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BOUNDS FOR TRACES OF HECKE OPERATORS AND APPLICATIONS TO

MODULAR AND ELLIPTIC CURVES OVER A FINITE FIELD

IAN PETROW

Abstract. We give an upper bound for the trace of a Hecke operator acting on the space of
holomorphic cusp forms with respect to certain congruence subgroups. Such an estimate has ap-
plications to the analytic theory of elliptic curves over a finite field, going beyond the Riemann
hypothesis over finite fields. As the main tool to prove our bound on traces of Hecke operators, we
develop a Petersson formula for newforms for general nebentype characters.

1. Introduction

1.1. Statement of Results. Let SκpΓ, ǫq be the space of holomorphic cusp forms of weight κ, for
a subgroup Γ of a Hecke congruence group, and of nebentype character ǫ. We write TrpT |SκpΓ, ǫqq
for the trace of a linear operator T acting on SκpΓ, ǫq. The aim of this paper is to give estimates
for TrpTm|SκpΓ, ǫqq, where Tm is the mth Hecke operator, as the parameters m,κ,Γ, and ǫ vary
simultaneously.

Consider first the case that Γ “ Γ0pNq and ǫ is any Dirichlet character modulo N . Let dpmq
denote the number of divisors of m, σpmq the sum of the divisors of m, and let ψpNq “ rΓ0pNq :
SL2pZqs “ N

ś

p|N

`

1 ` 1

p

˘

. We assume that κ ě 2 an integer throughout the paper. Deligne’s

theorem tells us that each eigenvalue λpmq of Tm satisfies |λpmq| ď dpmqmκ´1

2 . Therefore we have
the “trivial” estimate on the trace

(1.1) TrpTm|SκpΓ0pNq, ǫqq ď dimSκpΓ0pNq, ǫqdpmqmκ´1

2 ď pκ ´ 1qψpNq
12

dpmqmκ´1

2 .

For the bound on dimSκpΓ0pNq, ǫq, see e.g. [Ros92, Cor 8]. The power of m in (1.1) is sharp by
the Sato-Tate distribution for Hecke eigenvalues. On the other hand, by a careful analysis using
the Eichler-Selberg trace formula, Conrey, Duke and Farmer [CDF97] and in more generality Serre
[Ser97, Prop. 4] show that if ǫp´1q “ p´1qκ then
(1.2)

TrpTm|SκpΓ0pNq, ǫqq “ κ´ 1

12
ǫpm 1

2 qmκ
2

´1ψpNq `O

ˆ

pσpmq max
f2ă4m

ψpfq ` dpmqN 1

2 qmκ´1

2 dpNq
˙

,

where ǫpm1{2q is understood to be 0 unlessm is a perfect square. If ǫp´1q ‰ p´1qκ then SκpΓ0pNq, ǫq “
t0u, so the left hand side vanishes identically. We expect the estimate (1.2) to be sharp if m is fixed
and κ`N Ñ 8.

Write cpǫq for the conductor of the Dirichlet character ǫ, and c˚pǫq “ ś

p|cpǫq p for its square-free

part. In this paper we prove:

Theorem 1.1. Suppose that ǫp´1q “ p´1qκ, pN,mq “ 1, and that m cpǫq c˚pǫq ! pN4κ10{3q1´η for
some η ą 0. Then we have that
(1.3)

TrpTm|SκpΓ0pNq, ǫqq “ κ´ 1

12
ǫpm 1

2 qmκ
2

´1ψpNq `Oη,ε

´

N
10

11m
κ´1

2
` 1

44κ
61

66 cpǫq 1

44 c˚pǫq 1

44 pNmκqε
¯

.
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We remark that the hypothesis that m cpǫq c˚pǫq ! pN4κ10{3q1´η for some η ą 0 in Theorem
1.1 is no restriction in practice, since if the hypothesis fails then (1.1) is a superior bound anyway.
Indeed, the error term in (1.3) is smaller than that in both (1.1) and (1.2) when

N
8

13κ
122

195 pNκqε cpǫq 1

65 c˚pǫq 1

65 ! m ! pN4κ
10

3 q1´η

cpǫq c˚pǫq .

For example, if ǫ is trivial and the weight κ is fixed, then (1.3) is better than (1.1) and (1.2) for

N
8

13
`ε ! m ! N4´ε.

Note that our result requires the hypothesis pN,mq “ 1, whereas the estimates (1.1) and (1.2) do
not. We discuss the source of this condition in the sketch of the proof, below.

We are also interested in spaces of modular forms for groups other than Γ0pNq. In particular,
for positive integers M | N let

(1.4) ΓpM,Nq “
 `

a b
c d

˘

P SL2pZq s.t. a, d ” 1 pmodNq, c ” 0 pmodNMq
(

.

These congruence groups interpolate between Γ1pNq “ Γp1, Nq and ΓpNq » ΓpN,Nq. We write
SκpM,Nq for the space of modular forms of weight κ for the group ΓpM,Nq (without nebentype
character). Let δpa, bq be the indicator function of a “ b and δcpa, bq be the indicator function of
a ” b pmod cq. Let Tm be the mth Hecke operator acting on SκpM,Nq and for pd,Nq “ 1 let xdy
the dth diamond operator. These operators commute and T1 “ x1y “ id; for definitions see [DS05,
§5.1, 5.2] or [KP17, §4]. In particular, we have

(1.5) TrpxdyTm|SκpΓpM,Nqqq “
ÿ

ǫ pmodNq

ǫpdqTrpTm|SκpΓ0pNMq, ǫqq.

Applying (1.1) to (1.5) we have

(1.6) TrpxdyTm|SκpΓpM,Nqqq ď κ´ 1

12
ϕpNqψpNMqdpmqmκ´1

2 .

Meanwhile, summing (1.2) over characters ǫ pmodNq such that ǫp´1q “ p´1qκ we find

(1.7) TrpxdyTm|SκpΓpM,Nqqq “ κ´ 1

24
m

κ
2

´1ϕpNqψpNMq
´

δN pm 1

2 d, 1q ` p´1qκδN pm 1

2 d,´1q
¯

`O
´

pσpmq max
f2ă4m

ψpfq ` dpmqpMNq 1

2 qmκ´1

2 dpMNqN
¯

.

The following result improves on both (1.6) and (1.7) in an intermediate range of parameters.

Theorem 1.2. Suppose that M | N , pN,mq “ 1, and that m ! pN6κ10{3q1´η for some η ą 0. We
have that

TrpxdyTm|SκpΓpM,Nqqq “ κ´ 1

24
m

κ
2

´1ϕpNqψpNMq
´

δN pm 1

2d, 1q ` p´1qκδN pm 1

2 d,´1q
¯

`Oη,ε

´

MN
41

22m
κ´1

2
` 1

44κ
61

66 pNmκqε
¯

.

1.2. Applications to Modular and Elliptic Curves over a Finite Field. Hecke operators
appear throughout number theory, and estimates for their traces are especially relevant to equidis-
tribution problems. See for example [Ser97, §5-§8] and [MS09]. We mention here a few consequences
in the analytic theory of modular and elliptic curves over a finite field.

Let C be a nonsingular projective curve of genus g over a finite field Fq with q elements. Then
we have (see e.g. [Mil17, Ch. 11]) that

|CpFqnq| “ qn ` 1 ´
2g
ÿ

i“1

αni ,
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where tαiu are the inverse zeros of the zeta function of C

ZpC, T q “ p1 ´ α1T q ¨ ¨ ¨ p1 ´ α2gT q
p1 ´ T qp1 ´ qT q .

The Riemann hypothesis for curves over finite fields asserts that |αi| “ ?
q for all i. Igusa [Igu59]

showed that there exists a non-singular projective model forX0pNq over Q whose reductions modulo
primes p, p ∤ N are also non-singular (see also the survey [DI95, §9]), and so the preceding discussion
applies to X0pNq when p ∤ N . Since g „ ψpNq{12 as N Ñ 8 we have that

(1.8) |X0pNqpFqq| “ q ` 1 `OpψpNqq1{2q.
In particular, |X0pNqpFqq| „ q as q Ñ 8 as soon as q " N2`δ for some δ ą 0. On the other hand,
the Eichler-Shimura correspondence (see e.g. [Mil17, Thm. 11.14]) asserts that

ZpX0pNq, T q “
ś

fPH2pNq

`

1 ´ λf ppqT ` pT 2
˘

p1 ´ T qp1 ´ pT q ,

where H2pNq is a basis for S2pΓ0pNqq consisting of eigenforms of tTp, p ∤ Nu, and λf ppq is the Tp
eigenvalue of f . We therefore have

|X0pNqpFqq| “ q ` 1 ´ TrpTq|S2pΓ0pNqqq ` pTrpTq{p2|S2pΓ0pNqqq,
where we set Tp´1 “ 0. Applying (1.1), (1.2), and Theorem 1.1 we get

Corollary 1.3. Suppose q “ pv is a prime power such that p ∤ N . We have

|X0pNqpFqq| “ q ` pp´ 1qψpNq
12

δ2pv, 0q `Oε

´

minpψpNq, q 1

44N
10

11 pqNqε, pq 3

2 `N
1

2 qdpNqqεqq 1

2

¯

.

In particular, the main term is larger than the error term as soon as q " N
40

21
`δ for some fixed

δ ą 0.

Corollary 1.3 shows that there is significant cancellation between the zeros αi of ZpX0pNq, T q,
and in this sense goes beyond the Riemann hypothesis for ZpX0pNq, T q. Assuming square-root

cancellation between the zeros, one might conjecture an error term of size pqNq1{2`ε in Corollary
1.3, which would imply that the main term is larger than the error term whenever q " N1`δ for
some δ. If one assumes the generalized Lindelöf hypothesis for adjoint square L-functions, then
the method in this paper produces an error term of size q1{8`εN1{2`ε in Corollary 1.3 (see Lemma
6.1). In a much more speculative direction, if under the assumption pmn,W q “ 1 the upper bound

!κ,ε pmnW qεW´1{2 for the sum appearing in Lemma 4.1 holds (cf. the Linnik-Selberg conjecture),

then the error term pqNq1{2`ε in Corollary 1.3 is admissible.
If q is a square then we can compare the second main term in Corollary 1.3 to the error term

coming from (1.2) in the range where q is small compared to N . For example, in the special case
that p is a prime and q “ p2 we have

Corollary 1.4. If p,N Ñ 8 where p runs through primes p ∤ N then for any fixed δ ą 0 we have

|X0pNqpFp2q| “

$

’

’

’

&

’

’

’

%

p2 `OppψpNqq if p2 " N4´δ

p2 ` p
ψpNq
12

`Oεpp
23

22N
10

11 pqNqεq if N
40

21
´δ ! p2 ! N4´δ

p
ψpNq
12

`Oεpp
23

22N
10

11 pqNqεq if N
8

13
`δ ! p2 ! N

40

21
´δ

pp ´ 1qψpNq
12

`Oεppp4 `N
1

2pqdpNqpεq if p2 ! N
2

3
´δ.

The first of these cases is just (1.8), and the last is the Tsfasman-Vlăduţ-Zink theorem [TVtZ82],
which has important applications to algebraic coding theory, see [Mor91, Ch. 5].

Using Theorem 1.2 we can make more explicit statements about elliptic curves themselves. Let
E be an elliptic curve defined over Fq and let tE “ q ` 1 ´ #EpFqq be the trace of the associated
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Frobenius endomorphism. Hasse’s Theorem tells us that |tE| ď 2
?
q. The set of Fq-isomorphism

classes of elliptic curves defined over Fq is naturally a probability space where the probability of a
singleton is given by

PqptEuq “ 1

q|AutFqpEq| .

We would like to study the expectations as q Ñ 8 of various random variables associated to tE or
the structure of the group of Fq-rational points of E. To be precise: let A be a finite abelian group
with at most two generators, and let ΦA denote the indicator function of the event that there exists
an injective group homomorphism A ãÑ EpFqq. Let Ujpxq for j ě 0 be the Chebyshev polynomials
of the second kind. The Chebyshev polynomials form an orthonormal basis for the Hilbert space
L2pr´1, 1s, 2

π

?
1 ´ x2dxq. N. Kaplan and the author in [KP17, Thm. 2] gave explicit formulas for

the expectations

EqpUjptE{2?
qqΦAq “ 1

q

ÿ

E{Fq

AãÑEpFqq

UjptE{2?
qq

|AutFqpEq|

in terms of TrpxdyTm|SκpΓpM,Nqqq and elementary arithmetic functions of m,M,N, and j.
Theorem 1.2 yields the following refinement of the error term in the main corollary of [KP17].

Let

vpn1, n2q “ n1

ψpn1qϕpn1qn2
2

ź

ℓ|
n1

pq´1,n1q

ˆ

1 ` ℓ
´1´2vℓ

´

pq´1,n1q
n2

¯˙

.

Corollary 1.5. Let n1 “ n1pAq and n2 “ n2pAq be the first and second invariant factors of A
(i.e. we have n2 | n1). Suppose that p|A|, qq “ 1 and q ” 1 pmodn2q. Then

EqpUjptE{2?
qqΦAq “ vpn1, n2q

ˆ

δpj, 0q `Oj,ε

ˆ

minpn1, q
1

44n
19

22

1
qn1n2q´ 1

2 pqn1qε
˙˙

.

If q ı 1 pmod n2q, then EqpUjΦAq vanishes identically.
In particular, the traces of the Frobenius tE for tE{Fq : A ãÑ EpFqqu become equidistributed

with respect to the Sato–Tate measure as q Ñ 8 through prime powers q ” 1 pmod n2q. The

equidistribution is uniform in A as soon as q " n2
2
n

41

11
`δ

1
for any fixed δ ą 0.

In [KP17] Kaplan and the author showed that the equidistribution of tE for tE{Fq : A ãÑ EpFqqu
is uniform as soon as q " n2

2
n4`δ
1

by applying (1.6) to bound the trace. In this sense, Corollary
1.5 goes beyond what one can conclude using the Riemann hypothesis of Deligne alone. All of the
error terms in the theorems and corollaries found in section 2 of [KP17] are similarly improved by
applying Theorem 1.2 in addition to (1.6).

1.3. Outline of Proof. Thanks to (1.5), the structural steps of the proof of Theorem 1.2 reduce
to those of Theorem 1.1. The details of the analytic arguments differ however (see section 5). For
these reasons, we only discuss the proof of Theorem 1.1 in this outline.

By Atkin-Lehner theory, to estimate TrpTm|SκpΓ0pNq, ǫqq it suffices to estimate

(1.9)
ÿ

fPH‹
κpN,ǫq

λf pmq,

where H‹
κpN, ǫq is set of Hecke-normalized newforms of level N and character ǫ, and λf pmq is the

mth Hecke eigenvalue of f , normalized so that |λf pnq| ď dpnq. Whereas Serre and Conrey, Duke,
and Farmer used the Eichler-Selberg trace formula to access the trace of Tm, we take a different
path and use the Petersson trace formula.

4



Let BκpΓ0pNq, ǫq be an orthonormal basis for SκpΓ0pNq, ǫq. Let g P BκpΓ0pNq, ǫq and write its
Fourier coefficients as tbgpnquně1. Then the Petersson formula [IK04, Prop. 14.5] says that
(1.10)

Γpκ ´ 1q
p4π?

mnqκ´1

ÿ

fPBκpΓ0pNq,ǫq

bf pnqbf pmq “ δpm,nq ` 2πi´κ
ÿ

cą0

c”0 pmodNq

Sǫpm,n, cq
c

Jκ´1

ˆ

4π
?
mn

c

˙

,

where Jα is the J-Bessel function, Sǫpm,n, cq is the twisted Kloosterman sum

Sǫpm,n, cq “
ÿ˚

d pmod cq

ǫpdqe
ˆ

dm ` dn

c

˙

,

and the ˚ indicates we run over invertible d pmod cq.
Our goal is to apply the Petersson formula to (1.9), and so we are faced with two technical

difficulties:

(1) Only the newforms in SκpΓ0pNq, ǫq have Fourier coefficients proportional to the Hecke
eigenvalues appearing in (1.9), and

(2) If f is a newform, the constant of proportionality between Fourier coefficients bf pnq and
the Hecke eigenvalues λf pnq is « ||f ||L2 , which is not constant across H‹

κpN, ǫq.
We overcome (1) in Theorem 3.1 by developing a Petersson formula for newforms for SκpΓ0pNq, ǫq.

There has been much recent interest in such formulas, see for example [BBD`17], [Nel17], [PY18],
and [You17]. Theorem 3.1 is a generalization of [BBD`17, Prop. 4.1] to nontrivial central characters,
which itself is a generalization of work of Iwaniec-Luo-Sarnak [ILS00], Rouymi [Rou11] and Ng
[Ng12]. Peter Humphries has also shared a preprint with the author in which he independently
obtains Theorem 3.1, and uses it to study low-lying zeros of the L-functions associated to f P
H‹
κpN, ǫq. Theorem 3.1 is the only place in the proof where we have used the hypothesis pN,mq “ 1,

in an essential way, and so is the source of the relatively prime conditions in Theorems 1.1 and 1.2.
We deal with (2) by appealing to the special value formula

Lp1,Ad2 fq “ ζpNqp2qp4πqκ
Γpκq

||f ||2
L2

VolX0pNq ,

where Lps,Ad2 fq is a certain Dirichlet series whose coefficients involve λf pn2q, and which we discuss
in more detail in section 2. One may then swap the sum over f and this Dirichlet series, and apply
our Petersson formula for newforms (Theorem 3.1). Estimating the resulting sums directly using
the Weil bound for Sǫpa, b, cq (see Lemma 4.2), one recovers that the trace of Tm is !m pNκq1`ε

(compare with (1.1)).
To save a bit more and obtain Theorem 1.1 we remove the weights ||f ||2

L2 more efficiently using
a method due to Kowalski and Michel [KM99, Prop. 2]. Kowalski and Michel’s method is based
on Hölder’s inequality and a large sieve inequality due to Duke and Kowalski [DK00, Thm. 4] for
sub-families of automorphic forms on GL3. There are other notable large sieve inequalities for GL3

in the literature, see e.g. [BBM17, Thm. 3] and [Ven06, Thm. 1]. However, these two are not useful
to us since we need a large sieve inequality which is efficient for the proper sub-family of GL3 forms
cut out by the image of the adjoint square lift from GL2. The inequality of Duke and Kowalski is
superior to the results [BBM17, Thm. 3] and [Ven06, Thm. 1] in the case of a thin subfamily and
a long summation variable, which is the situation of interest to us.

1.4. Acknowledgements. I would like to thank Nathan Kaplan for a careful read and pointing
out the Tsfasman-Vlăduţ-Zink theorem to me, Corentin Perret-Gentil for some helpful discussions,
and the anonymous referee for a thorough and detailed report on the first version of this paper.
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2. Preliminaries on L-series

If Lpsq is a meromorphic function defined in Repsq " 1 by an infinite product over primes p of
local factors Lppsq, then for any integer N we write

LpNqpsq “
ź

p∤N

Lppsq

and
LN psq “

ź

p|N

Lppsq,

so that Lpsq “ LN psqLpNqpsq for any N P N. To deal with the ||f ||2
L2-normalization alluded to in

subsection 1.3, we introduce the “naive” adjoint square L-function. For f P H‹
κpN, ǫq, let

Lps,Ad2 fq “ ζpNqp2sq
ζpsq

ÿ

ně1

|λf pnq|2
ns

“
ź

p

Lpps,Ad2 fq,

where ζpsq is the Riemann zeta function, and where

(2.1) Lpps,Ad2 fq “

$

&

%

´

1 ´ 1

p2s

¯´1
ř

αě0

ǫppαqλf pp2αq
pαs if p ∤ N

´

1 ´ 1

ps

¯´

1 ´ |λf ppq|2

ps

¯´1

if p | N.

Warning: the Lps,Ad2 fq is not the true adjoint square L-function of f as defined by functoriality
(see [IK04, pp. 133] and the online errata). But if p ∤ N , then Lpps,Ad2 fq does match the local L-

factor at p of the true adjoint square L-function. Our “naive” adjoint square L function Lps,Ad2 fq
is chosen to be the Dirichlet series for which the following Lemma is true.

Lemma 2.1. The series Lps,Ad2 fq defined above is holomorphic for Repsq ą 0 and

(2.2) Lp1,Ad2 fq “ ζpNqp2qp4πqκ
Γpκq

xf, fyN
VolX0pNq ,

where

xf, fyN “
ż

Γ0pNqzH
|fpzq|2yκ dx dy

y2

and

VolX0pNq “
ż

Γ0pNqzH

dx dy

y2
“ π

3
ψpNq.

Proof. For the first statement, let π denote the irreducible admissible cuspidal automorphic repre-
sentation of GL2 generated by f , and denote by Lps,Ad2 πq the L-function of its adjoint square
lift. We have by Gelbart and Jacquet [GJ78] that Lps,Ad2 πq is an entire function of s. Therefore,

the prime-to-N part of the naive L-function LpNqps,Ad2 fq is holomorphic for Repsq ą 0.
For the second statement, take the standard non-holomorphic Eisenstein series for Γ0pNq at the

cusp 8 given by

Epz, sq “
ÿ

γPΓ8zΓ0pNq

Impγzqs.

Then we have by the classical Rankin-Selberg unfolding argument
ż

Γ0pNqzH
|fpzq|2Epz, sqyκ dx dy

y2
“ Γps` κ´ 1q

p4πqs`κ´1

ÿ

ně1

|λf pnq|2
ns

.

We deduce the lemma by taking residues on both sides and recalling [Iwa97, Thm. 13.2] that

Ress“1Epz, sq “ VolX0pNq´1.
6
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Let ̺f pnq be the Dirichlet series coefficients of LpNqps,Ad2 fq. Explicitly,

(2.3) ̺f pnq “
#

ř

n“m2ℓ ǫpℓqλf pℓ2q if pn,Nq “ 1

0 if pn,Nq ą 1.

Inverting, we also have

(2.4) ǫpnqλf pn2q “
ÿ

m2ℓ“n

µpmq̺f pℓq.

For future reference, we write the partial sums of LpNqp1,Ad2 fq compactly as

(2.5) ωf pxq “
ÿ

nďx

̺f pnq
n

.

By contrast, when p | N we have that Lpps,Ad2 fq is constant along f P H‹
κpN, ǫq by the following

Lemma.

Lemma 2.2 ([Ogg69] Thms 2, 3). Let p | N be a prime, and ǫ a Dirichlet character mod N . Write

aN,ǫppq “

$

’

&

’

%

1 if ǫ is not a character mod N{p
1

p
if ǫ is a character mod N{p and p2 ∤ N

0 if ǫ is a character mod N{p and p2 | N.
Then we have |λf ppq|2 “ aN,ǫppq.

3. Structural Steps

We study the operator T 1
m “ Tm{mκ´1

2 on SκpΓ0pNq, ǫq so that each eigenvalue λf pmq of the T 1
m

operator is normalized by Deligne’s theorem to have |λf pmq| ď dpmq. We write H‹
κpN, ǫq for the

set of Hecke-normalized newforms in SκpN, ǫq in the sense of Atkin-Lehner theory [AL70, Li75].
Also by Atkin-Lehner theory we have when pm,Nq “ 1 that

(3.1) TrpT 1
m|SκpΓ0pNq, ǫqq “

ÿ

LM“N

dpLq
ÿ

fPH‹
κpM,ǫq

λf pmq,

where we consider the interior sum to be empty if ǫ is not a character mod M . Thanks to (1.5),
we can reduce the structural steps for traces on SκpΓpM,Nqq to the case of SκpΓ0pNq, ǫq.

Recall the notation from section 1.3 and write cκ “ Γpκ ´ 1q{p4πqκ´1. Let

∆κ,N,ǫpm,nq “ cκ

p?
mnqκ´1

ÿ

fPBκpΓ0pNq,ǫq

bf pnqbf pmq,

so that the Petersson formula (1.10) is

(3.2) ∆κ,N,ǫpm,nq “ δpm,nq ` 2πi´κ
ÿ

cą0

c”0 pmodNq

Sǫpm,n, cq
c

Jκ´1

ˆ

4π
?
mn

c

˙

.

The following theorem is our main tool for computing sums over the set of newforms H‹
κpN, ǫq.

Theorem 3.1. If pmn,Nq “ 1 then we have

cκ
ÿ

fPH‹
κpN,ǫq

λf pmqλf pnq
xf, fyN

“
ÿ

LM“N

µpLqRpM,L, ǫq
ÿ

ℓ|L8

pℓ,Mq“1

ǫpℓq
ℓ

∆κ,M,ǫpm,nℓ2q,
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where

RpM,L, ǫq :“ 1

L

ź

p2|L
p∤M

ˆ

1 ´ 1

p2

˙´1
ź

p|pM,Lq

ˆ

1 ´ aM,ǫppq
p

˙´1

,

and aM,ǫppq was defined in Lemma 2.2.

Proof. See section 7. �

Theorem 3.1 does not directly apply to (3.1) because of the normalization by xf, fyN .
We present a technique for removing the weights xf, fyN , which is a slight generalization of

Kowalski and Michel [KM99, §3]. The idea for removing such weights first appeared in a paper of
Murty [Mur95]. Let α “ pαf q be a sequence of complex numbers indexed by

f P
ď

Ně1

ď

ǫ pmodNq

H‹
κpN, ǫq.

Define the natural averaging operator

Arαs “ AN,ǫrαs “
ÿ

fPH‹
κpN,ǫq

αf .

Let

ωf “ cκ
LN p1,Ad2 fq

xf, fyN
.

Then we define the harmonic averaging operator

Ahrαs “ AhN,ǫrαs “
ÿ

fPH‹
κpN,ǫq

ωfαf .

The following proposition is a minor generalization of Proposition 2 of [KM99]. It allows us to
pass from natural averages of newforms to harmonic averages of newforms.

Proposition 3.2. Let α “ pαf q be a sequence of complex numbers indexed by f P H‹
κpN, ǫq running

over all N and all ǫ. Suppose that for all ε ą 0

(3.3) Ahr|αf |s !ε pNκqε

and

(3.4) max
fPH‹

κpN,ǫq
|ωfαf | ! pNκq´δ`ε

for some absolute δ ą 0. For any integer r ě 1 write x “ pNκq 10

r . Then we have

Arαf s “ κ ´ 1

4π

VolX0pNq
ζpNqp2q

´

Ahrωf pxqαf s `Oε,rpx´ δ
20

`ε ` pNκq´1q
¯

.

Proof. See section 6. �

One of the main ingredients in the proof of Proposition 3.2 is a large sieve inequality for the
Dirichlet series coefficients of the automorphic adjoint square L-funciton Lps,Ad2 πq, see Proposi-
tion 6.2, which is a quotation of [DK00, Cor 6]. This inequality is only valid when the length of
summation X satisfies X " pNκq8, which is far from the expected truth. Nonetheless, as of now
it is the best available such inequality in the range of parameters of interest to us. The exponent
´δ{20 in Proposition 3.2 is optimized given the exponent 8 above, and any improvement over the
result of Duke and Kowalski would lead to a corresponding improvement to the value 20 “ 2p8`2q.
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We apply Proposition 3.2 with αf “ λf pmq to equation (3.1) to get

(3.5)

TrpT 1
m|SκpΓ0pNq, ǫqq “

ÿ

LM“N

dpLqκ ´ 1

4π

VolX0pMq
ζpMqp2q AhM,ǫrωf pxqλf pmqs`O

´

κN1`εx´δ{20`ε `N ε
¯

“ κ ´ 1

12

ÿ

LM“N

dpLqψpMq
ζpMqp2q

ÿ

nďx
pn,Mq“1

1

n

ÿ

n“k2ℓ

ǫpℓqAhM,ǫrλf pmqλf pℓ2qs

`O
´

κN1`εx´δ{20`ε `N ε
¯

.

We are now ready to apply Theorem 3.1. We deduce a version of the newform formula for the
harmonic averages Ahrλf pmqλf pnqs appearing in (3.5).

Lemma 3.3. Let cppǫq denote the exponent of the p-part of cpǫq. If pmn,Nq “ 1 then we have

AhN,ǫrλf pmqλf pnqs “ 1

ψpNq
ÿ

LM“N

µpLqMF pM, ǫq
ź

p2|M

ˆ

1 ´ 1

p2

˙

ÿ

ℓ|L8

pℓ,Mq“1

ǫpℓq
ℓ

∆κ,M,ǫpm,nℓ2q,
(3.6)

where

F pM, ǫq “
ź

p||M
cppǫq“1

ˆ

1 ` 1

p

˙

ź

pα||M
αě2

cppǫq“α

ˆ

1 ´ 1

p

˙´1

.

In particular, if ǫ “ ǫ0 is trivial we have

(3.7) AhN,ǫ0rλf pmqλf pnqs “ 1

ψpNq
ÿ

LM“N

µpLqM
ź

p2|M

ˆ

1 ´ 1

p2

˙

ÿ

ℓ|L8

pℓ,Mq“1

1

ℓ
∆κ,M,ǫ0pm,nℓ2q.

Note that formula (3.7) resembles closely the formula found in [BBD`17, Prop. 4.1].

Proof. By the definition of Lpp1,Ad2 fq and Theorem 3.1 we have

Ahrλf pmqλf pnqs “
ź

p|N

ˆ

1 ´ 1

p

˙ˆ

1 ´ aN,ǫppq
p

˙´1
ÿ

LM“N

µpLqRpM,L, ǫq
ÿ

ℓ|L8

pℓ,Mq“1

ǫpℓq
ℓ

∆κ,M,ǫpm,nℓ2q.

It suffices to show for any L,M that

(3.8)
ψpLMq
M

ź

p|LM

ˆ

1 ´ 1

p

˙ˆ

1 ´ aLM,ǫppq
p

˙´1

RpM,L, ǫq “
ź

p2|M

ˆ

1 ´ 1

p2

˙

F pM, ǫq.

We may also assume that cpǫq | M , since otherwise ∆κ,M,ǫpm,nℓ2q “ 0. Both sides of (3.8) are

multiplicative, so it suffices to check the case M “ pα and L “ pβ for an arbitrary prime p. The
following cases can be easily verified one-by-one.

‚ α ě 2, β ě 1, and cppǫq “ α

‚ α ě 2, β ě 1, and cppǫq ă α

‚ α ě 2, β “ 0, and cppǫq “ α

‚ α ě 2, β “ 0, and cppǫq ă α

‚ α “ 1, β ě 1, and cppǫq “ 1
‚ α “ 1, β ě 1, and cppǫq “ 0
‚ α “ 1, β “ 0, and cppǫq “ 1

9



‚ α “ 1, β “ 0, and cppǫq “ 0
‚ α “ 0, β ě 2, and cppǫq “ 0
‚ α “ 0, β “ 1, and cppǫq “ 0.

�

4. Analysis for Γ0pNq
Now we put together (3.5), the newform formula (3.6), and the Petersson formula (3.2). By (3.5)

and (3.6) we have that

TrpT 1
m|SκpΓ0pNq, ǫqq “ A` E,

where for an integer r ě 1 to be chosen later we set xr “ pNκq10 and have

(4.1) A “ κ ´ 1

12

ÿ

LM“N

dpLq
ζpMqp2q

ÿ

kďx1{2

pk,Mq“1

1

k2

ÿ

ℓďx{k2

pℓ,Mq“1

ǫpℓq
ℓ

ÿ

WQ“M

µpQqWF pW, ǫq
ź

p2|W

ˆ

1 ´ 1

p2

˙

ˆ
ÿ

q|Q8

pq,W q“1

ǫpqq
q

∆κ,W,ǫpm, q2ℓ2q,

and E is the error term from (3.5) of size

(4.2) E !r,ε κN
1`εx´ δ

20
`ε `N ε.

Applying (3.2) to A we get that
A “ D `OD,

where D and OD are the contributions from the diagonal term and off-diagonal term of (3.2),
respectively. We insert δm“q2ℓ2δcpǫq|W for ∆κ,W,ǫpm, q2ℓ2q in (4.1) to find

D “ κ´ 1

12

ǫpm 1

2 q
m

1

2

ÿ

LM“N

dpLq
ζpMqp2q

ÿ

kďx1{2{m1{4

pk,Mq“1

1

k2

ÿ

WQ“M

µpQqWF pW, ǫq
ź

p2|W

ˆ

1 ´ 1

p2

˙

δcpǫq|W .

Extending the sum over k to infinity we conclude that

D “ κ ´ 1

12

ǫpm 1

2 q
m

1

2

ÿ

LM“N

dpLq
ÿ

WQ“M

µpQqWF pW, ǫq
ź

p2|W

ˆ

1 ´ 1

p2

˙

δcpǫq|W `Oε

ˆ

κN1`ε

x
1

2m
1

4

|ǫpm 1

2 q|
˙

.

By a tedious case check on prime powers we have

ψpNqδcpǫq|N “
ÿ

LM“N

MF pM, ǫqδcpǫq|M

ź

p2|M

ˆ

1 ´ 1

p2

˙

.

Therefore the result of the diagonal contribution is

(4.3) D “ κ´ 1

12

ǫpm 1

2 q
m

1

2

ψpNq `O

ˆ

κN1`ε

x
1

2m
1

4

|ǫpm 1

2 q|
˙

,

which matches what one finds directly from the identity contribution of the Eichler-Selberg trace
formula.

Now we treat the off-diagonal terms. Let

(4.4) BpY,m,W q “
ÿ

ℓďY
pℓ,Mq“1

ÿ

q|Q8

pq,W q“1

ǫpqℓq
qℓ

ÿ

c”0 pmodW q

Sǫpm, q2ℓ2, cq
c

Jκ´1

ˆ

4πqℓ
?
m

c

˙

.
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Then we have that

OD “ κ´ 1

12

ÿ

LM“N

dpLq
ζpMqp2q

ÿ

WQ“M

µpQqWF pW, ǫq
ź

p2|W

ˆ

1 ´ 1

p2

˙

ÿ

kďx1{2

pk,Mq“1

1

k2
Bpx{k2,m,W q.

Lemma 4.1. Let d3 denote the 3-divisor function. For any m,n ě 1 we have

ÿ

c”0 pmodW q

Sǫpm,n, cq
c

Jκ´1

ˆ

4π
?
mn

c

˙

! cpǫq 1

4

ź

p|cpǫq

p
1

4

pm,n,W q 1

2d3ppm,nqqdpW q
Wκ

5

6

ˆ

mn?
mn` κW

˙
1

2

log 2mn.

Proof. The proof is identical to [ILS00, Cor. 2.2] but with the following bound on the Kloosterman
sum in lieu of the standard bound without nebentype character.

Lemma 4.2. For integers c P NZ and a, b P Z with c ‰ 0 and cpǫq | N , we have the estimate

|Sǫpa, b; cq| ď dpcq pa, b, cq 1

2 c
1

2 cpǫq 1

4 c˚pǫq 1

4 .

Proof. See Knightly and Li [KL13, Thm. 9.2]. �

�

Applying Lemma 4.1 and estimating sums by integrals we find

BpY,m,W q ! cpǫq 1

4 c˚pǫq 1

4

dpW qm 1

4Y
1

2

Wκ
5

6

logmY,

hence one estimates that

OD !ε cpǫq 1

4 c˚pǫq 1

4x
1

2κ
1

6m
1

4N ε logmx.

We have TrpT 1
m|SκpΓ0pN, ǫqqq “ D `OD ` E, and so collecting error terms we obtain

(4.5) TrpT 1
m|SκpΓ0pN, ǫqqq “ κ ´ 1

12

ǫpm 1

2 q
m

1

2

ψpNq `Oε

˜

cpǫq 1

4 c˚pǫq 1

4x
1

2κ
1

6m
1

4N ε logmx

` κN1`εx´ δ
20

`ε `N ε

¸

.

We now optimize the value of r. By [GHL94, Ban97], the exponent δ “ 1 is admissible. The
error in (4.5) is minimized when

x
11

20 “ Nκ
5

6

m
1

4 cpǫq 1

4 c˚pǫq 1

4

.

Let us assume that there is some η ą 0 such that

(4.6) m
1

4 cpǫq 1

4 c˚pǫq 1

4 ! pNκ 5

6 q1´η.

We choose r ě 1 to be the nearest integer to

11

2

˜

1 ` logpκ 1

6m
1

4 cpǫq 1

4 c˚pǫq 1

4 q
logpNκ 5

6 q ´ logpm 1

4 cpǫq 1

4 c˚pǫq 1

4 q

¸

,

which by (4.6) is then bounded above uniformly in terms of η ą 0 only.
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5. Analysis for ΓpM,Nq
Recall from (1.5) that

TrpxdyT 1
m|SκpΓpM,Nqqq “

ÿ

ǫ pmodNq

ǫpdqTrpT 1
m|SκpΓ0pMNq, ǫqq,

and that in section 4 we decomposed the interior of this as

TrpT 1
m|SκpΓ0pMNq, ǫqq “ D `OD ` E.

Summing the formula (4.3) for D and (4.2) for E trivially over characters ǫ pmodNq we get

(5.1) TrpxdyT 1
m|SκpΓpM,Nqqq “ κ´ 1

24
m´ 1

2ϕpNqψpNMq
´

δN pm 1

2 d, 1q ` p´1qκδN pm 1

2 d,´1q
¯

`OD˚ `Oη,ε

´

κpMN2q1`εx´ δ
20

`ε `NpMNqε
¯

,

where xr “ pMNκq10, r is a parameter to be chosen later, and

OD˚ “
ÿ

ǫ pmodNq
ǫp´1q“p´1qκ

ǫpdqOD.

Let

B˚pY,m,W q “
ÿ

ǫ pmodNq
ǫp´1q“p´1qκ

ǫpdqF pW, ǫq
ÿ

pℓ,Kq“1

ℓďY

ÿ

q|Q8

pq,W q“1

ǫpqℓq
qℓ

ÿ

c”0 pmodW q

Sǫpm, q2ℓ2, cq
c

ˆ Jκ´1

ˆ

4πℓq
?
m

c

˙

,

so that we have

(5.2) OD˚ “ κ ´ 1

12

ÿ

LK“MN

dpLq
ζpKqp2q

ÿ

kďx1{2

pk,Kq“1

1

k2

ÿ

WQ“K

µpQqW
ź

p2|W

p1 ´ 1

p2
qB˚px{k2,m,W q.

We would like to utilize the orthogonality of characters over ǫ pmodNq. To implement this, we
now refresh the notation. Suppose W,N ě 1 are integers such that W | N2. For a, b, d, κ P Z and
1 ď c ” 0 pmodW q define

TW pa, b, cq :“
ÿ

ǫ pmodNq
ǫp´1q“p´1qκ

cpǫq|W

ǫpdqǫpbqF pW, ǫqSǫpa, b, cq.

With this notation, we have

(5.3) B˚pY,m,W q “
ÿ

pℓ,Kq“1

ℓďY

ÿ

q|Q8

pq,W q“1

1

qℓ

ÿ

c”0 pmodW q

TW pm, q2ℓ2, cq
c

Jκ´1

ˆ

4πℓq
?
m

c

˙

.

We can derive a bound on TW by appealing to the Weil bound for Kloosterman sums.

Lemma 5.1. Suppose W,N ě 1 such that W | N2, a, b, d, κ P Z such that pb,W q “ 1, pd,Nq “ 1,
and 1 ď c ” 0 pmodW q. We factor c “ c1c2 with c1 | W8 and pc2,W q “ 1. Then

|TW pa, b, cq| ď ψpc1qdpc2qpa, b, c2q1{2c
1{2
2
.
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Proof. Consider the sum

T 1
W pa, b, cq :“

ÿ

ǫ pmodNq
cpǫq|W

ǫpdqǫpbqF pW, ǫqSǫpa, b, cq,

which is a minor variation of TW pa, b, cq, but omitting the global condition ǫp´1q “ p´1qκ. We first
consider the sum T 1

W locally, returning to TW at the end of the proof. Let α, β, γ ě 0 such that

α ď γ, α ď 2β, pd, pβq “ pb, pαq “ 1, and consider T 1
pαpa, b, pγq. Let

Ipα, βq :“
ÿ

ǫ pmod pβq

ǫpdxqǫpbqδcppǫqďα

$

’

’

&

’

’

%

1 ` 1

p
if cppǫq “ α “ 1

´

1 ´ 1

p

¯´1

if cppǫq “ α ě 2

1 else.

By opening the Kloosterman sum and exchanging order of summation we have

(5.4) T 1
pαpa, b, pγq “

ÿ˚

x pmod pγq

e

ˆ

ax ` bx

pγ

˙

Ipα, βq.

Next we break into four cases:

(1) α ą β

(2) 0 “ α ď β

(3) 1 “ α ď β

(4) 2 ď α ď β.

Recall the orthogonality relation
ÿ

ǫ pmodnq

ǫpaqǫpbq “ ϕpnqδnpa, bq

and the almost-orthogonality relation (see e.g. [HB81, Section 2])
ÿ

cpǫq“c

ǫpaqǫpbq “
ÿ

δ|pa´b,cq

ϕpδqµ
´ c

δ

¯

.

We apply these to evaluate Ipα, βq in cases (1)-(4). We find

(5.5) Ipα, βq “

$

’

’

’

&

’

’

’

%

ϕppβqδpβ pxd, bq if α ą β

1 if 0 “ α ď β

ϕppqδppxd, bq ` 1

p

ř

δ|pp,xd´bq ϕpδqµppγ{δq if 1 “ α ď β

ϕppαqδpαpxd, bq ` 1

p´1

ř

δ|ppα,xd´bq ϕpδqµppγ{δq if 1 “ α ď β.

Recall that pd, pβq “ 1, so that d´1 pmod pβq (or pmod pγq in cases (3) and (4)) exists. Inserting
(5.5) to (5.4), we find the following.

Case (1): β ă α.

T 1
pαpa, b, pγq “ ϕppβq

ÿ˚

x pmod pγq
x”d´1b pmod pβq

e

ˆ

ax` bx

pγ

˙

.

Case (2): β ě α “ 0.

T 1
1pa, b, pγq “

ÿ˚

x pmod pγq

e

ˆ

ax` bx

pγ

˙

“ Spa, b, pγq.
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Case (3): β ě α “ 1.

T 1
ppa, b, pγq “ ϕppq

ÿ˚

x pmod pγq
x”d´1b pmod pq

e

ˆ

ax` bx

pγ

˙

` 1

p

ÿ

δ|p

ϕpδqµpp{δq
ÿ˚

x pmod pγq
x”d´1b pmod δq

e

ˆ

ax` bx

pγ

˙

.

Case (4): β ě α ě 2.

T 1
pαpa, b, pγq “ ϕppαq

ÿ˚

x pmod pγq
x”d´1b pmod pαq

e

ˆ

ax` bx

pγ

˙

` 1

p´ 1

ÿ

δ|pα

ϕpδqµppα{δq
ÿ˚

x pmod pγq
x”d´1b pmod δq

e

ˆ

ax` bx

pγ

˙

.

Using the Weil bound for Kloosterman sums and trivial bounds, we find for all integers a, b, and
non-zero integers 0 ď i ď j, and py, pq “ 1 we have

(5.6)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ˚

x pmod pjq
x”y pmod piq

e

ˆ

ax` b2x

pγ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
#

dppjqpa, b2, pjq 1

2

a

pj if i “ 0

pj´i else.

Applying (5.6) to the various cases above, we find that cases (1), (3), and (4), i.e. when α ą 0, the
bound

(5.7) |T 1
pαpa, b, pγq| ď ψppγq.

In case (2), i.e. when α “ 0, we have

(5.8) |T 1
pαpa, b, pγq| ď dppγqpa, b, pγq1{2pγ{2.

Thus the estimation of T 1
pαpa, b, pγq is finished.

Now we return to the case of TW pa, b, cq. We have

TW pa, b, cq “ 1

2
T 1
W pa, b, cq ` p´1qκ

2
T 1
W pa,´b, cq,

so it suffices to establish the bound stated in the lemma for T 1
W pa, b, cq. We have that T 1

W pa, b, cq
is twisted multiplicative, i.e. we have a factorization

(5.9) T 1
W pa, b, cq “

ź

pα||W
pγ ||c

T 1
pαpacp´γ , bcp´γ , pγq.

Bounding the left hand side of (5.9) using (5.7) and (5.8), we conclude the proof of the lemma. �

Applying Lemma 5.1 to (5.3) we get

B˚pY,m,W q ď
ÿ

pℓ,Kq“1

ℓďY

ÿ

q|Q8

pq,W q“1

1

qℓ

ÿ

W |c1|W8

ψpc1q
c1

ÿ

pc2,W q“1

dpc2qpm, q2ℓ2, c2q 1

2

?
c2

ˇ

ˇ

ˇ

ˇ

Jκ´1

ˆ

4πqℓ
?
m

c1c2

˙ˇ

ˇ

ˇ

ˇ

.

Again following closely the proof of [ILS00, Cor. 2.2] we have that

ÿ

pc2,W q“1

dpc2qpa, b2, c2q 1

2

?
c2

ˇ

ˇ

ˇ

ˇ

Jκ´1

ˆ

4πb
?
a

c1c2

˙ˇ

ˇ

ˇ

ˇ

! d3ppa, b2qq
κ

5

6

?
c1

ˆ

b2a

b
?
a ` c1κ

˙
1

2

log 2b2a.

We have moreover that
ÿ

W |c1|W8

1?
c1

1

pb?a` c1κq 1

2

ď 2

W
1

2 b
1

2 a
1

4

.
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These last two estimations lead to

B˚pY,m,W q ! m
1

4

κ
5

6

ψpW q
W

3

2

ÿ

pℓ,Kq“1

ℓďY

ÿ

q|Q8

pq,W q“1

d3ppm, q2ℓ2qq?
qℓ

logp2q2ℓ2mq

! m
1

4Y
1

2 plog Y q3 log 2m
κ

5

6

ψpW q
W

3

2

.

Inserting this into (5.2) we get

OD˚ ! κ
1

6MN
1

2
`εx

1

2 plog xq3m 1

4 log 2m,

and inserting this into (5.1) we conclude that

(5.10) TrpxdyT 1
m|SκpΓpM,Nqqq “ κ ´ 1

24
m´ 1

2ϕpNqψpNMq
´

δN pm 1

2d, 1q ` p´1qκδN pm 1

2 d,´1q
¯

`Oη,ε

´

κ
1

6MN
1

2x
1

2
`εm

1

4 log 2m` κpMN2q1`εx´ δ
20

`ε `NpMNqε
¯

.

Now we optimize the value of r. The error term is minimized when

x
11

20 “ N
3

2κ
5

6

m
1

4

.

Let us assume that there is some η ą 0 such that

m
1

4 ! pN 3

2κ
5

6 q1´η .

We choose r ě 1 to be the nearest integer to

11

2

˜

logMNκ

logN
3

2κ
5

6 ´ logm
1

4

¸

,

which is then bounded above uniformly in terms of η ą 0 only.

6. Proof of Proposition 3.2

Proof. We have by Lemma 2.1 that

Arαf s “ κ´ 1

4π

VolX0pNq
ζpNqp2q

ÿ

fPH‹
κpN,ǫq

ωfαfL
pNqp1,Ad2 fq “ κ ´ 1

4π

VolX0pNq
ζpNqp2q AhrαfLpNqp1,Ad2 fqs.

Recall that we have set ̺f pnq to be the Dirichlet series coefficients of LpNqps,Ad2 fq, along with

ωf pxq “
ÿ

nďx

̺f pnq
n

, and ωf px, yq “
ÿ

xănďy

̺f pnq
n

.

Lemma 6.1. We have

LpNqp1,Ad2 fq “ ωf pxq ` ωf px, yq `OεppNκq 1

2 y´ 1

2
`εq.

Assuming the generalized Lindelöf hypothesis, the pNκq1{2 can be reduced to pNκqε.
Proof (sketch). For c, T, y ą 0, we apply Perron’s formula (see e.g. [Dav00, pg. 105]) to calculate
ωf pyq, finding

ωf pyq “ 1

2πi

ż c`iT

c´iT
LpNqp1 ` s,Ad2 fqy

s

s
ds`O

˜

yc
ÿ

ně1

̺f pnq
n1`c

minp1, T´1| log y{n|´1q
¸

.
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We shift the contour to Repsq “ ´2 to get

(6.1) ωf pyq “ LpNqp1,Ad2 fq ` 1

2πi

ˆ
ż ´2´iT

c´iT
`
ż ´2`iT

´2´iT
`
ż c`iT

´2`iT

˙

LpNqp1 ` s,Ad2 fqy
s

s
ds

`O

˜

yc
ÿ

ně1

̺f pnq
n1`c

minp1, T´1| log y{n|´1q
¸

.

By an inspection of the functional equation for Lps, f b fq found in [Li79, Example 1], we have the
convexity bound (see e.g. [IK04, (5.20)])

(6.2) LpNqps,Ad2 fq ! rpκNq2p1 ` |t|q3s 1´σ
2

`ε,

where s “ σ ` it, valid for σ ď 1. Choosing c “ ε, T “ pNκq´ 1

2 y
1

2
`ε, and estimating all of the

terms in (6.1) directly, one finds the estimate in the statement of the Lemma.
If one assumes the generalized Lindelöf hypothesis in place of (6.2), then we shift the contour to

Repsq “ ´1{2 instead of ´2 and follow the same steps. �

By Lemma 6.1 we have

(6.3) Arαf s “ κ´ 1

4π

VolX0pNq
ζpNqp2q

´

Ahrωf pxqαf s `Ahrωf px, yqαf s `OppNκq 1

2 y´ 1

2
`εAhr|αf |sq

¯

.

By the hypothesis (3.3) we have Ahr|αf |s !ε pNκqε, and so taking y “ pNκq3`ε, we find that the
O term in (6.3) is ! pNκq´1.

Next we consider the second term and treat it using the following large sieve inequality. This is

a slight variation on Corollary 6 of [DK00], see also [KM99, Prop. 1]. Let λ
p2q
f pnq be the Dirichlet

series coefficients of the automorphic adjoint-square L-function Lps,Ad2 πq, where f is a newform

for the representation π. If pn,Nq “ 1 then we have that λ
p2q
f pnq “ ̺f pnq.

Proposition 6.2. Let X ě pNκq8. We have for all ε ą 0 that

(6.4)
ÿ

fPH‹
κpN,ǫq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďX

anλ
p2q
f pnq

ˇ

ˇ

ˇ

ˇ

ˇ

2

!ε X
1`ε

ÿ

nďX

|an|2

for any finite family panq1ďnďX of complex numbers, where the constant depends only on ε.

By following closely Kowalski and Michel [KM99, §3.3] one deduces from Proposition 6.2 the
following Lemma.

Lemma 6.3. Let r ě 1 be an integer such that xr ě pNκq10. Then for all ε ą 0 we have

Arωf px, yq2rs !r,ε pNκqε,

where the implied constant depends only on r and ε.

Proof. It suffices to replace instances of λf pn2q in [KM99, Lemma 3] by ǫpnqλf pn2q and to use
equations (2.3) and (2.4) in the place of the equations (15) and (16) of Kowalski and Michel. �

We now can give an estimate for the second term of (6.3). We use Hölder’s inequality to
separate ωf px, yq from αf , and Lemma 6.3 to handle the former. Precisely, let s be defined by
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p2rq´1 ` s´1 “ 1. Applying Hölder’s inequality we find for any integer r ě 1 that

Ahrωf px, yqαf s “
ÿ

fPH‹
κ

ωfωf px, yqαf

ď Arωf px, yq2rs 1

2r

¨

˝

ÿ

fPH‹
κpN,ǫq

pωf |αf |qs
˛

‚

1

s

ď A
1

2rArωf px, yq2rs 1

2rAhr|αf |s 1

s ,

where

A “ max
fPH‹

κpN,ǫq
ωf |αf | !ε pNκq´δ`ε

by hypothesis (3.4). Suppose now that r is sufficiently large so that xr ě pNκq10. Then Lemma
6.3 applies, and we have

Arωf px, yq2rs 1

2r !r,ε pNκqε.

Lastly, by hypothesis (3.3) we have

Ahr|αf |s 1

s !ε pNκqε.

Putting these estimates together, we find that Ahrωf px, yqαf s !r,ε pNκq´ δ
2r

`ε, and so derive the
bound claimed in Proposition 3.2. �

7. Proof of Theorem 3.1

Proof. The strategy of the proof is the pick an orthogonal basis for SκpΓ0pNq, ǫq and compute the
Fourier coefficients of basis elements explicitly. For f a modular function of weight κ, we denote
by f|dpzq “ d

κ
2 fpdzq. Atkin-Lehner theory gives an orthogonal direct sum decomposition

SκpΓ0pNq, ǫq “
à

LM“N

à

fPH‹
κpM,ǫq

SκpL; f, ǫq,

where SκpL; f, ǫq “ spantf|ℓ : ℓ | Lu is called an oldclass. Note that the inner sum is t0u unless
cpǫq | M , so we may assume this for the remainder of the proof.

To pick an orthogonal basis for SκpΓ0pNq, ǫq it then suffices to pick a orthonormal basis for each
oldclass SκpL; f, ǫq. We use a basis for the oldclasses first due to Schulze-Pillot/Yenirce [SPY18,
Thm. 8]. The basis constructed by Schulze-Pillot/Yenirce is the same as the one found by Rouymi
[Rou11] in the case of prime power level and trivial nebentypus and Ng [Ng12] in the case of
arbitrary level and trivial nebentypus, see also Blomer and Milićević [BM15, Ch. 5] and Humphries
[Hum18, Lemma 3.15]. Each of these preceding works used the Rankin-Selberg method to compute
inner products and orthonomalize the oldclasses. Schulze-Pillot/Yenirce however took a different
and simpler path, using the trace operator to compute the inner products.
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Let f P H‹pM, ǫq. For integers d | g one defines a joint multiplicative function ξgpdq. On prime
powers ξgpdq is given for ν ě 2 as follows:

ξ1p1q “ 1, ξpν ppνq “

¨

˝1 ´ |λf ppq|2

pp1 ` ε0,M ppq
p

q2

˛

‚

´ 1

2
ˆ

1 ´ ε0,M ppq2
p2

˙´ 1

2

,

ξpppq “

¨

˝1 ´ |λf ppq|2

pp1 ` ǫ0,M ppq
p

q2

˛

‚

´ 1

2

, ξpν ppν´1q “ ´λf ppq
?
p

ξpν ppνq,

ξpp1q “ ´λf ppq?
pp1 ` ǫ0,Mppq{pqξpppq, ξpν ppν´2q “ ǫppq

p
ξpν ppνq,

and ξpappbq “ 0 in all other cases.

Proposition 7.1 (Thm. 9 [SPY18]). Let M | N and let f P H‹
κpM, ǫq. The set of functions

tf pgqpzq “
ÿ

d|g

ξgpdqdκ
2 fpdzq : g | Lu

is an orthogonal basis for SkpL; f, ǫq. In fact, if f is L2pΓ0pNqzHq-normalized, then the above set
is in fact orthonormal.

Now that we have an orthonormal basis for SκpΓ0pNq, ǫq, we follow Barrett, Burkhardt, DeWitt,
Dorward, and Miller [BBD`17] to derive the Petersson formula for newforms Theorem 3.1.

Let f P H‹
κpM, ǫq have Fourier coefficients af pnq and be normalized so that af p1q “ 1. Of course

fpzq{||f ||N is L2pΓ0pNqzHq-normalized, so using the basis in Proposition 7.1 we have

∆κ,N,ǫpm,nq “ cκ

pmnqκ´1

2

ÿ

gPBκpΓ0pNq,ǫq

bgpnqbgpmq

“ cκ

pmnqκ´1

2

ÿ

LM“N

ÿ

fPH‹
κpm,ǫq

1

xf, fyN
ÿ

g|L

afpgqpmqafpgqpnq.(7.1)

By definition of f pgq we have

afpgq pnq “
ÿ

d|pg,nq

ξgpdqdκ
2 af pn

d
q,

which are now expressible in terms of Hecke eigenvalues λf pnq normalized so that |λf pnq| ď dpnq.
We have then that

∆κ,N,ǫpm,nq “ cκ

pmnqκ´1

2

ÿ

LM“N

ÿ

fPH‹
κpM,ǫq

1

||f ||2N

ÿ

g|L

¨

˝

ÿ

d|pg,mq

ξgpdqdκ
2 af pm

d
q

˛

‚

¨

˝

ÿ

d|pg,nq

ξgpdqdκ
2 af pn

d
q

˛

‚

“ cκ
ÿ

LM“N

ÿ

fPH‹
κpM,ǫq

1

||f ||2N

ÿ

g|L

¨

˝

ÿ

d|pg,mq

ξgpdqd 1

2λf pm
d

q

˛

‚

¨

˝

ÿ

d|pg,nq

ξgpdqd 1

2λf pn
d

q

˛

‚

“ cκ
ÿ

LM“N

ÿ

fPH‹
κpN,ǫq

1

||f ||2N

ÿ

g|L

Ξgpm,n, fq,

where we have set

Ξgpm,n, fq “

¨

˝

ÿ

d|pg,mq

ξgpdqd 1

2λf pm
d

q

˛

‚

¨

˝

ÿ

d|pg,nq

ξgpdqd 1

2λf pn
d

q

˛

‚
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for g | L | N .
Now suppose that pd1, d2q “ 1 and d1d2 | m. Then by Hecke multiplicativity we have

λf pm
d1

qλf pm
d2

q “ λf pmqλf p m

d1d2
q,

so that for pg1, g2q “ 1 we have

Ξg1pm,n, fqΞg2pm,n, fq “ λf pmqλf pnqΞg1g2pm,n, fq.
Therefore

∆κ,N,ǫpm,nq “ cκ
ÿ

LM“N

ÿ

fPH‹
κpM,ǫq

1

||f ||2N

´

λf pmqλf pnq
¯1´ωpLq ź

pα||L

¨

˝

ÿ

d|pα

Ξdpm,n, fq

˛

‚,

where ωpnq is the number of distinct prime factors of n. Let

Vpαpm,n, fq “
ÿ

d|pα

Ξdpm,n, fq “ p1 ˚ Ξqpαpm,n, fq,

where ˚ denotes Dirichlet convolution. We suppose now that pm,n,Nq “ 1 and calculate.

Lemma 7.2 ([BBD`17] Appendix A). If pm,n,Nq “ 1 then we have

Vpαpm,n, fq “λf pmqλf pnq
`

1 ` |ξpp1q|2 ` |ξp2p1q|2
˘

` δp|mλf pm{pqλf pnqp 1

2

´

ξpppqξpp1q ` ξp2ppqξp2p1q
¯

` δp|nλf pmqλf pn{pqp 1

2

´

ξpp1qξpppq ` ξp2p1qξp2ppq
¯

` δp2|mλf pm{p2qλf pnqpξp2pp2qξp2p1q ` δp2|nλf pmqλf pn{p2qpξp2p1qξp2pp2q,
if α ě 2 and

Vpαpm,n, fq “λf pmqλf pnq
`

1 ` |ξpp1q|2
˘

` δp|mλf pm{pqλf pnqp 1

2 ξpppqξpp1q
` δp|nλf pmqλf pn{pqp 1

2 ξpp1qξpppq,
if α “ 1.

Proof. We actually have if α ě 2 that

Vpαpm,n, fq “ Ξ1pm,n, fq ` Ξppm,n, fq ` Ξp2pm,n, fq.
The other summands vanish because by our assumption pm,n,Nq “ 1, since if p | m then p ∤ n
because p | N . So each p divides either m or n but never both. Then, we have that ξpβp1q “ 0 for
β ě 3. In fact, even more terms vanish. We have

Vpαpm,n, fq “λf pmqλf pnq
`

1 ` |ξpp1q|2 ` |ξp2p1q|2
˘

` δp|mλf pm{pqλf pnqp 1

2

´

ξpppqξpp1q ` ξp2ppqξp2p1q
¯

` δp|nλf pmqλf pn{pqp 1

2

´

ξpp1qξpppq ` ξp2p1qξp2ppq
¯

` δp2|mλf pm{p2qλf pnqpξp2pp2qξp2p1q ` δp2|nλf pmqλf pn{p2qpξp2p1qξp2pp2q.
Inserting the formulas for ξ, we complete the proof. The formula for the α “ 1 case is even simpler
as we can drop the p2 terms. �

Recall we write ML “ N and f P H‹
κpM, ǫq.
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Lemma 7.3. If pm,Nq “ 1 and pn,Nq “ 1 then we have
´

λf pmqλf pnq
¯1´ωpLq ź

pα||L

Vpαpm,n, fq “ λf pmqλf pnq
ź

p||L

`

1 ` |ξpp1q|2
˘

ź

p2|L

`

1 ` |ξpp1q|2 ` |ξp2p1q|2
˘

.

Proof. Note that the conditions pm,Nq “ 1 and pn,Nq “ 1 imply that p ∤ m and p ∤ n. So the
formula above follows immediately from the formulas in Lemma 7.2. �

One has that ||f ||2N “ ψpNq
ψpMq ||f ||2M since f P H‹

κpM, ǫq. Thus

∆κ,N,ǫpm,nq “ cκ
ÿ

LM“N

ψpMq
ψpNq

ÿ

fPH‹
κpM,ǫq

1

||f ||2M
λf pmqλf pnq

ź

p||L

`

1 ` |ξpp1q|2
˘

ˆ
ź

p2|L

`

1 ` |ξpp1q|2 ` |ξp2p1q|2
˘

.

Next we insert the definitions of the ξ functions. Let

rf ppq “ 1 ´ |λf ppq|2

pp1 ` ǫ0,M ppq
p

q2
,

so

rf ppq´1 “ 1 ` |λf ppq|2

pp1 ` ǫ0,M ppq
p

q2
`

¨

˝

|λf ppq|2

pp1 ` ǫ0,M ppq
p

q2

˛

‚

2

` ¨ ¨ ¨ ,

where ǫ0,M denotes the trivial character modulo M . Observe that

1 ` |ξpp1q|2 “ rf ppq´1

and

1 ` |ξpp1q|2 ` |ξp2p1q|2 “ rf ppq´1

ˆ

1 ´ ǫ0,Mppq
p2

˙´1

.

Then we get

∆κ,N,ǫpm,nq “ cκ
ÿ

LM“N

ψpMq
ψpNq

ź

p2|L

ˆ

1 ´ ǫ0,M ppq
p2

˙´1
ÿ

fPH‹
κpM,ǫq

λf pmqλf pnq
||f ||2M

ź

p|L

1

rf ppq .

Next we need a formula for rf ppq´1. Recall from (2.1) that at a prime p ∤ M that the local
adjoint square L function is given by

Lpp1,Ad2 fq “ 1

1 ´ p´2

ÿ

αě0

ǫppαqλf pp2αq
pα

“ 1
´

1 ´ αppq{βppq
p

¯´

1 ´ 1

p

¯´

1 ´ βppq{αppq
p

¯

so that

ÿ

αě0

ǫppαqλf pp2αq
pα

“
1 ` 1

p
´

1 ´ αppq{βppq
p

¯´

1 ´ βppq{αppq
p

¯

“
1 ` 1

p
´

1 ` 1

p

¯2

´ |λf ppq|2

p

“ 1
´

1 ` 1

p

¯

rf ppq
,
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where the second equals sign follows from the formulas

|λf ppq|2 “ ǫppqλf ppq2, λf ppq “ αppq ` βppq, αppqβppq “ ǫppq
which are valid when p ∤M . We can summarize the above calculation and Lemma 2.2 as:

rf ppq´1 “

$

&

%

´

1 ` 1

p

¯

ř

αě0

ǫppαqλf pp2αq
pα

if p ∤M
´

1 ´ aM,ǫppq
p

¯´1

if p | M.

Let

∆‹
κ,N,ǫpm,nq “ cκ

ÿ

fPH‹
κpN,ǫq

λf pmqλf pnq
||f ||2N

.

Recall the definition of RpM,L, ǫq from the statement of Theorem 3.1, which we rearrange to

RpM,L, ǫq “ ψpMq
ψpMLq

ź

p2|L
p∤M

ˆ

1 ´ 1

p2

˙´1
ź

p|L
p∤M

ˆ

1 ` 1

p

˙

ź

p|pM,Lq

ˆ

1 ´ aM,ǫppq
p

˙´1

.

We have then that

(7.2) ∆κ,N,ǫpm,nq “
ÿ

LM“N

RpM,L, ǫq
ÿ

ℓ|L8

pℓ,Mq“1

ǫpℓq
ℓ

∆‹
κ,M,ǫpm,nℓ2q.

This is analogous to the first half of [BBD`17, Prop. 4.1]. Now we would like to invert this formula,
and we prepare for this with two lemmas.

Lemma 7.4. Let α, β ě 0 and 0 ď γ ď β and cppǫq ď β ´ 1. Then

(7.3) Rppβ, pα, ǫqRppγ , pβ´γ , ǫq “ Rppγ , pα`β´γ , ǫq.
Proof. We check cases.

Case α ě 0 and β “ γ. Note that Rppγ , 1, ǫq “ 1 for any γ ě 0.
Case α “ 0. Note that Rppβ, 1, ǫq “ 1 for any β ě 0.
Case α ě 1, β “ 1 and γ “ 0. We have by hypothesis cppǫq “ 0, so

Rpp, pαqRp1, pq “ ψppq
ψppα`1q

ˆ

1 ´ 1

p2

˙´1 1

ψppq

ˆ

1 ` 1

p

˙

.

On the other hand, we also have

Rp1, pα`1q “ 1

ψppα`1q

ˆ

1 ´ 1

p2

˙´1
ˆ

1 ` 1

p

˙

.

Case α ě 1, β ě 2 and γ “ 0. We have p | ppβ, pαq and apβ ,ǫppq “ 0, so Rppβ, pα, ǫq “ p´α and

Rp1, pβ , ǫq “ 1

ψppβq

ˆ

1 ´ 1

p2

˙´1ˆ

1 ` 1

p

˙

,

and

Rp1, pα`β , ǫq “ 1

ψppα`βq

ˆ

1 ´ 1

p2

˙´1
ˆ

1 ` 1

p

˙

.

Generic case α ě 1, β ě 2, 1 ď γ ď β ´ 1, and cppǫq ď β ´ 1. We have

Rppβ, pα, ǫq “ ψppβq
ψppα`βq
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Rppγ , pβ´α, ǫq “ ψppγq
ψppβq

ˆ

1 ´ apγ ,ǫppq
p

˙´1

and

Rppγ , pβ`α´γ , ǫq “ ψppγq
ψppα`βq

ˆ

1 ´ apγ ,ǫppq
p

˙´1

.

The above cover all the cases in the lemma. �

Lemma 7.5. Let N P N, N “ LM , and M “ WQ. Then

RpM,L, ǫqRpW,Q, ǫqδcpǫq|W “ RpW,LQ, ǫqδcpǫq|W .

Proof. Both sides of the desired formula are multiplicative. Let α “ vppLq, β “ vppMq, and
γ “ vppW q. It then suffices to check that

(7.4) Rppβ, pα, ǫqRppγ , pβ´γ , ǫqδγěcppǫq “ Rppγ , pα`β´γ , ǫqδγěcppǫq.

If cppǫq ď β´ 1 then (7.4) is true by Lemma 7.4. So, suppose not. Then β ď cppǫq ď γ, but W | M
so γ ď β and so β “ γ. In the case β “ γ the equation (7.4) is true because Rppβ, 1, ǫq “ 1. �

We are now prepared to invert (7.2) using Lemma 7.5. We calculate

ÿ

LM“N

µpLqRpM,L, ǫq
ÿ

ℓ|L8

pℓ,Mq“1

ǫpℓq
ℓ

∆κ,M,ǫpm,nℓ2q

“
ÿ

LM“N

µpLqRpM,L, ǫq
ÿ

ℓ|L8

pℓ,Mq“1

ǫpℓq
ℓ

ÿ

QW“M

RpW,Q, ǫq
ÿ

q|Q8

pq,W q“1

ǫpqq
q

∆‹
κ,W,ǫpm,nℓ2q2q

“
ÿ

LM“N

µpLq
ÿ

QW“M

RpM,L, ǫqRpW,Q, ǫq
ÿ

b|pLQq8

pb,W q“1

ǫpbq
b

∆‹
κ,W,ǫpm,nb2q

“
ÿ

WX“N

RpW,X, ǫq
ÿ

b|X8

pb,W q“1

ǫpbq
b

∆‹
κ,W,ǫpm,nb2q

ÿ

LQ“X

µpLq

“ RpN, 1, ǫq∆‹
κ,N,ǫpm,nq

“ ∆‹
κ,N,ǫpm,nq.

where the first equals sign is (7.2), the third is by Lemma 7.5, and the fourth is Mobius inversion. �
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[BBM17] Valentin Blomer, Jack Buttcane, and Péter Maga. Applications of the Kuznetsov formula on GL(3) II:

the level aspect. Math. Ann., 369(1-2):723–759, 2017.
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