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Abstract

Causal approaches to fairness have seen sub-
stantial recent interest, both from the machine
learning community and from wider parties in-
terested in ethical prediction algorithms. In
no small part, this has been due to the fact
that causal models allow one to simultaneously
leverage data and expert knowledge to remove
discriminatory effects from predictions. How-
ever, one of the primary assumptions in causal
modeling is that you know the causal graph.
This introduces a new opportunity for bias,
caused by misspecifying the causal model.
One common way for misspecification to oc-
cur is via unmeasured confounding: the true
causal effect between variables is partially de-
scribed by unobserved quantities. In this work
we design tools to assess the sensitivity of fair-
ness measures to this confounding for the pop-
ular class of non-linear additive noise mod-
els (ANMs). Specifically, we give a proce-
dure for computing the maximum difference
between two counterfactually fair predictors,
where one has become biased due to confound-
ing. For the case of bivariate confounding our
technique can be swiftly computed via a se-
quence of closed-form updates. For multivari-
ate confounding we give an algorithm that can
be efficiently solved via automatic differentia-
tion. We demonstrate our new sensitivity anal-
ysis tools in real-world fairness scenarios to as-
sess the bias arising from confounding.

1 INTRODUCTION

Most work on fairness in machine learning focuses on
discrimination against subpopulations in high-stakes de-
cisions such as in criminal justice, lending, and insur-
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ance (Kamiran & Calders),2009; Kamishima et al., 2012}
Hardt et al.l 2016} [Zafar et al., [2017; Berk et al., [2017).
These subpopulations are defined by one or more pro-
tected attributes such as race, gender, age, and sexual
orientation. More recently, causal reasoning has been in-
troduced as a valuable tool for the detection and mitiga-
tion of harmful biases and disparities in machine learning
systems. Notably, it helped refine our understanding of
two particular issues.

First, it has been shown by |Kleinberg et al.| (2016) and
Chouldechoval (2017) that various subsets of popular
observation-based parity notions, which are based only
on the joint distribution of all variables involved, can
only be satisfied simultaneously in unrealistically triv-
ial situations. This leaves us choosing among criteria
when all of them seem desirable. However, since two
different data generation mechanisms can give rise to the
same observed joint distribution, observation-based no-
tions cannot distinguish scenarios that may have very dif-
ferent fairness interpretations (Hardt et al., [2016)).

Second, an earlier approach to individual fairness by
Dwork et al.| (2012) based on the appealing postulate
that “similar individuals should be treated similarly” has
proven hard to operationalize in practice. Specifically,
it shifts the issue from defining what is fair to defining
similarity with respect to the task at hand both between
individuals as well as between outcomes.

By (a) explicitly modelling the underlying data generat-
ing mechanism with causal models, and (b) using causal
primitives such as interventions and counterfactuals to
formalize “similar individuals”, causality provides valu-
able insights to resolve these conceptual roadblocks (Kil-
bertus et al.,|2017; Kusner et al., [ 2017; Nabi & Shpitser,
2018 /Zhang & Bareinboiml [2018). In this work, we will
focus on counterfactual fairness as introduced by|Kusner
et al.[(2017), an individual-specific criterion aimed at an-
swering the counterfactual question: “What would have
been my prediction if—all else held causally equal—I



was a member of another protected group?”’. Despite
the utility of such causal criteria, they are often con-
tested, because they are based on strong assumptions
that are hard to verify in practice. First and foremost,
all causal fairness criteria proposed in the literature as-
sume that the causal structure of the problem is known.
Typically, one relies on domain experts and methods for
causal discovery from data to construct a plausible causal
graph. While it is often possible with few variables to
get the causal graph approximately right, one often needs
untestable assumptions to construct the full graph. The
most common untestable assumption is that there is no
unmeasured confounding between some variables in the
causal graph. Because we cannot measure it, this con-
founding can introduce bias that is unaccounted for by
causal fairness criteria.

In this work we propose a solution. We introduce tools
to measure the sensitivity of the popular counterfac-
tual fairness criterion to unmeasured confounding. Our
tools are designed for the commonly used class of non-
linear additive noise models (ANMs, |[Hoyer et al., 2008)).
Specifically, they describe how counterfactual fairness
changes under a given amount of confounding. The core
ideas here described can be adapted for sensitivity analy-
sis of other measures of causal effect, such as the average
treatment effect (ATE), itself a topic not commonly ap-
proached in the context of graphical causal models. A
discussion will be left for a future journal version of this
paper. Note that counterfactual fairness poses extra chal-
lenges compared to the ATE, as it requires the computa-
tion of counterfactuals in the sense of [Pearl (2000). Con-
cretely, our contributions are:

e For confounding between two variables, we design a
fast procedure for estimating the worst-case change in
counterfactual fairness due to confounding. It con-
sists of a series of closed-form updates assuming linear
models with non-linear basis functions. This family of
models is particularly useful in graphical causal mod-
els where any given node has only few parents.

e For more than two variables, we fashion an efficient
procedure that leverages automatic differentiation to
estimate worst-case counterfactual fairness. In partic-
ular, compared to standard sensitivity analysis (typi-
cally applied to ATE problems, see e.g. |Dorie et al.|
2016), we formulate the problem in a multivariate set-
ting as opposed to the typical bivariate case. The pres-
ence of other modeling constraints brings new chal-
lenges not found in the standard literature.

e We demonstrate that our method allows us to under-
stand how fairness guarantees degrade based on dif-
ferent confounding levels. We also show that even un-
der high levels of confounding, learning counterfactu-
ally fair predictors has lower fairness degradation than

standard predictors using all features or using all fea-
tures save for the protected attributes]l|

2 BACKGROUND
2.1 CAUSALITY AND FAIRNESS

We begin by describing key background in causal infer-
ence and reviewing the notion of counterfactual fairness
(Kusner et al., [2017).

Causality. We will use the structural causal model
(SCM) framework described in [Pearl| (2000), and look at
a popular subclass of these models called additive noise
models (ANMs) (Hoyer et al., 2008). Specifically, an
SCM is a directed acyclic graph (DAG) G = (V,€)
model, with nodes V and edges £. Eachnode X € Visa
random variable that is a non-linear function fx of its di-
rect parent nodes pag (X) in G, plus additive error (noise)
e as follows: X = fx(pag(X)) + €. To make model fit-
ting efficient we will consider (a) functions fx that de-
rive all their non-linearity from an embedding function ¢
of their direct parents, and are linear in this embedding;
and (b) Gaussian error (noise) € so that:

X = p(pag(X))'wx +¢, st e~N(0,0x),
where wx are weights. Later on, we will consider
ANMs over observed variables, where the errors may be
correlated. Note that this class of ANMs is not closed un-
der maginalization. For a more detailed analysis of the
testable implications of the ANM assumption, see (Pe-
ters et al.,[2017). Neither of our choices (a) and (b) are a
fundamental limitation of our framework: the framework
can easily be extended to general non-linear, or even non-
parametric functions fx, as well as non-Gaussian errors.
In this work, we make this choice to balance flexibility
and computational cost.

Counterfactual fairness. A recent definition of pre-
dictive fairness is counterfactual fairness (CF) (Kusner
et al., 2017), which to facilitate exposition focuses on
total effects. See (Nabi & Shpitser, [2018; |Chiappa &
Gillam, |2018) for an exploration of path-specific effects.
Intuitively, CF states that a predictor Y of some target
outcome Y gives you a fair prediction if, given that you
are a member of group a (i.e., race, gender, sexual orien-
tation), it would have given you the same prediction (in
probability) had you been a member of a different group
a’. This is formalized via the causal notion of counter-
factuals as follows:

PVacw =y| X =z, A=a)= (1)
P(YAEa:y|X:w,A:a),

!Code to reproduce the results can be found at
github.com/nikikilbertus/cf-fairness-sensitivity.


https://github.com/nikikilbertus/cf-fairness-sensitivity

where Y4, is the counterfactual prediction, imagining
A=a’ (note that, because in reality A = a, we have that
ffm_a = Y), and x is a realization of other variables in
the causal system. In ANMs YA<_(L/ can be computed
in four steps: 1. Fit the parameters of the causal model
using the observed data: D = {x;, a;}? ,; 2. Using the
fitted model and data D, compute all error variables ¢;
3. Replace A with counterfactual value a’ in all causal
model equations; 4. Using parameters, error variables,
and o', recompute all variables affected (directly or indi-
rectly) by A, and recompute the prediction Y. To learn a
CF predictor satisfying eq. (I) it is sufficient to use any
variables that are non-descendants of A, such as the error
variables € (Kusner et al.,|2017). |[Loftus et al.|(2018)) pro-
vide further arguments for the importance of causality in
fairness as well as a review of existing methods.

Unmeasured confounding. One key assumption on
which CF relies is that there is no unmeasured confound-
ing relationship missing in the causal model. In this
work, we formalize unmeasured confounding as non-
zero correlations between any two error variables in €
which are assumed to follow a multivariate Gaussian dis-
tribution. Without accounting for this, the above coun-
terfactual procedure will compute error variables that are
not guaranteed to be independent of A. Thus any pre-
dictor trained on these exogenous variables is not guar-
anteed to satisfy counterfactual fairness eq. (I). This
setup captures the idea that often we have a decent un-
derstanding of the causal structure, but might overlook
confounding effects, here in the form of pairwise corre-
lations of noise variables. At the same time, such con-
founding is often unidentifiable (save for specific param-
eterizations). Thus assessing confounding is not a model
selection problem but a sensitivity analysis problem. To
perform such analysis we propose tools to measure the
worst-case deviation in CF due to unmeasured confound-
ing. Before describing these tools, we first place them in
the context of the long tradition of sensitivity analysis in
causal modeling.

2.2 TRADITIONAL SENSITIVITY ANALYSIS

Sensitivity analysis, for quantities such as the average
treatment effect, can be traced back at least to the work
by Jerome Cornfield on the General Surgeon study con-
cerning the smoking and lung cancer link (Rosenbaum),
2002). Rosenbaum cast the problem in a more explicit
statistical framework, addressing the question on how
the ATE would vary if some degree of association be-
tween a treatment and a outcome was due to unmea-
sured confounding. The logic of sensitivity analysis can
be described in a simplified way as follows: 1) choose a
level of “strength” for the contribution of a latent variable

to the structural equation(s) of the treatment and/or out-
come; ii) by fixing this confounder contribution, estimate
the corresponding ATE; iii) vary steps i) and ii) through
a range of “confounding effects” to report the level of
unmeasured confounding required to make the estimate
ATE be statistically indistinguishable from zero; iv) con-
sult an expert to declare whether the level of confounding
required for that to happen is too strong to be plausible,
and if so conclude that the effect is real to the best of
one’s knowledge. This basic idea has led to a large lit-
erature, see (Dorie et al., [2016; Robins et al., |2000) as
examples among many of the existing state-of-the-art pa-
pers on this topic.

Note the crucial difference between sensitivity analysis
and just fitting a latent variable model: we are not learn-
ing a latent variable distribution, as the confounding ef-
fect for a single cause-effect pair is unidentifiable. By
holding the contribution of the confounder as constant
and known, the remaining parameters become identifi-
able. We can vary the sensitivity parameter without as-
suming a probability measure on the confounding effect.
The hypothesis test mentioned in the example above can
be substituted by other criteria of practical significance.

Much of the work in the statistics literature on sensitivity
analysis addresses pairs of cause-effects as opposed to a
causal system with intermediate outcomes, and focuses
on the binary question on when an effect is non-zero.
The grid search idea of attempting different levels of the
confounding level does not necessarily translate well to a
full SCM: grid search grows exponentially with the num-
ber of pairs of variables. In our problem formulation de-
scribed in the sequel, we are interested in bounding the
maximum magnitude p.,.x of the error correlation matrix
entries, while maximizing a measure of counterfactual
unfairness to understand how it varies by the presence
of unmeasured confounding. The solution is not always
to set all entries to pyax, since among other things we
may be interested in keeping a subset of error correla-
tions to be zero. In this case, a sparse correlation matrix
with all off-diagonal values set to either O or py,ax is not
necessarily positive-definite. A multidimensional search
for the entries of the confounding correlation matrix is
then necessary, which we will do in Section 4] by encod-
ing everything as a fully differentiable and unconstrained
optimization problem.

3 TOOL #1: GRID-BASED

The notion of sensitivity analysis in a SCM can be com-
plex, particularly when the estimated quantity involves
counterfactuals. In this section, we first describe a tool
that estimates the effect of confounding on counterfac-
tual fairness, when the confounding is limited to two
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Figure 1: Causal models for the law school example.
Model A is the guessed model that has no unobserved
confounding. Model B includes confounding via the co-
variance matrix X, which is captured by a bidirected edge
using the standard acyclic directed mixed graph notation
(ADMG, Richardson, 2003). Our techniques will esti-
mate the worst case difference in the estimation of coun-
terfactual fairness due to such confounding (we will con-
sider a more complicated setup in Section [3)).

variables (i.e., bivariate confounding). This procedure
is computationally efficient for this setting. For the gen-
eral setting of confounding between any number of vari-
ables (multivariate confounding) we will introduce a sep-
arate tool in Section 4l Below we describe our fast two-
variable tool using a real-world example.

3.1 A MOTIVATING EXAMPLE

To motivate our approach, let us revisit the example
about law school success analyzed by [Kusner et al.
(2017). In this task, we want to predict the first year
average grade (Y) of incoming law school students from
their grade-point average (G) before entering law school
and their law school admission test scores (L). In the
original work, the goal was to train a predictor Y that
was counterfactually fair with respect to race.

To evaluate any causal notion of fairness, we need to first
specify the causal graph. Here we assume G — L with
errors €¢, €1, where G and L are both influenced by the
sensitive attribute A, see Model A in Figure Given this
specification, the standard way to train a counterfactually
fair classifier is using €, e, —the non-descendants of A.
To do so, we first learn them from data as the residuals in
predicting G and L from their parents.

The validity of causal estimates rely on the assump-
tion that the constructed causal model and its respective
graph (here Model A) captures the true data-generating
mechanism. While previous work addressed how to en-
force counterfactual fairness across a small enumeration
of identifiable competing models (Russell et al., 2017),
in this work we consider misspecification in the lack of

unidentifiable unmeasured confounding. In our example,
this means violation of the assumed independence of the
error variables e and €y,.

To capture such confounding, we introduce Model B
in Figure [I] Here the error variables are not indepen-
dent, they co-vary: (eg,er)’ ~ N(0,%) where, ¥ =
< g é poGgor

pPoGOL o2
tion of @ and p € [—1,1] is the correlation, such that
the overall covariance matrix 3 is positive semi-definite.
Before going into the detailed procedure of our sensitiv-
ity analysis, let us give a general description of what we
mean by Model A and Model B throughout this work.

. Here, o, is the standard devia-

Model A is the “guessed” causal graph model used to
build a counterfactually fair predictor.

Model B is a version of Model A that allows for further
unobserved confounding between pairs of error variables
not originally featured in A. Model B will play the role
of a hypothetical ground truth that simulates “true” coun-
terfactual versions of the predictions based on Model A.

Our tool allows us to answer the following question:
how does a predictor that is counterfactually fair under
Model A perform in terms of counterfactual unfairness
under the confounded Model B? Our goal is to quan-
tify how sensitive counterfactual unfairness is to mis-
specifications of the causal model, in particular to unob-
served confounding. To do so, we will introduce a mea-
sure which we will call counterfactual unfairness (CFU).
Given this, we describe how to compute the worst-case
violation of counterfactual fairness within a certain con-
founding budget, which we characterize by the correla-
tion —1 < ppax < 1in Model B. By varying the con-
founding budget, we can assess how robust Model A is to
different degrees of model misspecification. Like in clas-
sical sensitivity analysis, we can alternatively start from a
level of unacceptable CFU, search for the minimum pyy
whose worst-case CFU reaches this level, and leave it to
domain experts to judge the plausibility of such a degree
of unmeasured confounding pmax-

3.2 NOTATION AND PROBLEM SETUP

For both Model A and B the model equations are:
G = ¢c(A) "wetea, L=¢L(AG) witer, ()

where ¢ : A — R and ¢;, : A x R — R? denotes
fixed embedding functions for A and A, G respectively,
A € A indicates the membership in a protected group
(where A is the set of possible groups), and wg € R9¢,
wy, € R are the weights of the model.

In order to simplify notation, for observed data



{(ai, g, ;) } 1, we define

(B er e () nirs
l; wr,

g, OT) 2% (dg+dr.)
P, = eR GTaL),
(OT L,

where we write ¢, = ¢¢(a;) and ¢r, = ¢r(a;, g:)
for brevity. In eq. (3) as well as the remainder of this
work, equations and assignments with subscripts 7 on
both sides hold for all i € {1,...,n}f]

3.3 MODEL A: FIT CF PREDICTOR

3

First, we build a counterfactually fair predictor with our
guessed unconfounded Model A via the following steps.

1. Fit Model A via regularized maximum likelihood:
W Z
+ /\||wH2 + nlog det(X),
2
_(9c O
== (¥ o)

Note that we can alternately solve for w and o, o, as
follows. First fix 0 =0, =1 and compute

n -1 n
'LBT:<Z<I>,LT<I>¢+)\I> <Z(I>2Twi).
i=1

i=1

— dw) ' 27z — Pw)

“

where

The optimal standard deviations o, o, are then simply
given by the empirical standard deviations of the residu-
als under w?. Thus, the optimum of eq. (@) is

n -1 n
= (Z@jﬁ*@ﬁﬂ) <Z<I>:Z_1wi>,
=1 =1

where ¥ = diag(c%, 0%).

2. Given fitted weights w, estimate the errors ec, €,
A (r o \T _
€ = (&g,6,) =x; — o, w'.

3. Fit a counterfactually fair predictor §; =
parameters 6 to predict outcomes y; via

fg (é,) with

n
6! = argmin }  L(fo(&).y:),
i=1
for some loss function £. While virtually any predictive
model can be used in the two-variable case, in the general
case we require the counterfactually fair predictor to be
differentiable, such that it is amenable to gradient-based

Note that A need not be exogenous. Since we would need
to include additional—standard but occluding—steps in the al-
gorithm to handle discrete variables, this assumption is solely
to simplify the presentation.

optimization. The definition of counterfactual fairness
constrains the optimization for any loss function. Here,
we use the sufficient condition for counterfactual fair-
ness that the predictor § depends only on the error terms,
which are non-descendants of A (Kusner et al.| 2017)).

3.4 MODEL B: EVALUATE CFU

Next, we evaluate how the predictor fg+ obtained in
the previous section breaks down in the presence of un-
observed confounding, i.e., in Model B. To do so, we
fit Model B and generate “true” counterfactuals x’. If
we were handed these counterfactuals and we wanted to
make predictions using fg+ we would compute their er-
ror terms € using Step 2 above. If Model A was in fact
the model that generated the counterfactuals @’ then the
predictions on the error terms for the real data and the
counterfactuals would be identical: fgi (€)= fgi (€').

However, because the counterfactuals were generated by
the true weights w* of Model B, not the weights w' of
Model A, there will be a difference between the real data
and counterfactual predictions fgi (€) # for (€'). Itis this
discrepancy we will quantify with our measure of coun-
terfactual unfairness (CFU). Here is how we compute it
for a given confounding budget ppax.

1. Fit model B via regularized maximum likelihood:

wit Z — iw) 27 @i - diw) )
+ A*llwllg +n log det (%),
where
Y= e 0 1 Pmax efe 0
B 0 oL max 1 0 oL)’
—_——

P
As before we can alternately solve for w (closed-form)
and o, o, (via coordinate descent)E] Let w* be the final
weights after optimization.

2. Given weights w*, estimate the errors of Model B,

31' = (ng Sli)—r

=T; — @lw*

3. For a fixed counterfactual value a’ € A, compute the
Model B counterfactuals of GG and L for all 4,

= ¢c(a ) wg +591 )
li = ¢r(a}, g))Twi + 0,
where w* = (wg,wi)". If x; = (g},1)7, we can
write the above equation as
x, = dw* + 4,

*In fact we optimize log(oc), log(or) to ensure the stan-
dard deviations are positive.



and @, = diag(¢pg(al), dr(as, g})) is defined in gen-
eral by sequential propagation of counterfactual values
according to the ancestral ordering of the SCM.

4. Compute the (incorrect) error terms of the counterfac-
tuals using the same procedure as in step 2 of Section[3.3]
using weights w' of Model A:

&= (e i) =} — D,
Again, the predictions on the above quantity fgi(€})
will differ from those made on the real-data error terms

foi(€;) (unless the counterfactuals were also generated
according to model A).

5. To measure the discrepancy, we propose to quantify
counterfactual unfairness as the squared difference be-
tween the above two quantities:

CFU; = (for1 (&) — for(€)))*.
Ultimately, to summarize the aggregate unfairness, we
will compute the average counterfactual unfairness:

1 n
FU =~ CFU;.
CFU=—3% CFU; (6)

=1

A quick note: in the two-variable setting, given a con-
founding budget p,,.x, the worst-case CFU occurs pre-
cisely at pax (Which need not be the case for multivari-
ate confounding as we show in Appendix [A). Thus, the
above procedure computes the maximum CFU with bi-
variate confounding budget equal to py.x. CFU mea-
sures how the counterfactual responses Y (a) and Y (),
defined using model A, differ “in reality”, i.e., if model B
is “true”. What qualifies as bad CFU is problem depen-
dent and requires interaction with domain experts, who
can make judgment calls about the plausibility of the
misspecification py,.x that is required to reach a break-
ing point. Here, a breaking point could be the CFU of a
predictor that completely ignores the causal graph.

To summarize: we learn Y = fot as function of X and
A, where X and A are implicit in the expression of the
(estimated) error terms € that are computed using the as-
sumptions of the working Model A. We assess how “un-
fair” V is by comparing for each data point the two coun-
terfactual values Y (a) = foi (&) and Y (a/) = fo1(€))
where the “true” counterfactual is generated according to
the world assumed by Model B. The space of models to
which Model B belongs is a continuum indexed by ppax,
which will allow us to visualize the sensitivity of Model
A by a one-dimensional curve. We will do this by finding
the best fitting model (in terms of structural equation co-
efficients and error variances) at different values of pyax,
so that the corresponding CFU measure is determined by
Pmax only (results on the above law school model are
shown in Section[3). We assume that the free confound-
ing parameter is not identifiable from data (as it would be

the case if the model was linear and the edge A — L was
missing, the standard instrumental variable scenario).

4 TOOL #2: OPTIMIZATION-BASED

In this section, we generalize the procedure outlined for
the two-variable case in Section [3|to the general case.

4.1 NOTATION AND PROBLEM SETUP

Besides the protected attribute A and the target variable
Y, let there be m additional observed feature variables
X in the causal graph G each of which comes with an
unobserved error term variable ¢;.

As before, we express the assignment of the structural
equations for a specific realization of observed features
x = (21,...,2,) " and error terms € = (e1,...,6m) "
as the following operation, i.e., € = ®w + €. Here ® has
mrowsandd =), Chas-parents(G) dy columns, where dy

is the dimensionality of embedding ¢y : R/Pas (V) —
R4V for each node V € G that has parent nodes. Without
loss of generality, we assume the nodes {A} U {X;}7",
to be topologically sorted with respect to G with A al-
ways being first. We combine the individual weights as,
w = (wx,,wx,,...,wx, ) € R and represent ®
once evaluated on a specific sample (a,x) of the vari-

ables A, X1,...,X,, as,
bk, or
(b = ’ . )
0’ 2%

where ¢ is based on the parents of X, (a, Tpa,(x;))-
The covariance matrix of the error terms is given by

¥ = diag(o1,...,0m)P diag(oy, ..

L] Um):

where o1, ...,0,, are the standard deviations of each
variable and P is a correlation matrix.

4.2 THE OPTIMIZATION PROBLEM

In the general case our goal is to find a correlation matrix
P that satisfies a “confounding budget” py,ax. In partic-
ular we would like to constrain the correlation Pj; be-
tween any two different variables X; and Xy, for j # k,
while allowing P;; = 1 for all j. Additionally, we want
to take into account any prior knowledge that certain
variable pairs should have no correlation, if available.
The most intuitive way to budget the amount of con-
founding is to limit the absolute size of any correlation
by Pmax as: |Pjk| < Pmax for all j # k. This captures a
notion of “restricted unobserved confounding” and leads



to the following optimization problem
max ; CFU; (N

subjectto  Pj; =1 forje {1,...,m},
|Pjk| < pmax <1 forall (j,k) €C,
P, =0 forall (j,k). ¢C,j # k.
C is the set of correlations that should be non-zero.
A quick aside: the setting where there are zero cor-
relations can be captured using the standard acyclic
directed mixed graph notation (ADMG, |Richardson,
2003). Specifically, this can be represented by ADMGs

by removing bidirected edges between any two error
terms whose correlation is fixed to zero.

As in the bivariate case, CFU is a direct function of P
only: all other parameters will be determined given the
choice of correlation matrix by maximizing likelihood.
Note that eq. contains multiple nested optimization
problems (for the counterfactually fair model weights
6%, and the weights and standard deviations of Models
A and B). To solve it efficiently, we will parameterize
P in a way that facilitates optimization via off-the-shelf,
unconstrained, automatic differentiation tools. We pro-
vide more details about computational bottlenecks in Ap-

pendix [B]
4.3 ALGORITHM

We use the following approach to accommodate the con-
straints in eq. in a way such that our algorithm does
not require a constrained optimization subroutine. As-
sume first that P has no correlations that should be zero.
We compute LLT for a matrix L € R™*™_ whose en-
tries are the parameters we eventually optimize. To con-
strain the off-diagonals to a given range and ensure that
P has 1s on the diagonal, we define P as,

P :=tanh,  (LL") := I+pmax (J—I)Otanh(LL"),

where ® denotes element-wise multiplication of matrices
and J is a matrix of all ones. This way P is symmetric,
differentiable w.r.t. the entries of L, has 1s on the diago-
nal, and its off-diagonal values are squashed to lie within
(—Pmax, Pmax)- While it is natural to directly mask and
clamp the diagonal, there are various ways to squash the
off-diagonals to a fixed range in a smooth way, which
bears close resemblance to barrier methods in optimiza-
tion. We choose tanh() because of its abundance in ML
literature, but other forms of P may work better for spe-
cific applications. Note that this formulation does not
guarantee P to be positive-semidefinite.

In Algorithm [I] we describe our procedure to maximize
counterfactual unfairness given a confounding budget
Pmax and observational data {x;,v;,a;, }7"; C R™ x

{0,1}2. The algorithm closely follows the procedure de-
scribed in Section [3] for the bivariate case. Since we use
automatic differentiation provided by PyTorch (Paszke
et al., [2017) to obtain gradients, we only show the for-
ward pass in Algorithm[I| For the initialization INITIAL-
IZEPARAMETERS(), we simply populate L as a lower
triangular matrix with small random values for the off-
diagonals and 1s on the diagonal.

If £ indicates some correlations should be zero, we sug-
gest the following standard “clique parameterization™: L
is a m X ¢ matrix where c is the number of cliques in &,
with L;; being a non-zero parameter if and only if vertex
1 is in clique k. L;; = 0 otherwise. It follows that such a
matrix will have zeros at precisely the locations notin £ E]
See [Silva et al.| (2007) and Barber| (2009) for examples
of applications of this idea. For large cliques, further re-
finements are necessary to avoid unnecessary constraints,
such as creating more than one row per clique of size four
or larger. In the interest of space, details are left for an
expanded version of this paper and our experiments will
not make use of sparse P (note that this parameteriza-
tion also assumes that the number of cliques is tractable).
Note that individual parameters L;; may not be identifi-
able, but identifiability is not necessary here, all we care
about is the objective function: CFU. As a matter of fact,
multiple globally optimal solutions are to be expected
even in the space of P transformations. A more direct
parameterization of sparse P, with exactly one parame-
ter per non-zero entry of the upper covariance matrix, is
discussed by [Drton & Richardson|(2004)). Computation-
ally, this minimal parameterization does not easily lead
to unconstrained gradient-based algorithms for optimiz-
ing sparse correlation matrices with bounded entries. We
suggest the clique parameterization as a pragmatic alter-
native. Special cases may be treated with more efficient
specialized approaches. See (Cinelli et al.| 2019) for a
thorough discussion of fully linear models.

In Section [5] we will demonstrate this approach on a
3-variable-confounding scenario to showcase our ap-
proach. As this paper is aimed at describing the method-
ology, we will leave more complex confounding sce-
narios to an extended version of this work and only
briefly describe an extension to path-specific effects in

Appendix

S EXPERIMENTS

We compare the grid-based and the optimization-based
tools introduced in Sections 3 and 4 on two real datasets.

In all experiments our embedding ¢ is a polynomial basis

“Barring unstable parameter cancellations that have mea-
sure zero under continuous measures on { L }.



Algorithm 1 MAXCFU: Maximize counterfactual un-
fairness under a certain confounding budget constraint.

Require: data {x;,y;,a;, }7_;, confounding budget
Pmax, learning rate o, minibatch size B

{&}n ,,w', 0" « FITMODELA ({z;, y;, ai, }7;)
D« {z;,yi,0:,Pi, &} > full dataset
L + INITIALIZEPARAMETERS()
fort=1...T do
D®) « SAMPLEMINIBATCH(D, B)
A + VL CFU(DW, wi, EXT 0T, L) > autodiff
L+ L+aA

8: return CFU (D, w', A, 01, L)

> iterations

N RN

> gradient ascent step

9: function FITMODELA({x;, y;, a;, } 1)
0wt (20, <I>Z-T<I>i+>\TI)_1(Z?:1 o)
11: ¥« diag(var({z; — ®;wT}7 )
2wl (DL el e +MI)_1X

(Z?:l (I);l—zilici)

13: éi — T; — <1>in
14: 0" <+ argmin, S L(fo(€)syi)
15:  return {&}7" ,, w0

16: function CFU(D, w', \, 61, L)

17: W, 0" Mily o Y iy (T — Pw) TS X
(2;—P;w)+\T ||w||2+n log det(X)
where ¥ = diag(o) tanh,, . (LL") diag(o)
18: 51 —x; — d,w*
19: a) 1 —a; and @, — & w* + §;
where @ is computed via iterative assignment
20 €« xl — Pl

21: CFU « %Z?:l(fm (€i) — for (€))?
22: return CFU

up to a fixed degree. The degree is determined via cross
validation (5-fold) jointly with the regularization param-
eter A, Our counterfactually fair predictor is regularized
linear regression on the noise terms €:

n
: A \T 2 2
P — i) @ 2|05 .
meln;(y B(&)"0)” + \|6]3
For this model, counterfactual unfairness is:

CFU, = ((p(e) ~ 9(e) o)

2

For comparison, we also train two baselines that also use
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Figure 2: Counterfactual unfdirness for the law school
dataset. See text for details.

features Sk EPI

€O : ‘61\/[ \
satisfaction with -+

R ) )

O: organization @ -
7 L /
M: manager JeRas
<+ €J

J: job

Figure 3: The true causal graph (Model B) for the NHS
Staff Survey dataset.

regularized ridge regression (degree and regularization
are again selected by 5-fold cross-validation):

unconstrained: an unconstrained predictor using all ob-
served variables as input fyc : (A4, X1,..., X)) — Y.
blind unconstrained: an unconstrained predictor using
all features, but not the protected attribute, as input fic :
(Xla---me) —Y.

Analogous to our definition of CFU in eq. (6), we
compute the unfairness of these baselines as the mean
squared difference between their predictions on the ob-
served data and the predictions of the counterfactually
fair predictor on the observed data: = > | (fai(€;) —
§7")2, where ¢ = fuc(ai, ;) and g = fouc(a).
This choice is motivated by the fact that in practice we
care about how much potential predictions deviate from
predictions satisfying a fairness measure. For our grid-
based approach we repeatedly fix pmax € [0, 1) to a par-
ticular value and then use the procedure in Section 3] to
compute CFU. For the optimization approach we sim-
ilarly fix pmax € [0,1) in the constraint of eq. (7). For
efficiency we use the previously found correlation matrix
P as initialization for the next setting of pyax.

Law School data. Our first experiment is on our mo-
tivating example introduced in Section 3] on law school
success (recall eq. (2) and Figure [I] for details on the
causal models). Our data comes from law school stu-
dents in the US (Wightman, |1998)). As our causal model
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Figure 4: Counterfactual unfairness as a function of pp,ax
for the multivariate NHS dataset.

investigates confounding between two variables we will
use the grid-based approach introduced in Section [3] to
calculate the maximum CFU. Recall that for the bi-
variate approach we fix a confounding level p = pyax
and then compare predictions between real data based on
Model A versus counterfactuals generated from Model
B. Figure [2 shows the CFU for the grid-based approach
(black), alongside the baselines (green/red), as the corre-
lation p varies. We first note that the confounding is not
symmetric around p = 0. For the law school data, nega-
tive correlations have smaller CFU. In general, this is a
data-specific property.

Additionally, we notice that as p,,x moves away from 0
it increases noticeably, then plateaus in roughly [0.1, 0.9]
and finally increases again. Our suspicion is that the ini-
tial jump may be due to a small model misspecification.
Specifically, a small change in p,,,, may cause the gener-
ated counterfactuals to have additional error which may
dominate for such small pa.x < 0.1 and then becomes
insignificant for larger pp,.x. For large ppax > 0.9 we
believe the increase may be due to numeric instability
as the covariance matrix becomes nearly negative defi-
nite. This could cause the weights of the model to rapidly
grow or shrink. Between the small and large regimes, we
see the CFU gradually increase as pyax is increased. Fi-
nally, we note that both baseline approaches have higher
CFU than found with any grid-based setting.

NHS Staff Survey. Our second experiment is based
on the 2014 UK National Health Service (NHS) Sur-
vey [Picker Institute Europe{(2015). The goal of the sur-
vey was to “gather information that will help to improve
the working lives of staff in the NHS”. Answers to the
survey questions ranged from ‘strongly disagree’ (1) to
‘strongly agree’ (5). We averaged survey answers for re-
lated questions to create a dataset of continuous indices
for: job satisfaction (J), manager satisfaction (M), or-
ganization satisfaction (O), and overall health (Y'). The

goal is to predict health Y based on the remaining in-
formation. Additionally, we collected the race (A) of
the survey respondents. Using this data, we formulate a
ground-truth causal graph shown in Figure 3| (equivalent
to Model B in Figure[I). This causal graph includes cor-
relations between all error terms €7, €7, €o. This model
has the following structural equations

O = ¢po(A)"wo + €o ©)
M = ¢ (A,0) wrr + enr
J=¢;(A,0,M) w; +ey.

Just as in the law school example, we measure the im-
pact of this confounding by comparing this model to the
unconfounded model (i.e., all error terms are jointly in-
dependent). As there is no general efficient way to grid-
search for positive definite matrices that maximize CFU
for a given py,.x, we make use of our optimization-based
procedure for calculating maximum CFU, as described
in Algorithm[T} Figure[]shows the results of our method
on the NHS dataset. Note that we only show positive
Pmax because our optimization problem eq. (/) only con-
strains the absolute value of the off-diagonal correlations.
This allows the procedure to learn whether positive or
negative correlations result in greater CFU. As in the
law school dataset we see an initial increase in CFU for
small pp,ax, followed by a plateau, ending with another
small increase. As before, all values have lower values
than the two baseline techniques.

6 CONCLUSION

In this work we presented two techniques to assess the
impact of unmeasured confounding in causal additive
noise models. We formulated unmeasured confounding
as covariance between error terms. We then introduced a
grid-based approach for confounding between two terms,
and an optimization-based approach for confounding in
the general case. We demonstrated our approach on two
real-world fairness datasets. As a next step, we plan to
write an extended version of this work with experiments
on larger graphs with known zero correlations. We would
also like to extend these approaches to handle the sensi-
tivity of other quantities such as the structural equations.
Overall, we believe the tools in this work are an impor-
tant step towards making causal models suitable to ad-
dress discrimination in real-world prediction problems.
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