT) is a set of 30 steerable 45m-

diameter dishes located near Khodad, India. The GMRT reported (Paciga et al.,

2013) an upper limit on the 21cm power spectrum of (248 mK)2 at z = 8.6 on

sacles k = 0.5 h/Mpc. The Precision Array for Probing the Epoch of Reioniza-

tion2 (PAPER, Parsons et al. 2009) is a set of antennae separated into West Virginia

and South Africa, trying to mitigate the effects of foregrounds by using instrument

calibration and improved antenna design. By removing galactic synchrotron radi-

ation, continuum point-sources, and galactic/extra-galactic radio sources, Ali et al.

(2015) placed an upper limit on the power spectrum of (22.4 mK)2 at z = 8.4 in

1http://www.gmrt.ncra.tifr.res.in/
2http://eor.berkeley.edu/
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the range 0.15 < k < 0.5 h/Mpc. The Murchison Widefield Array3 (MWA, Tingay

et al. 2013) is a set of dipole antennae in Australia, built to target radio frequencies

between 80 and 300 MHz with arcminute angular resolution. The MWA made an

upper limit detection on the total power in the 21cm line on scale k = 0.27 h/Mpc

at z = 7.1, giving the limit in Beardsley et al. (2016) as (164 mK)2. The Large-

aperture Experiment to detect the Dark Ages4 (LEDA) is a sub-instrument of the

Long Wavelength Array. In Bernardi et al. (2016), LEDA data were used to find an

upper limit on the 21cm signal amplitude of (890 mK)2 in the range 13.2< z< 27.4.

The LOw Frequency ARray 5 (LOFAR, van Haarlem et al. 2013) is another radio-

telescope array located in the Netherlands. LOFAR grappled with the effect of

foregrounds in the 21cm signal, caused by relatively-nearby radio sources emitting

orders of magnitude brighter than the EoR 21cm signal. The LOFAR upper limit

on the 21cm power quoted in Patil et al. (2017) is (79.6 mK)2 at k = 0.053 h/Mpc

in the range z = 9.6− 10.6. The Shaped Antenna measurement of the background

RAdio Spectum (SARAS, with capitals here intended to indicate the acronym) ex-

periment measured a sky-averaged 21cm signal in Singh et al. (2018). Without

giving an explicit limit on the amplitude of the 21cm signal, they considered 264

reionization scenarios and were able to reject 20 of them, most notably excluding

scenarios with rapid reionization. The SARAS2 experiment is ongoing.

The Experiment to Detect the Global EoR Signature6 (EDGES) measured the

first detection of a 21cm signal, published in the scientific journal Nature (Bowman

et al., 2018). After an initial upper-limit detection using the EDGES High Band data

in Monsalve et al. (2017), Figure 1.10 shows the observed 21cm absorption profile

in Bowman et al. (2018), centred at 78 MHz with a full-width at half-maximum of

19 MHz and an amplitude of 500mK. The corresponding redshifts for this range of

21cm frequencies are between 15 < z < 20. This groundbreaking observation has a

number of implications for our understanding of 21cm physics. Note the similarity

between this observed frequency trough and the predicted profile from Figure 1.9.

3http://www.mwatelescope.org/telescope
4http://www.tauceti.caltech.edu/leda/
5http://www.lofar.org/
6https://www.haystack.mit.edu/ast/arrays/Edges/
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Figure 1.10: Bowman et al. (2018) observation of the sky-averaged 21cm spectrum giving
the first detection of 21cm signal. The amplitude and width of the profile
provide constraints on the midpoint and duration of the EoR, indicating that
the primordial gas was colder than anticipated.

The minimum amplitude of the observed profile (500mK) is at least twice as large

as anticipated by any theoretical model shown in Figure 1.9. This indicates that the

gas was observed to be colder than anticipated: the spin temperature is coupled to

the gas temperature during these times, so a colder gas temperature leads to a larger

absorption signal. One possible resolution of this discrepancy is to allow for greater

cooling interactions between the gas and dark matter. The low-frequency edge of

the observed profile constrains the likely abundance of stars at early times, and the

high-frequency edge provides information about when reionization finished.

Upcoming experiments will be able to provide more detailed measurements

and should allow us to make better parameter constraints on our reionization mod-

els. The Hydrogen Epoch of Reionization Array7 (HERA, et al DeBoer 2017) is

a radiotelescope dedicated to measuring the signal from the EoR. HERA builds on

the technology from MWA and PAPER, with a hexagonal grid of 14 meter dishes.

7http://reionization.org/
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Figure 1.11: Relative sizes of the HERA elements compared to previous experiments. A
single HERA element has forty times the collecting area of a PAPER element,
and seven times the area of an MWA element. One HERA dish is also a
significant fraction of the total collecting area of LOFAR.

Figure 1.118 shows the size of the HERA dishes relative to the last generation of

experiments. The data from all dishes are combined and correlated, giving a total

data output between 4TB and 8TB per night. The current commissioning array has

19 dishes, but the full array will eventually contain 350 dishes. The commissioning

array has been used to analyse the polarization response (Kohn et al., 2018) of the

array. Construction of more elements is ongoing.

The Square Kilometre Array9 (SKA, Mellema et al. 2012) is an international

experiment situated across South Africa and Australia. With thousands of dishes

and millions of radio antennae, the total collecting area of the SKA will be over a

million square meters, equivalent to an area of land one kilometre by one kilometre,

hence the name ‘Square Kilometre’ Array. The SKA will start making observations

in the mid-2020s. Many recent publications quote the SKA as a benchmark of fu-

ture experiments – using the projected sensitivity and resolution to determine what

8http://reionization.org/science/technical-design/
9https://www.skatelescope.org/
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future constraints the SKA will place on current theories.

Observations of extremely luminous distant quasars give some idea as to when

reionization likely ended. The spectra of these quasars show a distinctive Gunn-

Peterson trough (see Gunn and Peterson 1965) due to absorption by neutral hydro-

gen along the line of sight between us and the source object. The frequency of this

trough indicates the redshift at which intergalactic neutral hydrogen was present in

significant abundances. Using this method, Becker et al. (2001) and Bolton et al.

(2011) state that the Universe was 90% ionised by z = 7.1 and that reionization had

almost certainly finished by z≈ 6.

Thomson scattering of CMB photons can also be used to constrain the dura-

tion (∆z) and midpoint (zre) of the EoR. Free electrons in space cause CMB photons

to scatter. The strength of this scattering depends on the photon polarisation, so

that the presence of free electrons imprints a signal onto the polarisation maps of

the observed CMB. Measurements of the total integrated optical depth of Thomson

scattering from Planck Collaboration (2018) are best fit by the midpoint of reion-

ization occurring at zre ≈ 7.7. This model assumes a tanh reionization history with

a full-width of two redshifts.

A more detailed method for constraining ∆z and zre involves observing the ef-

fect of the bulk movement of the Universe. Bulk movement of electrons causes

additional secondary anisotropies, known as the kinetic Sunyaev-Zeldovich (kSZ)

effect. Measurements of the kSZ effect using the South Pole Telescope (SPT) in-

dicated that reionization lasted less than ∆z < 3 with 1−σ confidence, as reported

in George et al. (2014). The measured amplitude of the kSZ effect can be used to

determine the most likely values of zre and ∆z. For a longer reionization (larger

∆z) the movement of electrons has a longer time over which to affect the CMB.

A higher amplitude of kSZ effect thus indicates that reionization occurred over a

longer range of redshifts. Figure 1.12 from Planck Collaboration (2016) shows the

resulting constraints on zre and ∆z. The blue contours show the 1σ and 2σ regions

of parameter space imposed by using only the kSZ amplitude. The green contours

show the constraints by additionally requiring that zre > 6 from the Gunn-Peterson
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Figure 1.12: Planck Collaboration (2016) constraints on the midpoint of reionization (zre)
and on its duration (∆z). The blue contours show the constraints including
only the kinetic Sunyaev-Zeldovich effect amplitude. The green contours
show the constraints by requiring that zre > 6 from the Gunn-Peterson troughs
off distant quasars.

troughs of distant quasars. The combined results indicate that 7 < zre < 10 and

∆z < 4.

Sources of Lyman-alpha radiation can be used to measure the neutral fraction

at different redshifts. Dijkstra et al. (2011) find that the Universe at z = 8.6 is still

highly neutral, by modelling the Lyman-alpha emission from a galaxies in dark

matter halos at z = 8.6. Kakiichi et al. (2015) use the visibility of Lyman-α emit-

ters during the EoR to constrain the neutral fraction at z = 7. They find that the

neutral fraction to be of order tens of percent at these times. Many galaxies show

a distinctive Lyman-alpha break, since radiation with shorter wavelengths than the

Lyman limit (9.12×10−8 m) are absorbed by neutral hydrogen. Observations of the

location of this break in the spectra the indicate the galaxy’s redshift, and can high-
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Figure 1.13: Monsalve et al. (2017) summary of reionization constraints on the midpoint
of reionization (zr) and on its duration (∆z). The specific constraints labelled
here are described in the text.

light the times at which galaxies were building up. Oesch et al. (2016) find a bright

galaxy at z = 11.09 using the observed Lyman break at 1.47× 10−6 m, indicating

that galaxies were already forming early in the EoR.

Figure 1.13 from Monsalve et al. (2019) shows a summary of constraints on the

duration and midpoint of reionization. The constraints from EDGES and Planck are

labelled, along with constraints from the South Pole Telescope (SPT), and those

from high-z quasars as discussed earlier in this section. The specific estimates

for reionization parameters indicated by markers are given by Mitra et al. (2015)

using Planck data, and by Robertson et al. (2015) using joint Planck and Hubble

Space Telescope data. The gold marker indicates the results of Greig and Mesinger

(2017b) again using data from multiple sources: the ‘dark fraction’ in the Lyman

alpha forest from quasars Mesinger (2018); the optical depth to the CMB using

Planck 2016 data.
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Introductory material: models and

methods

Modelling the 21cm signal involves accounting for complex non-linear reionization

processes and solving radiative transfer equations. Three methods are currently

used to generate predictions of the 21cm signal. Analytic models (Furlanetto et al.,

2004) make predictions of the 21cm power spectrum by estimating the abundance

and clustering of the ionising sources which give rise to ionised bubbles. Numerical

simulations (Mellema et al., 2006a) make predictions using full N-body simulations

including radiative transfer models to simulate the emission and absorption of ion-

ising photons. Semi-numerical simulations such as SIMFAST21 (Santos et al., 2010)

and 21CMFAST (Mesinger et al., 2011) use the approximation in Equation (1.21)

to generate faster but less accurate predictions than full numerical simulations. In

this chapter I describe the methods and models used throughout the other chap-

ters. I first describe the semi-numerical simulations SIMFAST21 and 21CMFAST in

detail in Section 2.1. Much of the recent literature has focused on these models,

because they provide more detailed predictions than the analytic schemes and are

more efficient than full numerical models. The simulations have been combined

with sampling techniques such as Markov chain Monte Carlo (MCMC) methods to

perform parameter estimation on mock interferometer data (Greig and Mesinger,

2015). Comparison between observations and these simulations allows us to ex-

tract the most likely reionization scenarios (see for example, Hassan et al. 2017,
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Liu et al. 2016, Pober et al. 2016, Greig et al. 2016, Greig and Mesinger 2017a). In

Section 2.2, I review the use of statistics in Cosmology, in particular the use of sum-

mary statistics for efficient comparison between data and theory. In Section 2.3, I

review the Halo Model for the density field, which forms a basis for my halo model

in Chapter 5. I then give a brief description of machine learning techniques in Sec-

tion 2.4, as these are used in Chapters 4 and 6. Finally, in Section 2.5, I review some

remaining recent literature that is relevant to the work in this thesis.

2.1 Modelling the Epoch of Reionization

2.1.1 Analytic model: Furlanetto-Zaldarriaga-Hernquist

Here I review the work of Furlanetto et al. (2004) which describes an excursion

set formalism for the growth of ionised hydrogen regions during reionization. De-

termining the morphology of ionised regions is complicated because it requires lo-

cating and counting the sources of ionisation. Traditional cosmologists might have

thought that the extend of ionisation near a galaxy depends only on the number

of photons emitted by that galaxy. This is no longer thought to be true. The old-

fashioned picture of many small ionised bubbles around each galaxy was quickly

seen to be unrealistic, with the observed morphology from simulations showing a

smaller number of large ionised regions around clusters of galaxies.

In the Furlanetto-Zaldarriaga-Hernquist (FZH) model, the intergalactic

medium begins fully neutral. Discrete bubbles of fully ionised hydrogen grow

around distinct sources. At first the sources are indeed assumed to be galaxies:

the size distribution of sources is the same as the distribution of ionising galaxies,

i.e. the galaxy mass function. The size distribution of ionised bubbles is found

by assuming that the mass of an ionised region Mion is directly proportional to the

mass of the underlying galaxy Mgal, connected by a constant efficiency parameter

ζion. This relation is written

Mion = ζionMgal. (2.1)

In order for an isolated region to become fully ionised, the enclosed luminous matter
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must emit at least as many photons as there are neutral hydrogen atoms in the region.

This condition is the same as requiring that the fraction of collapsed (luminous)

matter fcoll is large enough to ionise the whole region, namely

fcoll ≥ ζ
−1
ion . (2.2)

Using the Press-Schechter model for the fraction of collapsed matter with a smooth-

ing scale M, the collapse fraction can be written

fcoll(z,M) = 1− erf

[
δc(z)−δ√

2 [σ2(Mmin)−σ2(M)]

]
. (2.3)

The mass value Mmin can be chosen as a minimum size of allowed ionised regions.

The value δc is the critical overdensity for collapse of massive regions (often δc =

1.68 is used, see Seljak 2000). The density threshold condition in Equation (2.2)

for a region to fully self-ionise is then

1− erf

[
δc(z)−δ√

2 [σ2(Mmin)−σ2(M)]

]
≥ ζ

−1
ion ,

which simplifies to δ ≥ δx with

δx ≡ δc(z)−
√

2 [σ2(Mmin)−σ2(M)] erf−1(1−ζ
−1
ion ). (2.4)

Measuring the abundances of differently-sized ionised bubbles would involve

trying every possible smoothing scale and checking which regions of space pass the

threshold condition. Note that the smoothing scale M must be chosen before test-

ing the threshold. Also if one naively tested all smoothing scales from smallest to

largest then one would over-count small ionised regions, as follows. Consider two

nearby small regions which each have enough photons to self-ionise: both regions

pass the threshold condition. But they would also pass the threshold condition for

a larger region which encapsulates both smaller regions. Should the small regions

be counted as two separate regions, or as one large region? This is the exact prob-

lem of the relative abundances of large and small regions as described at the start
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of this subsection. The solution is equivalent to the excursion set formalism for

determining the abundances of differently-sized halos. When searching for ionised

bubbles, start by smoothing on the largest scales to see whether any regions pass the

threshold condition. All points within the smoothing horizon of such regions are

thereafter assigned to a single ionised bubble. This process is repeated for regions

of decreasing size, until the minimum mass of ionising regions Mmin is reached.

Theoretically the distribution of abundances for such ionised regions can be

determined in the same way as the excursion set formalism, as the distribution of

the first up-crossings of the density field above the threshold barrier δx(M,z) defined

in Equation (2.4). It is simpler to find the distribution of first up-crossings around a

linear approximation to this barrier by using the tangent to the curve at σ2(M) = 0.

Defining B0 as the limit of δx(M,z) as σ2(M)→ 0, we find

B0 ≡ δc(z)−
√

2erf−1(1−ζ
−1
ion )σ(Mmin). (2.5)

Similarly if B1 is the gradient of δx(M,z) as σ2(M)→ 0, then

B1 ≡
erf−1(1−ζ

−1
ion )√

2σ2(Mmin)
. (2.6)

The resulting bubble size distribution is given by Furlanetto et al. (2004) as

M
dn
dM

=

√
2
π

ρ̄

M

∣∣∣∣ d lnσ

d lnM

∣∣∣∣ B0

σ(M)
exp
[

B2(M,z)
2σ2(M)

]
(2.7)

where B(M,z) = B0 +B1σ2(M), and B0 and B1 are the limits defined in Equations

2.5 and 2.6. The function dn
dM then gives number of ionised bubbles with masses

between M and M+dM.

2.1.2 SIMFAST21 simulation

The formalism in the previous subsection describes how ionised bubbles can be

located, by smoothing the collapse fraction fcoll on decreasing scales and assign-

ing bubbles to any regions with high enough fcoll. The bubble size distribution in

Equation (2.7) was found by solving the first-up crossings above the density thresh-
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Figure 2.1: Images sliced through three of the main SIMFAST21 simulation outputs. The
non-linear density field δ (r) is used to calculate the ionised fraction field
xHII(r). Both fields are then used to calculate the brightness temperature δTb(r)

.

old analytically. Another method for locating and counting ionised regions is to

simulate the same process, explicitly resolving the density field into pixels and de-

termining where the smoothed collapse fraction exceeds the threshold barrier. After

locating the ionised regions, Equation (1.21) can be used to make predictions of the

21cm brightness temperature. This is the basis for semi-numerical simulations such

as SIMFAST21 and 21CMFAST. Both simulations start from a randomly-seeded den-

sity field and output predicted three-dimensional realisations of the 21cm brightness

temperature field. The following are the main steps in these simulations, example

outputs from which are shown in Figure 2.1.

1. Seed the initial density field onto a three-dimensional grid at high redshift;

2. Evolve the initial density field into a non-linear density field δ (r), using first-

order perturbation theory from Zeldovich (1970). The output from this step

is shown in panel (1) of Figure 2.1.

3. Determine the regions of the non-linear density field where the enclosed col-
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lapsed matter contributes enough photons to self-ionise the enclosed neutral

hydrogen. Starting with the largest and most massive regions, SIMFAST21 ex-

plicitly resolves individual dark matter halos using an excursion-set formal-

ism (Furlanetto et al., 2004). This process is repeated for decreasing smooth-

ing scales until the ionised regions are too small to be resolved by a single

pixel. For regions which are smaller than the pixel size, SIMFAST21 uses an

approximate ellipsoidal collapse method (Sheth et al., 2001). The smoothing

scale is decreased until the minimum halo mass Mmin in reached.

4. Generate the ionisation fraction field xHII(r) from the results of the previous

step. Regions with sufficient collapsed matter ( fcoll ≥ ζ
−1
ion ) to self-ionise are

painted as fully-ionised with xHII = 1. Regions without sufficient collapsed

matter are set to partially ionised based on the extent to which they fall short

of the required threshold, giving xHII = ζion fcoll. The output from this step is

shown in panel (2) of Figure 2.1.

5. Use Equation (1.21) to determine the 21cm brightness temperature field

δTb(r) from both the non-linear density field δ (r) and the neutral fraction

field xHI(r) = 1− xHII(r). The output from this final step is shown in panel

(3) of Figure 2.1. SIMFAST21 also has the option to account for local fluctua-

tions in the spin temperature at the expense of considerably more computation

time, which is used only in Chapter 4.

2.1.3 21CMFAST simulation

21CMFAST follows a similar procedure to SIMFAST21 with a few key differences.

The first difference is the method for calculating collapse fractions from the non-

linear density field. By default 21CMFAST does not resolve individual halos, but

rather calculates the collapse fraction directly from the non-linear density field fol-

lowing the model of spherical collapse (Press and Schechter, 1974). In order to

match the more accurate ellipsoidal collapse model (Sheth et al., 2001), 21CMFAST

afterwards normalises the spherical collapse fractions so that their average value

matches that expected from ellipsoidal collapse.
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The second difference is the method for calculating the ionisation fraction from

the collapsed matter. Both simulations determine whether the collapsed matter in a

region emits enough photons to ionise the surrounding matter. However, if there are

enough photons then SIMFAST21 paints the entire spherical region as ionised using

the fully overlapping-spheres method (Mesinger and Furlanetto, 2007), whereas the

default 21CMFAST algorithm is to paint only the central pixel of the region (Zahn

et al., 2006). The latter method is much faster but the algorithms give a considerably

different reionization history for the same inputs (Hutter, 2018). 21CMFAST has an

option to match the method of SIMFAST21.

The final difference is in the evolution of the parameter Mmin. The default

21CMFAST implementation allows the minimum halo mass Mmin to evolve with

redshift by setting a minimum virial temperature Tvir for ionising photons.

2.1.4 Three-parameter model

Three semi-numerical simulation parameters stand out as the most powerful ways

to constrain reionization scenarios from data:

• ζion – the ionisation efficiency. This is common to both simulations and con-

trols how many ionising photons are generated per unit of collapsed matter.

• Rmax (SIMFAST21) or Rmfp (21CMFAST) – an upper limit specifying the max-

imum travel distance for ionising photons.

• Mmin (SIMFAST21) or Tvir (21CMFAST) – a lower mass limit, specifying the

minimum mass of collapsed matter which is needed to produce ionising pho-

tons. The default 21CMFAST implementation allows the minimum halo mass

to evolve with redshift, by fixing a minimum virial temperature Tvir for ionis-

ing photons.

In Chapter 4, I additionally use the X-ray minimum energy value E0, which is

described in the subsections of that chapter.

Page 52



CHAPTER 2. INTRODUCTORY MATERIAL: MODELS AND METHODS

2.1.5 Numerical simulations

The 21cm brightness temperature can also be modelled using more expensive

numerical simulations. BEARS (Bubble Expansion Around Radiative Sources,

Thomas et al. 2009) uses one-dimensional radiative transfer simulations to model

the likely radiation profile around different sources. These profiles are then stamped

onto sources to generate the predicted 21cm maps, identifying sources by their num-

ber of emitted photons and spectra. The C2-RAY simulation (Mellema et al., 2006a)

models the actual processes of emission and conservation of photons. Rays of ionis-

ing radiation are traced from sources and give rise to the ionisation bubble morphol-

ogy discussed in Section 2.1.1. The Cosmic Reionization On Computers (CROC,

Gnedin 2014) is another program of numerical simulations, accounting for cooling

of hydrogen and helium with an Adaptive Refinement Tree code (Kravtsov et al.,

1997) to allow for improved modelling of both large and small scale structures.

The LICORICE code (Semelin et al. 2007, Semelin 2015) also uses a tree-based

approach, with Monte-Carlo radiative transfer steps to compute the effect of reion-

ization. Ross et al. (2016) present a similar numerical simulation also accounting for

multi-frequency heating, both with and without X-ray sources. Finally, the Cosmic

Dawn simulation (CODA, Ocvirk et al. 2015) use numerical prescription to simulate

the effect of reionization in the local universe. No numerical codes are used in this

thesis and these descriptions are included for the sake of completeness.

2.2 Statistics in cosmology
Statistics is fundamental to data analysis in cosmology. We can only make ob-

servations of our single Universe — and only a small part of that Universe. An

anomalous observation could be a random fluctuation or it could be a hint of new

physics. Comparisons between theory and observations must be able to account for

such fluctuations.
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2.2.1 Bayes’ theorem

Bayes’ theorem,

P(theory|observation) =
P(observation|theory)P(theory)

P(observation)
, (2.8)

is used to determine the probability that a theory is correct given some observa-

tions. This allows us to compare theory and data in a quantitative and logically

consistent way. The prior probability P(theory) encompasses all our prior knowl-

edge about the Universe and how likely a new theory is given that prior experience.

The model evidence P(observation) specifies the probability that the observation

would have been made, by marginalising over all possible theories. The likeli-

hood function P(observation|theory) specifies the probability of observing the data

given predictions from a theory. Theories are often in the form of parameterised

models such as those from ΛCDM. Given a theory which makes different predic-

tions for these parameters, Bayes’ theorem can be used to determine the most likely

value of a particular parameter, given some new observations and some prior func-

tion. Contour plots such as Figure 1.12 earlier indicate the most likely regions of

the parameter space. In that example, the ΛCDM model made predictions for the

amplitude of the kSZ effect and the total integrated optical depth to reionization,

allowing the midpoint zre and duration ∆z of reionization to remain as non-fixed

parameters. Using the new observed data and Equation (2.8), the posterior prob-

ability P(theory|observation) is then found as function of the parameter values zre

and ∆z. The parameter values most favoured by the data are those with the highest

posterior probability. Posterior plots such as Figure 1.12 show the regions of pa-

rameter space with highest posterior probabilities. Contour panels such as the one

at the bottom left show the posterior probabilities for each pair of parameters indi-

cated by the relevant x-axis and y-axis labels, by integrating out all but two of the

parameters. The one-dimensional line-plot panels along the top diagonal also show

the posterior probability for each parameter individually by marginalising over all

other parameters.
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2.2.2 Summary statistics

In order to use Bayes’ theorem one must be able to make quantitative predictions

from a theory of what the observations should be. It is often not possible to make

predictions for every individual observation, either due to time and memory con-

straints or due to the statistical nature of our theories. Summary statistics can be

used both to characterise data that is too large to handle otherwise, and also to make

predictions from statistical theories which do not make direct predictions for the

observable data. For instance, our model for the growth of structure in the Universe

does not make predictions for the locations and masses of every individual galaxy.

Instead it makes predictions for the average separation and clustering of galaxies,

if we were somehow able to ‘run the experiment’ many times and look at a large

ensemble of universes with the same underlying physics.

Common summary statistics for 21cm data involve the size, shape and clus-

tering properties of the ionised bubbles throughout reionization (see Shimabukuro

et al. 2017a, Watkinson et al. 2017, Majumdar et al. 2018 and Watkinson et al.

2019). These features contain valuable information about the evolution of the Uni-

verse and about the reionization process. This subsection contains a review of math-

ematical descriptions for the statistical clustering properties of a continuous field

δ (r). The clustering of a field is a function of scale and measures the clumpiness

of the data. The two-point correlation function ξ (2)(r) is defined as the ensemble

average over pairs of points in real space,

ξ
(2) (r1− r2) = 〈δ (r1)δ (r2)〉 (2.9)

The angular brackets denote an ensemble average over a large region of space (or

over a large number of universe realisations) to mitigate the effect of statistical

fluctuations. The spherically-averaged two-point correlation function is found by

averaging over points which are separated by a given scale R, namely

ξ
(2)(R) =

〈
ξ
(2) (r1− r2)

〉
|r2−r1|=R

. (2.10)
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Figure 2.2: Example of clustering in two sinusoidal data fields. The top left panel has pe-
riod of 0.2 and the top right has period 0.4, and the full box size is 1.0 in both
cases. The two-point correlation function of these data are shown in the bottom
panel. The correlation function has peaks near multiples of the clustering peri-
odicity in each case, with the peaks of the larger-period data (black line) more
spaced than the shorter-period data (orange line).

The spherically averaged two-point correlation function ξ (2)(R) describes the ex-

cess probability over a random field of finding similar-intensity regions separated

by a distance R. If ξ (2)(R) is large for a scale R then any two locations with sep-

aration R in the measured field are more likely to have similar intensities than two

locations in a random field. Figure 2.2 shows the two-point correlation functions for

two example datasets. The datasets are sinusoidal with different periodicity. The

data fields are shown along with their corresponding measured two-point correla-

tion functions. The data with larger clustering scale has correlation function peaks

that are spaced further apart.

Many of the theoretical expressions in this thesis simplify considerably in
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Fourier space. I use the convention

δ̃ (k) =
1

(2π)3

∫
d3k δ (r)e−ik·r (2.11)

for the Fourier transform of a continuous field δ (r). The two-point clustering in

Fourier space is quantified as the power spectrum,

P(k) δ
3
D(k1−k2) =

1

(2π)3

〈
δ̃ (k1) δ̃ (k2)

〉
, (2.12)

where the Dirac-delta function δ 3
D(k1−k2) enforces k1 = k2. The power spectrum

can be seen as the variance of the data field δ (r) on different scales k. If the power

spectrum is high for a particular scale k then pairs of locations separated by that

scale show a large variance in the data field values. If the power spectrum is low for

a scale k then parts of the data field separated by that scale tend to be similar and

have low variance.

The power spectrum P(k) and the two-point correlation function ξ (2)(r) are

Fourier-space pairs, so that

P(k) =
∫

d3r ξ
(2)(r) e−ik·r

and ξ
(2)(r) =

∫ d3k
(2π)3 P(k) e+ik·r. (2.13)

The three-point correlation function (3PCF) is similarly defined as the ensem-

ble average of triplets of points in real space,

ξ
(3) (r1,r2,r3) = 〈δ (r1)δ (r2)δ (r3)〉 . (2.14)

Note that the three vectors r1,r2,r3 connect three points in real space and so have

a vector sum of 0, i.e. they form a closed triangle. In practice, ξ (3) measurements

are actually made over configurations of triangles, i.e. over sets of unique triangle

side-lengths. The 3PCF for a single triangle configuration is then an average over

all triangles with side lengths (r1,r2,r3), namely
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ξ
(3) (r1,r2,r3) =

〈
δ (r1)δ (r2)δ (r3)

〉
(|r1|,|r2|,|r3|) = (r1,r2,r3)

. (2.15)

The Fourier-space equivalent of the three-point correlation function is the Bis-

pectrum,

B(k1,k2,k3) δ
3
D(k1 +k2 +k3) =

1

(2π)3

〈
δ̃ (k1) δ̃ (k2) δ̃ (k3)

〉
. (2.16)

2.3 Halo model for density field
In this section I review the work of Sheth et al. (2001) and Seljak (2000) which form

a basis for my halo model in Chapter 5. The halo model has been successfully used

to predict power spectra for the clustering of matter in the Universe (see for example

Smith et al. 2002, Cooray and Sheth 2002). The halo model is an analytic model for

the growth and evolution of structure in the Universe. The next subsections describe

each one of the following required ingredients for a halo model:

• Halo profile function giving the density of matter around individual halos;

• Halo mass function number densities of halos as a function of mass;

• Clustering of halo centres.

2.3.1 Profile function

The density profile ρ(r) of a halo specifies the density at all points r from the halo

centre. In a very simple model dark matter halos might be thought of as a single

point mass. In this case the profile is given by the Dirac-delta function ρ(r)= δD(r),

so that it is zero everywhere except r = 0. In reality, halos have a non-zero size and

shape. The most commonly-used halo profiles (Navarro et al., 1996) decrease with

the radial distance from the centre according to

ρ(r) =
ρs

(r/rs)(1+ r/rs)
2 , (2.17)
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where rs gives a characteristic scale radius and ρs ∝ ρ(rs) is related to the density

at the scale radius. Both parameters depend on the redshift and total mass of the

halo. The total mass of the profile is usually defined by finding the total enclosed

dark matter mass within the virial radius rv,

Mhalo =

rv∫
0

ρ(r)4πr2dr (2.18)

= 4πρsr3
s

[
ln
(

1+
rv

rs

)
− rv

rs + rv

]
. (2.19)

It is common to define a concentration parameter c = rv/rs for these profiles, so that

the profile can be parameterised by any pair of parameters from {ρs,rs,c}. N-body

simulations (Bullock et al., 2001) have shown that the concentration parameter is

well approximated by the form

c(M,z) =
c0

1+ z

(
M

M∗(z)

)β

, (2.20)

with best fit values c0 = 9 and β =−0.13. The value M∗(z) is the non-linear mass-

turnover scale, with halos above this mass being more clustered than matter in gen-

eral. In general the virial radius rv is a function of the redshift (Cooray and Sheth

2002 Equation 141). However, for all redshifts of interest in this thesis the virial

radius is given by the radius for which the profile density is ∆vir ≈ 18π2 times the

density of the background matter (see Cooray and Sheth 2002, Equation 52).

In my halo model for reionization, two spherically symmetric profiles are re-

quired. The density profile ρ(r,M) specifies the total hydrogen density around halo

centres. The ionisation fraction profile ρx(r,M) specifies the ionisation fraction

around halo centres.

2.3.2 Mass function

The abundance of dark matter halos can be modelled by the halo mass func-

tion dn(M)
dM , which gives the number density of halos with masses between M and

M + dM. The number density of halos generally decreases with mass. The halo
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Figure 2.3: Navarro-Frenk-White profiles profiles for a range of halo masses for z = 0,
shown in real-space (left panel) and Fourier-space (right panel). The functions
u(k|m) = ρ̃(k|M)/M in the right panel are normalised to be unity as k→ 0.

mass function can be used to weight the relative clustering contributions from halos

with different masses. Integrating over all possible halo masses with their relative

abundances gives the total mass in the Universe. This gives a normalisation condi-

tion for the halo mass function as

Mtot

Volume
= ρ∫

M
dn(M)

dM
dM = ρ. (2.21)

2.3.3 Two-point correlation function

The two-point correlation function of the density field is a sum of two distinct parts:

contributions when the two points lie within the same halo, and contributions when

the two points lie in different halos. These terms are written ξ 1h(r) and ξ 2h(r) re-

spectively and are called the 1-halo and 2-halo terms. These terms can be calculated

from the ingredients in the previous subsections, according to

ξ
1h(r− r′) =

∫
dM

1
ρ̄2

dn(M)

dM

∫
d3y ρ(y;M) ρ(y+ r− r′;M), (2.22)
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and

ξ
2h(r− r′) =

∫
dM1

1
ρ̄

dn(M1)

dM

∫
dM2

1
ρ̄

dn(M2)

dM∫
d3y1 ρ(r−y1;M1)∫
d3y2 ρ(r′−y2;M2) ξ

hh(|y2−y1|;M1,M2).

(2.23)

Note that the 2-halo term additionally depends on the halo-halo correlation function

ξ hh(r;M1,M2), which gives the correlation between the centres of halos.

2.3.4 Power spectrum

The 1-halo and 2-halo terms in Equations 2.22 and 2.23 can be seen as real-space

convolutions of pairs of profiles ρ(r,M). The convolution theorem allows us to

write these integrals more simply in Fourier-space,

P1h(k) =
∫

dM
dn(M)

dM
1

ρ̄2 |ρ̃(k;M)|2, (2.24)

and

P2h(k) =
∫

dM1
1
ρ̄

dn(M1)

dM∫
dM2

1
ρ̄

dn(M2)

dM

ρ̃(k;M1) ρ̃(k;M2)Phh(k;M1,M2). (2.25)

The Fourier-transformed profiles ρ̃(k,M) are given by

ρ̃(k;M) =

rv∫
0

4πr2 sin(kr)
kr

ρ(r,M)dr, (2.26)

also known as the Hankel transform (Weisstein, 2019). The correlation functions

ξ (r) have become power spectra P(k) in Fourier-space, according to the convention

in Equation (2.13). The total power spectrum is a sum of the two terms,
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P(k) = P1h(k)+P2h(k). (2.27)

2.3.5 Halo-mass bias relationship

The halo-halo power spectrum Phh(k;M1,M2) can be written (Seljak, 2000) as a

separable function of the masses M1 and M2,

Phh(k,M1,M2) = Plin(k)b(M1)b(M2). (2.28)

The bias function b(M) accounts for the fact that halo centres preferentially pick out

positions of high density contrast compared to the linear power spectrum Plin(k).

For regions of high density contrast, this systematically biases the power spectrum

to be of higher magnitude. Conservation of mass in the Universe previously given

by Equation (2.21) is then rewritten with the bias function,

1
ρ

∫
b(M)

dn(M)

dM
MdM = 1. (2.29)

The 2-halo term can also be written more simply,

P2h(k) = Plin(k)
[∫

dM
b(M)

ρ̄

dn(M)

dM
ρ̃(k;M)

]2

. (2.30)

2.3.6 Peak strength ν(M) formalism

In the Press and Schechter (1974) formalism, halo masses are often parameterised

by introducing the peak strength

ν(M) =

[
δc(z)

]2

σ2(M)
. (2.31)

The function δc(z) gives the critical density for collapse at the redshift of interest,

and σ2(M) gives the current-day fluctuations in the matter field as a function of

mass scale. The halo mass function dn(M)
dM is then parameterised by the function

f (ν) according to
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dn(M)

dM
dM =

ρ

M(ν)
f (ν)dν . (2.32)

Using this parameterisation, Sheth et al. (2001) give a fitted form for the halo

mass function by simulating random density field fluctuations and determining the

distribution for collapsed masses. The halo mass function is then written

ν f (ν) = A(1+ν
′−p)ν ′1/2eν ′/2 (2.33)

with ν ′ = aν and best fit values a = 0.707 and p = 0.3, with A = 0.1285 to preserve

the overall density of the Universe in Equation (2.29). Equation (2.33) is often

known as the Sheth-Tormen (ST) mass function. The bias function also has a fitted

form

b(ν) = 1+
ν ′−1

δc
+

2p
δc(1+ν ′p)

. (2.34)

I use the HMFCalc module (Murray et al., 2013) for generating values for these

halo mass functions and bias functions at any redshifts.

2.4 Machine learning techniques

The machine learning techniques in this thesis are methods of multi-dimensional re-

gression: learning the behaviour of some function f (x) from noisy example training

data yn = f (xn)+Noise. After fitting, the models can make predicted evaluations

f (x∗) at new input values x∗. This section describes the different machine learning

techniques in this thesis along with theoretical descriptions of their specific training

methodologies. Each method learns the behaviour of some unknown function, for

instance the SIMFAST21 power spectrum for any reionization scenario as specified

by a continuous range of SIMFAST21 input parameters. The trained models can then

make fast predictions for new function inputs, provided the new inputs do not lie far

outside the range of the representative training data.
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2.4.1 ‘Black boxes’ and interpretability

Questions are often raised about the problem of interpretability of machine learning

models. Whereas analytic models can immediately lead to increased understanding

of the underlying physics, the process by which an AI model makes predictions can

be convoluted and difficult to understand. Such models are often described as a

‘black box’, since the processes that occur to generate predictions are so obscure as

to be effectively unintelligible. In this thesis, the issue of interpretability is gener-

ally less important: I use machine learning methods to replace existing simulations,

by training them to emulate the exact behaviour of the simulations themselves. Pro-

vided that the final trained model accurately mimics the simulation behaviour, then

we can interpret its predictions as if they came directly from the true simulations.

However when the model fails to emulate the simulation behaviour perfectly, it

can in general be extremely difficult to determine how to resolve the mismatch.

For instance, in Section 6.3.6 I discuss the fact that for some scenarios the trained

SIMFAST21 emulator fails to perfectly reproduce the simulated power spectrum pre-

dictions. In such situations, analytic models are often superior since the developer

of the model can investigate and improve inaccuracies.

2.4.2 Interpolation

The simplest method for prediction is to interpolate the outputs within the training

data. I use two interpolation methods, linear interpolation and nearest-neighbour

interpolation, implemented using the classes LINEARNDINTERPOLATOR and NEAR-

ESTNDINTERPOLATOR from the SCIPY module (Jones et al., 2007). These methods

involve no model choices and ignore the effect of sample variance noise in the

training data. I include them as a naive benchmark to compare the accuracy and

speed performance with the other models. The scipy LINEARNDINTERPOLATOR

class uses QHULL (Barber et al., 1996) to triangulate the input data, computing five-

dimensional surfaces in the input space and then performing linear interpolation on

these triangles. This process takes a long time, both for training and prediction. The

scipy NEARESTNDINTERPOLATOR class makes predictions by returning the output

value from the nearest training data point. This process is very fast but generally
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results in poorer predictions.

2.4.3 Multilayer perceptron

An artificial neural network (ANN) represents the function f (xi) by manipulating

its input values xi through a series of weighted summations and simple function

evaluations. This series of repeated operations can be thought of as occurring in a

series of layers. The values in the first layer h(0) are simply the input values xi. The

network manipulates the values from one layer h(l−1)
j to the values in the next layer

h(l)j using

h(l) = h(l)j = φθ

(
Ni

∑
i=1

W (l)
i j h(l−1)

j

)
. (2.35)

The values in the l-th layer are a weighted sum over the values in the previous

layer, using trainable weight values W (l)
i j , and are then passed through an activa-

tion function φθ (x). The final layer contains the network’s fitted evaluations of the

function, f (xi). Training the network requires finding the weight values W (l)
i j which

most closely mimic the function’s behaviour. Neural networks have been used pre-

viously for learning a variety of non-linear complex relationships in astrophysics.

Use-cases include learning to extract redshifts from photometric measurements (for

example Collister and Lahav 2003 and Sadeh et al. 2016); mimicking density field

power spectra (Agarwal et al., 2014); classification of supernovae from light curves

(Lochner et al., 2016); and classification of galaxy morphologies from images (La-

hav, 1995).

Multilayer perceptrons (MLPs) are ANNs which contain at least one hidden

layer and have a non-linear activation function. Figure 2.4 shows a schematic of a

typical MLP’s layer structure. Lines represent the weighted connections between

values. Circles represent the neurons which schematically hold the values h(l)j and

pass the weighted inputs through the activation function. I use the SCIKIT-LEARN

package (Pedregosa et al., 2011) for all MLPs.

MLP training involves finding the weight values W (l)
i j which minimize the ob-

jective function,
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Figure 2.4: Visualisation of a multilayer perceptron with two hidden layers (Jennings et al.,
2018). Lines are weighted connections directed from left to right. Circles are
the neurons which schematically hold the values, pass the weighted sum of
inputs through the activation function, and send this final value to the next
layer.

MLP Objective =
1

2N

N

∑
n=1

(
f (xn)− yn

)2− α

2 ∑
i, j,l

(
W (l)

i j

)2
(2.36)

for training data (xn,yn). The weights are initialised using a different random seed

for each model. The function evaluation f (xn) in Equation (2.36) follows the proce-

dure given in the previous subsection: passing the input values xn through multiple

layers of weighted sums and activation function evaluations. Before training, one

must fix the number of hidden layers and the number of neurons in each hidden

layer. The L2 regularization parameter can be used to reduce the effect of overfit-

ting. The SCIKIT-LEARN class for MLP uses the backpropagation algorithm (Werbos,

1974) to update the weights towards the ‘best’ values that optimise the objective

function. This involves efficient calculation of the gradient of the objective func-

tion, see Rumelhart et al. (1986) for a more detailed description of this algorithm. I

use the ‘adam’ optimization method (Kingma and Ba, 2014) which terminates when

the objective function falls below a tolerance of 10−10 for at least two consecutive

iterations. The coarseness with which the weights are updated is controlled by a

parameter known as the learning rate. A high learning rate means that the weights
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are changed with a large magnitude at each step. The learning rate can be set to a

constant value for all epochs, but it can also adapt to the current speed of learning.

An adaptive learning rate decreases if the objective function plateaus (i.e. begins to

fall slowly between epochs). It is common to set an upper limit for the number of

epochs allowed for training. In my MLP models the weight values are initialised

using the Xavier initialiation strategy (Glorot and Bengio, 2010). This method sets

the weights in the i’th layer by sampling uniform values in the range [−Ui,Ui]. The

normalising value Ui =
√

6/
√

ni +ni+1 is different for each layer, using values for

the total number of input weight connections (ni, also known as ‘fan in’) and output

weight connections (ni+1, also known as ‘fan out’).

Convolutional neural networks (CNNs) are another special case of neural net-

works, designed specifically to facilitate better modelling of images. CNNs take

images as inputs and, rather than learning to understand the effect of each pixel

individually, instead apply a series of ‘filters’ to each part of the image using a

sliding window. The trained parameters are then the contents of these series of fil-

ters, which learn to pick out specific types of features from the training images.

Figure 2.5 shows a schematic of this process. Convolutions allow CNN models to

pick out features with translational and rotational invariance if the main object de-

picted in images often appears in different locations or at the different angles. For

instance, the series of pictures depicting handwritten digits in the often-used MN-

SIT1 dataset shown in Figure 2.6. The digits in these images are rotated and have

varying degrees of thickness, making MNIST a common benchmarking dataset for

analysing the quality of new methods. No convolutional neural networks are used

in this thesis.

2.4.4 Gaussian processes regression

Gaussian process regression (GPR) is a fitting process for a function whose values

are drawn from a Gaussian process. A Gaussian process is a set of random variables,

any subset of which follow a jointly multi-variate Gaussian. For a finite set of D

random variables stored in a vector f = [ f1, . . . , fD], the probability density function

1http://yann.lecun.com/exdb/mnist/
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Figure 2.5: Schematic of a convolutional Neural Network from Sumit Saha (2018). The
pixels in the image on the left are inputs to the model. The pixels are ma-
nipulated by placing a sliding window (indicated by the dotted squares) at all
possible location in the image and a weighted sum of all pixels inside the win-
dow lead to a new (smaller) image. The window filter is defined by a large
number of trainable weight parameters, and multiple filters can be used (see
here as the first stack of blue images). This process is repeated iteratively, lead-
ing to continually smaller stacked images. Near the end of the network, the
pixels in all images are flattened and used as the inputs to a standard ANN.
Training involves finding the best weights values for all window filters and the
final ANN connections.

Figure 2.6: MNIST dataset examples of handwritten digits. The digits can appear shifted
and at different angles. Convolutional Neural Networks such as the one in
Figure 2.5 can be used to capture the translational and rotational invariance.
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P(f) of a multi-variate Gaussian has the form

logP(f) =−1
2

D

∑
i, j=1

(
fi−µi

)
Ki j
(

f j−µ j
)
+ constant. (2.37)

Fitting this finite distribution involves finding the elements µ = [µ1, . . . ,µD] of

the mean vector, and the elements Ki j of the covariance matrix. A Gaussian process

extends the concept of a multi-variate Gaussian to infinite dimensions, by replacing

the finite-dimensional forms [f, µ , Ki j] with functional forms [ f (x), m(x), k(xi,xj)].

A Gaussian process can then be thought of as a distribution over functions, and

training involves finding the optimal forms for the mean function m(x) and a co-

variance kernel k(xi,xj). Predictions are made by finding the function values which

maximize the joint posterior of the training data and the new input values, all of

which are assumed to be drawn from the same Gaussian processes. The choice of

covariance kernel reflects the expected properties of the underlying process, such as

smoothness or periodicity. Figure 2.7 shows an example of fitting a Gaussian pro-

cess, where both the fitted mean function and covariance kernel have been shown.

Gaussian process regression involves finding the likelihood distributions of the

mean function m(x) and covariance function k(xi,xj) which result analytically from

the noisy training data. These likelihood distributions are combined with input prior

distributions, to give the final posterior distributions from which predictions can be

made. The prior for the mean function is often assumed to be linear,

m(x) = A+bx (2.38)

with trainable parameters A and b (initialised to zeros) specifying a linear relation-

ship to each of the five input dimensions. The prior for the covariance function

throughout this thesis is the MATERN32 kernel,

kM32(xi,xj) = σ
2

(
1+

√
3|xi−xj|

ρ

)
exp

(
−
√

3|xi−xj|
ρ

)
(2.39)
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Figure 2.7: Example of Gaussian process regression on noisy data yn = xn sin(xn) +
N (0,εn), with the noise amplitude on each data point εn being randomly drawn
randomly from the interval [0.5,1.5]. The mean function (solid blue line) and
covariance kernel (shaded blue region) are found which best match the training
data (red points).

with trainable parameters for the kernel variance σ2 and kernel length-scale ρ (both

initialised to unity). The MATERN32 is used to represent data with a moderate level

of smoothing. Both of these kernel parameters control over-fitting. For instance, a

smaller value of ρ allows the mean function to change more rapidly as a function

of the inputs, which can cause the model to overfit the training data.

Training this model involves finding the matrix elements Ki j = k(xi,xj) of the

training data. The expected mean and variance for a new prediction test location x∗

are then given by

f (x∗) =
N

∑
i, j=1

k(xi,x∗)
(
Ki j +σ

2
δi j
)−1y j , (2.40)

Var( f (x∗)) = k(x∗,x∗)−
N

∑
i, j=1

k(xi,x∗)
(
Ki j +σ

2
δi j
)−1k(x∗,xj) , (2.41)

Page 70



CHAPTER 2. INTRODUCTORY MATERIAL: MODELS AND METHODS

(Rasmussen and Williams, 2006). Note that these equations involve inverting the

large matrix (Ki j+σ2δi j). In the case of Chapter 6, the matrix has 910002 elements.

Using python 8-byte FLOAT64 values, simply storing a single object instance of this

matrix takes 60GB of RAM. The computer architecture with 128GB of RAM is

not large enough to invert such a matrix, since inversion requires much more RAM

than a single matrix instance. Sparse Gaussian process regression (SGPR) is an

approximation of GPR for huge data sets. SGPR approximates the matrix inver-

sion by using only a subset of m observed data points and inverting this smaller

matrix instead. These inducing points are effectively an additional set of fitting pa-

rameters. The SGPR models use the GPFLOW package2 (Titsias, 2009) using Tensor-

Flow (Abadi et al., 2016)). The GPFLOW package uses the SCIPY.OPTIMIZE.MINIMIZE

function with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

method to find the best set of inducing points. The minimisation uses the default

termination method, i.e. when the maximum component of the objective function’s

gradient falls below a tolerance of 10−5.

2.4.5 Support vector machine

Support vector machine (SVM) models are often used for classification, but can

also be used for regression. In SVM classification, training involves finding a set

of hyperplanes which separate the training data into their labelled classes while at

the same time maximising the distance between the hyperplanes and the nearest

training data points. SVM regression extends this concept to functional forms, so

that training the model involves finding a function f (x) whose evaluations at the

training points xn are most similar to the observed training values yn, while at the

same time ensuring that the function is as simple as possible. I use the SCIKIT-LEARN

package (Pedregosa et al., 2011) for the support vector machine models.

SVM training involves finding the functional form f (x) such that the residual

errors between the training data (xn,yn) and the function evaluations f (xn) all lie

within some tolerance−ε ≤ f (xn)−yn≤ ε . This stringent constraint usually makes

it impossible to find any such form f (x). To weaken the condition and allow a

2http://gpflow.readthedocs.io/en/latest/intro.html
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solution, the slack variables (ξn,ξ
∗
n ) are introduced so that the residual fitting error

f (xn)−yn for the training point (xn,yn) obeys−ε−ξ ∗n ≤ f (xn)−yn ≤ ε +ξn. This

optimization problem is more easily solved in the dual form, with objective function

SVR Objective =
N

∑
i, j=1

(
αi−α

∗
i
)

k(xi,xj)
(
α j−α

∗
j
)

+ ε

N

∑
i=1

(
αi +α

∗
i
)
−

N

∑
i=1

(
yi(αi−α

∗
i )
)
.

(2.42)

Training involves finding the values (αi,α
∗
i ) which minimize this objective func-

tion, subject to margin constraints

N

∑
i=1

(
αi−α

∗
i
)
= 0 and 0≤ αi,α

∗
i ≤C . (2.43)

The kernel function k(xi,xj) in Equation (2.42) controls the functional form

f (x). I try three different kernel functions: radial basis function (RBF), polynomial,

and sigmoid. The RBF kernel,

kRBF(xi,xj) = exp
(
− γ
∣∣xi−xj

∣∣2 ) . (2.44)

is infinitely differentiable, hence is often used to model data from smooth distribu-

tions. Before training, one must set the penalty term C, the kernel influence range

γ (hereafter written GAMMA to match the python class parameter), and the margin

tolerance ε (written EPSILON). Overfitting for SVR models is discouraged by C the

penalty term, since higher C values give rise to overfitting and lower C values give

rise to underfitting.

2.4.6 General training methodology

In this subsection I describe the general methodology for machine learning projects.

Standard practice is to split the available data into two distinct parts. The first

(usually larger) part is used to train the model, and the second part to test the model’s
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performance on unseen data. These two data sets are known as the testing and

training datasets respectively.

Many machine learning algorithms have a set of ‘hyperparameter’ choices that

must be made before starting to train the model. Such choices can have a strong

effect on the final accuracy of predictions, but it is rarely obvious at the start of a

project what hyperparameter values will result in the most accurate model. Instead,

one normally tries a range of models with many different hyperparameter values

and selects the model with highest performance. I mention two common search

strategies for comparing models with different hyperparameters: an exhaustive grid

search; and a random search.

The most basic strategy is to try an exhaustive list of hyperparameters combi-

nations. Many models have tens or hundreds of possible hyperparameter choices,

and each parameter can take one of many different values. Instead of comparing all

possible combinations of all hyperparameters, one normally chooses a subset of the

hyperparameters that are expected to have the largest effect on the prediction out-

come. By training models on all different combinations of choices, the best model

can be selected and retained for future use. Clearly this method becomes infeasi-

ble for more than a handful of hyperparameter choices, as the required number of

models can quickly become computationally impossible.

A more efficient method is to choose the hyperparameters randomly within

defined ranges. For this strategy, one needs to choose the allowed range of values

for each hyperparameter that will be varied. For instance, one might select the range

of hidden layer sizes in a neural network, or the allowed kernels for a Gaussian

processes regression model. By choosing random hyperparameters, one can choose

exactly how many models to run. The choice of how many models to run is then

a balance between the available resources and the quality of the final model: if too

few models are trained. then the hyperparameter space will be poorly sampled; but

training too many models is much more expensive. This strategy generally allows

for a much wider range of models to be compared than the exhaustive search.

By trying a range of different hyperparameters, one can usually find a model
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Figure 2.8: Schematic of five-fold cross-validation over a single dataset. The model is
trained once using four fifths of the data, excluding the remaining one fifth.
This excluded segment is used to calculate the model performance on unseen
data. The model is trained four more times, each time excluding a different one
fifth of the training data. The average performance over the five folds gives a
measure of the model’s overall performance, including its ability to extend to
new unseen data.

with better prediction accuracy. However this process is sensitive to overfitting: one

might find a model which performs very well on the training data, but makes poor

predictions on new unseen data. In order to determine which model has the highest

accuracy while reducing the chances of overfitting, a cross-validation approach can

be used. Cross-validation splits the training data into a number of segments or

‘folds’, as shown in Figure 2.8. In this figure, five separate models are trained with

the same fixed hyperparameters, where each model is provided with data from only

four of the five folds. The fifth excluded fold is used to calculate the prediction

performance each model. Measuring the performances on unseen data means that

the best model is one which extends well to new data. The overall accuracy score is

usually taken as the the mean of the validation scores.
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2.4.7 Input and output scaling

Data scaling can be used to improve the efficiency of artificial neural networks dur-

ing training, and also to improve the quality of the final predictions. The weight val-

ues in many neural networks are initialised at small values, often usinng the Xavier

method described in Section 2.4.3. In general, different input features into a model

have different scales and magnitudes. Ideally all inputs into the network would have

similar orders of magnitude and simple distribution such as normal or uniform. This

can easily be achieved by separately normalising or standardising each input fea-

ture. Normalising an input feature forces all values to lie in the range [0,1] by using

the minimum and maximum feature values. The normalised features x′ are then

related to the original features x according to x′ = (x−min(x))/(max(x)−min(x)).

Standardising an input feature scales the feature to have a mean of zero and a stan-

dard deviation of 1.0, i.e. x′ = (x−mean(x))/std(x).

Scaling the model output value(s) also has a beneficial effect on the final pre-

diction accuracy. Training a model involves minimising some objective function to

match the predicted outputs f (xn) with the true output values in the training data

yn. Data points with large output values yn will contribute disproportionately to

this objective function compared to data points with small output values. This may

be desirable for some applications, but in general scaling the output values using

normalisation or standardisation can help mitigate the relative importance of output

values with different magnitudes.

2.4.8 Analysing model performance

After training a model, we almost certainly wish to know how accurately it makes

predictions for new data. Standard practice is to hold back a random representative

sample of the available data for testing the final model. This sample is known as the

‘testing dataset’ or ‘holdout set’. For each measurement in the testing dataset, the

model can be used to predict what the relevant outputs should be. These predictions

can then be compared the the actual observed values. Such comparisons are often

made using summary metrics or illustrative plots. I mention a few standard methods

here.
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The accuracy of a model’s predictions can be most easily quantified by using

a single numerical accuracy metric. This number should quantify the similarity of

the model’s predicted outputs (often written ŷi) to the true outputs (yi) observed in

the testing data. Common metrics are the mean squared error (MSE),

MSE
[
y, ŷ
]
=

1
N

N

∑
i
(yi− ŷi)

2 (2.45)

and the mean absolute error (MAE),

MAE
[
y, ŷ
]
=

1
N

N

∑
i
|yi− ŷi| (2.46)

along with the derived value for the root mean squared error, RMSE =
√

MSE.

Both use the absolute difference |yi− ŷi| between the observed and predicted output

values.

These single-number metrics are useful guidelines and are often quoted as the

final measure of a model’s performance. However, they provide no further insight

in how the model can be improved. Often the performance of a model is strongly

correlated with the input or output values: the model might make poorer predictions

for large values of one of the outputs, or might struggle when the inputs are outside

a certain range. In this case, prediction plots can provide valuable insight into the

model’s behaviour. In the following subsections I describe two common prediction

plots used in this thesis: predicted vs true plots and error histograms.

Predicted vs true plots

Plot the predicted output values as a function of the true output values in the testing

data can illustrate which output regimes the model struggles with the most. Fig-

ure 2.9 shows an example of one such plot, copied from Figure 4.4 later. For a per-

fect model, all predicted values would exactly equal the true values. The predicted

vs true plot for such a model would have all points lying on the main diagonal. Any

deviations from this diagonal indicates poorer predictions and, in particular, the

scatter of points around the diagonal can highlight which output regions are least

accurately predicted. In Figure 2.9 for instance, the model performance depends
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Figure 2.9: Example plot of predicted vs true values for a model predicting the typical
bubble size of ioinised regions. The model accuracy is strongly dependent on
the output value: low values of Rbubble have accurate predictions that that lie
along the main diagonal (shown as a dotted black line); high values of Rbubble >
100Mpc have much worse predictions accuracies.

strongly on the typical bubble size: for larger typical bubbles (Rbubble > 100Mpc)

the predicted values are on average significantly further from the diagonal, whereas

the higher accuracy predictions for smaller bubbles (Rbubble < 100Mpc) lie closely

along the main diagonal. Knowing which output regimes are harder to model al-

lows one to attempt to refine the model, either by retraining the model with different

choices or by gathering more data for those situations.

Histograms of errors

The single-value metrics in Equations 2.45 and 2.46 above summarise the overall

error of the model’s predictions. Instead, one can plot a histogram of the full dis-

tribution of individual errors for each measurement in the testing data. Plotting the

full distribution provides a more in-depth illustration of the performance. The top

panel of Figure 2.10 shows example typical error histograms for two models, one of

which is more accurate than the other. The x-axis shows a range of RMSE values,

and the y-axis demonstrates the frequency of predictions in bins of RMSE values.

For the more accurate model in this figure (black line), almost all predictions errors
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are below 20%. For the less accurate model (purple line), the prediction errors are

spread to much higher values of 60% RMSE. Error histograms can also highlight

whether the model has outlier predictions. The bottom panel of Figure 2.10 shows a

typical histogram for a model with a significant number of outlier predictions. The

outliers are seen as a secondary peak at RMSE of 60%. Investigating the origin

of these outlier points could potentially reveal the reason for their poorer perfor-

mance, and indicate what new data or modelling choices could be used to improve

the model accuracy. All histograms in this subsection were generated for illustrative

purposes only, using fake prediction data.

2.5 Review of recent literature
In this section I review recent publications that are relevant to the remaining chap-

ters in this thesis, highlighting how my work fits into the existing literature. Sec-

tion 2.3 already gives a detailed review of the halo model which is the starting point

for the analytic model in Chapter 5. The following subsections review current liter-

ature for the other chapters.

2.5.1 21cm tomography

Simulated maps of the 21cm signal show a wealth of complex structure. The sim-

ulated δTb(r) signal shown in Figure 2.1 is the result of complex interactions be-

tween many non-linear physical processes. Observations from upcoming experi-

ments such as the SKA will for the first time be able to generate similar maps for

the actual Universe (Bacon et al., 2018). Ionised regions grow continually during

the EoR, so that larger regions are more frequent at later times than at earlier times.

Measurements of the bubble size distribution over a range of redshifts can indicate

the speed of ionised bubble growth. Bubble size distributions can thus constrain

any model parameters which affect the duration of the EoR, such as the ionising

efficiency ζion and the minimum halo mass Mmin with high enough star formation

rate to produce ionising photons.

Many recent publications have considered how to analyse the complex struc-

ture within 21cm data. In particular, four different techniques are commonly used
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Figure 2.10: Top panel: typical error histograms for more accurate (black line) and less
accurate (purple line) models. For the accurate model, almost all predic-
tions errors are below 20%. For the less accurate model, the prediction er-
rors are spread over a wider range of values, with fewer low-error predictions
and more high-error predictions. Bottom panel: typical error histogram for a
model with outlier predictions. Many of the predictions have high accuracy,
but a significant fraction of the predictions have error near 60%.

Page 79



CHAPTER 2. INTRODUCTORY MATERIAL: MODELS AND METHODS

to measure the size distribution of ionised regions: the mean free path method

(Mesinger and Furlanetto, 2007); the spherical averaging method (Zahn et al. 2006,

Mcquinn et al. 2006); the friends-of-friends method (Iliev et al. 2005); and the wa-

tershed algorithm (Lin et al., 2015). The mean free path method simulates the emis-

sion of ionised photons from within ionised regions, allowing these rays to propa-

gate until they are absorbed by a neutral region. The distribution of the distances

travelled by these photons measures the distribution of ionised bubble sizes. The

spherical average method finds spherical regions whose average ionisation fraction

exceeds some fixed threshold. Spheres of decreasing size are used and the bubble

distribution calculated by counting the fraction of pixels lying within bubbles of

each size. Lin et al. (2015) analyse these first two methods and find that they are

biased: they give inconsistent results for different datasets with the same underly-

ing bubble distribution. Instead, Lin et al. (2015) propose an adapted form of the

‘watershed’ algorithm used in 2D image analysis. In this algorithm, pixels with

similar values are connected and effectively treated as the contours of a 3D tomo-

graphic terrain map. A rising threshold (akin to a rising water-level in the terrain

metaphor, hence ‘watershed’) is used to segment the data into isolated regions, and

the distribution of resulting regions used as a measure of the bubble size distribu-

tion. The friends-of-friends method is similar, linking together neighbouring pixels

if they both exceed an ionised fraction threshold (often xHII = 0.5). The bubbles

size distribution is then found by the distribution of groups of these connected pix-

els (or ‘friends’). Kakiichi et al. (2017) present a new granulometry technique for

measuring the full size distribution of ionised regions from these data, using a math-

ematical concept similar to ‘sieving’ the data (Matheron, 1974). Chapters 3 and 4

represent a new way of probing similar information to these metrics. I find that the

3PCF of the 21cm signal encodes information about the bubble size distribution,

although it would be interesting to extend my models and attempt to fully recreate

the bubble size distributions resulting from the techniques mentioned here.

Classifying ionised regions from δTb(r) maps is a difficult process. Other

properties such as the density field and spin temperature can cause local fluctua-
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tions that masquerade as ionised regions. Normally a fixed threshold of δTb = 0 is

used, so that regions with δTb < 0 are assumed to be ionised. Giri et al. (2018b)

investigate a new technique for choosing this δTb threshold. The distribution of

δTb pixel values in simulated maps are typically observed to be bimodal. Giri et al.

(2018b) find that choosing a δTb threshold to separate the two peaks gives recov-

ers the bubble size distribution more better than using a simple δTb = 0 threshold.

They use a K-means clustering algorithm to find the two peaks and choose a thresh-

old halfway between. In Chapter 4, I use the simplest mean-free path method to

calculate the bubble size distributions. Other methods could potentially provide

more robust measurements for the typical bubble size. I use this method only on

ionisation fraction data, avoiding the issues with choosing a δTb threshold.

2.5.2 Ionisation fraction history

The global ionisation fraction 〈xHII〉 as a function of redshift parameterises the evo-

lution history of the Epoch of Reionization. The exact timeline of 〈xHII〉(z) remains

poorly constrained by observations, as shown by the wide range of redshift values in

Figure 1.7. In Figure 6.18, I present results that the ionisation fraction history from

semi-numerical simulations depends strongly on the choice of minimum halo mass

parameter. In fact, a wide range of cosmological and reionization model choices

can affect the ionisation fraction history. In Chapter 4, I show that the morphology

of ionisation fraction and 21cm differential brightness temperature fields encodes

information about the global ionisation fraction. Observations of distant quasars

indicate the redshifts at which the Universe still contains neutral hydrogen. Current

observational results indicate that the EoR was completed by around z≈ 6 (Becker

et al. 2001, Bolton et al. 2011). CMB anisotropies (Planck Collaboration, 2018) can

also put a limit of the total duration of the EoR, since free electrons released during

the EoR can interact with CMB photons and imprint a signal. Current observations

put an upper limit on the duration ∆z < 4 of the EoR.
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2.5.3 Clustering statistics

One of the most powerful statistical tools for analysing the 21cm signal is the power

spectrum. The power spectrum encapsulates clustering information on both small

and large scales. The power spectrum of the 21cm differential brightness tempera-

ture (often referred to as ‘the 21cm power spectrum’) will be measured from upcom-

ing interferometer experiments. A wide variety of reionization model choices affect

the clustering of the 21cm signal. Cosmological parameters can be constrained

using the high-redshift 21cm signal between z ≈ 500− 1000 (Fialkov and Loeb,

2013). The total mass of neutrinos (Pritchard and Pierpaoli 2008, Mao et al. 2008)

and Dark Energy (Wyithe et al., 2007) can also be constrained. The 21cm signal in

the range z = 7−40 can provide clues as to the character of heating sources at these

times. Reionization model effects such as the extent of X-ray heating of gas in the

IGM (Shimabukuro et al., 2015), and baryon-dark matter scattering (Fialkov et al.,

2018) can also be measured. The position-dependent power spectrum (Giri et al.,

2018a) can also be used to measure non-Gaussianities in the 21cm signal. Gravita-

tional instabilities, for instance, cause non-Gaussian clustering in the density field

from which ionising sources are seeded, and could imprint a signal onto the 21cm

signal.

A more direct probe of non-Gaussianities in the 21cm signal is the bispectrum.

Many recent publications investigate the potential benefits of the 21cm bispectrum,

including efficient calculation algorithms (Watkinson et al., 2017) from observed

data. Although the signal-to-noise requirements are much higher (Yoshiura et al.,

2015) for the bispectrum than for the power spectrum, it has the potential to con-

strain more strongly several astrophysical effects such as the Wouthysen-Field (WF)

effect (Shimabukuro et al., 2017a) and X-ray heating processes (Watkinson et al.,

2019). Majumdar et al. (2018) determine that the sign of the bispectrum measures

the relative importance of non-Gaussian fluctuations in the neutral fraction field

to fluctuations in the matter density field. A positive bispectrum implies that the

matter field is dominant, and a negative sign indicates that the neutral fraction (or

ionisation fraction) field is dominant. In Chapter 4, I measure the 3PCF of the 21cm
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differential brightness temperature and find that high-order clustering encodes sim-

ilar information to the bubble size statistics. It would be interesting to investigate

further whether the sign of these 3PCF measurements also contains information

about the sources of non-Gaussian behaviour.

Visualising and understanding the bispectrum is difficult. See Figures 1 and 2

of Watkinson et al. (2019) for excellent visualisations of how the bispectrum should

be interpreted. Instead, the three-point correlation function can be used to measure

the equivalent clustering in real-space. This is the basis for Chapter 3. Measuring

in real-space distances (instead of Fourier-space modes) gives a more intuitive un-

derstanding of the relationship between clustering amplitude and physical effects,

although the bispectrum is more immediately available from interferometer exper-

iments. Several recent papers have investigated using the 3PCF with 21cm data.

Hoffmann et al. (2018) investigate whether the 21cm 3PCF can be modelled using

a local bias model, eventually making predictions with around 20% accuracy for

large ionised regions at early times. Their model breaks down for other scenarios.

This accuracy is comparable to that of my machine learning model in Chapter 4,

although my model has more consistent accuracy across a wider range of scenarios.

Gorce and Pritchard (2019) use a derived statistic from the 3PCF to concentrate

on phase information, finding that their statistic can be used to model the size of

isolated neutral regions near the end of the EoR. Their tool can also be used to

determine the length of the overlap stages of the EoR, since the signal remains con-

stant during this time. The earliest stages of the EoR are more difficult to model,

and they present only an upper limit for the size of ionised regions. My model in

Chapter 4 has similar issues with modelling the earliest stages of the EoR.

2.5.4 Applications of machine learning to EoR data

Machine learning techniques are becoming an increasingly popular method of as-

trophysical data analysis. With the possibility of huge datasets from international

collaborations such as Planck and the Square Kilometre Array, understanding and

interpreting the results of these experiments is more and more challenging. Within

the community of EoR research, machine learning has been suggested for a number

Page 83



CHAPTER 2. INTRODUCTORY MATERIAL: MODELS AND METHODS

of uses, discussed here.

A major benefit of machine learning is the speed of the final models. Numer-

ical and semi-numerical simulations such as SIMFAST21, 21CMFAST and C2-RAY

require large computational resources (such as time, memory, and CPU). Machine

learning techniques can dramatically reduce the need for further computations in an

application known as emulation. Emulators are trained to learn the simulation be-

haviour and replace the need for any further simulations. The models must be fitted

to a representative training set of pre-computed simulations. The ultimate aim of

such an approach would be to train models to mimic the more accurate numerical

simulations, allowing for more accurate parameter estimation with Markov chain

Monte Carlo (MCMC) analysis.

To date, several papers have attempted to emulate semi-numerical reionization

simulations with moderate success. Schmit and Pritchard (2018) use neural net-

works to learn the power spectrum outputs of 21CMFAST simulations, training their

model on 100 simulations and finding accurate predictions for the power spectrum.

These models differ from my models in Chapter 6 in that they only make predictions

for fixed redshifts and fixed k-scales. My models are more flexible and can make

predictions for any new redshift or k-scale but, despite the fact that my models are

trained using SIMFAST21 data with a much larger training set of 1000 simulations,

the added complexity of including z and k as inputs causes my models to have an

accuracy that is somewhat lower than those of Schmit and Pritchard (2018). The

algorithm for SIMFAST21 differs slightly from 21CMFAST, see Sections 2.1.2 and

2.1.3 for a review of these differences. In a similar application, Kern et al. (2017)

use a Gaussian Processes regression model to emulate the 21cm power spectrum

from 21CMFAST. They use a data compression technique known as Principle Com-

ponent Analysis (PCA) and find a model which can accurately infer the reionization

parameters for unseen testing data, by using MCMC analysis.

Instead of training emulators and running MCMC analysis to derive the most

likely regions of parameter space, Shimabukuro and Semelin (2017) train an infer-

ence model to map from power spectrum outputs directly to the model parameters.
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Note that this is the reverse of my emulators presented in Chapter 6, which map from

the model parameters to the power spectrum outputs. The model in Shimabukuro

and Semelin (2017) recovers the EoR parameters for most situations, although it

struggles to predict the values of the mean free path of ionising photons at early

redshifts, whereas my models for the power spectrum can be used in any situation

to replace the original simulation. Additionally, the model is only useful at mak-

ing point estimates of the best parameters. It is not possible, for instance, to get

uncertainty estimates on parameters from these models by using MCMC analysis.

Finally, machine learning has been used to derive the reionization parameters

directly from 21cm images. For this application, Gillet et al. (2018) use a convo-

lutional neural network like the one described in Section 2.4.3 earlier. This model

uses images of the 21cm signal to perform parameter inference in the same way as

Shimabukuro and Semelin (2017): by mapping directly from the simulation outputs

to the most likely parameters. However, the model in Gillet et al. (2018) uses 2D

images of the 21cm signal instead of the power spectrum. This model also makes

successful predictions for the model’s reionization parameters. None of my mod-

els make use of 21cm images, instead compressing the 21cm maps using summary

statistics such as the power spectrum and 3PCF.
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2.6 Thesis structure
The rest of this thesis is separated into five chapters. Chapter 3 describes my code

for calculating higher-order clustering statistics from observed or simulated data. I

test the code by using it on mock data with known three-point clustering properties.

I then use the code to measure the three-point correlation function of the ionisa-

tion fraction data from semi-numerical simulations. In Chapter 4, I use machine

learning techniques to extract useful information about the Epoch of Reionization

from measurements of the three-point correlation function. In Chapter 5, I fit an

analytic clustering model to simulated ionisation maps from SIMFAST21. Starting

with the simplest model possible, I slowly add more complexity and fit the required

extra properties directly from SIMFAST21 simulations. In Chapter 6, I use machine

learning techniques to replace semi-numerical simulations with surrogate models.

I present my overall conclusions and outlook for how the work in this thesis will

affect the field in Chapter 7.
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High-order clustering calculations

The clustering of ionised hydrogen bubbles encodes much information about the

reionization process. Clustering is a measure of clumpiness: if some data are highly

clustered on a specific scale then locations separated by that scale tend to have sim-

ilar value. A simple measure of clustering is the two-point correlation function

ξ (2)(r), which gives the excess probability of finding two similar-valued spots at

a separation r compared to a random data field. I investigate the spatial correla-

tions between triplets of points, quantified by the three-point correlation function

ξ (3)(r) (hereafter written 3PCF). See Section 2.5 for a review of relevant recent

literature for this chapter. In this chapter I investigate correlations in real-space to

see whether any information can be extracted in real-space that does not exist in the

Fourier-space equivalents. Section 2.5.3 presents a review of the recent high-order

clustering literature. My code is available publicly on GitHub1.

The rest of this chapter is structured as follows. In Section 3.1, I describe my

code implementation. Section 3.2 contains detailed testing of the accuracy and va-

lidity of my code by measuring the equilateral three-point correlation function of

realisations from a distribution with known analytic form. In Section 3.3, I use the

code on the outputs from semi-numerical reioinzation simulations, to see how the

three-point correlation function for equilateral triangles is affected by the simula-

tion parameters. I conclude this chapter in Section 3.4 with a summary and some

potential further uses for the code.

1https://github.com/wdjennings/3PCF-Fast
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3.1 Implementation
Calculating the three-point correlation function involves placing differently-sized

triangles into the data field. The product of the data values at each of the three

triangle vertices is summed over a large number of similarly-sized triangles, and an

estimate of the correlation function is built up. The final output of the algorithm

is the correlation function estimates ξ (3)(ri) at a discrete set of radius values ri,

corresponding to a discrete set of radius bins. The correlation function estimate

for each radius bin is calculated by using a set of many triangles with similar (but

not identical) side lengths. In this section I first describe how to find these sets of

triangles, by matching triangles whose side-lengths lie within a given binned range

of radii Rmin ≤ r < Rmax. Then I give pseudocode for my C++ algorithm to place

these triangles onto the data and sum the data at the resulting vertices. Finally

I discuss how I use the output statistics from the code to estimate a correlation

function value.

3.1.1 Matching equilateral triangles

Efficiently finding sets of similarly-sized triangles is a key preparation stage of the

algorithm. The data in this section are represented as a pixelised set of scalar values

in three-dimensions. For each radius bin I find all the triangles whose edge lengths

r1,r2,r3 lie within a fixed range of side-lengths Rmin ≤ ri < Rmax. There are a finite

number of such triangles because the three vertices are constrained to lie on the

centres of pixels in the data. To find explicit matching triangles I place the first

vertex at the origin. I then find all possible second vertices (r2) which lie within the

spherical shell Rmin ≤ |r2|< Rmax of the origin. From each of the matching second

vertex points, I find the third vertex points (r3) which are a valid distance both from

r2 and from the origin. This last step is effectively finding pixels which lie in the

overlap of two spherical shells. Figure 3.1 shows an example in two dimensions:

with the first triangle vertex at the origin, the darker annulus indicates the allowed

region for the second vertex between Rmin and Rmax. The lighter region then shows

the allowed region of third vertices from one of the possible second vertices. The

final matching triangles (of which there are two) are outlined in black in the figure.
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Figure 3.1: Triangles matching the radius bin condition 2.5 pixels ≤ r < 3.5 pixels. The
two regions shown are the radius conditions around the first and second points.
The allowed third point(s) then lie in the overlap of these annuli.

To prevent repeated calculations I use a PYTHON script to search for these matching

triangles and store the resulting pairs of vectors (r2,r3) in a binary file. This binary

file can be loaded by the main C++ algorithm many times. I refer to these binary

files as VERTICES files.

3.1.2 Cross-correlation statistics

The correlation function of a data field is usually calculated in comparison to a ran-

dom field. The correlation function then quantifies the extent to which the data field

is more clustered than a random field. For a scalar data field, the random field should

be uniform with mean equal to the data mean. The outputs from my code are the

auto- and cross-correlation statistics between the data (D) and random (R) fields.

For the 3PCF these statistics are the data-data-data statistic (DDD), data-data-

random (DDR), data-random-random (DRR) and random-random-random (RRR).

DDD is the auto-correlation found by multiplying the data field at all three vertices.

DDR is the cross-correlation found by multiplying the data at two vertices and the
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random field at the final vertex; and so on. These statistics will later be combined

to give an estimate of the correlation function. It is practically simpler to normalise

the data field to have a mean unity, so that the random field is everywhere unity and

can be more efficiently summed as integer counts.

To understand why the random field should be uniform in our case, consider

the equivalent method for galaxy clustering calculations. The random field for a

galaxy clustering calculation is generated by placing a large number of galaxies

randomly into the same survey volume as the data field. Ideally one would use as

many galaxies as possible for the random field. In this chapter, we are calculating

the correlation of a continuous scalar field. For galaxy clustering calculation, our

code code be used by binning the survey volume into pixels and counting the total

number of galaxies in each pixel. Any number of galaxies can be used in the random

catalog. Thus, allowing the number of galaxies to tend to infinity causes the mean

number of galaxies in all pixels tends towards being completely uniform.

3.1.3 Pseudocode

The 3PCF algorithm requires two inputs: the data field (δ ) and a binned VERTICES

file. The data field is immediately normalised to have a mean of unity. The VERTICES

file contains the pairs of (r2,r3) triangle vectors for each radius bin. The algorithm

outputs the three-point correlation statistics (DDD, DDR, DRR, and RRR) for each

radius bin.

Algorithm 1 Three-point correlation algorithm
1: procedure 3PCF(δ [r],Rmin,Rmax)
2: DDD, DDR, DRR, RRR← 0 . Initialise to zero
3: Load (r2,r3) . using (Rmin, Rmax) VERTICES file
4: for all r1 do . over all data pixels
5: for each r2,r3 pair do . over matching triangles
6: DDD += δ [r1]×δ [r1 + r2]×δ [r1 + r3]
7: DDR += δ [r1]×δ [r1 + r2]
8: DRR += δ [r1]
9: RRR += 1

10: end for
11: end for
12: return DDD, DDR, DRR, RRR
13: end procedure
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3.1.4 Estimators

Algorithm 1 outputs the correlation statistics (DDD, DDR, DRR, RRR). An esti-

mate of the correlation function is found by combining these statistics. The simplest

such estimator is given by ratios of the data- and random-field auto-correlations,

ξ
(3) =

DDD−RRR
RRR

. (3.1)

Another estimator,

ξ
(3) =

DDD−3DDR+3DRR−RRR
RRR

, (3.2)

from (Landy and Szalay, 1993) generally leads to less biased results, because it

takes account of cross-correlations between the data and random fields which the

simple estimator ignores.

3.2 Testing distribution: points-on-spheres
I test my code by generating three-dimensional realisations for a distribution with

known 3PCF. I compare the measured 3PCF from my code to the theoretical form,

to get an indication of the regimes in which the code has good accuracy and pre-

cision. The easiest way to explain the testing distribution is to describe what real-

isations look like. Each three-dimensional realisation is made up of a set of points

in a box. First, a large set of points are uniformly placed on the surfaces of many

identically-sized spheres. The data are then saved to a data file by overlaying a

three-dimensional pixelised grid and counting the number of points in each grid:

zero for no points, one for a single point, and so on. For all realisations in this

section, the data are represented as a box with side length 100 arbitrary units pix-

elised into 5123 pixels. The amplitude and shape of the theoretical 3PCF for these

realisations depend on the sphere radius R and the number density of spheres ns.

I describe a scenario as a particular pair of these two parameters. I also use the

number of spheres Ns = ns× 106, since all realisations in this section have a fixed

box size of 100 arbitrary units in each of the three dimensions.
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3.2.1 Theoretical three-point correlation function

The equilateral three-point correlation function of points-on-sphere realisations has

a closed analytic form, kindly provided by Lorne Whiteway (2018). For a scenario

with parameters ns and R, the three-point correlation function for equilateral trian-

gles as a function of the triangle side length r is given by

ξ
(3)(r) =


1

16π3R3n2
s r2
√

3R2− r2
if r < R

√
3,

0 otherwise
(3.3)

3.2.2 Generating realisations

Generating a realisation for a scenario involves choosing where to put the spheres

and then placing points on the surfaces of those spheres. A uniformly random set

of NS points are chosen to be the centres of the spheres. Points are then placed ran-

domly onto the surface of each sphere. Ensuring that the points are indeed uniformly

distributed across the spheres surface is a solved problem. A first naive approach

was to sample random pairs of angles {θ ,φ} uniformly in the ranges {0,π} and

{0,2π}, placing points on the sphere using spherical coordinates,

x = Rsin(θ)cos(φ) (3.4)

y = Rsin(θ)sin(φ) (3.5)

z = Rcos(θ). (3.6)

This method gives a biased oversampling of points near the poles where |cos(θ)| ≈

0. At these poles the surface density of points increases due to the uniform sampling

of φ . A better method (Muller and E., 1959) is to sample three random variables

x,y,z from the normal distribution N (0,1) and normalise by the Euclidean norm

of these three coordinates. The distribution of the normalised vectors
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Figure 3.2: Two different sampling methods for generating points on a sphere. The left
panel shows a naive method of uniformly sampling pairs of angles (θ ,φ) which
over-samples points near the vertical poles. The right panel shows a better
method by sampling each coordinate from normal distributions.

r =
R√

x2 + y2 + z2


x

y

z

 , (3.7)

is then uniform across the surface of a sphere with radius R. Figure 3.2 shows

an example of the two different sampling methods, with the naive method visibly

over-sampling points near the poles.

After storing the locations of all points on all spheres, the final pixelised re-

alisation of the scalar field is generated by rounding the point coordinates to the

nearest integer. Figure 3.3 shows a slice through an example realisation of the test-

ing distribution. All data in this testing section are pixelised with N = 512 points

in each dimension. For the constant box size of L = 100 this gives a pixel size of

around 0.2 arbitrary physical units.

3.2.3 Testing the code

I test my code by generating points-on-spheres realisations for many R and Ns sce-

narios. I compare the outputs of my code to the true theoretical three-point corre-

lation function in Equation (3.3). Figure 3.4 shows the theoretical and measured
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Figure 3.3: Slice through an example realisation of points-on-spheres data. This scenario
uses spheres with R = 10 and Ns = 200. Each sphere appears as a circular
annulus as it has been horizontally sliced for this figure. Some annuli appear
thicker than others because slicing a thick spherical shell near its pole gives a
wider region when viewed from above.

equilateral three-point correlation functions for seven scenarios with a range of R

values and fixed ns = 5× 10−5, using the Landy-Szalay estimator. The theoretical

correlation function is shown in each case as the dashed line. The measured correla-

tion function estimates are subject to sample variance, meaning that the output from

the code depends on the randomly-seeded initial conditions. I use five realisations

with different random seeds to determine whether the theoretical correlation func-

tion lies inside the spread of the five measured code outputs. The shaded regions

in Figure 3.4 show the standard deviation of the measured three-point correlation

function across these five realisations. Figure 3.5 similarly shows the theoretical

and measured correlation functions for scenarios with fixed R = 5 and various Ns

values.
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Figure 3.4: Equilateral three-point correlation functions for points-on-spheres scenarios
with varying sphere radius R. The dashed lines show the theoretical correlation
functions for each scenario whose parameters are shown in the legend. The
shaded regions show the standard deviation of the measured correlation func-
tions across five realisations, using my code with the Landy-Szalay estimator.
The theory lines lie within the shaded regions for most triangle side lengths,
except at radius values near the upper valid limits (far right hand side of each
scenario) as discussed in the text. Vertical dotted lines indicate the theoretical
asymptotes at R

√
3 for each scenario.
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Figure 3.5: Equilateral three-point correlation functions for points-on-spheres data with
varying ns between 1×10−5 and 7×10−5, using the LS estimator. The dashed
theory lines again lie within the measured shaded regions for most triangle
side lengths. The vertical dotted line indicates the theoretical asymptote at
R
√

3 = 5
√

3 for all these scenarios.
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The measured and theoretical correlation functions match closely across most

of the triangle side lengths. The theoretical correlation function in Equation (3.3)

has a vertical asymptote at the maximum allowed radius R
√

3. This can be seen in

Figure 3.4 as vertical dotted lines and as a slight upturn near the right-hand sides of

each dashed line. My code slightly over-predicts the theory in each case near the

maximum valid radius. This is due to the binning of triangles: each binned output

is calculated using equilateral triangles with a range of side lengths as described in

Section 3.1.1. Averaging the correlation function over these differently-sized trian-

gles causes a discrepancy between measured and theoretical correlation functions,

since some triangles are included which are larger than the valid maximum radius

and thus have a theoretical 3PCF value of zero (see Equation (3.3)).

The Landy-Szalay (LS) estimator in Equation (3.2) gives better results than the

simple estimator in Equation (3.1). Figure 3.6 shows the measured and predicted

correlation functions for the same code outputs as in Figure 3.4, but using the sim-

ple estimator instead of the LS estimator. The results for the simple estimator are

significantly biased for most of these scenarios, and I use the LS estimator for the

remainder of this chapter.

3.2.4 Threading

This three-point correlation code would be a useful addition to the output statistics

from numerical and semi-numerical simulations. Such simulations are often run on

multiple threads. I added threading to my 3PCF code to reduce the time taken to

measure ξ (3) for a large simulation. Each thread is assigned a different section of

the data field over which to run the r1-loop (for the first of the triangle vertices). The

statistics from all threads are then summed at the end, since all such calculations are

entirely independent.

3.2.5 Using jackknifing for sample variance

In the previous subsections I estimate the variance of the three-point correlation

function by taking the spread from differently-seeded random realisations. This

method is not possible when calculating ξ (3) from observed data: only one realisa-
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Figure 3.6: Equilateral three-point correlation functions for the same data as Figure 3.4,
but using the simple estimator in Equation (3.1) instead of the LS estimator
in Equation (3.2). The dashed lines lie outside the shaded regions, meaning
that the simple estimator gives correlation estimates that are offset from the
theoretical distribution. Vertical asymptote lines are omitted here so that the
offset between theory and measured 3PCF is more easily visible.

tion of the Universe can be used. It is useful to measure the sample variance using a

technique known as Jackknifing, which I implemented in the code. The three-point

algorithm is run on the same data box several times, each time excluding one seg-

ment of the data. Figure 3.7 shows a schematic of jackknifing using four jackknife

samples. The 3PCF is found four times, each time excluding one quarter of the

displayed data field. In the top-left panel, the top-left quartile has been removed so

that the statistic is calculated on the remained three-quarters of the data field. In the

top-right panel, the top-right quartile has been removed; and so on. The variance

in the resulting statistics gives a measure of the uncertainty in the calculated three-

point correlation function. Instead of running the correlation code multiple times,

it is much faster to run the full calculation over the full box, and then afterwards

calculate the jackknife errors by excluding some of the measurements.

3.3 Semi-numerical simulations
The code has been well-tested on data with a known three-point distribution. I

now present the 3PCF of xHII(r,z) data from SIMFAST21 simulations. First I test
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Figure 3.7: Schematic of how jackknifing can be used to estimate errors of a calculated
statistic. The statistic is calculated several times on the same data field, each
time excluding a subset of the data from the calculations. .

the effect of sub-sampling the triangles from the triangle-matching algorithm. I

determine the optimum sampling level that balances computation time with qual-

ity of the correlation estimates. I then show how the shape and amplitude of the

three-point correlation function depend on the redshift and input parameters of the

simulation. All SIMFAST21 simulations in this chapter use a box size of 150Mpc/h

with the halo field resolved into 7683 pixels and the xHII field resolved into 2563

pixels. The cosmological parameters from Planck Collaboration (2018) were used:

ΩM = 0.315, Ωb = 0.0493, ΩΛ = 0.6847, h = 0.6736 and σ8 = 0.8111. All data

are normalised before calculating the correlation function in the same way as Sec-

tion 3.1.2, dividing by the data mean so that the random field is a uniform field of

value unity.
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3.3.1 Effect of subsampling triangle configurations

The algorithm in Section 3.1.1 can quickly lead to hundreds of thousands of match-

ing triangles, for side lengths larger than around ten pixels. Even running the

matching algorithm itself for such side lengths can take several days and, more

significantly, using such an exhaustive set of triangles in the correlation algo-

rithm would require years of CPU time. An accurate measurement of the three-

point correlation function can be obtained more efficiently by subsampling a small

number of triangles from all valid matches. I test how this subsampling affects

the code outputs. The three-point correlation function is calculated on xHII(r)

data from five randomly-seeded SIMFAST21 realisations using input parameters

Mmin = 3× 108M�, ζion = 30.0 and Rmax = 10.0Mpc. The variance in the cor-

relation functions between the five realisations measures the scatter in the outputs.

Figure 3.8 shows how this variance depends on the number of triangles used

in the correlation function algorithm, using the xHII(r) outputs at z = 12.5 where

xHII = 0.15. The variance is large for a small number of triangles but decreases

as more triangles are used. The subsampling of triangles indeed causes scatter in

the outputs from the algorithm. The scatter is smaller when more triangles are

used and, for more than around 2000 triangles, the scatter plateaus. The remaining

variance is most likely due to inherent sample variance in the random seeding of

the five SIMFAST21 realisations. I use 5000 triangles in all the correlation function

estimates from here onwards, giving calculation times of around an hour on these

SIMFAST21 simulations.

3.3.2 Redshift dependence

The equilateral-triangle three-point correlation function of the ionisation fraction

field xHII(r) encodes information about the size of the ionised bubbles. In this sub-

section I show how the correlation function evolves with redshift. I use the outputs

from five randomly-seeded SIMFAST21 realisations using the same canonical reion-

ization parameters as in the previous subsection. Figure 3.9 shows the resulting

correlation functions, presenting both the mean (solid lines) and standard deviation

(shaded regions) of the five realisation outputs.

Page 99



CHAPTER 3. HIGH-ORDER CLUSTERING CALCULATIONS

Figure 3.8: Effect of subsampling triangles on the final equilateral three-point correlation
measurement. Each point shows the variance in three-point correlation func-
tion estimates from five SIMFAST21 realisations. The simulation parameters
were Mmin = 3× 108M�, ζion = 30.0 and Rmax = 10.0Mpc, and the variances
calculated at z = 12.5 where xHII = 0.15. The variance decreases as the number
of triangles is increased, and plateaus for more than 2000 triangles.
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Figure 3.9: Equilateral three-point correlation function, averaged over five canonical SIM-
FAST21 simulations. Correlation functions for several redshifts are shown,
along with the corresponding global ionised fractions 〈xHII〉. Solid lines show
the mean of the five realisations, and shaded regions show the standard devia-
tion. As reionization progresses the bubbles in the simulation continually grow.
The peak in the correlation function traces the mean bubble size, and shifts to
higher scales for later redshifts as can be seen here.
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The equilateral three-point correlation function peaks at a preferential scale in

each redshift. This scale increases with redshift and traces the bubble size. For

small triangles there is minimal scatter between the five realisations – the shaded

regions lie closely around the solid lines. This scatter increases for triangles that

are larger than the bubble size, particularly for earlier redshifts. At early times the

small ionised regions are still isolated and the number of resolved halos is sensitive

to small fluctuations in the randomly-seeded density field. This acts as a source of

shot noise and gives rise to scatter in the large-scale clustering measurements. For

later times this shot noise is lessened as the bubbles become larger and less isolated.

The late-time halo abundances shows less sensitivity to small fluctuations in the

density field.

3.3.3 Ionisation efficiency dependence

In this subsection I show how the shape and amplitude of the equilateral three-

point correlation function depend on the SIMFAST21 ionisation efficiency param-

eter ζion. Section 2.1.1 described how ζion affects the growth of ionised bubbles,

with larger values of ζion giving faster-growing bubbles. Figure 3.10 shows the

measured equilateral-triangle three-point correlation function at z = 13 for several

different ionisation efficiency scenarios, in each case using five randomly-seeded

SIMFAST21 simulations with fixed Mmin = 3× 108M� and Rmax = 10.0Mpc. The

ionisation efficiency has a similar effect on the correlation function as redshift evo-

lution. Larger ionising efficiencies give rise to larger ionised bubbles. Increasing

the value of ζion shifts the correlation peak towards larger scales in the same way as

evolving the redshift does. The global ionised fractions 〈xHII〉 are shown for each

of these scenarios in the legend of Figure 3.10. Figure 3.11 shows how the peaks

in the correlation functions of Figure 3.10 are related to the actual size of ionised

bubbles. The ionised bubble sizes for this figure are measured using the mean-free-

path method in Mesinger and Furlanetto (2007). The radii at which the correlation

functions peak are clearly strongly correlated with the bubble size. In Chapter 4

I investigate the relationship between the typical bubble size and the 3PCF using

machine learning.
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Figure 3.10: Equilateral three-point correlation function from SIMFAST21 scenarios with
varying ζion, in each case using the results for z = 13. The peak in the corre-
lation function shifts to larger scales for increasing ionisation efficiency. The
peak scale traces the mean bubble size for each scenario. A larger ζion sce-
nario causes ionised bubbles to grow more quickly, thereby giving a peak at a
higher scale.
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Figure 3.11: Radius at which the three-point correlation function curves in Figure 3.10
are at a maximum, against the true ionised bubble size using the mean-free-
path method in Mesinger and Furlanetto (2007). The radius of the correlation
function curve peak increases with the bubble size. The error bars are given
as the 2σ limits for both the correlation function peak and the mean-free-path
peak, using five realisations.
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It is interesting to determine whether ζion has any other effect on the three-point

correlation function, other than those which are degenerate with redshift evolution.

Figure 3.12 shows the correlation functions of different ζion scenarios at fixed global

ionisation fraction 〈xHII〉, instead of fixed redshift. For each scenario the correla-

tion is plotted at a redshift whose corresponding global ionised fraction is closest

to 〈xHII〉 = 0.20. The best matching redshifts are given in the figure legend. The

peak in the equilateral three-point correlation functions at fixed 〈xHII〉 increases only

slightly with ionisation efficiency parameter, indicating that the mean bubble size

is roughly similar for all scenarios despite the different redshifts. The ζion parame-

ter does however strongly affect the amplitude of the correlation function. Higher

ionising efficiencies generally lead to a larger overall amplitude in the correlation

function. This effect is due to the difference in the bubble size distributions. Fig-

ure 3.13 shows slices through SIMFAST21 realisations for two of these scenarios,

both of which have 〈xHII〉 ≈ 0.2. The low ionisation efficiency scenario (ζion = 10)

visibly has many more small and partially-ionised bubbles than the high ionisation

efficiency scenario (with ζion = 70). These partially-ionised bubbles appear as or-

ange or yellow pixels in the figure. This difference is due to the speed of bubble

growth affecting the redshift at which each simulation reaches the required global

ionised fraction of xHII = 0.20. There are fewer small halos at earlier redshifts and

so the higher ionisation efficiency scenario, which reaches the required ionising

fraction at an earlier redshift, has fewer small bubbles. Similarly the bubbles in a

low ζion scenario grow more slowly, reaching the required xHII at a later redshift,

and leading to the presence of more small bubbles and fewer large bubbles. The

higher ζion models thus have a higher abundance bubbles that are larger than the

correlation-peak scale (around 6Mpc/h), giving rise to a larger correlation ampli-

tude.

3.3.4 Minimum halo mass dependence

In this subsection I perform the same analysis for the minimum halo mass parameter

Mmin. Halos with masses lower than this parameter are ignored in the simulation.

The motivation for this parameter is to allow for the exclusion of small dark matter
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Figure 3.12: Equilateral three-point correlation function from SIMFAST21 scenarios with
varying ζion, in each case finding nearest redshift for which 〈xHII〉 ≈ 0.20. The
nearest values are within 〈xHII〉 = 0.20±0.02 and the corresponding redshift
for each scenario is given in the legend. The ionisation efficiency at fixed
〈xHII〉 affects the normalisation but has minimal effect on the location of the
peak.

Figure 3.13: Ionisation fraction fields for fixed xHII ≈ 0.2 from SIMFAST21. The left panel
has low ionisation efficiency (ζion = 10). The right panel has high ionisa-
tion efficiency (ζion = 70). The high efficiency simulation has fewer small
and partially-ionised bubbles but has the same global ionisation fraction. This
difference gives rise to a different amplitude in the correlation function mea-
surements for fixed 〈xHII〉.
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Figure 3.14: Equilateral three-point correlation function from SIMFAST21 scenarios with
varying Mmin, in each case using the results for z = 13. The global ionised
fractions 〈xHII〉 in the legend show less spread than those in Figure 3.10. The
peak in the correlation function is only slightly affected by Mmin but the am-
plitude is strongly affected. Both features are discussed in the text.

halos which generally have low star formation rates (see Barkana and Loeb 2001)

and thus contribute very few photons to the ionising process. Increasing Mmin re-

duces the number of halos and will reduce the abundance of the corresponding

ionised bubbles. This process is likely to have an effect on the correlation func-

tion. Figure 3.14 shows the measured equilateral three-point correlation function at

z = 13 for several different minimum halo mass scenarios. Each scenario again uses

five randomly-seeded SIMFAST21 simulations and the other parameters are fixed at

ζion = 30 and Rmax = 10.0Mpc.

The minimum halo mass parameter has only a small effect on location of the

correlation peak. The ionisation efficiency and redshift evolution both affect the

speed of bubble growth, causing a shift in the peak location. The minimum halo

mass parameter does not change the speed of bubble growth, but does affect the

overall number of ionising sources. Increasing the minimum halo mass is equivalent

to removing all small halos. A scenario with lower minimum halo mass will evolve

more quickly than one with a higher minimum halo mass. This can be seen as

a slight shift in the correlation function peak in Figure 3.14, still present but less

Page 105



CHAPTER 3. HIGH-ORDER CLUSTERING CALCULATIONS

2 4 6 8 10 12 14
Triangle Side Length, r [Mpc / h]

0

20

40

60

80

100

120

140

160

r3
(3

) (r
)

z = 9.0, Mmin = 1.8 × 109 M
z = 11.0, Mmin = 7.0 × 108 M
z = 11.0, Mmin = 5.6 × 108 M
z = 13.0, Mmin = 1.0 × 108 M

Figure 3.15: Equilateral three-point correlation function from SIMFAST21 scenarios with
varying Mmin, in each case finding nearest redshift for which 〈xHII〉 ≈ 0.20.
The nearest values are within 〈xHII〉= 0.20±0.03 and the corresponding red-
shift for each scenario is given in the legend.

significant than in the previous subsections. The amplitude relationship is again

due to the difference in ionisation fractions between the scenarios. In the lower

Mmin scenarios there are many more small bubbles than the higher Mmin ones. This

leads to a higher ionised fraction in the low Mmin scenarios which, when the data

are normalised prior to calculating the three-point correlation function, reduces how

distinct the bubbles are from the background mean value.

Figure 3.15 shows the effect of the minimum halo mass parameter excluding

the redshift degeneracy. A similar effect is seen as for the ζion scenarios. The loca-

tions of the correlation function peak changes slightly with varying Mmin, indicating

that the mean bubble size grows for the later-redshift scenarios. The bubble distri-

butions visible in the slices through two of these scenarios (in Figure 3.16) show a

similar effect, where the relative abundances of small and large bubbles affects the

overall amplitude of the correlation. The effect is even more pronounced for Mmin,

since the high Mmin scenarios contain no small bubbles rather than a few small bub-

bles.
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Figure 3.16: Ionisation fraction fields for fixed xHII ≈ 0.2 from SIMFAST21. The left panel
has low minimum halo mass (Mmin = 108M�). The right panel has high min-
imum halo mass (Mmin = 1.8×109M�). The high halo mass scenario has no
small and partially-ionised bubbles but the same global ionisation fraction.
This difference gives rise to a different amplitude in the correlation function
measurements for fixed 〈xHII〉.

3.4 Conclusions
Efficient calculation of the 3PCF is a potentially useful extra summary statistic for

ionisation fraction data. My code generates accurate and precise estimates of the

3PCF, determined by using the code on data with known correlation properties.

The code is far more efficient that the naive approach of looping over all possible

triplets of pixels in the data. The equilateral triangle 3PCF of ionisation fraction

data from SIMFAST21 shows a clear dependence on the parameters and redshift of

the simulated data. Using the code in Markov-chain Monte Carlo analysis could

potentially break some of the degeneracies in between the ionisation efficiency and

minimum halo mass simulation parameters. It would be interesting to measure the

relationship between the simulation parameters and the 3PCF of 21cm brightness

temperature data. The code in its current form would also easily extent to four-

point and higher order correlation functions, and could easily be used to measure

the 3PCF for non-equilateral triangles.
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Chapter 4

Analysing EoR data with the 3PCF

In the previous chapter I presented my optimised code for three-point correlation

function (3PCF) calculations. I used the code on a small number of semi-numerical

simulations to demonstrate how the 3PCF evolves with the redshift during theses

simulations. I also investigated how the 3PCF depends on two of the reionization

parameters, the minimum halo mass parameter Mmin, and the ionising efficiency

ζion. In this chapter I use machine learning techniques to investigate whether the

3PCF can inform us about the typical size of ionised bubbles (Rbubble) and about

the global ionisation fraction (xHII). See Section 2.5 for a review of the recent high-

order clustering statistics literature.

The rest of this chapter is split in to the following sections. In Section 4.1, I dis-

cuss running semi-numerical simulations and how I calculate the statistics of inter-

est from the simulation outputs. Section 4.2 details the choices I make before train-

ing my MLP models, including hyperparameters and input/output scaling types. In

Section 4.3 I present my MLP models for predicting the typical bubble size, and

Section 4.4 presents my MLP models for predicting the global ionisation fraction.

I present my conclusions on using 3PCF data for EoR data in Section 4.5. In this

chapter I use the following cosmological parameters: ΩM = 0.3153, Ωb = 0.0493,

ΩΛ = 0.6847, H0 = 67.36km s−1Mpc−1, ns = 0.9649, σ8 = 0.8111, the latest re-

sults using the default PLIK likelihood from Planck Collaboration (2018).
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4.1 Data acquisition
The data in this chapter were generated using 1000 realisations of the semi-

numerical code 21CMFAST. Each realisation generates three-dimensional realisa-

tions of the δTb(r) and xHII(r) fields in cubes of size 250Mpc resolved into 2563

pixels (smoothed from density fields resolved into 7683 pixels). The resulting red-

shifts from the 21CMFAST algorithm are 5.0, 5.6, 6.3, 7.0, 7.78, 8.7, 9.6, 10.7, 11.9,

13.2, 14.6, 16.1, and 17.8. See Mesinger et al. (2011) for a description of the it-

erative algorithm that generates these steps. For each simulation, I calculate four

summary statistics of interest: the 3PCF of the ionisation fraction field data; the

3PCF of the 21cm differential brightness temperature data; the bubble size distribu-

tion, described in this section; and the global ionisation fraction, found by trivially

averaging the ionised fraction field xHII(r) for each redshift.

4.1.1 Spin temperature fluctuations

A description of the 21CMFAST algorithm is given previously in Section 2.1.3.

In this chapter I also include the effect of spin temperature fluctuations described

briefly here. Spin temperature calculations involve modelling the kinetic gas tem-

perature and the Lyman alpha background temperature. Allowing for spin tempera-

ture fluctuations means allowing for different local populations in the high and low

energy states of the 21cm transition. The kinetic gas temperature TK can be deter-

mined by considering the balance between a number of important heating and cool-

ing mechanisms including X-ray emissions, Hubble expansion, adiabatic heating

and cooling, and gas particle density changes due to ionization events. The domi-

nant heating effect in 21CMFAST is from X-rays. X-ray photons are emitted with a

range of wavelengths, the luminosities for which are assumed to follow a power-law

relationship L(ν) ∝ (ν/ν0)
−α . The parameter α controls the slope of this spectral

energy density function, and the parameter ν0 controls the minimum frequency of

X-rays which can escape into the Inter-Galactic Medium (IGM). This minimum fre-

quency can also be written in terms of a minimum energy value, E0 = hν0, using

the Planck constant h = 4.135× 10−15eVs. See Mesinger et al. (2011) for a full

derivation of the calculations and assumptions that 21CMFAST makes for the spin
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temperature fluctuations.

4.1.2 Sampling the parameter space

Each simulation considers a different reionization scenario by changing three of the

simulation parameters, namely:

1. The ionization efficiency ζion, specifying how many ionising photons are

sourced per unit of collapsed matter;

2. The minimum virial temperature Tvir which specifies a lower mass limit Mmin

of collapsed matter which produces ionising photons and X-rays;

3. The E0 parameter which controls the minimum energy (or frequency) of X-

ray photons which are able to escape into the IGM.

Fixing the other simulation parameters includes setting the efficiency of X-rays

to a constant value. I use ζX = 10−57M−1
� to match the assumption in Mesinger et al.

(2011), equivalent to approximately a single X-ray photon for each stellar baryon

as motivated by observations of low-redshift galaxies. The uncertain intergalactic

medium X-ray properties are then parametrised by E0.

In order sample a range of different reionization scenarios, I use a Latin Hy-

percube (McKay et al., 1979) approach. This method efficiently samples the input

space with far fewer simulations than a naive exhaustive grid-search would require.

The following ranges and scales of simulation parameters are used:

1. ζion in the linear range [5,100]

2. Tvir in the logarithmic range [104,2×105] K

3. E0 in the linear range [100,1500] eV

These ranges were chosen to match those by the simulation authors (for example

Greig and Mesinger 2015). The lower Tvir limit comes from a minimum temperature

for the cooling of atomic hydrogen accreting onto halos. The upper limit arises from

observations of high-redshift Lyman break galaxies (Greig and Mesinger, 2015).

The ζion upper and lower limits correspond to escape fractions of 5% to 100% for
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ionizing photons. The range for E0 was chosen in a similar way to Park et al.

(2018), motivated by hydrodynamic simulations (Das et al., 2017) and considering

the energy that would allow an X-ray photon to travel a distance of roughly one

Hubble length when travelling through a medium with xHII = 0.5.

4.1.3 Correlation function measurements

I use my code described in Chapter 3 to calculate the three-point correlation func-

tion of my simulated data. I calculate ξ (3) of both the ionisation fraction field

xHII(r) and of the 21cm differential brightness temperature field δTb(r) for each

simulation. The output of the 3PCF code are the correlation function amplitudes for

28 equilateral triangle bin configurations, with side lengths spaced in bins between

5 Mpc and 109 Mpc. These bins are spaced linearly for radii less than 20 Mpc, with

logarithmically spaced bins for higher radii. The radius values for these 28 bins are:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 29, 35, 42, 51,

62, 75, 91, and 109 Mpc.

4.1.4 Mean-free-path measurements for xHII(r)

In order to measure the typical bubble size I use my own implementation of the

mean-free path method from Mesinger and Furlanetto (2007), summarised here.

The input to the code is a single pixelised 3D ionisation fraction field data file, and

the code outputs the full distribution of bubble sizes. The data field is first cleaned

into ‘transparent’ and ‘opaque’ pixels by using a fixed threshold at xHII = 0.5. Pixels

with xHII ≥ 0.5 are transparent, and those with xHII < 0.5 are opaque. The mean-

free path method simulates the emission of photons from random locations within

the transparent regions. Each photon is emitted in a random direction and allowed

to propagate until it reaches an opaque pixel. The distance travelled by each photon

is measured and the resulting number of rays in a range of radius bins is calculated

as dP/dR. I use 105 simulated photons in my measurements, and the resulting

distances rounded to the nearest pixel size (0.98 Mpc). The distribution of bubble

sizes is then directly proportional to RdP/dR (or equivalently V dP/dV ). Figure 4.1

shows the RdP/dR outputs from my code for a simulation with canonical parameter
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Figure 4.1: Example mean free path measurements of RdP/dR using ionisation fraction
field data xHII(r). Each line shows RdP/dR for a single redshift taken from a
simulation with Tvir = 104K, ζion = 30.0 and E0 = 200 eV. The typical bubble
size (Rbubble) is related to the radius Rmax at which these curves peak, according
to Rbubble = 3Rmax (Giri et al., 2018b).

values Tvir = 104K, ζion = 30 and E0 = 200 eV. Giri et al. (2018b) note that the

peak radius Rmax of this distribution occurs at a scale of R = Rbubble/3, and so I use

Rbubble = 3Rmax as my measurement of the typical bubble size in this chapter.

4.2 Model choices

4.2.1 Hyperparameter choices

Different search strategies for comparing hyperparameters are described in Sec-

tion 2.4.6. In this chapter I use a random search method with five-fold cross-

validation to find the best hyperparmeters. Two of the most important hyperpa-

rameters are the number of hidden layers and the sizes of these layers, collectively

known as the network architecture. The architecture affects the model’s ability to

represent complex functions: a network with fewer and smaller layers is only be

able to model simple relationships, whereas a larger network with more layers (or

larger layers) will be able to represent more complex relationships. Using a model

that is too small will result in poor prediction accuracy. Using a model that is too

large will result in overfitting. There are no prescribed rules for deciding what range
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of architectures to consider, but a common technique is to use one’s knowledge both

about the complexity and the dimensionality of the function that is being modelled.

When using the correlation function measurements as the inputs, there are 30

input dimensions to the model. I choose to use networks with between one and three

hidden layers, with layer sizes randomly chosen uniformly in the range [0,500].

This range of layer sizes was chosen as being one order of magnitude larger or

smaller than the input dimensionality while also remaining computationally feasi-

ble. The full set of varying parameters in this chapter are:

1. Number of hidden layers uniformly in the linear range [1,3]

2. Size of each layer uniformly in the linear range [0,500]

3. Training batch size uniformly in the linear range [30,500]

4. Number of training epochs uniformly in the range [50,500]

5. Initial learning rate uniformly in the log range [10−4,10−2]

6. Learning rate either constant and adaptive with equal chance

7. Activation from RELU, TANH, or LOGISTIC with equal chance

8. Regularization parameter α from equation Equation (2.36) uniformly in the

log range [10−4,10−2]

These ranges match those suggested by the SCIKIT-LEARN website Pedregosa

et al. (2011). I use fixed default values for the ‘adam’ parameters BETA 1 = 0.9,

BETA 2 = 0.999, EPSILON = 1e−08 and TOL = 0.0001.

4.2.2 Input and output scaling

The input features to my MLP models are the correlation function measurements

ξ (3)(r) for a range of different triangle sizes r. These correlation function values

span a wide range of magnitudes. I use the MinMaxScaler method from SCIKIT-

LEARN to normalise separately each correlation function bin. I also compare the

effect of scaling the correlation function values by four different powers of the
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binned radius values: the raw correlation functions ξ (3); the dimensionless correla-

tion function r3ξ (3)(r) used for more natural visualisations (see for instance Hoff-

mann et al. 2018); and two other powers of the radius for completeness: rξ (3)(r)

and r2ξ (3)(r). The output features to my MLP models are either the bubble sizes

Rbubble or the global ionisation fraction 〈xHII〉. I scale the Rbubble function using the

sinh−1 function as described by Lupton et al. (1999).

4.3 Learning typical bubble sizes from the 3PCF

The progress of the Epoch of Reionization can be tracked by measuring the typical

size of ionised regions. Ionised regions are initially small and isolated around the

earliest ionising sources. The regions continually grow throughout the EoR, and

the precise details of this continued growth depends on the physical interactions be-

tween ionising sources and the surrounding neutral regions. The sources themselves

are seeded from the clustered non-linear density field and so show significant clus-

tering (Hultman Kramer et al., 2006), but the details of reionization also affect the

clustering of the resulting ionisation fraction field xHII(r) and 21cm brightness tem-

perature field δTb(r). Throughout the EoR, the typical bubble size will likely boost

the 3PCF at characteristic triangle sizes. Thus, the 3PCF contains information about

the physics of reionization (Mcquinn et al., 2006). Similarly, higher-order cluster-

ing statistics contain information about the physical reionization parameters (see for

instance Shimabukuro et al. 2017b) which affect the morphology of the xHII(r) and

δTb(r) fields.

In this section, I train MLP models to predict the typical bubble size using the

3PCF from simulated data. First, I use correlation function measurements of the

ionisation fraction field xHII(r) to train my MLP models. The resulting model is a

useful means of determining whether ξ (3) does indeed contain information about

the typical bubble size. In practice, however, the ionisation fraction field xHII(r)

is difficult to disentangle from the actual results of interferometer experiments. In

the second half of this section I train MLP models to predict the typical bubble size

using simulated δTb(r) data, which would be directly available from interferometer
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observations.

4.3.1 Data cleaning

Data processing is a vital step in fitting machine learning models to real-world data.

Raw data are often noisy and subject to systematic biases that can interfere with the

model’s ability to understand relationships in the data. In Section 4.1.3 I discuss

grouping the three-point correlation triangle configurations into bins of similarly-

sized triangles. In Section 4.1.4 I discuss collecting the distribution of mean-free

paths travelled by ionising photons and binning these distances to match the pixel

size. Throughout this chapter, I use one further data cleaning step. Near the end of

the EoR, ionised bubbles grow to become extremely large and, due to widespread

overlap, the typical bubble size becomes less clearly identifiable from the ionisation

fraction field xHII(r) (see Elbers and Van De Weygaert 2018 for classifications on

EoR overlap regimes). I exclude data with global ionisation fraction outside the

range 0.01≤ xHII ≤ 0.95 to mitigate this effect.

4.3.2 Results training on xHII(r) data

This subsection presents the results of training a model to learn how the typical

bubble size is related to the 3PCF of ionisation fraction data xHII(r). My training

and testing data are from the range of simulated reionization scenarios described in

Section 4.1.2, and I use the multilayer perceptron model described in Section 2.4.3.

Figure 4.2 shows an example of the measured xHII(r) 3PCF for a range of redshifts,

showing the true typical bubble size as vertical lines. This figure is for a scenario

with canonical parameter values Tvir = 104K, ζion = 30 and E0 = 200 eV. The small-

scale amplitude of the 3PCF decreases continually, and the amplitude on larger

scale increases continually. The turnover radius at intermediate scales also increases

throughout the EoR.

Input scaling types

Before running a full hyperparameter search, I first compare the different input-

scaling types. The MLP models for this test all have the same architecture, namely

two hidden layers both containing 100 nodes. The following values are used for the
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Figure 4.2: Example measurements of r3ξ (3) for ionisation fraction field data xHII(r). Each
line shows the measured statistic for a single redshift, all taken from a simu-
lation with ζion = 30.0, Tvir = 104K and E0 = 200 eV. The redshifts and cor-
responding global ionisation fraction are shown for each line in the legend.
Vertical dashed lines indicate the typical bubble size from mean free path mea-
surements. The typical bubble size for z = 8.7 is too large to be shown on this
figure.

other hyperparameters: a training batch size of 200; 200 maximum epochs; a con-

stant learning rate of 10−3; the RELU activation function; and fixed regularization

parameter α = 10−3. These hyperparameters were chosen as the midpoints of the

allowed random-search ranges or, for categorical choices, as the default parameters

suggested by the code authors (Pedregosa et al., 2011). I train one model for each

of the four possible input scaling types, namely ξ (3), rξ (3), r2ξ (3) and r3ξ (3). Ta-

ble 4.1 shows the resulting overall RMSE values for MLP models using each of the

four different scaling types. My results indicate that scaling the 3PCF by r2 or r3

generates more accurate predictions than scaling by r or not scaling at all. Using

ξ (3) or rξ (3) as inputs makes it harder for my MLP models to uncover a relation-

ship between the correlation function and the typical bubble size. Hereafter I use

r2ξ (3)(r) as inputs to my MLP models, since this choice gave the minimum RMSE

value.

Figure 4.3 shows a more detailed description of these MLP models’ prediction

accuracies. This figure shows histograms of the prediction errors from each model,
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Input scaling RMSE
ξ (3) 1.170
rξ (3) 0.973
r2ξ (3) 0.791
r3ξ (3) 0.806

Table 4.1: RMSE performance of four different input scaling types on unseen test data. The
model using r2ξ (3) inputs has the best performance, with the two lowest powers
of r having the worst performance. These RMSE values are only for a single
cross-validated model with the fixed hyperparameters given in Section 4.3.2, but
this indicates that the relationship between r2ξ (3) and the typical bubble size is
easier to learn than the other inputs.
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Figure 4.3: Histogram of prediction errors for different radius-value scaling types: ξ (3),
rξ (3) , r2ξ (3) and r3ξ (3). Better model curves have errors weighted towards
the left side of the histograms. In particular, there is a clear order of model
performance accuracy seen in the relative frequencies of low-error predictions,
indicated by the y-intercept of each line. This order of performance accuracies
agrees with the overall RMSE values given in Table 4.1: the best r2ξ (3) model
has the highest frequency of low-error predictions; the r3 model has the next
highest frequency; and so on.

and is described in Section 2.4.8. In particular, the frequencies of low-error predic-

tions (i.e. the y-intercept of each line) agrees with the order of model qualities in

Table 4.1.
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Best final model

I now find the best MLP model for predicting typical bubble sizes from the 3PCF

of ioinsation fraction field data xHII(r). I use the full hyperparameter search method

described in Section 4.2.1, comparing 1000 randomly chosen MLP models and

selecting the one with best cross-validated performance. The resulting best MLP

model uses three hidden layers with sizes [198, 194, 125]; training batch size of

230; a maximum of 990 epochs (of which the model used all 990 epochs before

terminating); constant learning rate starting at 1.11× 10−3; the RELU activation

function; and L2 regularization parameter 9.24×10−4.

Figure 4.4 shows the accuracy of the best MLP model’s predictions for un-

seen testing data. I plot all predicted Rbubble values as a function of the true values.

Marker colours are used to indicate the value of 〈xHII〉(z) for each measurement.

A model with perfect predictions would lie exactly on the dotted black diagonal

line. Deviations from this diagonal represents less accurate predictions. The accu-

racy of the model depends strongly on the magnitude of the true bubble size. Two

interesting features stand out in this figure which I discuss here.

First, the model struggles to make accurate predictions for typical bubble sizes

that are larger than 100 Mpc: predictions for Rbubble < 100 Mpc lie close to the

diagonal, but predictions for Rbubble > 100 Mpc show much larger scatter. This can

be understood in terms of the relationship between the 3PCF and the typical bubble

size. Near the end of the EoR, the widespread overlap of ionised bubbles gives rise

to a larger average mean free path of ionising photons, but also blurs the definition

of a typical bubble size. Many bubbles have merged, and thus the ‘typical’ bubble

size is a less clear feature. The model’s lessened ability to learn the typical bubble

size from 3PCF measurements reflects this.

The second feature is the short vertical line of markers in the bottom-left of

Figure 4.4, at true bubble sizes of Rbubble = 0. My model predicts a range of typical

bubble sizes from 0 Mpc up to around 40 Mpc in these scenarios, despite the true

typical bubble sizes being consistently zero. These scenarios all have extremely low

〈xHII〉 values, as indicated by the marker colours. This feature is likely due to the
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Figure 4.4: Predicted bubble size vs true bubble size for the best MLP model in Sec-
tion 4.3.2. These predictions are made on unseen testing data, using only
the 3PCF of ionisation fraction field data as inputs to the model. The pre-
dicted values and true values generally lie along the diagonal for values of
Rbubble < 100 Mpc. Larger typical bubble sizes are harder to model and show
much lager scatter away from the diagonal, as discussed in the text.

different measurement precisions of the mean-free path peak radius Rmax and of the

3PCF from my code. My mean free path code is only able to measure bubble sizes

in multiples of the simulations pixel size, specifically in multiples of 2.93 Mpc.

Measurements of the typical bubble size are much noisier in these scenarios which

contaminates the training data: a wide spread of inputs (the 3PCF curves) apparently

lead to the same output value (the typical bubble size).

Figure 4.7 later shows the distribution of errors predicted by this model. The

median prediction error from these distributions is a good measure of model per-

formance. The model for predicting typical bubble sizes from ionisation fraction

3PCF here has a median prediction error of 19.9%.

4.3.3 Results training on δTb(r) data

The situation is considerably more complicated when using measurements of the

21cm differential brightness temperature field δTb(r) instead of the ionisation frac-
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Figure 4.5: Example measurements of r3ξ (3) for 21cm differential brightness temperature
field data δTb(r), using the same simulation as Figure 4.2. Vertical dashed lines
again indicate the typical bubble size from mean free path measurements, and
the typical bubble size for z = 8.7 is too large to be visible.

tion field xHII(r). The 21CMFAST relationship between δTb and the ionisation frac-

tion xHII given in Equation (1.21) is assumed to be linear, but the other terms in

this equation also impact the morphology of the 21cm brightness temperature field.

Most notably, local spin temperature fluctuations TS(r) and local density fluctua-

tions δ (r) can both change the local values of δTb(r). Fluctuations in these values

confuse the otherwise simple relationship between the 3PCF and the typical bubble

size. Figure 4.5 shows the measured δTb(r) correlation function from a simulation

with parameters ζion = 30.0, Tvir = 104K and E0 = 200 eV. The true typical bub-

ble sizes are shown as vertical lines. The 3PCF of the brightness temperature data

has a more complex evolution over the EoR. The complex evolution of features in

this figure are far less obvious than the equivalent figure for the ionisation fraction

3PCF, justifying the need for machine learning models.

Using the same method as for the ionised fraction field model, I train a model

to predict the typical bubble sizes using the 3PCF of simulated δTb(r) data. The

resulting best MLP model uses three hidden layers with sizes [129, 85, 141]; train-

ing batch size of 92; a maximum of 485 epochs; adaptive learning rate starting

at 2.54× 10−3; the RELU activation function; and L2 regularlization parameter
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Figure 4.6: Predicted bubble size vs true bubble size for unseen testing data, using the best
MLP model in Section 4.3.3. This model uses the 3PCF of δTb(r) data to
predict the typical bubble size. The predicted values and true values generally
lie along the main diagonal for middling values of Rbubble between 25 and 110
Mpc. The model can accurately predict the typical bubble size in these scenar-
ios. Deviations from the diagonal line at larger and smaller bubble sizes are
worse for the reasons discussed in the text.

1.68×10−4.

The δTb(r) model is generally slightly worse than the xHII(r) model in the

previous section. The median prediction error of this δTb(r) model is 29.3%, less

accurate than the xHII(r) model’s value of 19.9%. I plot the δTb(r) model’s pre-

dicted typical bubble sizes for unseen testing data in Figure 4.6, as a function of

the true typical bubble sizes. The general trend of predictions appears similar to

the model using xHII(r) data: the predictions generally lie along the perfect-model

diagonal, with poorer performance for both very large bubbles (Rbubble > 100 Mpc)

and zero-sized bubbles (Rbubble = 0). My model is still able to recover enough infor-

mation from δTb(r) to make fairly accurate predictions of the typical bubble size,

despite the added complexities of the density and spin temperature fields.

Two features of Figure 4.6 show different behaviour from the xHII(r) model.
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First, the larger scatter of points around the diagonal confirms the poorer predictions

indicated by the worse RMSE value. This shows that the extra complexities of

including local spin temperature fluctuations and local density field fluctuations do

indeed contaminate the relationship between the typical bubble size and the data-

field correlations. The model cannot distinguish between correlations of ionised

regions and correlations of low density contrast regions (‘under-dense’ regions),

because both of these scenarios give rise to lower values for δTb. Similarly, regions

with low local values for the spin temperature TS can mimic ionised regions.

Secondly, the performance of the δTb(r) model appears to be more consistent

across intermediate bubble sizes than the previous xHII(r) model. In particular,

using brightness temperature data appears to give better predictions for large typical

bubble sizes (Rbubble > 100 Mpc). It is not immediately obvious why this is the

case. It is possible that including the effect of fluctuations in the spin temperature

and density fields enhances 3PCF features in the ionisation fraction data. Such local

fluctuations could increase the amplitude of the δTb field and make it easier to pick

out ionised bubbles.

Finally, Figure 4.7 shows the histograms of prediction errors for both final best

MLP models: one using xHII(r) data, and one using δTb(r) data. Ideally, all pre-

dictions would be near zero. The distribution of errors for these two MLP models

does not depend strongly on which data are used (xHII(r) or δTb(r)) although, as

mentioned above, each model does has different prediction accuracies for differ-

ent typical bubble size regimes and the δTb(r) model has a slightly higher median

RMSE value (29.3%) than the xHII(r) model’s RMSE value (19.9%).

4.4 Learning global ionisation fractions from 3PCF

In the previous section I trained models to predict the typical bubble size from

3PCF measurements. The typical bubble size is a useful metric for tracking the

growth of ionised regions, but the global ionisation fraction 〈xHII〉(z) is a more direct

measurement for the overall progress of the Epoch of Reionization. The historical

evolution of 〈xHII〉 can be strongly affected by the reionization parameters. Different
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Figure 4.7: Histogram of prediction errors for typical bubble size models. Visibly, the over-
all distribution of errors does not depend strongly on which data are used,
although the model using xHII(r) data has a better median prediction error
(19.9%) than the model using δTb(r) (29.3%). The reasons for this poorer
performance are discussed in the text.

ionising efficiency ζion scenarios have a different abundance of ionising photons,

which affects the EoR durations. Different Tvir scenarios have different quantities

of ionising sources which can also affect the EoR duration. In this section, I train

models to predict the value of 〈xHII〉(z) from 3PCF measurements. My models learn

the relationship between the 3PCF and the global ionisation fraction by using the

same simulated data in Section 4.3. Measurements of the 3PCF and mean free path

use the methods described in Sections 4.1.3 and 4.1.4. The data are cleaned using

the same ionisation fraction filters, namely 0.01≤ 〈xHII〉 ≤ 0.95.

4.4.1 Results training on xHII(r) data

I first train a model to predict the global ionisation fraction 〈xHII〉 from the 3PCF of

xHII(r) data, using the same search strategy as in the previous section. The best MLP

model uses three hidden layers with sizes [192, 150, 50]; training batch size of 261;

a maximum of 365 epochs (of which the model used all epochs before terminating);

adaptive learning rate starting at 2.00×10−3; the RELU activation function; and L2

regularization parameter 3.72×10−4.
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The model has an extremely good median prediction error of 3.6%. Figure 4.8

indicates the performance from this model, showing the predicted values of 〈xHII〉

as a function of the true 〈xHII〉 values in the testing data. Marker colours show

the typical bubble size. All markers lie close to the perfect-model diagonal in Fig-

ure 4.8, confirming that this model makes extremely accurate predictions. As in the

previous section, the model accuracy is higher for 〈xHII〉< 0.6 than for 〈xHII〉> 0.6,

with separate test RMSE for both regimes.

Ionisation fraction 3PCF measurements have a very strong relationship with

the global ionisation fraction. Ionisation fraction field data contain a range of bubble

sizes, and the total volume of these bubbles is an indicator of the global ionisation

fraction. The 3PCF measures clustering on a range of scales and this information

is apparently strong enough to provide immediate and accurate predictions for the

mean ionisation fraction. The predictions begin to worsen near the end of the EoR

for 〈xHII〉 > 0.6, when overlap means that the total volume of bubbles cannot be

used as an immediate estimate of the global ionisation fraction.

4.4.2 Results training on δTb data

I now train a model to predict the global ionisation fraction 〈xHII〉 from δTb(r) 3PCF

data. I use the same search strategy as the previous subsections. The best MLP

model uses three hidden layers with sizes [168, 174, 70]; training batch size of 361;

a maximum of 506 epochs (of which the model used all epochs before terminating);

adaptive learning rate starting at 4.44×10−3; the RELU activation function; and L2

regularization parameter 3.65×10−3.

The results show that it is more difficult to predict the global ionisation frac-

tion using δTb(r) 3PCF data than using xHII(r) data. The δTb(r) model’s median

prediction error is 16.0%, much worse than the error of 3.6% for the xHII(r) model.

Figure 4.9 gives the final prediction histograms for the two global ionisation frac-

tion models, using either ionisation fraction data or brightness temperature field

data. Predictions of the global ionisation fraction depend strongly on which data

are used: the prediction errors for the model using xHII(r) data are much lower than

those for the δTb(r) model.
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Figure 4.8: Predicted global ionisation fraction vs true global ionisation fraction for unseen
testing data, using the ionisation fraction xHII(r) as inputs. The predicted and
true values lie very closely along the diagonal, particularly for values 〈xHII〉 <
0.6. Predictions for 〈xHII〉> 0.6 are slightly worse as discussed in the text.
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Figure 4.9: Histogram of prediction errors for predicting the global ionisation fraction.
Each line shows the histogram of errors for a single model. The model using
xHII(r) 3PCF data has a much more accurate median prediction error (3.6%)
than the model using δTb(r) data (16.0%).
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Figure 4.10: Predicted global ionisation fraction vs true global ionisation fraction for un-
seen testing data, using δTb(r) as inputs. The predictions generally lie along
the diagonal, but with larger scatter than using xHII(r) as model inputs.

Additionally, the model predictions shown in Figure 4.10 deviate more widely

from the perfect diagonal than do the predictions in Figure 4.8. For the later stages

of the EoR with 〈xHII〉> 0.6, the δTb(r) model’s accuracy increases as opposed to

decreasing as did the accuracy of the model using xHII(r) 3PCF data. This can be

understood by considering the impact of density and spin temperature fluctuations.

Local fluctuations have a more significant impact on the δTb(r) field at early times

than at later times. Thus, the morphology of the δTb(r) field is more closely linked

to that of the xHII(r) field at later times.

4.5 Conclusions
The three-point correlation function (3PCF) of the 21cm signal encodes valuable

information about the morphology and history of the Epoch of Reionization. I use

machine learning techniques and train models to recover the typical bubble size and

global ionisation fraction from the measured 3PCF outputs from semi-numerical

simulations. I first train models to recover the typical bubble size, from the 3PCF
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of either ionisation fraction data or 21cm differential brightness temperature data.

The two models are both able to determine the general trend of increasing typical

bubble size and have similar overall accuracy, with median RMSE values of 19.9%

and 29.3% respectively. The model using xHII(r) 3PCF data has better performance

at small bubble sizes (1 Mpc < Rbubble < 100 Mpc, whereas the model using δTb(r)

has better performance for larger bubble sizes (Rbubble > 100 Mpc). Both features

can be understood in terms of how the data field morphologies evolve over the EoR.

In particular, the morphology at early times is more strongly affected by fluctuations

in the density field and the spin temperature field.

I also train a model to recover the global ionisation fraction from ionisation

fraction 3PCF data. The resulting model has extremely accurate predictions and

shows the three-point clustering of xHII(r) data is strongly related to the evolution

of the global ionisation fraction. My model is able to uncover this relationship with

a median RMSE value of 3.6%, although the predictions are slightly less accurate

for the later stages of the EoR with 〈xHII〉 > 0.6. Unfortunately this model would

practically not be useful in EoR analysis because the ionisation fraction field is dif-

ficult to probe directly. Instead, observations are made in terms of the differential

brightness temperature. I train a fourth and final model to predict the global ioni-

sation fraction from the 3PCF of the differential brightness temperature field. The

resulting model has a median RMSE value of 16.0%, with more accurate predic-

tions for the late stages of the EoR (〈xHII〉> 0.6) than for the early stages.

As with all machine learning projects, my MLP models to predict the typical

bubble size and global ionisation fraction could likely be improved by gathering

more data from a wider range of reionizaion scenarios. This would allow the MLP

models to learn more general connections between the 3PCF measurements and

characteristic reionization features. Providing other brightness temperature field

summary statistics could also improve the ability to uncover the EoR features, for

instance the distribution of pixel brightnesses (Ichikawa et al., 2009) or the size

distribution of bright regions (Kakiichi et al., 2017). My MLP models assume a

constant value for the X-ray efficiency. Ideally this constraint should be lifted and
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the X-ray efficiency allowed to vary as with the other simulation parameters. Before

using any models on real data I would need to add instrumental noise and retrain

them. Additionally, the mean free path method used to measure typical bubble sizes

in this chapter is known to give less consistent results than other methods described

in Section 2.5.1. Using another method such as granulometry (Kakiichi et al., 2017)

could provide better estimates for Rbubble and make the relationship with the 3PCF

more consistent.

There are several possible avenues of future work to build on my results. First,

using similar machine learning techniques to predict the full bubble size distribution

dP/dR from 3PCF data. The full bubble size distribution provides a more detailed

description of the morphology than the typical bubble size alone. Secondly, training

models to map from 3PCF measurements directly to parameters in a similar way to

Shimabukuro and Semelin 2017. Such inference models can only make estimates

of the ‘best’ parameters and do not provide uncertainty regions in the same way as

MCMC analysis. Instead, training emulators to forward-model the 3PCF outputs

directly from the simulation input parameters would effectively remove the need

for further simulations.

This work presents the first attempt to predict fundamental properties of the

Epoch of Reionization using the three-point correlation function and machine learn-

ing techniques. I have made my code publicly available to help the community

perform similar analyses in the future.
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Chapter 5

Analytic clustering model

The halo model described in Section 2.3 has been successfully used to make ac-

curate predictions for the non-linear clustering of matter in the Universe (see for

example Smith et al. 2002 and Cooray and Sheth 2002). A halo model can be

made for any observable data field if the following ingredients are available: a pro-

file function around sources; a number density distribution for the abundances of

differently-sized sources; the clustering properties of the sources themselves. This

chapter gives such a clustering model for the signal from the ionisation fraction

field of hydrogen. The ingredients of the model are found by fitting results from

semi-numerical simulations.

The rest of this chapter is structured as follows. In Section 5.1, I describe how

to determine a model for the ionisation fraction profile by stacking and fitting the

simulated data. I give a simple toy model for the clustering properties of randomly-

placed spherical bubbles, described in Section 5.2. I then add more realistic proper-

ties to this model towards a full model for the ionisation fraction field given in Sec-

tion 5.3, fitting intermediate results from SIMFAST21 simulations. The motivation

for this project was as a middle ground between the simple FZH model (described

in Section 2.1.1) and semi-numerical simulations, capturing the extra complexity of

simulations without the higher computational cost. Section 5.4 takes the final step

towards this goal by comparing the final model to actual outputs from SIMFAST21.

I conclude this chapter in Section 5.5, describing what further adaptations to the

model would be needed before being useful for predicting real-space correlation
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functions such as the one in the previous chapter. The power spectrum calculations

throughout this chapter make use of code provided by Watkinson (2017).

5.1 Stack-Fit-Predict method
The profile function ρ(r,M) is a key ingredient of any halo model. The density

field profiles represent the matter density centred around dark matter halos, usually

the NFW profile as fitted from the results from N-body simulations (Navarro et al.,

1996). Similar profiles must be found for the ionisation fraction field before making

predictions for the ionisation fraction power spectrum. The profiles in this chapter

are fitted to measured profiles from simulations. Fitting the profiles involves two

stages: measuring the data field around halos of different masses; and fitting these

measured profiles to an analytic formula so they can be used in the halo model

equations.

5.1.1 Stacking

SIMFAST21 stores the locations and masses of every resolved halo in a catalog. Fig-

ure 5.1 shows a slice through a realisation of the ionisation fraction field xHII(r)

from SIMFAST21, with the corresponding halo locations indicated by red cross

markers. The dark-regions show ionised bubbles are generally located around halos

or clusters of halos.

The ionisation fraction profiles around halo centres can be measured from SIM-

FAST21 by stacking cubic regions around halo centres. The data and catalog are

loaded for a particular redshift. Cubic regions of the ionisation fraction around all

halos are extracted and sorted into bins of the underlying halo masses. Figure 5.2

shows the result of such a stacking procedure for the data in Figure 5.1. Each panel

shows a slice through the mean ionisation fraction cube around halos of a unique

mass. Spherically averaging these cubic regions gives measured samples of the

radially-symmetric profile function ρ(r;M,z) shown in Figure 5.3.

5.1.2 Fitting

The result of the stacking procedure is a set of sampled real-space profile values

ρ(r;z,M). The halo model however requires an analytic form ρ̃(k;z,M) for the
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Figure 5.1: Slice through a SIMFAST21 realisation of the ionisation fraction field xHII at
z = 11, with halo centres shown as red crosses. Ionised bubbles are nucleated
around halos and, in particular, around clusters of halos. The total length of
this simulation is 500 Mpc/h.

Fourier-transformed profiles at any redshift and mass. The easiest way to find an

analytic form for ρ̃(k;z,M) is to fit the sampled real-space profiles and then take the

analytic Fourier transform. If the profiles are fitted to a specific function form f (r)

that is chosen to have an analytic Fourier-transform f̃ (k), then fitting the profiles

in real-space immediately allows for predicted f̃ (k) profiles. The fitting procedure

involves two main parts: choosing the generic form f (r), and fitting this generic

form to the measured profiles ρ(r;z,M).

First, choosing the generic form for the profile. This is most easily done by ob-

serving the stacks and trying several possible generic forms. If the profiles appear to

fall exponentially from a peak value, then ρ(r)∝ exp(−r) would be a good choice. I
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Figure 5.2: Slices through stacks of the ionisation fraction around halos from the data in
Figure 5.1. Each stack shows the ionisation fraction around halos with a single
unique mass. The label to the right of each panel indicates the the mass of
that stack, as well as the number of matching halos over which the stacks was
averaged. The ionised bubbles are larger for more massive halos.
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Figure 5.3: Measured ionisation fraction profiles around halo centres for the ionisation
fraction data field in Figure 5.1. These are generated by spherically averaging
the separate stacks in Figure 5.2, with the panels arranged in the same order.
The shaded regions show the two-sigma spread in the measured profiles for
each halo. The heaviest halo has a fully-ionised region for around 5 Mpc, seen
as a plateau in the top-left panel. The ionised fraction then slowly falls to the
global 〈xHII〉 at around 20 Mpc. The lightest halo (bottom-right panel) has no
plateau, but immediately falls to the global 〈xHII〉 at a much smaller radius of
around 10 Mpc. Intermediate masses show a consistent pattern of decreasing
fully-ionised region size and earlier global-mean radius. This matches with the
qualitative descriptions of size from the images in Figure 5.2.
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add features to this generic form so that it becomes flexible enough to fit the profiles

for several different masses and redshifts at once. The ionisation fraction profile of

a halo might have a different maximum height or falloff distance depending on its

mass or redshift. These two properties can be added as a peak height feature ρ0

and a scale radius feature R. The generic form is then flexible enough to fit several

profiles with different heights and falloff distances ρ(r;R,ρ0) = ρ0 exp(−r/R).

The sampled profiles are measured in terms of the halo mass M and redshift z.

In order to fit these measured profiles ρ(r;M,z) to the generic form ρ(r;R,ρ0), the

physical features (R,ρ0) must be related to the halo properties (M,z). For instance,

the peak height ρ0(M,z) might be a function of the halo properties using a linear

relationship ρ0(M,z) = Θ0 +Θ1z+Θ2 log(M). Similarly the scale radius might

follow another linear relationship R(M,z) = Θ3 +Θ4z+Θ5 log(M) with different

coefficients Θi (also known as hyperparameters). I describe these relationships be-

tween the features and the halo properties as feature relations.

After the generic form and the feature relations have been chosen, fitting the

measured profiles is done by finding the best values for all hyperparameters Θi.

I use the NUMPY.OPTIMIZE.MINIMIZE function with the BFGS method to vary the

values of all hyperparameters Θi and minimise the mean square error,

MSE =
1
N

N

∑
i=1

(
ρ

sampled−ρ
f itted

)2
, (5.1)

between the sampled and fitted profiles. At each step in the minimisation process,

the Θi values are used to convert the halo properties (M,z) into the required fea-

ture values (R,ρ0). These feature values are then used in the generic profile form.

The resulting fitted profiles are compared to the measured counterparts using Equa-

tion (5.1), and the hyperparameters updated to try and minimise any discrepancies.

This procedure is similar to the way in which NFW profiles were fitted to N-

body simulations. A generic form

ρNFW(r) = ρs

[
r
rs

]−1[
1+

r
rs

]−2

(5.2)
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was chosen with two physical features: a scale radius rs and a characteristic height

ρs. The feature ρs was in fact already constrained by mass conservation in the total

integral of the profile
Rv∫
0

ρ(|r|,M)d3r = M. The scale radius feature rs(M,z) was

then fitted to power-law relations such as the one given in Equation (2.20).

5.1.3 Fitting & predicting: illustrative example

This subsection contains an illustrative example of the fitting and predicting pro-

cedure, using noisy mock profiles with known feature relations that I myself have

chosen described in this subsection. I test my fitting procedure on these profiles,

checking how well the fitted hyperparameters match the true hyperparameters that

I chose at the start. Note that the profiles in this subsection are not from actual

SIMFAST21 data, but were generated purely for demonstrative and testing purposes.

I choose a mock profile function

ρ
sampled
x (r;z,M) = ρ0(M,z)exp [−r/R(M,z)]+Noise (5.3)

and mock feature relations

ρ0(M,z) =−0.40+0.10z

R(M,z) = 10.00+3.00log(M) (5.4)

so that the redshift z controls only the peak height of these mock profiles, and the

mass M controls only the radial extent of the profiles. Realistic noise is added to

these noiseless mock profiles, in order to test the robustness of the fitting procedure

on profiles measured from data. For each curve, Gaussian noise N (0,0.01) is

added to the profile value for each radius. The resulting curve is then smoothed

using a Savitzky-Golay window filter (Savitzky and Golay, 1964). Figure 5.4 shows

these mock profiles for a grid of halo properties (z,M) with axes z = {8,10,12,14}

and M = {108,1010,1012}M�.

A generalised exponential-type profile function is used for fitting these profiles

and to test the fitting procedure,
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Figure 5.4: Mock profiles to demonstrate the fitting procedure, drawn from Equations 5.3
and 5.4. Random Gaussian noise was added to these mock profiles. These
profiles are for four different redshifts (shown in the legend). Each redshift has
profiles with three different masses M = {108,1010,1012}M�. No error bars are
shown because these mock profiles were generated (and not measured) using
Equation (5.3).

ρ
f itted

x (r) = ρ0 exp(−r/R). (5.5)

The physical features for this profile function are the peak-above-infinity height ρ0

and the scale radius R. For fitting, each feature is allowed to depend on M and z by

using the order-1 polynomial function,

ρ0(M,z) = Θ0 +Θ1z+Θ2 log(M) (5.6)

R(M,z) = Θ3 +Θ4z+Θ5 log(M). (5.7)

Fitting involves finding the best values for the hyperparameters Θi, such that result-

ing fitted profile function ρ(r) best matches the true profile values in Figure 5.4.

Starting with random hyperparameters, Figure 5.5 shows the result of the fitting pro-

cedure for this example. Table 5.1 shows the best hyperparameter values as found

by the fitting procedure, along with their correct values that I chose at the start. The
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Hyperparameter True value Fitted value
Θ0 -0.4 -0.402
Θ1 0.1 0.100
Θ2 0 0.000*
Θ3 10 10.231
Θ4 0 0.012
Θ5 3 2.999

Table 5.1: Fitted and true hyperparameters for the example mock profiles. The fitted values
are shown with three decimal places of precision. The values closely match the
true sampled values. The asterisked (*) fitted value of Θ2 was 6.1×10−6.

Figure 5.5: Mock profiles fitted using simple exp-type profile and linear feature relations.
The fitted profiles lie closely on top of the stacked profiles showing that the
fitting procedure has successfully fitted these data. As in Figure 5.4, no er-
ror bars are shown because the mock profiles (markers) were generated us-
ing Equation (5.3) and the predicted profiles (solid lines) were generated using
Equation (5.8).

fitted values match the true values closely, showing that the fitting procedure works

well for these profiles.

The final fitted profile function for these best hyperparameters is then given by

ρ
fitted
x (r,M) = [−0.402+0.100z] exp(−r/ [10.231+2.999log(M)+0.012z]))

(5.8)

which matches closely the true functional form used to generate these mock profiles
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in Equations 5.3 and 5.4. Using this fitted profile in a halo model is now simple. Val-

ues for ρ̃x(k;M,z) are found using the analytic Fourier-transform of Equation (5.5),

ρ̃x(k) =
ρ0(M,z)

8π

{
1+[kR(M,z)]2

}2 , (5.9)

and the fitted physical feature relations,

ρ0(M,z) =−0.402+0.100z+0.00log(M) (5.10)

R(M,z) = 10.231+0.012z+2.999log(M). (5.11)

Figure 5.6 shows the predicted Fourier-transformed profiles from Equation (5.9).

Fourier-transformed profiles can also be predicted for (z,M) values outside the

range of the originally fitted profiles. These extrapolated profiles are shown as dot-

ted lines in Figure 5.6 and clearly extrapolate the correct patterns in both peak height

and falloff radius. The final generic Fourier-transformed profile function can thus

be used in the 1-halo and 2-halo terms and give predictions of the overall power

spectrum.

Note that these mock profiles fall to zero as r→ ∞. In general I remove the

global data mean value ρx(r→ ∞) before fitting the profiles to a functional form,

in order to match the normalisation method of the power spectrum calculation. The

peak feature ρ0 is then actually a ‘peak-above-infinity’ feature,

ρ0 ≡ ρx(r = 0)−ρx(r→ ∞) (5.12)

5.1.4 Separate and joint fitting

This simple fitting procedure in the previous subsection turns out to be extremely

difficult with anything other than very simple feature relations. A preparation step

can be used to give good initial estimates for the hyperparameters Θi before running

the joint fitting routine above. Each individual measured profile is first fitted to

the generic form entirely independently from the other profiles. This can be done
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Figure 5.6: Fourier transform of the fitted mock profiles. These Fourier transformed pro-
files can be generated for any (M,z) pair. Solid lines show the Fourier trans-
forms of the sampled profiles used to fit. Dotted lines show extrapolated pro-
files for (M,z) values that were not used for fitting. These extrapolated profiles
follow the same general peak- and radius-patterns of the sampled profiles used
to fit. As in Figure 5.4, no error bars are shown because these predicted profiles
were generated using Equation (5.9).

either using the NUMPY.OPTIMIZE.MINIMIZE method of the main fitting procedure,

or it can be simpler to find the feature values by checking a regularly spaced grid

of likely values. For instance, the profiles in Figure 5.4 have peak-above-infinity

feature values roughly in the range [0.4,1.0] and radius feature values (i.e. the

distance at which the profile falls to 1/e≈ 0.37 of peak value) roughly in the range

[0,100]. Using an exhaustive grid of such possible pairs in the given ranges, the

best feature values (ρ0,R) are found for each (M,z) pair. Each profile has been

then fitted separately to Equation (5.5). To estimate the best hyperparameters, these

separately fitted feature values (ρ0,R) are fitted to the physical feature relations

(ρ0(M,z),R(M,z)). After determining the separate best peak-above-infinity feature

values ρ0, the feature relation

ρ0(M,z) = Θ0 +Θ1z+Θ2 log(M) (5.13)

can be fitted by finding the best values of {Θ0,Θ1,Θ2}. These best values can
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Name Real-space, ρx(r) Fourier-space, ρ̃x(k)

Step ρ0 ∗ [r ≤ R] ρ0 4π

(
sin(kR)−kRcos(kR)

(kR)3

)
Exponential-r ρ0 exp(−r/R) ρ0 (8π)−1

(
1+[kR]2

)−2

Exponential-r2 ρ0 exp
(
−
[ r

2R

] 2) ρ0 (2π)−3/2 exp
(
− [kR/2]2

)
Table 5.2: All profile functions used for fitting in this chapter, with their corresponding

three-dimensional Fourier-transforms (Hankel transform) for k = 2π/r. The fea-
tures for each profile are the peak-above-infinity height ρ0 and the scale radius
R. By far the most-used profile in this chapter is the step function.

then be used as initial guesses for the higher-dimensional space of jointly-fitted

hyperparameters.

5.1.5 Profile functions and feature relations

Throughout this chapter several different profile functions and feature relations are

used. Table 5.2 shows the main profile functions for which fitting was attempted in

this chapter, although many other real-space functions with analytic Hankel trans-

form exist (Weisstein, 2019). These fitting functions were originally chosen as a

simple first attempt to model the ionisation fraction profiles around dark matter ha-

los. As discussed in Section 5.4, the final model in this chapter appears to be more

strongly affected by the overlap of ionising bubbles than by the specific fitting func-

tion used. As such, I leave considerations of more complex fitting functions as an

avenue of potential future work, if the effects of overlap were to be correctly mod-

elled. Table 5.3 shows the feature relations used to connect the features (ρ0,R) to

the halo properties (M,z).

5.2 Ionisation fraction: toy model
This section describes a simple toy model for the clustering of ionisation fraction

data. Starting with the simplest possible model, the measured power spectra of

mock data cubes are compared to the predicted power spectra from a halo model.

The first mock data cubes contain randomly-placed spherical bubbles of a single

fixed radius. For these data the measured and halo model power spectra match
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Name Feature relation, φ(M,z)

Fixed Value 1.0

Global Mean Value 1−〈xHII〉(z)

Power Law Θ0 zΘ1 [log(M)]Θ2

Polynomial ∑
αβ

Θαβ zα [log(M)]β

Radius-style Θ0[M]Θ1

Table 5.3: All feature relations used for fitting in this chapter. The values Θi are hyperpa-
rameters that can be fitted to profiles that are measured as a function of the halo
properties (M,z).

closely. Multiple distinct sphere radii are added to these mock data, again giving

a close match between measured and halo model spectra. This section ends with

mock data cubes where many distinct sphere radii are used, with number densities

drawn from a power-law relationship. Again the halo model power spectra for these

data match the measured power spectra within the scatter of sample variance.

5.2.1 Single-radius model

Mock ionisation fraction data cubes are generated by using spherical bubbles of ra-

dius R0 and fixed number density n0. These ionised bubbles show no clustering and

no redshift dependence. In these data the theoretical power spectrum Pbb(k;R1,R2)

between the centres of two bubbles with radii R1 and R2 is zero for all k 6= 0. Thus

the two-halo term P2h(k) = 0 throughout this section and only the 1-halo term con-

tributes to the total power spectrum. The number density function for these data is

given by

dn
dR

(R) = n0 δD(R−R0). (5.14)

The mock data are generated as follows. First a catalog of bubble centre lo-

cations is formed by randomly sampling locations uniformly within the box. The

number of bubbles is chosen to match a fixed chosen value for n0. The mock data
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Figure 5.7: Slice though realisation for single-radius model with fixed sphere radii R = 5
and total box size L = 100.0. The number density of spheres is fixed at n0 =
1.9×10−4, chosen so that the total volume of spheres is 10% of the box volume.
Note that spheres may overlap in this model.

cube is created as a three-dimensional set of pixels, initialised to zeros. All pixels

within the fixed radius R0 of any bubble are then set to 100% ionised. In this subsec-

tion, pixels which lie within R0 of multiple bubble centres are allowed to overlap.

The issue of overlapping bubbles is a recurrent problem with ionisation models (see

for instance Section 3.2 of Furlanetto et al. 2004). Allowing overlapping bubbles

can lead to non-physical results where the data field exceeds 100% ionised. Pro-

vided the total volume of spheres is much less than the total box volume, however,

the effect of this relaxed condition on the final correlation statistics is minimal. I

first allow the overlap of bubbles in my models, and consider methods of handling

the overlap are considered later in section Section 5.3.2. Figure 5.7 shows an exam-

ple resulting mock data cube for this model. The data cube is stored, along with the

bubble centres catalog that can then be used in the stacking procedure.

The stack-fit-predict procedure is used to fit the measured profiles from these
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Figure 5.8: Fitted profile for data cube with spheres of a single radius R0 = 5 and number
density n0 = 1.9× 10−4, chosen so that the total volume of spheres is 10% of
the box volume. The fitting procedure has correctly identified the radius of the
spheres in this realisation.

mock data cubes. Spherically-averaged profiles are measured from the mock data

cubes by using the stored catalog of bubbles centres. The stacked profiles are fitted

using profile function

ρx(r;M) =

ρ0(M,z), if r ≤ R(M,z)

0, otherwise,
(5.15)

and feature relations

ρ0(M,z) = Θ0 (5.16)

R(M,z) = Θ1. (5.17)

The true values for these hyperparameters are Θ0 = 1.0 and Θ1 = R0. Figure 5.8

shows the resulting fitted and measured profile. The dotted line with circular mark-

ers shows the measured profile and the solid line shows the fitted profile. The fitted

profile has correctly identified the radius and peak of the spheres.

I use Table 5.2 to determine the analytic Fourier transform of the step-function
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Figure 5.9: Measured and predicted power spectra for three single-radius models. The
models have R0 = 2 (black), R0 = 4 (purple), and R0 = 10 (orange). In each
case the solid line shows the mean measured power spectrum of five realisa-
tions. The shaded regions show the spread of measured power spectra. The
dashed lines show the halo model predictions. The realisations for these models
are similar to those shown in Figure 5.7. The predictions match the measured
spread except at very small scales (high k), as discussed in the text.

profile in Equation (5.15). The predicted one-halo term is then

P1h(k) = n0 ρ0

(
4π [sin(kR(M,z))− kR(M,z)cos(kR(M,z))]

k3

)2

. (5.18)

Figure 5.9 shows the halo model power spectra using the stack-fit-predict method

as dashed lines for three different scenarios. I compare these predicted spectra to

the actual power spectra of the mock data cubes, as calculated using five mock data

realisations. For each scenario in Figure 5.9, the shaded regions show the standard

deviation of the measured spectra of the five realisations, and the solid line shows

the spectrum averaged across the five realisations. For all three scenarios the dashed

line from my model follows the measured spectrum closely, except at very small

scales (high k). The halo model can be used to model the clustering of single-radius

models.

Figure 5.10 shows the effect of different binning widths on the power spectra.
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Figure 5.10: Power spectra for different binning widths in one-radius models with R0 = 2.
Higher values of ∆k lead to smoother curves with less prominent features,
in particular the fast-varying sinusoidal regions past the first power spectrum
peak.

At high and low k-scales, the fast-changing power spectrum is highly sensitive to

binning: using a wider binning range (higher ∆k) results in a smoother curve with

less-prominent sinusoidal features.

5.2.2 Two-radius model

The simple model of all ionised bubbles having the same radius is not a realistic

one. In reality different bubbles have grown at different speeds and for different

lengths of time, giving a distribution of spheres with different radii. I test my halo

model by generating mock data cube realisations for spheres with two distinct radii

R0 and R1, and fixed number densities n0 and n1 respectively. I use my stack-fit-

predict method and compare the resulting spectra to the actual spectra calculated on

the mock data cubes. The overall number density function is given by

dn
dR

(R) = n0δD(R−R0)+n1δD(R−R1), (5.19)

Figure 5.11 shows a slice through an example realisation for R0 = 5 and R1 = 10.

Both small and large spheres can be seen in this figure. The number densities are

chosen so that the total volume of the smaller spheres is equal to the total volume
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Figure 5.11: Slice through realisation for two-radius model. The two distinct sphere radii
are R0 = 5 and R1 = 10, with matched number densities n0 = 1.7×10−4 and
n1 = 2.1×10−5 chosen so that the total volume of spheres is around 10% of
the box volume.

of larger spheres: there are more smaller spheres and fewer larger spheres. I also

require that the total summed volume of all spheres should be roughly 10% of the

box volume.

Feature relations

ρ0(M,z) = Θ0 (5.20)

R(M,z) = Θ1[M]Θ2 , (5.21)

are used to capture the fact that the two different sphere radii are related to the

mass with a power law. The correct values for these hyperparameters are Θ0 = 1,

Θ1 =
3

4π
, and Θ2 =

1
3 . Figure 5.12 shows the predicted and measured power spec-

tra from scenarios with various R0 and R1 values. The measured spectra are again

from five realisations, and the halo model predictions lie close to the measured spec-

tra. The halo model can accurately predict the power spectra of two-radius models.
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Figure 5.12: Measured and predicted power spectra for two-radius models. The two dis-
tinct sphere radii are given in the legend for each scenario. The number den-
sities in each case were chosen so that the total volume of the smaller spheres
is equal to the total volume of the larger spheres, with the summed volumes
around 10% of the box volume. The predicted power spectra (dashed lines)
lie close to the measured spread of spectra (shaded regions) for each scenario,
except at very small scales (high k).

Slight discrepancies can be seen at middling scales around k = 1.0h/Mpc. These

discrepancies are almost certainly caused by the binning of the power spectrum

measurements. The fast-changing power spectrum at these scales is highly sensi-

tive to the k-ranges over which the scales are binned, as discussed in the previous

section.

5.2.3 Number density function model

Usually in cosmology the number density of dark matter halos is assumed to follow

a specific distribution known as the halo mass function. This motivates a further

realistic extension to the model of the previous subsections: setting the abundances

of differently-sized spheres to follow a specific number density function. I choose

the power law

dn
dR

(R) = n0R−β , (5.22)

to test my halo model on data where the spheres are drawn from a number density
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Figure 5.13: Slice through realisation for power-law number density model. The number
density for each sphere radius is given by a power law dn(R)

dR = n0R−6, with n0
chosen so that the total sphere volumes is around 10% of the box volume.

function. Figure 5.13 shows a slice through the resulting realisation for a power-law

model with β = 6.

Using the chain rule, the number density of sphere masses can be given in

terms of the sphere radius,

dn
dM

(M) =
dn
dR

dR
dM

=
n0

4π
R−β−2. (5.23)

I use the stack-fit-predict procedure for the resulting generated mock data cubes.

The same feature relations are used for the fitting procedure as in Equation (5.20).

Figure 5.14 shows some of the fitted and measured profiles for one realisation of this

scenario using dn(R)
dR = n0R−6 for the number densities. The measured stack values

are shown as dotted lines with circular markers, and the solid lines indicate the re-

sulting predictions from the jointly-fitted profiles. The fitted profiles have correctly

identified the peak and radius features of all spheres. The stack for R = 3.05 Mpc/h

is somewhat anomalous, exceeding 100% ionised fraction while the other stacks do

not. This is because there were very few spheres with R = 3.05 Mpc/h and, by
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Figure 5.14: Measured and fitted profiles around bubble centres for a power-law number
density model with dn(R)

dR = n0R−6. In each case the dotted lines with circular
markers show the measured profile values and the solid lines show the fitted
results. The true radii for these profiles were R≈ 1,2,3,4 which match nearly
perfectly with the fitted profiles in this figure. The stack for R = 3.05 Mpc/h
is somewhat anomalous as discussed in the text, but this does not affect the
quality of the overall fitted profiles. This figure shows only a few of the many
sphere radii in the realisation.

chance, these few spheres happened to overlap with several other nearby spheres.

Using a single peak-above-infinity value in Equation (5.20) means that the joint

fitting procedure ignores the overlapping stack and successfully gives the true un-

derlying profile radius and peak values.

Figure 5.15 then shows the halo model and measured power spectra for models

using four different power-law distributions. The halo model continues to show a

good match between the measured power spectra and the halo model spectra. The

halo model is able to capture the complexity of data where the spheres are drawn

from a number density function. In the following section, the model is extended

further to include the effect of clustering.

5.3 Ionisation fraction: including clustering
In this section I introduce clustering to the halo model. The simplest way to generate

a catalog of centres with realistic clustering is to use the actual halo catalog outputs
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Figure 5.15: Measured and predicted power spectra for models with many distinct radii,
where the number density for each sphere radius is drawn from power laws
dn(R)

dR = n0R−β . The predicted spectra lie within the measured spread, except
at very small scales (high k).

from SIMFAST21 itself. The mock data are generated by using spheres whose radius

is a fixed multiple of the underlying halo mass. The non-zero clustering between

sources means that the total power spectrum P(k) = P1h(k)+P2h(k) has terms

P1h(k) =
∫

dM
dn
dM

(M) |ρ̃x(k;M)|2 (5.24)

and

P2h(k) = Plin(k)
(∫

dM
dn
dM

(M)b(M)ρ̃x(k;M)

)2

, (5.25)

where the bias term from Seljak (2000) has been used.

5.3.1 Allowing overlap

Including clustering in the mock data immediately causes widespread overlap of the

spheres. I use the halo catalogs from a canonical SIMFAST21 simulation with pa-

rameters Mmin = 5× 108M�, ζion = 30.0, and Rmax = 10 Mpc. The mock data

are generated by placing an ionised sphere onto every halo location. The ra-

dius of each sphere depends only on the underlying halo mass, with fixed ratio
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Figure 5.16: Slice through mock data realisations for the clustering ionisation fraction
model, in which spheres are allowed to overlap and give values xHII > 1.0.
The left panel uses a SIMFAST21 halo catalog at z = 15, and the right panel
uses a catalog from z = 11. In both cases the locations of halos are indicated
by red markers.

Rion(Mhalo,z) = 17.5Rhalo corresponding to a value of ζion = 30 in the FZH model

from Section 2.1.1:

Mion = ζionMhalo,

ρionR3
ion = ζionρhaloR3

halo,

Rion = 3

√
ζion

ρhalo

ρion
Rhalo,

Rion =
3
√

ζion∆virRhalo, (5.26)

with ∆vir ≈ 18π2 as described in Section 2.3.1. Figure 5.16 shows slices through

two such realisations using halo catalogs at z = 11 and z = 15 from SIMFAST21.

Note that these data fields are nonphysical because they are allowed to exceed 100%

ionised. The number density function used in the halo model equations for this sec-

tion is the true halo mass function calculated using the HMFCALC module (Murray

et al., 2013) as described in Section 2.3.6. The halo bias term for each mass is also

calculated using the HMFCALC module.

The fitting feature relations for this section are the same as in the previous
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sections, namely

ρ0(M,z) = Θ0 (5.27)

R(M,z) = Θ1[M]Θ2 , (5.28)

The resulting halo model power spectra are then shown in Figure 5.17 for halo

catalogs of several different redshifts. The halo model and measured power spectra

match quite closely at earlier redshifts, where the uncapped data mean 〈data〉 and

capped data mean 〈xHII〉 are both low. As reionization progresses and larger bubbles

start to overlap 〈data〉 begins to diverge significantly from 〈xHII〉. This gives rise to

an increasing offset between the halo model and measured spectra, in particular on

middling scales. The halo model is somewhat able to capture the clustering of these

data but, in any case, the data are nonphysical because the ionisation fraction field

has been allowed to exceed 100% ionised.

5.3.2 Removing overlap

Handling the overlap of bubbles in the mock data is necessary for a realistic model

for the ionisation fraction. To determine the extent that overlap affects the power

spectra measurements and halo model predictions, the generated data cubes in Fig-

ure 5.16 were clipped so that any pixel with xHII > 1.0 is set to xHII = 1.0. Fig-

ure 5.18 shows slices through the resulting clipped data.

The same stack-fit-predict procedure is used on these new clipped data cubes.

Figure 5.19 shows the halo model and measured power spectra predictions for each

redshift in a separate panel. The measured power spectra at earlier redshifts are

similar to the measured spectra for the un-clipped data. As expected the halo model

spectra for early times matches the measured ones. The effect of overlap can imme-

diately be seen even for values of xHII ≥ 0.10: most prominently, there is a signifi-

cant amplitude offset between the predicted and measured power spectra. Although

I have handled the effect of overlap in the mock data, the analytic halo model in

Equations 5.24 and 5.25 makes no account of the overlap between ionised bubbles
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Figure 5.17: Measured and predicted power spectra for clustered ionisation fraction mod-
els allowing overlap. Dashed lines show the predicted spectra from the halo
model, solid lines show the mean measured spectra from five realisations with
error bars to indicate the two-sigma spread in measured spectra. The shapes
of the predicted spectra qualitatively match the measured spectra, although
already the predictions do not lie perfectly within the two-sigma range of the
measured spectra. For later redshifts with higher global ionisation fraction,
there is a greater offset in the amplitude likely caused by widespread overlap.
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Figure 5.18: Slice through realisation for halo model with clustering, clipping the data so
that each pixel contains only legal values for 0≤ xHII ≤ 1.0
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around halos.

5.3.3 Handling overlap: suppression

In order to handle the effect of overlap in the analytic model, the number density of

dark matter halos must be matched to the number density of actual ionising sources.

In the formalism of this chapter so far, ionised bubbles have been fitted around halos

locations and not ionising sources. I introduce a suppression function f b(M;z)

which links the number density function of bubbles to the number density function

of halos. The function f b(M;z) specifies the extent of bubble overlap for halos with

different masses M at different redshifts z. The values 1/ f b thus give the fraction of

halos at any (M,z) that give rise to an ionised bubble. This function can be sampled

from the un-clipped realisations in the previous subsection. I measure the extent of

overlap for every halo with their respective (M,z) and fit these sampled values to

a linear regression model using the SKLEARN.LINEAR MODEL.LINEARREGRESSION

class. Figure 5.20 shows the resulting suppression function, with the sampled values

plotted as points and the fitted linear regression model as solid lines.

The effect of overlap is included in the halo model by suppressing the number

densities of each halo mass in the catalog by the suppression function,

dn
dM

(M,z)→
dn
dM (M,z)
f b(M,z)

. (5.29)

The resulting power spectra predictions including this suppression function are

shown in Figure 5.21. The halo model using suppressed predictions is somewhat

better able to account for overlap than those in Figure 5.19: the amplitude of the

predicted and measured power spectra match more closely up until around 80% of

the way through the reionization process (xHII = 0.8). At later times the amplitude

still diverges, but to a lesser extent than without suppression. Although the predicted

spectra amplitudes are much closer to the measured spectra, their shapes still dif-

fer across most redshifts. The predicted spectra are less smooth than the measured

spectra, showing a more distinct peak at middling scaled around k = 0.8h/Mpc

(corresponding to real-space scales of 8 Mpc/h).
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Figure 5.19: Measured and predicted power spectra of clipped data. Each redshift is shown
in a separate panel. Dashed lines show the predicted spectra from the halo
model, solid lines show the mean measured spectra from five realisations with
error bars to indicate the two-sigma spread in measured spectra. At early
redshifts, there is minimal overlap in the bubbles and the model works well.
At later redshifts, the clipping has a significant effect on the model predicted
power spectrum and the two diverge. Without accounting for overlap in the
analytic model, the spectra amplitudes quickly diverge.

Page 155



CHAPTER 5. ANALYTIC CLUSTERING MODEL

10
10

10
11

Halo Mass [M ]

10
0

10
1

10
2

S
u

p
p

re
ss

io
n

 f
b (

M
,z

)

z = 10.00
z = 11.00
z = 12.00
z = 13.00
z = 14.00
z = 15.00
z = 16.00
z = 17.00

Figure 5.20: Suppression function calculated by finding the overlap in the un-clipped data
at halos centres for every (M,z) pair. This function can be included in the
halo model to suppress the halo mass abundances into effective ionised bubble
abundances.

5.4 Ionisation fraction: towards a full model

The halo model in the previous section makes approximate predictions for the power

spectrum amplitude and shape of a simplified ionisation fraction model. In the sim-

ple model every halo gives rise to a spherical fully-ionised region whose radius

depends only on the underlying halo mass. The original motivation for this chap-

ter is to replace the power spectrum predictions from SIMFAST21 by using a fitted

analytic model. In this section I take the final step towards this goal: fitting a halo

model to SIMFAST21 xHII data directly. The resulting fitted model makes very ap-

proximate predictions for the amplitude of the SIMFAST21 power spectra. I discuss

the possible reasons for the mismatch and consider potential avenues of future work

which might resolve the differences. I use the same stack-fit-predict method with

step-function profiles. For the feature relations I adjust the peak-above-infinity fea-

ture to be the correct one for ionisation fraction profiles, namely

ρ0(M,z) = 1−〈xHII〉(z) (5.30)

with the radius feature remaining the same as in previous sections
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Figure 5.21: Measured and predicted power spectra using the suppression function to re-
duce the abundances of ionised bubbles sourced at each halo. Dashed lines
show the predicted spectra from the halo model, solid lines show the mean
measured spectra from five realisations with error bars to indicate the two-
sigma spread in measured spectra. The predictions match the measured spec-
tra better than the clipped model up until xHII = 0.75. The later redshifts still
show significant departure between the predicted and measured spectra due to
the widespread overlap of ionised bubbles. Most predictions still lie outside
the two-sigma range of the measured spectra, indicating that model is still not
accurately replicating the simulated spectra.
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R(M,z) = Θ0[M]Θ1. (5.31)

Figure 5.22 shows the measured and fitted profiles for a single SIMFAST21

realisation. The measured stacks are shown as dotted lines with circular markers,

and the solid lines indicate the jointly-fitted profiles. The profiles are shown at

z = 13 for all unique halo masses that were resolved in the simulation. The jointly-

fitted radii roughly match the halfway point of the measured profiles. Note that

SIMFAST21 accounts for unresolved halos which are too small to be included in the

halo catalogs used for fitting. One way to include the effect of these small halos

would be to use higher-resolution simulations, so that all valid halo masses above

the minimum mass parameter Mmin are resolved. Such high resolution simulations

would take a prohibitively long time to run. I instead account for these smaller halos

by using Mmin as the lower limit of the 1-halo and 2-halo integrals and allowing

my fitted profile function to extrapolate the likely profiles of these bubbles. In

practice the small mass halos made little difference to the resulting power spectrum

predictions of this section.

The resulting final predicted spectra in Figure 5.23 match only loosely with the

actual SIMFAST21 spectra. For early redshifts with 〈xHII〉< 0.05 the power spectrum

shapes differ; for later redshifts with 〈xHII〉 ≥ 0.05 the shapes match more closely

but the halo model quickly over-predicts the power spectrum amplitudes. Only

spectra for 〈xHII〉 < 0.10 are shown, since all power spectra for higher 〈xHII〉 val-

ues continue the trend of growing discrepancy between the measured and predicted

power spectra. The mismatch must be caused by one or more incorrect fittings of

the halo model parts: the profile function, the clustering function, the bias function,

or the number density distribution. I consider each part separately to determine

whether it likely contributes to the poorer predictions.

The fitted profiles in Figure 5.22 have correctly identified a reasonable profile

radius for each mass in the catalog. Although the shapes of the fitted profiles differ

from the measured stacks, this would be unlikely to cause such a large discrepancy

in the power spectrum amplitudes. The profile function is unlikely to be the main
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Figure 5.22: Measured and fitted profiles around halo centres for SIMFAST21 realisation
using the canonical reionization parameters: Mmin = 5×108M�, ζion = 30.0,
and Rmax = 10 Mpc. Each panel shows the stacked and fitted profiles for a
different halo masses at a fixed redshift of z = 13.0. The solid line shows the
fitted profile. The dotted line shows the mean of the measured stacks, with
two-sigma errors indicated by the shaded region. The fitted profiles (solid
lines) pick out a reasonable radius for each of the measured stacked profiles
(dotted lines with circular markers) for each of the masses.

source of error. The clustering and bias functions were used in the previous section

for recreated ionisation fraction data including the effects of clustering and biasing.

The successful match between the measured and predicted spectra of those recreated

data suggest that the clustering and bias functions are not a contributing factor to the

poorer predictions. Almost certainly the cause of the mismatch is in the difference

between the number density distributions of bubbles and the halo mass function.

In the previous section a suppression function was successfully used to convert the

halo mass function to a bubble distribution function, for the simple model of a single

spherical ionised region sourced at every halo. The suppression function for SIM-

FAST21 clearly differs significantly from the suppression function of that simple

model, causing my halo model to over-predict the abundances of ionised regions.

The same logic applies for different power spectrum shapes at earlier redshifts. The
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Figure 5.23: Measured and predicted power spectra predictions combining all previous
properties: clustering, bias, suppression function, and fitted profiles from
actual SIMFAST21 data. The measured spectra are calculated directly from
the three-dimensional SIMFAST21 ionisation fraction cubes. The halo model
predictions quickly diverge from the measured spectra, likely due to the sup-
pression function as discussed in the text. Only spectra for 〈xHII〉 < 0.10 are
shown, since all power spectra for higher 〈xHII〉 values continue the trend of
growing discrepancy between the measured and predicted power spectra.

shape of the power spectrum is dependent on the relative abundances of differently-

sized bubbles: smaller bubbles have power spectrum peaks at larger k-values, and

larger bubbles peak at smaller k-values. An incorrect suppression function would

skew the relative abundances and give a different power spectrum shape, as is ob-

served in the top four panels of Figure 5.23.

The mismatch would likely be resolved by using the number density distribu-

tion of bubbles directly, instead of using the halo mass function with a suppression

function. This would require measuring the abundances of differently-sized ionised

regions in the simulation, and then fitting the resulting number distribution to an

analytic form for the halo model. Although this would certainly give a better match
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between the halo model power spectra and those from SIMFAST21, this would ef-

fectively be a test of whether the simulation is correctly implementing the FZH

procedure in Section 2.1.1. However, if such a bubble distribution could be fitted

as a function of the reionization parameters (ζion, Mmin) then this could add extra

information from SIMFAST21 that is not available to the FZH model directly.

5.5 Conclusions

The halo model approach can be used to predict rough amplitudes and shapes for the

power spectra of simplified ionisation fraction data. In Section 5.2, the procedure

was seen to accurately model mock ionisation fraction data with randomly-placed

ionised bubbles of various sizes. Including the effect of bubble clustering in Sec-

tion 5.3 requires suppressing the number density function of halos, since not all

halos give rise to a separate isolated ionised bubble. Suppressing the number den-

sity gives better predictions for all but the latest redshifts where xHII ≤ 0.8. For

later redshifts the model is unable to account for the effects of widespread bubble

overlap. Accounting for overlap is an issue that all analytic models of ionisation

struggle with (including Furlanetto et al. 2004). Finally I compared the full halo

model predictions with actual spectra from SIMFAST21 outputs. The final model

would need significant improvement before being useful as a full replacement for

SIMFAST21. The predictions would likely be improved by measuring the bubble

size distribution directly from the simulations by using methods such as granulom-

etry (Kakiichi et al., 2017) or the mean-free path method (Mesinger and Furlanetto,

2007). Performing the fitting for many different reionization scenarios specified

by a particular set of reionization parameters such as ionisation efficiency ζion and

minimum halo mass Mmin could provide additional information that is available in

the SIMFAST21 outputs, that is not available to the analytic FZH model.

Analytic models such as the one in this chapter have a number of benefits. Most

significantly, analytic models provide a direct method of understanding the underly-

ing physics. The complex interactions within simulations can often lead to bizarre

emergent properties, and it can be difficult to determine whether the unexpected re-
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sults are the cause of a poor simulation or an indication of new physics. Unexpected

predictions from analytic models, however, can be understood in terms of the model

assumptions – highlighting what new data or assumptions could improve the model.

If model interpretability is not an important requirement, then Chapter 6 describes

an entirely different technique for modelling the Epoch of Reionization: using ma-

chine learning to emulate the behaviour of the simulations without any knowledge

of the underlying physics. The predictions of such ‘surrogate models’ in Chapter

6 are much closer to the simulated power spectra than the analytic model in this

chapter.
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Chapter 6

Emulating Epoch of Reionization

simulations

Upcoming experiments such as the SKA will provide huge quantities of data. Fast

modelling of the high-redshift 21cm signal will be crucial for efficiently compar-

ing these data sets with theory. The most detailed theoretical predictions currently

come from numerical simulations and from faster but less accurate semi-numerical

simulations. Semi-numerical simulations take minutes to hours to run.

In this chapter I evaluate the viability of five machine learning techniques for

emulating the 21cm power spectrum from SIMFAST21. This work was published in

Jennings et al. (2018). I analyse the prediction speeds of the resulting emulators and

their accuracy across the standard reionization input parameter space. The best em-

ulator is a multilayer perceptron with three hidden layers, reproducing SIMFAST21

power spectra 108 times faster than the simulation with 4% mean squared error aver-

aged across all redshifts and input parameters. The other techniques (interpolation,

Gaussian processes regression, and support vector machine) have slower prediction

times and worse prediction accuracy than the multilayer perceptron.

See Section 2.5.4 for a review of recent machine learning techniques for the

EoR. All the emulators in this chapter differ from those in Schmit and Pritchard

(2018) and Kern et al. (2017), which were trained at fixed scales and fixed redshifts.

Such emulators make predictions only at these fixed scales and redshifts, so that if

other scales or redshifts are desired one must interpolate further. Using the scales
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and redshifts directly as extra inputs to the trained models allows them to make

predictions for any requested scale and redshift. This method is theoretically more

flexible but results in significantly worse prediction accuracy at lower redshifts.

The rest of the chapter is split in to the following sections.Section 6.1 briefly

describes the specifics of how the emulators were trained. I present the results of

training the emulators in Section 6.2. Section 6.3 is a discussion of the accuracy

and speed performance of the different machine learning techniques, and how their

performance depends on the input parameters. The best emulator candidate is then

used in Section 6.4 to present a proof-of-concept technique for determining a re-

lationship between two different simulations. The technique is demonstrated by

finding a mapping between the inputs of SIMFAST21 and those of 21CMFAST by

measuring which inputs result in the most similar output power spectra. I conclude

in Section 6.5 by reiterating the motivations for these emulators and describing po-

tential use-cases for the final trained emulators.

For cosmological parameters I use ΩM = 0.270, Ωb = 0.046, ΩΛ = 0.730,

H0 = 71.0km s−1Mpc−1, ns = 0.960, σ8 = 0.810, the default parameters in the

SIMFAST21 package1.

6.1 Emulator training
This section describes how training data were gathered and the specific choices

made while training the emulators. The training results are given later in Sec-

tion 6.2. All emulators are trained on the same architecture, each on a single node

using 16 Xeon E5-2650 cores and 128GB RAM. The emulators are trained to re-

produce correlations in fluctuations of the differential brightness temperature. See

Section 2.2.2 for a review of these correlation functions.

The noise in this chapter is sample variance from randomly seeding different

density fields at the start of each simulation. I do not include sources of noise

from experimental factors such as instrumental noise because these emulators are

intended as efficient replacements for the expensive simulations themselves. For

1https://github.com/mariogrs/Simfast21
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comparison with observed telescope data, instrumental noise can be added in the

comparison stage after running the clean emulated simulations.

6.1.1 SIMFAST21 simulations

I run 2000 SIMFAST21 simulations in total, retaining only the three input reion-

ization parameters and the final output spherically averaged power spectra for

each simulation. This number of simulations was chosen as the smallest number

which gives a visible reasonable sampling of the three-dimensional input space.

I test the effect of using fewer simulations on the final model accuracy in Fig-

ure 6.3. I use 1000 simulations for training, 500 for validation, and another 500

for testing the emulators which have highest prediction accuracy on the valida-

tion data. This follows the standard process of train-validate-testing described in

Section 2.4. Each simulation generates three-dimensional realisations of the δTb

field in a cube of size 500 Mpc resolved into 5123 pixels (smoothed from den-

sity fields resolved into 15363 pixels). This gives power spectra values for seven

redshift values: {8.0,9.5,11.0,12.5,14.0,15.5,17.0} and thirteen k-values in the

range {0.02,3.0} hMpc−1. This corresponds to 91000 overall training data points,

and 45500 data points each for validation and testing. The power spectra data have

size of 335MB for all 2000 simulations, compared to 7TB size of all δTb boxes.

6.1.2 Training set design

The emulators map five input values to a single output target value. The target value

is the δTb power spectrum value for the given inputs. The first three input values

are the three reionization parameters (see Section 2.1.2), which are different for

each simulation. The final two inputs are the redshift z and the k-value, the values

for which are constant across all simulations and are given in Section 6.1.1. The

function f (x) which the models are fitting is then the spherically averaged 21cm

power spectrum P∆Tb(Mmin,ζion,Rmax,z,k).

I use the Latin Hypercube method (McKay et al., 1979) to choose the reioniza-

tion parameter values for the simulations. The Latin Hypercube method samples the

three-dimensional input space more efficiently than a naive exhaustive grid search.
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I use the following ranges and scalings for the reionization parameters:

1. Mmin in the logarithmic range [107.8,109.8];

2. ζion in the linear range [5,100];

3. Rmax in the linear range [5,20].

These ranges match those used by the semi-numerical simulation authors, see for

example Greig and Mesinger (2015). See Section 4.1.2 for a discussion of the

Mmin and ζion ranges. The Rmax range arises from recombination models (Sobacchi

and Mesinger, 2014), and only has an effect near the end of reionization when the

ionised bubble sizes are comparable to Rmax (Alvarez and Abel 2012, Mcquinn

et al. 2006). See Figures 6.10 and 6.11 later for example power spectra across these

ranges for ζion and Mmin values. Another common method for evenly sampling a

high-dimensional space is to choose points randomly within fixed bounds. This

random sampling method is slightly less efficient than latin hypercube sampling: it

can give rise to ‘wasted’ points which lie close to one another. Unless the data are

subject to very high noise or sample variance, using two points in the same point in

parameter space usually does not provide any more information than using a single

point. The latin hypercube method ensures that all points are evenly spaced and not

wasted.

I also test three different scaling types for the target values to determine which

gives the most accurate emulation. These three are a linear function y = Pk, a log-

arithmic function y = log[Pk], and a pseudo-logarithmic function y = sinh−1[Pk]

sometimes called luptitude (Lupton et al., 1999). I test logarithmic scaling as an

attempt to exploit the fact that power spectra appear more naturally spaced in log-

arithmic space log[Pk] than in linear space Pk. However a few percent of the power

spectra data are zero-valued, especially at early and late redshifts where the ionisa-

tion field xHII(r) becomes uniform and δTb is effectively zero everywhere (Pritchard

and Loeb 2012, pages 12-13). The motivation for luptitude scaling is to retain as

much data as possible: a purely logarithmic scaling would require us to throw away
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all zero-valued data points and reduce the size of the training data set. I comment

on the effects of including or excluding these zero-valued data in Section 6.3.6.

6.1.3 k-range restriction

I exclude the largest and smallest scales from the validation and testing data, in-

cluding only 0.1 ≤ k ≤ 2.0 values. On large scales (k < 0.1 hMpc−1), the power

spectrum is affected by foregrounds (Datta et al., 2010). The finite resolution of

the simulations means that there is little information in the power spectrum on very

small scales (k > 2.0 hMpc−1). These restrictions are common for semi-numerical

simulations, see for example Greig and Mesinger (2015).

6.1.4 Goodness of fit evaluations

For validation and testing I measure the goodness of fit between predicted target

values y∗(k,z) and measured target values y(k,z) using the mean squared error

MSE
[
y(k,z),y∗(k,z)

]
=

1
NzNk

Nz

∑
z

Nk

∑
k

(
y(k,z)− y∗(k,z)

y(k,z)

)2

(6.1)

along with the percentage mean squared error, 100×MSE. The MSE is averaged

over all Nz redshifts values and all Nk scale values in the range 0.1≤ k≤ 2.0, unless

explicitly mentioned otherwise. For comparability I use this same error function

for all different emulators during validation and testing, although the models use

different error metrics for determining their training convergence (see Section 2.4

for the training objective functions for each model).

6.2 Emulator training results
After training each emulator I test its accuracy by generating predictions for a set

of unseen validation data. By calculating the MSE value in Equation (6.1) between

the predicted outputs and the true outputs, I determine which emulator makes the

most accurate predictions. A low MSE means a high prediction accuracy.

6.2.1 Target value scaling

Here I compare the prediction accuracy for the three scaling methods of the target

power spectra values: linear, logarithmic, and pseudo-logarithmic sinh−1(x). As
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expected, the linear function has poor prediction accuracy because the power spectra

values are more naturally spaced in logarithmic space than in linear space. The

logarithmic function works fairly well at intermediate redshifts for this same reason,

but all of the zero-valued power spectrum values had to be discarded as log(0) is

undefined. The pseudo-logarithmic function sinh−1(x) has the highest prediction

accuracy over all redshifts and allows us to retain all training data points (with zero-

valued outputs or otherwise). I use the pseudo-logarithmic function in all emulators

from here on.

6.2.2 Hyperparameter searching

Each model has a set of trainable values referred to as fitting parameters. Many

models have an additional set of values which must be fixed even before starting

to train, referred to as hyperparameters. See Section 2.4.6 for a review of differ-

ent search strategies for deciding which hyperparameters to use. Here I describe

which hyperparameters (if any) were varied for each model type, and which hyper-

parameters values give rise to the best prediction accuracy. For MLP models, I first

choose a set of fixed hypers that remain constant through the chapter. These are: a

constant learning rate of 0.001; batches of size 200; the rectified linear unit func-

tion RELU as the activation function; and an L2 regularlization value of α = 0.0001.

For each model I restrict the total training time for all hyperparameter searching to

156 CPU hours. The interpolation models involve no hyperparameters, and for the

SGPR model I simply increase the number of inducing points m until the individual

model’s training time reaches 156 CPU hours. Increasing m should always increase

the SGPR model’s accuracy and so the value of m is not treated as a hyperparameter

when considering the total training time. Including models with smaller m values in

the total training time would give a smaller maximum value of m, making an unfair

comparison with the other models.

MLP layer sizes

I use MLP models with one, two and three hidden layers. The sizes of the hidden

layers were varied linearly in the range [0,200] using a simple grid-search method.

This range of layer sizes was chosen as being roughly one order or magnitude larger
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Figure 6.1: Mean squared error on the validation data for three-layer multilayer perceptron
models, as a function of the sizes of each hidden layer. The star shows the layer
sizes of the MLP emulator with the highest prediction accuracy: 160 neurons in
the first hidden layer, 180 neurons in the second hidden layer, and 20 neurons
in the final hidden layer.

than the number of inputs. This ensures that the number of trainable parameters

(i.e. weights) is large enough for the model to be able to fit the complex five-

dimensional function of the power spectrum. Collectively, the number of layers and

the sizes of the layers are often referred to as the ‘network architecture’. Generally,

the emulator models with more hidden layers have higher prediction accuracy. The

validation MSE values for the best one-, two- and three-layer MLP emulators are

13%, 2.3%, and 1.6% respectively. The validation MSE values for three-layer MLP

emulators are shown in Figure 6.1 as a function of the sizes of each of the three

hidden layers. Most three-layer MLP models have a low validation MSE near 10%.

The best emulator has hidden layers sizes 160−180−20, the architecture for which

are indicated by the location of the star. The MLP models end training when the

change in objective function changes more slowly than a threshold tolerance for

several training epochs. Most of the MLP models achieved this in fewer than 400

training epochs, with some 1-layer models lasting up to 800 epochs.
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SVM margin hyperparameters

I test a range of SVM emulators with different values for three hyperparameters

controlling the margin. I vary the penalty parameter C logarithmically in the range

[10−3,103]; the tolerance EPSILON logarithmically in the range [10−3,100]; and the

kernel influence range GAMMA logarithmically in the range [10−3,103]. These hy-

perparameters are the suggested ranges by SKLEARN and I use a simple grid-search

to find the best hyperparameters. I also test three kernel functions: RBF, sigmoid,

and polynomial. Figure 6.2 shows how the validation MSE of emulators using

the RBF kernel depends on the SVM hyperparameters. The different colour-map

is used to emphasise that the colour range is logarithmic and has a much larger

spread of MSE values between 0.2 and 2000 (or between 20% and 2×105%). The

best SVM emulator has validation MSE of 20%, using hyperparameters C = 1.0,

EPSILON = 10−3, GAMMA = 1.0 and the RBF kernel. All SVM emulators with ker-

nels other than RBF have much worse validation MSE: the best polynomial and

sigmoid SVM emulators have validation MSEs of 50000% and 500% respectively.

6.2.3 Overfitting tests

For each model I determine the best hyperparameters by trying a range of values and

selecting the emulator which shows the highest prediction accuracy on the valida-

tion data. By trying different hyperparameter values we can usually find a closer fit

to the data. However, this process is sensitive to over-fitting: the model might fit the

training data more closely, but it may not extend well to new data. I test for overfit-

ting by training a series of emulators with increasing training dataset sizes, keeping

the hyperparameters fixed at the proposed best values. Providing more training data

should give rise to improved predictions for the unseen validation data. If provid-

ing more training data instead leads to a decrease in validation prediction accuracy,

then overfitting has occurred: the model makes good predictions for the training

data, but does not extend well to new input values. Figure 6.3 shows the results of

these tests, giving the mean square error on the validation data for each model, us-

ing differently sized training datasets. Most of these mean squared errors generally

decrease with increased training set size, implying that none has been overfitted.
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Figure 6.2: Mean squared error on the validation data as a function of the model hyper-
parameters, for support vector machine emulators using the RBF kernel. The
hyperparameters are the penalty term C, margin tolerance EPSILON and in-
fluence range GAMMA. The spread of MSE values is much larger for SVM
models, indicated by the logarithmic colour scale between MSE values of 10−1

and 103. The hyperparameters of the highest prediction accuracy SVM model
are indicated by the star: C = 1.0, EPSILON = 10−3 and GAMMA = 1.0.

The final MLP emulator shows a slight up-turn indicating that it may be slightly

overfitted. This emulator has the best performance on the testing data, however, so

the overfitting is likely minor. In general, deciding when to stop gathering training

data depends on the final accuracy requirements of your model. By plotting the

prediction accuracy against the training set, one can immediately see the extent that

providing more training data would improve the model. Emulators are often used

to replace simulations in parameter estimation methods, comparing the results of

the simulations to the observed data and finding which simulated model(s) are most

similar to the observed data. In this case, one way to decide the required accuracy

target is to match the noise level of the observed data. With noisy observed data, the

accuracy of the emulator will have less impact on the parameter constraints than the

effect of the noise. On the other hand, if the data are effectively noiseless then the

emulator accuracy will be extremely important. With noisy data I might only need
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Figure 6.3: Mean squared error on the validation data as a function of training set size. The
best hyperparameters were fixed for each model, and the emulator retrained
with more training information. The MSE curves generally improve with more
training data, implying that none has been overfitted. Note that the x-axis here
can be seen as related to the number of simulations that are used: a training
set size of 103 corresponds to roughly ten simulations, and a size of 105 corre-
sponds to all thousand of the training simulations.

a mean square error accuracy of 1.0. Many of the models in Figure 6.3 achieve this

accuracy and, in fact, the multilayer perceptron reaches this accuracy with fewer

than half of the training data points. I could have trained my model after running

only 500 simulations and saved weeks of training time. In the other extreme, if

my data are less noisy I might decide that the MSE accuracy has to be better than

0.1. Figure 6.3 shows that none of the models has yet achieved this accuracy, and I

would need to provide more training data (or higher quality training data) to reach

that accuracy.

6.2.4 Performance on testing data

Here I test the performance of the best emulator for each model type using all 500

simulations in the testing set. Table 6.1 shows the accuracy and speed of each

emulator for making predictions on the entire testing dataset. The global MSE

percentage is averaged across the entire testing data set. In Section 6.3.6 later, I

discuss the fact that the trained emulators have worse accuracy at lower redshifts. I
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Model Type Test MSE % Test MSE % for z≥ 10 Prediction Time
Nearest Neighbour 290 % ∗ 5.1 % 0.20s
SGPR (m = 2730) 36 % 0.6 % 116s
SVM 32 % 2.1 % 27s
1-layer MLP 27 % 9.2 % 0.07s
Linear Interp 17 % 1.6 % 4.1 hours ∗

2-layer MLP 4.5 % 2.3 % 0.14s
3-layer MLP 3.8 % 1.4 % 0.27s

Table 6.1: Speed and accuracy performance of the best emulator for each technique, using
the testing data set. The percentage MSE values here are 100×MSE. The rows
are sorted in order of prediction accuracy, from highest MSE (least accurate)
at the top to lowest MSE (most accurate) at the bottom. I give MSE values
averaged across the entire dataset and also the MSE for a subset of the testing
data with z ≥ 10 to demonstrate that most of the poor accuracy occurs at later
redshifts. See Section 6.3 for a discussion on the extreme (∗) values for the two
naive interpolation methods. For all models except SGPR, the total time for
hyperparameter searches is 156 CPU hours. For SGPR model, I run a single
model with the largest possible number of inducing points m without exceeding
156 hours training time.

include a column in Table 6.1 for the percentage MSE averaged across the testing

data with higher redshifts (z ≥ 10). Figure 6.4 shows an example of the power

spectra outputs from the best emulator of each model type, showing the predictions

for a single test simulation near the canonical reionization parameters at z = 9.5.

6.3 Emulator training discussion

6.3.1 Interpolation

Figures 6.5 and 6.6 show the prediction MSE of the nearest-neighbour and linear

interpolation emulators as a function of location in parameter space. These two

models are the worst candidates for emulating SIMFAST21 behaviour.

The nearest-neighbour interpolation model has poor prediction accuracy both

in terms of the global MSE value of 290% from Table 6.1, and the local MSE across

parameter space shown in Figure 6.5. The model uses the nearest-neighbour look-

up method of SCIPY.SPATIAL.KDTREE which is fast but makes no account of noise

or smoothness in the simulation behaviour. The linear interpolation model emulates
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Figure 6.4: Predicted δTb power spectra of a canonical simulation with reionization param-
eters {5× 108M�,30.0,10 Mpc}. Dotted lines show the predictions from the
best emulator of each type. Solid line shows the power spectrum from an actual
SIMFAST21 simulation. The red shaded areas indicate the k-values that were
excluded from the validation and testing. This test simulation was chosen from
the testing data as the nearest to the canonical reionization parameters. The
model using nearest-neighbour interpolation has significantly different predic-
tions, likely owing to the underfitting processes discussed in Section 6.3. No
error bars are shown because the measured curve is from a single simulation,
and the predicted curves are from deterministic ML models which do not gen-
erate uncertainty estimates.
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Figure 6.5: Local MSE performance for the nearest ND interpolation model
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Figure 6.6: Local MSE performance for linear ND interpolation model

the SIMFAST21 behaviour more closely: the global MSE is 17% and the local MSE

in Figure 6.6 shows larger regions of good accuracy. This accuracy is at the expense

of much slower prediction times. The nearest neighbour model makes predictions

for the whole testing dataset in less than a second, whereas the linear interpolation

model takes several hours. These results indicate that interpolation methods cannot

efficiently capture the complicated behaviour of SIMFAST21, justifying the need for

more complex machine learning techniques.

6.3.2 Sparse Gaussian processes regression

The sparse Gaussian processes model is a poor emulator candidate. Both the local

MSE in Figure 6.7 and the global MSE of 36% are poor. The accuracy of the

model would almost certainly be improved by increasing the number of inducing

points, which would lessen the matrix inversion approximation. However, training

models with m> 2730 would require more than the allowed CPU time. The value of

m = 2730 is chosen as the largest number of inducing points whose model training

time does not exceed 156 hours. A hard upper limit of m < 18000 is found for

the 128GB RAM architecture used in this chapter, since values of m larger than

this cause a RESOURCEERROR in TENSORFLOW. Moreover, increasing the number of
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Figure 6.7: Local MSE performance for the best sparse Gaussian processes model

inducing points also increases the prediction time: using m = 910 takes 16 seconds

to make predictions for the testing dataset; using m = 2730 takes 116 seconds.

Increasing the number of inducing points gives better accuracy at the expense of

much slower prediction times. It is likely that the model could be greatly improved

by using methods such as Principle Component Analysis as in Kern et al. (2017),

since Gaussian Process models scale poorly with high numbers of dimensions and

large data sets.

Interestingly, if data for z < 10 are excluded from performance testing then

the SGPR model changes from being one of the least accurate models to being the

most accurate one. The reason that SGPR in particular makes poor low-redshift

predictions is likely due to the effect of the MATERN32 kernel on the problematic

low-redshift power spectra. The MATERN kernel tries to fit a smooth function to

the sudden behaviour. Although smoothly fitting appears to work well at higher

redshifts, since simulations with similar inputs should give similar output power

spectra. At lower redshifts however, the emulator struggles both to enforce smooth-

ness and to allow for the sudden jumps seen in the training data.
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Figure 6.8: Local MSE performance for the best support vector machine model

6.3.3 Support vector machine

Figure 6.8 shows the local MSE performance of the best SVM model. This model is

a poor candidate for a SIMFAST21 emulator. The global MSE of 32% from Table 6.1

is one of the worst. This model also has slow prediction speeds, taking 27 seconds

to make predictions of the testing data (100 times slower than the best MLP model).

It is possible that using other kernels and doing deeper hyperparameter searches

would give better accuracy. Given the long prediction times for these models, it is

unlikely that any SVM models would outperform the best MLP emulator, either in

terms of speed or accuracy.

6.3.4 Multilayer perceptron

Figure 6.9 shows the prediction MSE of the best MLP emulator as a function of

location in parameter space. The dark regions indicate the regions of parameter

space which are most difficult to emulate.

The three-layer multilayer perceptron is the best candidate for emulating SIM-

FAST21 behaviour. Table 6.1 shows that this emulator makes fast and accurate pre-

dictions for the test dataset, taking less than a second to match the true simulation

outputs within 4% mean squared error averaged across the whole input parameter
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Figure 6.9: Local MSE performance for the best three-layer multilayer perceptron model

space. Figure 6.9 shows that the emulator makes accurate predictions across a wide

range of input parameters. Worse performance is seen for MLP emulators using

fewer hidden layers: increasing the number of layers allows MLP models to be

more flexible, and the results indicate that one- and two-layer MLP models are not

flexible enough to fit the simulation outputs as accurately as three-layer models.

Figures 6.10 to 6.12 show several example power spectra for a range of ζion,

Mmin and Rmax values, also showing the predicted power spectra from this best

emulator. The shaded red regions in these figures indicate the ranges of excluded

k-values. The simulated spectra in these figures are from the test dataset. No error

bars are given for the simulated spectra because each line is for a single simulation

only, so that no spread of values can be measured. Similarly each prediction is from

the best emulator, which gives deterministic results such that fixed input parameters

always give the same output power spectrum. It is possible to train neural networks

that generate an estimate of the error bars (see for example Bayesian neural net-

works Hinton and Van Camp 1993, or using ‘dropout’ throughout the network Gal

and Ghahramani 2016) but these methods require considerably more training time,

and are not used in this chapter. Finally Figure 6.13 show the same predicted power
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Figure 6.10: Example emulated and simulated power spectra for a range of ζion values
at z = 9.5, for fixed Mmin = 5× 108 and Rmax = 10. Solid line shows the
simulated power spectra, dotted line shows the predicted power spectra from
the best emulator. The ionised fraction for each line is given in the legend.

spectra as in Figure 6.10, instead colouring by the mean-squared error of the pre-

diction. The two predictions at the extremes of the input parameter space (ζion = 80

and ζion = 10) have the worst prediction accuracies. This feature of making poorer

predictions on the edge of the parameter space is common for machine learning

models because of the information in the training data. Predictions for parameter

values near the centre of the input space generally have a large number of nearby

training data points, whereas parameter values near the edge of the input space gen-

erally have far fewer nearby training data points. Predicting the power spectrum for

scenarios in the centre of the input space is thus far easier than predicting the power

spectrum for scenarios on the edge of the input space, as observed in Figure 6.10.

Given the benefit of most three-layer models over two-layer models, it seems

likely that models using four or more layers could provide even closer fit to the

training data. Such models were not investigated given the fixed upper limit on

training time. Additionally, the benefit of adding more layers would likely be min-

imal as there is a clear case of diminishing returns for each additional layer: the
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Figure 6.11: Example emulated and simulated power spectra for a range of Mmin values at
z = 9.5, for fixed ζion = 30 and Rmax = 10. Solid line shows the simulated
power spectra, dotted line shows the predicted power spectra from the best
emulator. The ionised fraction for each line is given in the legend.

Figure 6.12: Example emulated and simulated power spectra for a range of Rmax values at
z = 9.5, for fixed ζion = 30 and Mmin = 5×10. Solid line shows the simulated
power spectra, dotted line shows the predicted power spectra from the best
emulator. The ionised fraction for each line is given in the legend.
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Figure 6.13: Example emulated power spectra for a range of ζion values at z = 9.5, for
fixed Mmin = 5×108 and Rmax = 10. Colours indicate the overall MSE of the
prediction, with markers added to discriminate between the different lines.
The MSE for each line is given in the legend. The two predictions at the
extremes of the parameters space (ζion = 80 and ζion = 10) have the worst
prediction accuracies, which is a common feature of machine learning models
as discussed in the text.

best MSE for one layer was 27%; two layers gave 4.5% MSE; and three layers gave

3.8%.

6.3.5 Mass turnover performance

All of Figures 6.5 to 6.9 show a region of poorer prediction accuracy for inputs

near Mmin = 109. This is likely due to the finite mass resolution of the SIMFAST21

simulations. For values of Mmin near the mass resolution, the simulation switches

between containing both resolved and unresolved halos (if Mmin < 5× 109), and

containing only resolved halos (if Mmin > 5× 109). The change in behaviour ap-

pears to be difficult to emulate for all model types.

6.3.6 Low redshift performance

The prediction accuracy of the emulators is worse for lower redshifts than for higher

redshifts. If data for z < 10 are excluded from performance testing, then all emu-

lators improve significantly: for instance, the three-layer multilayer perceptron’s

percentage MSE improves from 3.8% to 1.4%. The improved values using only
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high-redshift power spectra are presented in the third column of Table 6.1. There

are two effects that could be causing the worse accuracy at lower redshift, which I

discuss here.

First, my emulators differ from those of Kern et al. (2017) and Schmit and

Pritchard (2018) in that my models are trained using the redshift and k-scales as

extra input dimensions. The motivation for including redshift and k-scales was to

allow for immediate predictions at any redshift or k-scale. Without including these

input dimensions the trained models would only make prediction at the fixed red-

shifts and k-scales of the training data. Making predictions at other input values

with such fixed-input emulators would require further interpolation afterwards. Al-

though using z as an input allows for more flexible predictions, this flexibility is

likely a cause of poorer emulation at lower redshifts. Without more computing

power or faster training algorithms, the results in this chapter would suggest that

future attempts to emulate the power spectrum should be done for fixed z inputs.

Secondly, a feature of the actual simulated power spectra could be another

source of poor emulator accuracy. The amplitude of the power spectrum is highly

sensitive to the global 21cm brightness temperature 〈δTb〉. At low redshifts near

the end of reionization, 〈δTb〉 approaches zero (see Pritchard and Loeb 2012 for a

review). This low value of 〈δTb〉 amplifies even small fluctuations in δTb, causing

a sharp increase in the fluctuation field ∆Tb(r) from which the power spectrum is

calculated. Soon after, reionization finishes and ∆Tb(r) = 0 everywhere so that the

amplitude of P∆Tb(k) jumps suddenly from high-amplitude to zero-amplitude. These

two sudden features are difficult to emulate: the sharp increase in power spectrum

amplitude near the end of reionization, and the sudden drop thereafter from high-

amplitude to zero-amplitude. For z≥ 10, none of the simulations in the training data

has completed reionization and thus none contain these problematic zero-valued

power spectra. For z < 10, some models begin to near the end of reionization,

especially those with high ζion and low Mmin. For z = 8, a large fraction of the

parameter space shows these zero-amplitude power spectra in the training data.

It is interesting to note that all of Figures 6.5 to 6.9 show a region of poorer
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prediction at around ζion = 70, Mmin = 109M�, Rmax = 14 Mpc. By looking at Fig-

ure 6.14, it can be seen that this region of poor performance is particularly promi-

nent in the later redshifts. It is likely caused by a combination of the mass turnover

and low redshift performance issues: these regions have both a sudden change in the

halo-mass calculation algorithm (including or not including any unresolved halos),

and also are near the sudden jump in the power spectrum near the end of the EoR.

Understanding precisely why this region has occurred is a difficult problem related

to the interpretability of machine learning models as discussed in Section 2.4: the

predictions are clearly less accurate, but it is extremely difficult to determine which

weight-combinations of the MLP model, or which aspects of the training data, have

caused this to be the case.

Figure 6.14 shows the best emulator’s local MSE separately for the three low-

est redshifts z = {8.0, 9.5, 11.0}. The local prediction accuracy at z = 8 shows

large regions of poor predictions, especially for larger ionisation efficiencies and

lower minimum halo masses. Training using δTb−〈δTb〉 as the target values rather

than ∆Tb could remove the sudden changes in power spectra magnitudes and would

be easier to emulate. Note for instance that Kern et al. (2017) were able to emu-

late down to z = 5 without reporting any issues for emulating these redshifts. Fig-

ure 6.15 shows normalised histograms of the global ionisation fraction values for

all simulations in the data, separating into low redshift (z < 10) and high redshift

(z ≥ 10). For the higher redshifts, very few scenarios have finished reionization,

and so their power spectra are easier to emulate. For low redshifts, many — but

not all — scenarios have finished reionization, giving a sudden feature in the input

parameter space and making it harder to emulate.

6.3.7 Extending to more parameters

In this chapter I have restricted my investigation to the standard three-parameter

reionization model: ζion, Mmin and Rmax. Is is highly likely that future investiga-

tions will require theoretical models that include a larger number of parameters, for

instance allowing different reionization heating scenarios. We might like to be able

to use emulators to make predictions for these new scenarios too. This will require
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Figure 6.14: Mean squared error on testing dataset for the best MLP model as a function of
prediction location, similar to Figure 6.9 but without averaging over redshift.
The top left panel shows the performance for z= 8.0; the top right panel shows
performance for z = 9.5; the bottom panel shows performance for z = 11.0.
The prediction quality is much worse at low redshift than it is at high redshift,
shown by the large darker regions at low redshift. The percentage MSE for
z ≥ 11.0 is better than 5% across almost all of the input parameter space. I
omit plotting panels for each z > 11.0 here as they all look similar to that for
z = 11.0.
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Figure 6.15: Normalised histogram of the ionised fraction for all simulations, for low red-
shifts (z < 10) and for higher redshifts (z ≥ 10). The 21cm power spectrum
is sensitive to the neutral fraction. The fact that many simulations are fully
ionised for z < 10 could be one reason for the poor performance of the emu-
lators at low redshifts.

generating new training data, increasing the training data set size and including a

range of different heating scenarios. In order to make accurate predictions, emu-

lators require a training data set that is well-sampled across the whole input space.

With a higher-dimensional input space, the emulator will almost certainly require a

much larger number of simulations to fulfil this well-sampled requirement. It will

also likely be necessary to increase the size of the models, for instance increasing

the number of layers in the multilayer perceptron model. Model size is related to

the complexity of the function that the model is representing: small models with

only a few trainable parameters can only mimic simple functions, whereas larger

models can capture more complex functions. Increasing the number of parameters

would give rise to a more complex function, hence larger models with more train-

able parameters would be needed to capture this increase complexity. Both of these

problems (training data size and model size) will require much more computational

power for training, and so it is natural to search for ways to try to make use of our

existing models. For this, we can use transfer learning. Transfer learning is the

repurposing of an existing model for a new (but ideally similar) problem. I describe
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Figure 6.16: Transfer learning by adding new nodes to the existing network. This over-
all model is fitted to new training data. During training the existing weight-
connections (shown in gray) are fixed, and only the new training weight con-
nections (shown in black) are allowed to change. This allows the network to
retain its former knowledge, while at the same time learning the effect of the
new input parameters.

two similar methods for transfer learning here.

The first method is to add new layers or nodes to the existing model, and only

learn the best values for the new weights. Figure 6.16 shows a schematic of this

process. The weights and nodes in the existing network are fixed, so that the model

retains its former knowledge. All new weights are trained using the new training

data, so that the model learns how the new parameters affect the power spectrum.

A second similar approach might be to add a completely new network after the ex-

isting network. Figure 6.17 shows a schematic of this process, with the old network

prediction acting as an input node to the new secondary network. In this case, the

secondary network learns how the new parameters can be used to modify the exist-

ing network’s predictions. Either of these methods will likely reduce the required

training time, since the model does not have to relearn its understanding of how the

old parameters affect the power spectrum.

6.4 Mapping between SIMFAST21 and 21CMFAST

21CMFAST and SIMFAST21 are two common semi-numerical simulations for gen-

erating predicted 21cm maps during the Epoch of Reionization. In this section

the best emulator is used to investigate the extent to which the two simulations

give similar outputs for similar inputs. The motivation for this is to demonstrate
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Figure 6.17: Transfer learning by adding a secondary network (shown in black) after the
existing network (shown in gray). The new parameters are used as inputs to
the secondary network, with the power spectrum output from the old network
being used as an extra input. The overall model is fitted to new training data,
with only the new weight-connections being varied. The secondary network
learns only how the new parameters modify the previous power spectrum pre-
diction.

a method for creating a mapping between any two simulations which generate the

same output statistic. In particular, this method could be extended to give a map-

ping between SIMFAST21 power spectra and those from more accurate (but slower)

three-dimensional radiative transfer simulations, such as C2-RAY (Mellema et al.,

2006a). Although numerical simulations have different input parameters, it would

still be possible to map between them by finding the parameters which give the most

similar power spectra.

When analysing huge datasets, SIMFAST21 could be used to give coarse con-

straints on reionization parameters. Using the mapping between SIMFAST21 and

the more accurate numerical simulation, the coarse contours could be mapped to

their equivalent regions of the numerical simulation inputs. This would allow more

detailed exploration of this smaller region of parameter space with the numerical

simulations.
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6.4.1 Matching reionization histories

Section 2.1.3 describes the default procedure of 21CMFAST, in particular highlight-

ing how it differs from the SIMFAST21 algorithm. In this subsection I discuss which

of these differences I retain when creating the mapping. Using identical reioniza-

tion and cosmological parameters, and keeping all other input parameters at their

default values from the GitHub packages, 21CMFAST version 1.22 and SIMFAST21

version 1.0 result in different reionization histories, as expected due to the different

default bubble-finding algorithms. The motivation in this section is to demonstrate

a method for mapping between the input parameters of two similar (but not identi-

cal) simulations. Using the default implementations, the output power spectra of the

two simulations at a single fixed redshift are not comparable because the two simu-

lations have reached different stages of reionization. Before making the mapping I

choose input parameters of 21CMFAST which more closely matched the SIMFAST21

algorithm, so that the output power spectra are similar enough that making a map-

ping is meaningful, but not so similar that they give identical results. The following

is a list of significant input parameters in 21CMFAST that I adjust from the default

values:

1. FIND BUBBLE ALGORITHM = 1

2. ION TVIR MIN =−1, instead using ION M MIN

3. INHOMO RECO = 0

Appendix A lists all parameters used in both simulations for repeatability. The

most significant change from default was in the algorithm for finding ionised bub-

bles, setting FIND BUBBLE ALGORITHM = 1. Without making a judgement on

which method is more realistic I used the SIMFAST21 algorithm of painting the en-

tire sphere as ionised, rather than painting only the central pixel. I fix the min-

imum mass Mmin for collapse using ION M MIN, rather than using the default

21CMFAST functionality of a fixed virial temperature Tvir using ION TVIR MIN.

I also turn off calculations involving inhomogeneous recombinations by setting
2https://github.com/andreimesinger/21cmFAST
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Figure 6.18: Ranges of reionization histories that result from SIMFAST21 and 21CM-
FAST, with Mmin varying from 108M� to 109M�. The region between the
black dotted curves indicates the range of histories from SIMFAST21. The
two coloured regions show the range of histories from 21CMFAST, both be-
fore (darker red) and after (lighter orange) matching the algorithms. The other
reionization parameters are fixed at ζion = 30.0 and Rmax = 10.0. The bubble-
finding algorithm has a significant impact on the resulting reionization history,
and even after matching algorithms there is a slight difference between SIM-
FAST21 and 21CMFAST.

INHOMO RECO = 0, since the version of SIMFAST21 that I use does not have

this option although later versions do (Hassan et al., 2016). Figure 6.18 shows the

resulting ranges of reionization histories from a spread of minimum halo mass sce-

narios between 108M�−109M�. Each minimum mass scenario is averaged across

five realisations. The histories are shown for SIMFAST21 (dotted) and for 21CM-

FAST with both bubble-finding algorithms: ionising the central pixel only (darker

red region) and ionising the full sphere (lighter orange region) to match SIMFAST21.

The only remaining major differences between the default SIMFAST21 simulation

and the changed 21CMFAST simulation are in the specifics of implementation dis-

cussed above. Figure 6.18 shows that the differences in implementation still result

in different reionization histories even after matching the bubble-finding algorithms,

although the bubble-finding algorithm is the most dominant effect.
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6.4.2 Using xHII as input

I made the above changes to match the evolution of the global ionisation fraction in

the simulations, so that I could compare power spectra at fixed redshift values. In-

stead of changing the default implementations, it would also be possible to account

for the differing reionization histories by comparing power spectra at fixed ionisa-

tion fraction values (instead of fixed redshift values). This would require training

an emulator to use the global ionisation fraction as an input, and would investigate

how the shape of the power spectrum differs at a fixed point through the reioniza-

tion process. I choose to match at fixed redshifts, to include the effect of differing

reionization histories in the comparison.

6.4.3 Determining a mapping between simulations

Here I describe how the best emulator can be used to determine a mapping between

the inputs of the modified 21CMFAST and the inputs of SIMFAST21. I use the same

k-space restrictions as in Section 6.1.3, using only 0.1 ≤ k ≤ 2.0 since the large

scales are subject to foregrounds and the small scales are subject to shot noise from

the finite simulation resolution. I also restrict the comparison to higher redshifts

z ≥ 10 for which the emulator exhibits higher prediction accuracy. I emphasise

that this is a proof-of-concept method showing how to make a mapping between

simulations solely using the output power spectra.

Figure 6.19 shows an example of one such mapping. I explain how to interpret

the mapping here. Suppose a reference 21CMFAST simulation has already been run

using the parameters specified by the white star: namely, a 21CMFAST simulation

with parameters Mmin = 3× 108M�, ζion = 30.0, Rmax = 10 Mpc. According to

the mapping in Figure 6.19, any SIMFAST21 simulation using parameters within

the orange contour will result in power spectra which are similar to the reference

21CMFAST spectra. I classify two simulations as similar if the mean squared error

between their output power spectra is better than 30%. The orange contour thus

shows the region of SIMFAST21 parameters which should be used, if the desired

result is to exhibit similar power spectra to the reference 21CMFAST simulation.

I generate the reference power spectra in Figure 6.19 by running five 21CMFAST
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Figure 6.19: Mean squared error between emulated SIMFAST21 power spectra and mea-
sured power spectra from both simulations. The star indicates the fixed sim-
ulation parameters. The orange contour indicates the regions where emu-
lated SIMFAST21 power spectra are within 30% MSE of the fully-simulated
21CMFAST power spectra. For comparison, the purple contours indicate the
same regions for comparing emulated SIMFAST21 power spectra with fully-
simulated SIMFAST21 power spectra, using 30% MSE (lighter contour) and
15% MSE (darker contour).
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simulations, and taking the average to reduce the effect of sample variance. I refer to

this type of figure as a similarity plot. Most importantly, if the orange contour does

not overlap with the white star, then this indicates that SIMFAST21 and 21CMFAST

result in different output power spectra for the same input parameters.

Two features of the orange contours are immediately apparent. First, the ex-

tended contours in the Rmax direction. The Rmax parameter is known to have little

effect on the output power spectra for high redshifts (Mesinger et al., 2011). This

is an inherent property of the power spectrum, regardless of which simulation is

used. A second clear feature is the large curved contour in the Mmin-ζion parameter

space of the top left panel in Figure 6.19. I investigated both features, to confirm

whether they arise as an inherent property of the power spectrum itself, or if they

arise from differences in the two simulations. To do this, I perform the same sim-

ilarity analysis as above, but using SIMFAST21 itself as the reference simulation.

The purple contours in Figure 6.19 then give the regions of SIMFAST21 parameters

which result in similar power spectra to the reference SIMFAST21 simulation. The

lighter purple contours use a MSE threshold of 30%. The darker purple contours

use a stricter threshold of 15% MSE. The curved feature appears in both orange

and purple contours, indicating that it is not due to a difference in the simulations.

This curved degeneracy has been observed previously, see for example Greig and

Mesinger (2015) and Schmit and Pritchard (2018). Note that I do not include a dark

orange contour for the the stricter 15% MSE threshold because the power spectra

for 21CMFAST differ from those of SIMFAST21 enough that no 21CMFAST contours

are visible for an MSE threshold of 15%.

It is interesting to note that the substructure in the contours is not identical for

the two simulations. The contours for SIMFAST21 are smooth and fairly contiguous,

mostly forming one large region with smooth edges that surrounds the true white-

star location. The contours for 21CMFAST, however, are patchy and segmented

into multiple regions. To understand this, first recall that the emulator was trained

on SIMFAST21 data. Any substructure in the true parameter space of the simula-

tion’s power spectrum would likely have been captured by the trained emulator.
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This explains why the purple contours are smooth and contiguous: they are closer

to measurements of the inherent properties of the 21cm power spectrum. In order

to explain the discontiguous orange regions, recall that Figure 6.19 compares the

power spectra by matching redshifts of the two simulations, and that the simula-

tions show a difference in the reionization histories as show in Figure 6.18 earlier.

Indeed, this is one of the main points in making these comparison plots – visualising

the different behaviours of the two simulations. The observed substructure in the

orange contours indicates that measuring the power spectrum at a different location

in the parameter space can mimic the effect of measuring the power spectrum at a

slightly earlier or later stage of reionization. The precise relationship that controls

the appearance of these substructures is too complex to be interpreted by eye.

Figure 6.20 shows similarity plots for several other reference simulations,

where the parameters for each reference simulation is again indicated by the loca-

tion of the white star. I show the contours in the two-dimensional Mmin-ζion space,

ignoring the less interesting Rmax direction. I find that the orange contour does not

always lie on top of the white star. This indicates that SIMFAST21 and 21CMFAST

do not always result in similar output power spectra. I use the same contour levels

as in Figure 6.19, namely 15% and 30% for the darker and lighter purple contours,

and 30% for the 21CMFAST contours. Again, no 15% MSE contour is shown for

21CMFAST because the SIMFAST21 power spectra differ from the 21CMFAST power

spectra by more than 15% everywhere.

For several of these scenarios, there is an offset between the orange contour

and the white star. The offset is small near the canonical parameters in the central

panels, but gets larger at lower Mmin and higher ζion. The most likely reason for

this offset is the difference in the reionization histories. This offset would mean

that the choice of using SIMFAST21 or using 21CMFAST would affect the outcome

of parameter estimation methods, such as maximising χ2 values (Shimabukuro and

Semelin, 2017) or using MCMC methods (Schmit and Pritchard 2018 and Kern

et al. 2017). Note that the two simulations in this comparison needn’t share the

same types of input parameters. For instance, it would be possible to generate
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Figure 6.20: Similarity plots between emulated SIMFAST21 power spectra and fully-
simulated power spectra from 21CMFAST (orange contours) and SIM-
FAST21 (purple contours). In each panel, the white star indicates the sce-
nario parameters of the fully-simulated power spectra. The orange contour
shows the regions in which emulated SIMFAST21 power spectra differ by less
than 30% from the fully-simulated 21CMFAST power spectra. The lighter-
and darker-purple contours show the equivalent regions for comparing emu-
lated SIMFAST21 power spectra to fully-simulated SIMFAST21 power spec-
tra, within 30% and 15% MSE respectively. An offset can be seen for several
of these different scenarios.
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the reference power spectra using a numerical radiative transfer simulation, and

determine how its inputs map to SIMFAST21.

6.5 Conclusions

Fast modelling of the 21cm signal will become a significant problem in analysing

the huge datasets from upcoming radio interferometry experiments. Ideally we

would be able to compare numerical radiative transfer simulations with these data.

Current numerical simulations are too slow to sample the input parameter space

efficiently. Semi-numerical simulations are faster but can still only be used to con-

strain a small number of parameters. One potential solution to this problem is to

replace current semi-numerical simulations with emulated models, reproducing the

simulation outputs in a fraction of the original simulation time.

In this chapter I have trained and compared emulators using five different ma-

chine learning techniques. The two naive interpolation methods are not feasible as

emulators, since they have either slow prediction times (linear interpolation model)

or poor accuracy (nearest neighbour interpolation model). Of the three more so-

phisticated models, one model performs much better than the others: the multilayer

perceptron. This trained model makes predictions of the outputs from 500 SIM-

FAST21 simulations to within 4% mean squared error averaged across all output

points, reducing the modelling time from around 3000 hours to less than a second.

The simulations include the effect of sampling noise from randomly-seeded den-

sity fields, but do not include other sources of experimental noise which would be

needed if the emulators were to be used on observed data. If CPU training time

is not a factor, then the accuracy of the sparse Gaussian processes regression or

support vector machine models could potentially be improved with deeper hyper-

parameter searches. However, given their already relatively long prediction times

and the accurate performance of the multilayer perceptron, these models are un-

likely to give an improvement over the three-layer multilayer perceptron. There are

several possible reasons why the MLP might perform better than the other methods.

First, the MLP is exceptionally easy to implement with the SCIKIT-LEARN module.
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Whereas other methods like SGPR required more complex approximations which

required more in-depth hyper-parameter searching and led to many implementation

issues. Second, the neural network is a more natural choice for the regression prob-

lem in this chapter than methods which were originally designed for classification

problems. Using classification algorithms such as SVM or decision trees often leads

to ‘blocky’ or step-like predictions. Due to the local-searching of these algorithms,

such models often separate the parameter space into segments and make predictions

within these segments. Finally, neural networks are extremely flexible in terms of

their ability to represent complex functions: if the model appears to have poor pre-

dictions (underfitting the data), one can simply increase the size of the network by

adding more layers or more neurons in each layer. For the problem in this chapter,

even the default out-of-the-box model with a single hidden layer with 100 neurons

had a decent prediction accuracy.

These emulators use redshift and k-scales as extra input dimensions. This

makes the models more flexible but gives rise to less accurate emulation especially

near the end of reionization at lower redshifts. I also use ∆Tb = δTb
〈δTb〉 − 1 as the

target values of the emulators. This gives rise to sudden features in the power spec-

tra near at the end of reionization and is harder to emulate than using δTb−〈δTb〉.

All simulated data ignores the effect of spin temperature calculations. Including

the effect of spin temperature would likely have two effects. First, the simulations

take significantly longer to run, meaning that the size of the training dataset would

likely have to be reduced. Secondly, the relationship between parameters and power

spectrum would likely become more complex. This would require comparing larger

models with a wider range of hyperparameters.

I use the best emulator to determine a relationship between two different reion-

ization algorithms, using SIMFAST21 and a version of 21CMFAST with non-default

inputs. I find some noticeable offsets in which input parameters match the power

spectra outputs of SIMFAST21 with those of 21CMFAST. I provide a graphical de-

scription of how this offset depends on location in parameter space, so that users

could roughly determine which SIMFAST21 input parameters should be used if the
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desired result is to match the 21cm power spectrum of an existing 21CMFAST simu-

lation. Although the results in this chapter are for a version of 21CMFAST with non-

default inputs, this method has potential for bridging between fast semi-numerical

simulations and more accurate three-dimensional radiative transfer codes, such as

C2-RAY (Mellema et al., 2006a) and LICORICE (Semelin et al., 2017) (Kulka-

rni et al., 2016). However, Majumdar et al. (2014) noted that there can be a 25%

difference between the power spectrum outputs of C2-RAY and semi-numerical

codes. Given this discrepancy, it is likely that mapping between numerical and

semi-numerical simulations will be considerably more challenging and it may be

necessary to emulate numerical codes directly using the same techniques in this

chapter.
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Conclusions

The Epoch of Reionization (EoR) is a fascinating but relatively unexplored time in

the Universe’s history. We have yet to make precise measurements of when this

process started, how long it lasted, and which types of sources contributed the most.

The 21cm emission line from neutral hydrogen is an exciting probe for the EoR. The

next generation of radio interferometers such as the Square Kilometre Array will for

the first time observe three-dimensional maps of 21cm radiation during the EoR.

The SKA will provide terabytes of raw data every second. Interpreting these data

will require fast and accurate theoretical modelling methods. In this thesis I have

presented three projects both for efficient modelling of the EoR and for analysing

the results of EoR experiments.

The first step for efficient data analysis is often to compress and summarise

the data before comparing with theoretical predictions. I developed an efficient

code for calculating one such summary compression statistic: higher-order clus-

tering functions. I present this publicly available code in Chapter 3. I tested the

code by calculating three-point correlation function for an example distribution of

points-on-spheres data, the theoretical correlation function solution for which was

kindly provided by Lorne Whiteway (2018). The code reproduced the theoretical

values over a wide range of different model parameters such as the size and num-

ber density of the spheres. I used the code to calculate the three-point correlation

function of equilateral triangles for ionisation fraction data from semi-numerical

simulations. The equilateral three-point correlation function shows a clear evolu-
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tion with redshift, likely tracing the mean size of ionised bubbles over time. The

effects of two reionization parameters on the three-point statistics was also investi-

gated. The ionisation efficiency affected the growth speed of ionised bubbles, and

gave rise to distinctive change in the position of the three-point correlation peak.

The minimum halo mass parameter also affected the correlation amplitude, in par-

ticular changing the amplitude of the low-radius peak. The dependencies indicate

that the three-point code could be a useful addition to analysis of real-space data

from experiments. It could be included in the likelihoods of MCMC analysis as an

attempt to break degeneracies between parameters.

In Chapter 4, I use my code for the three-point correlation function to see

whether the 21cm signal encodes information about the morphology and history

of the Epoch of Reionization. I use machine learning techniques to recover the

typical bubble size and global ionisation fraction from the measured 3PCF outputs

from semi-numerical simulations. In general, my models recover these properties

with similar accuracies to other existing methods. My models recover the typi-

cal bubble size from the 3PCF of either ionisation fraction 3PCF data (with me-

dian RMSE value of 19.9%) or 21cm differential brightness temperature 3PCF data

(with median RMSE 29.3%). My models for the global ionisation fraction have bet-

ter performance, recovering the global ionisation fraction from ionisation fraction

3PCF data with median RMSE of 3.6%, or from the brightness temperature with

median RMSE of 16.0%. This work presents the first attempt to predict these phys-

ical EoR properties using the three-point correlation function and machine learning

techniques. I have made my code publicly available on GitHub to help the commu-

nity perform similar analyses in the future.

Efficient modelling of the 21cm signal will be a crucial limiting factor in anal-

ysis of 21cm data. Theoretical models for the EoR are of three main types: analyti-

cal, numerical simulations, and semi-numerical simulations. Analytical models give

less detailed predictions than simulations but are much faster. In Chapter 5, I devel-

oped a middle-ground between analytic and semi-numerical simulations: fitting an

analytical model to the outputs from semi-numerical simulations. This model made
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predictions for the second-order clustering in Fourier-space, but could also be used

to make predictions for the three-point correlation function in Chapter 3. My final

halo model was reached through a series of increasingly complex steps. Starting

with a very simple approximation of identical ionised bubbles, I added more com-

plexity to the model by fitting results from SIMFAST21. At each stage I checked

that the predictions match the measured power spectrum of mock generated data.

These stages were using differently-sized bubbles, improving the bubble size dis-

tribution to a power law, and adding clustering to the bubble centres. For the first

two stages the fitted model matches the mock generated data spectra. Clustering

caused a mismatch between the theory and recreated data, which was resolved for

all but the latest redshifts by including a fitted suppression function measured from

SIMFAST21 simulations. The amplitude of the resulting halo model spectra showed

better agreement with the measured values. A final step of comparing the halo

model predictions to fully simulated power spectra was attempted. The final model

gives approximate predictions for the amplitude of the ionisation fraction spectra

for the earliest parts of reionization.

The model in Chapter 5 would need significant improvement before being use-

ful as a full replacement for semi-numerical simulations. In particular it would need

to be extended so that theoretical predictions could be made for any reionization

scenario specified by a particular set of reionization parameters such as ionisation

efficiency ζion and minimum halo mass Mmin. In Chapter 6, I used machine learn-

ing techniques to replicate the predictions semi-numerical simulations. The best

emulator reproduced the SIMFAST21 power spectra outputs 108 times faster than

the simulation with only 4% mean squared error averaged across all redshifts and

input parameters. This emulator could safely be used as a replacement for the semi-

numerical simulation with only minimal loss in prediction accuracy. I analysed

the prediction speeds and accuracies of emulators using different machine learn-

ing techniques. The best emulator used a multilayer perceptron with three hidden

layers. The other machine learning techniques (interpolation, Gaussian processes

regression, and support vector machine) all had slower prediction times or worse
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prediction accuracy than the multilayer perceptron. At the end of Chapter 6 I use my

best emulator to compare the outputs between SIMFAST21 and 21CMFAST. These

simulations have many similarities, but a few key differences give rise to a small

offset in the simulation outputs which depends on the simulation input parameters.

Developments in surrogate modelling will almost certainly have a great impact

on the wider community in the coming decades. The ability to replace expensive

calculations, accurately and almost instantaneously, is a dramatic change in the sta-

tus quo. With tools and methods like those in this thesis, we can face the formidable

datasets from future EoR experiments with a fighting chance of getting answers to

our unsolved questions. With enough international collaborative effort and contin-

ued interest in Astrophysics, we will soon finally get a glimpse of reionization in

action and satisfy a part of our two-thousand-year-old curiosity.
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Simulation parameters

I list all relevant user-changeable parameters used for all 21CMFAST and SIM-

FAST21 simulations in this paper. For further descriptions of these parameters see

Mesinger et al. (2011) and Santos et al. (2010). I exclude parameters relating to

spin temperature calculations since I did not use this functionality.

A.1 Cosmology

Parameter Value
σ8 0.810

Hubble h 0.710
ΩM 0.270
ΩΛ 0.730
Ωb 0.046
Ωn 0.0
Ωk 0.0
ΩR 0.0
Ωtot 1.0
YHe 0.245
ns 0.960

Sheth-Tormen b 0.34
Sheth-Tormen c 0.81
Helium II zreion 3

Maximum Redshift 17.00
Minimum Redshift 8.00

Redshift Step 1.50
Simulation Length 500.00

Star Formation Rate 0.025
Velocity Component 3
Critical Overdensity 1.680

A.2 SIMFAST21

Parameter Name Value
USE CAMB MATTERPOWER False

USE FCOLL True
HALO RMAX 40
HALO MMIN Various

ION EFF Various
BUBBLE RMAX Various

USE LYA XRAYS False

A.3 21CMFAST

Parameter Name Value
ION M MIN Various

ION TVIR MIN -1 (off)
HII EFF FACTOR Various

EFF FACTOR PL INDEX 0
R BUBBLE MAX Various



APPENDIX A. SIMULATION PARAMETERS

A.4 Other 21CMFAST

Parameter Name Value
P CUTOFF 0

M WDM 2
G X 1.5

INHOMO RECO 0
ALPHA UVB 5

T STAR 0.5
EVOLVE DENSITY LINEARLY 0

SMOOTH EVOLVED DENSITY FIELD 1
R SMOOTH DENSITY 0.2

SECOND ORDER LPT CORRECTIONS 0
HII ROUND ERR 1e-3

FIND BUBBLE ALGORITHM 1
R BUBBLE MIN L FACTOR*1

USE HALO FIELD 0
N POISSON -1

T USE VELOCITIES 1
MAX DVDR 0.2

DIMENSIONAL T POWER SPEC 0
DELTA R FACTOR 1.1

DELTA R HII FACTOR 1.1
R OVERLAP FACTOR 1.0
DELTA CRIT MODE 1

HALO FILTER 0
HII FILTER 1
OPTIMIZE 0

OPTIMIZE MIN MASS 1e11
SIZE RANDOM SEED -23456789
LOS RANDOM SEED -123456789

USE TS IN 21CM 0
CLUMPING FACTOR 50

POP 2
POP2 ION 4361
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