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Abstract 

Background 

Testicular germ cell tumour (TGCT) is highly heritable but >50% of the genetic risk remains 

unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT 

compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date 

none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying 

recessively acting alleles and have been associated with increased risk of other cancer types.  

Objective 

To examine if RoH are associated with TGCT risk. 

Methods 

We performed a genome-wide RoH analysis using GWAS data from 3,206 TGCT cases and 7,422 

controls uniformly genotyped using the OncoArray platform. 

Results 

Global measures of homozygosity were not significantly different between cases and controls, and the 

frequency of individual consensus RoH were not significantly different between cases and controls, 

after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 

13q14.11-13q.14.13, were however nominally statistically significant at P < 0.01. Intriguingly, RoH200 

at 11p13-11p14.3 encompasses Wilms tumor 1 (WT1), a recognized cancer susceptibility gene with 

roles in sex determination and developmental transcriptional regulation, processes repeatedly 

implicated in TGCT etiology.  

Discussion and Conclusion 

Overall, our data does not support a major role in the risk of TGCT for recessively acting alleles acting 

through homozygosity, as measured by RoH in outbred populations of cases and controls. 

 

Introduction 
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Testicular germ cell tumor (TGCT) is the most common cancer in young men with over 52,000 new 

cases diagnosed annually worldwide (Le Cornet et al. 2014). TGCT has a strong heritable basis, as 

evidenced by the 4 to 8-fold increased risk of TGCT seen in first-degree relatives of TGCT patients 

(Litchfield, Thomsen, et al. 2015; Hemminki and Li 2004; Swerdlow et al. 1997; McGlynn et al. 2005; 

Kharazmi et al. 2015). Statistical analyses of heriability estimate that genetic factors may contribute 

to approximately half of all TGCT disease risk (Litchfield, Thomsen, et al. 2015).  

  

Early linkage analyses in familial TGCT did not support existence of a major Mendelian TGCT 

susceptibility locus, but these studies were limited in power on account of modest sample sizes and 

the low prevalence of multiplex TGCT pedigrees (Crockford et al. 2006; Rapley et al. 2003; Rapley et 

al. 2000). More recently large-scale exome sequencing studies have also failed to identify rare high-

penetrance susceptibility alleles, despite improved power compared to previous linkage analyses 

(Litchfield, Loveday et al. 2018). Nevertheless, neither analysis excludes the possibility that 

susceptibility genes/alleles for TGCT of lower frequency and/or more moderate effect size may exist. 

Indeed, very rare alleles in ciliary microtubule genes have recently been implicated through functional 

analyses in TGCT susceptibility in a minority of familial cases (Litchfield, Levy, Dudakia, et al. 2016). 

 

However, collectively findings are consistent with advanced analyses of TGCT heritability, which have 

indicated that the genetic component of TGCT heritability is largely constituted by common variants. 

Recent genome-wide association studies (GWAS) have made substantial progress in exposition of this 

partition of heritability with 49 independent TGCT risk loci identified, together accounting for ~37% of 

the excess genetic risk of disease (Loveday et al. 2018; Wang et al. 2017; Litchfield et al. 2017; 

Litchfield, Levy, Orlando, et al. 2016; Litchfield, Shipley, and Turnbull 2015; Litchfield, Sultana, et al. 

2015; Litchfield, Holroyd, et al. 2015; Koster et al. 2014; Ruark et al. 2013; Turnbull et al. 2010; Rapley 

et al. 2009; Kanetsky et al. 2009; Kristiansen et al. 2015; Schumacher et al. 2013; Turnbull and Rahman 

2011). These TGCT susceptibility loci have provided invaluable insight into the biology of TGCT 
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susceptibility, implicating as underlying mechanisms, widespread transcriptional dysregulation linked 

to developmental arrest of primordial germ cells, aberrant KIT-MAPK signaling and defective 

microtubule function (Litchfield et al. 2017). From these GWAS loci approximately half of the genetic 

component of TGCT heritability has been accounted for, with heritability analysis indicating that the 

outstanding ‘missing heritability’ of TGCT is likely polygenic, with substantial contribution from 

common variation (Litchfield et al. 2017; Litchfield, Mitchell, et al. 2016; Litchfield, Thomsen, et al. 

2015).  

 

GWAS analysis has likewise made substantial impact in delineating the genetic architecture of many 

other common cancers but almost uniformly the reported susceptibility loci have been identified 

through analyses based on a log additive (multiplicative) model of inheritance, with little evidence 

generated for alleles acting recessively (Sud, Kinnersley, and Houlston 2017). This observation may be 

a reflection that GWAS is suboptimal in its ability to detect these alleles rather than an observation 

truly reflective of the underlying biology. In principle, it is entirely plausible that there may be an 

association between recessively acting disease alleles and susceptibility to cancer. Such a hypothesis 

is supported by observations reporting an increased burden of cancer in the offspring of 

consanguineous unions and in populations with a high degree of inbreeding (Bener et al. 2009; Lebel 

and Gallagher 1989; Shami, Qaisar, and Bittles 1991; Simpson et al. 1981; Assie et al. 2008). 

Furthermore, experimental inbreeding (e.g. backcrossing mice) has also been shown to increase tumor 

burden in mice (Demant 2003). In addition, uniparental disomy through dysregulated imprinting is a 

specific situation in which homozygosity can be directly associated with cancer (Henry et al. 1991). Of 

note, for TGCT, there has been a long-standing hypothesis that recessive (or X-linked) susceptibility 

factors are highly likely to be important, based on epidemiological data that siblings’ relative disease 

risks are higher than parent-offspring risks (Hemminki and Li 2004; Kharazmi et al. 2015). 
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Homozygosity mapping provides a means of identifying recessive components of inheritance. It has 

been demonstrated that, on account of selective pressure, runs of homozygosity (RoH) occur at high 

frequency in outbred populations, the result of autozygosity (i.e. the co-location of two alleles at a 

given locus originating from a common ancestor by way of non-random mating) (McQuillan et al. 2008; 

Ku et al. 2011). These RoH can be enriched for rare deleterious variants in homozygous form(Szpiech 

et al. 2013); multiple susceptibility loci have been reported for different diseases, identified through 

genome-wide analyses for RoH of SNP array data (reviewed in [(Ceballos et al. 2018)]). 

 

Here, we sought to identify associations between homozygosity and TGCT risk through the 

characterization and comparison of genome-wide homozygosity measures and specific loci identified 

through consensus mapping of recurrent RoH in 3,206 TGCT cases vs 7,422 controls directly genotyped 

for 371,504 SNPs. 

 

Methods 

Sample description 

TGCT cases (n=3,206) were ascertained via two UK studies: (1) a UK study of familial testicular cancer 

and (2) a systematic collection of UK TGCT cases. Case recruitment was via the UK Testicular Cancer 

Collaboration, a group of oncologists and surgeons treating TGCT in the UK. The studies were 

coordinated at the Institute of Cancer Research (ICR). Samples and information were obtained with 

full informed consent and Medical Research and Ethics Committee approval (MREC02/06/66 and 

06/MRE06/41). All experiments were performed in accordance with relevant guidelines and 

regulations.  

 

Control samples for the primary GWAS were all taken from within the UK. Specifically 2,976 cancer-

free, male controls were recruited through two studies within the PRACTICAL Consortium: (1) the UK 

Genetic Prostate Cancer Study (UKGPCS) (age <65), a study conducted through the Royal Marsden 
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NHS Foundation Trust and (2) SEARCH (Study of Epidemiology & Risk Factors in Cancer), recruited via 

GP practices in East Anglia (2003-2009). 4,446 cancer-free female controls from across the UK were 

recruited via the Breast Cancer Association Consortium (BCAC). 

 

GWAS 

Genotyping was conducted using a custom Infinium OncoArray-500K BeadChip (OncoArray) from 

Illumina (Illumina, San Diego, CA, USA), comprising a 250K SNP genome-wide backbone and 250K SNP 

custom content selected across multiple consortia within COGS (Collaborative Oncological Gene-

environment Study). OncoArray genotyping was conducted in accordance with the manufacturer’s 

recommendations by the Edinburgh Clinical Research Facility, Wellcome Trust CRF, Western General 

Hospital, Edinburgh EH4 2XU. 

 

The UK TGCT OncoArray dataset was filtered as follows: we excluded individuals with low call rate 

(<95%), with abnormal autosomal heterozygosity (>3 SD above the mean) or with >10% non-European 

ancestry (based on multi-dimensional scaling); we excluded SNPs with minor allele frequency <1%, a 

call rate of <95% in cases or controls or with a minor allele frequency of 1–5% and a call rate of <99%; 

and those deviating from Hardy-Weinberg equilibrium (P > 10-12 in controls and 10-5 in cases). The final 

number of SNPs passing quality control filters was 371,504. 

 

Bioinformatic and statistical analysis 

Bioinformatic and statistical analyses were performed as previously described (Sud et al. 2015). 

Briefly, we detected RoH using PLINK v1.90 (Purcell et al. 2007), which moves a sliding window of SNPs 

across the entire genome. To allow for genotyping error or other sources of artificial heterozygosity 

(such as paralogous sequences) within a stretch of truly homozygous SNPs, 2% heterozygous SNPs 

were allowed in each window. This measure was implemented to prevent underestimation of the 

number and size of RoH. Default parameter values were employed (including allowing 5 missing calls 
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per window), with the exception that we varied the parameter homozyg-snp according to our heuristic 

preferences for defining the RoH as detailed below. Subsequent statistical analyses for comparison of 

frequencies of ROH were performed using packages available in R (version 3.4.1) with integration of 

results against genomic references executed using and custom written Perl code. Comparisons of 

global homozygosity measures between cases and controls were made using the Student t-test. 

Adjustment for multiple testing was based on the Bonferroni correction. 

 

We used three metrics to investigate the selection pressure on each RoH. Integrated Haplotype Score 

(iHS) is based on Linkage disequilibrium (LD) surrounding a positively selected allele compared to 

background, providing evidence of recent positive selection at a locus (Voight et al. 2006). An iHS score 

>2.0 reflects that haplotypes on the ancestral background are longer compared to the derived allelic 

background. Episodes of selection tend to skew SNP frequencies in different directions and Tajima’s 

D is based on the frequencies of SNPs segregating in the region of interest (Tajima 1989). Fixation 

index (Fst) measures the degree of population differentiation at a locus, taking values from 0 to 

1.0(Holsinger and Weir 2009). iHS, D and Fst metrics were obtained from dbPSHP (Li et al. 2014). 

 

Identification of Consensus RoH 

In order to focus on more commonly occurring RoH and to empower our analysis to identify 

meaningful associations, only RoH in which 10 or more individuals shared the same RoH were retained 

for these analyses. The initial search for RoH was performed using PLINK (Purcell et al. 2007) with a 

specified length of 68 consecutive SNPs (homozyg-snp parameter). This RoH length was chosen (i) to 

be more than an order of magnitude larger than the mean haploblock size in the human genome (ii) 

without being so large as to be very rare. The likelihood of observing 68 consecutive chance events 

can be calculated as follows (Lencz et al. 2007). Mean heterozygosity in the samples was calculated to 

be 42%. Thus, given 371,504 SNPs and 10,628 individuals, a minimum length of 47 would be required 

to produce <5% randomly generated RoH across all subjects ([1 − 0.42]47 × 371,504 × 10,628 < 0.05). A 
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consequence of LD is that the SNP genotypes are not always independent, thereby inflating the 

probability of chance occurrences of biologically meaningless ROH. Analysis based on PLINK’s pairwise 

LD SNP pruning function showed an approximate reduction of information compared to the original 

number of SNPs of 25%. Thus RoH of length 68 SNPs were used to approximate the degrees of freedom 

of 47 independent SNP calls.  

 

Once all RoH of at least 68 SNPs in length were identified, these were pruned to only those RoH that 

occurred in more than 10 individuals. To ensure that a minimum length and minimum number of SNPs 

in each RoH was maintained, each individual’s SNP data were recoded as one if the SNP was in an RoH 

for that individual and zero otherwise. Then, for each SNP, those SNPs with fewer than 10 individuals 

coded as one were recoded to zero before removing any ROH that due to this recoding were now less 

than the required number of SNPs in length. This process therefore resulted in a list of “consensus” 

ROH having a minimum of 68 consecutive homozygous SNP calls across 10 or more samples. 

 

Data availability 

Case GWAS data (PLINK binaries) are deposited at European Genome–phenome Archive [EGA] under 

accession code EGAS00001001836. 

 

Results 

We have previously implemented rigorous quality control measures to the UK TGCT OncoArray GWAS 

dataset22, excluding samples and SNPs with poor call rates, SNPs with significant departure from HWE, 

and samples of non-European ancestry or with a sex discrepancy as inferred from the data. The final 

dataset included 10,628 individuals from the UK and of European ancestry, comprising 3,206 TGCT 

cases and 7,422 controls, all genotyped on the same platform. The final number of SNPs passing 

quality control filters was 371,504. 
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Across all samples (n=10,628), the total number of discrete autosomal RoH >1000 kb and comprising 

at least 68 consecutive SNPs as identified by PLINK was 137,833, with an average number of 12.97 

RoH per individual, an average size of 1630.17 Kb per RoH per individual, and an average total length 

of the genome covered by RoH of 21,216.01 Kb per individual. These results are broadly similar to 

other studies using similar methodologies(Sud et al. 2015; Hosking et al. 2010; Thomsen et al. 2016; 

Thomsen et al. 2015). There was no significant difference in the average number, length per RoH, or 

total length of RoH per individual between TGCT cases and controls when compared using Student’s 

T test (Table 1). Likewise, the cumulative distribution of RoH was broadly similar for TGCT cases and 

controls (Fig. 1). 

 

Data indicate two different types of RoH shaped by different selective pressures, with the different 

types characterised by different run length(Pemberton et al. 2012). Small/intermediate sized RoH 

(<1.6 Mb) are shaped via serial migration as a result of decreasing population size, generating LD, 

reducing haplotype diversity and increasing chance pairing of identical haplotypes. Conversely, long 

RoH (>1.6 Mb) are generated through inbreeding. There was no difference in global homozygosity 

measures between TGCT cases and controls when performing these analyses on RoH separated into 

these size categories (Table 1). 

 

We next identified a set of 319 consensus RoH (Supplementary Table S1), that is RoH that are present 

in at least 10 individuals. Eight of these consensus RoH had a frequency of greater than 25% across all 

individuals (Table 2). The vast majority of these common consensus RoH has been previously reported 

in other studies of RoH. For these RoH, selective pressure metrics are indicative of positive selection 

in Caucasian populations, and their locations are within genomic regions characterised by reduced 

numbers of structural variants and low recombination rates. The most frequently occurring RoH in our 

dataset (RoH164) has previously been identified as a site of selective sweep in multiple studies(Voight 
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et al. 2006; Wang et al. 2006; Williamson et al. 2007) and is frequently identified in studies of common 

consensus RoH. Importantly, previous reports of these RoH provide further validity of our approach. 

 

Fig. 2 shows the correlation between the frequency of consensus RoH in TGCT cases and controls. No 

consensus RoH was exclusive to either group nor significantly associated with TGCT risk after 

correcting for multiple testing (i.e. P < 0.0001). Three consensus RoH demonstrated nominal 

associations with TGCT at a suggestive significance level (P < 0.01) (Table 3). Each of these regions 

showed highly significant values for three estimates of selective pressure (iHSmax, Tajimas’ Dmax , and 

Fay Wu’s H), indicating that these regions may have been generated as the result of a selective sweep. 

 

The RoH with the strongest evidence of association, RoH200, was identified in 5% of TGCT cases 

(n=148) and 3% of controls (n=243) (P = 0.0009; Table 3). It comprises 866 SNPs spanning 9 Mb of 

chromosome 11 and encompasses 52 genes/predicted transcripts, including Wilms Tumor 1 (WT1), a 

developmental transcription factor involved in sex determination and establishment of the urogenital 

system, and with established oncogenic and proto-oncogenic roles in tumor formation. To further 

investigate a potential link between WT1 and TGCT risk, we performed an association analysis of 

individual SNPs within 25 kb of WT1, considering only those with an info score > 0.8 and MAF > 0.01 

(n=432). The strongest putative association was for a directly genotyped SNP, rs11031783, which maps 

to the non-coding WT1 antisense RNA (WT1-AS), OR = 1.18, P = 0.0003). This putative association 

warrants additional validation. Of note this region also contains two additional genes related to TGC 

tumorigenesis: LGR4 and FSHB. LRG4 is involved in Wnt signalling and whilst variation in the FSH 

receptor has been implicated in TGCT susceptibility (Bang et al. 2018). 

 

Discussion and Conclusion 

In conclusion, our analyses demonstrate that levels of homozygosity are unlikely to play a substantial 

role in defining the risk of TGCT. Moreover, our findings suggest that existence of large numbers of 
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recessive alleles that predispose to TGCT when unmasked by autozygosity is unlikely in outbred 

populations such as that of the UK. Therefore, from these analyses we are unable to provide 

explanation for epidemiological observation of the higher risks to siblings of cases than to other male 

family members. However, due to genome-wide testing and requisite correction for multiple-testing, 

this analysis certainly does not preclude existence of recessively acting disease alleles in TGCT risk; 

alternative analytic strategies will be needed to identify such alleles if they do exist. Though not 

statistically significant, the possible link between TGCT and an RoH hotspot that encompasses 11p.13 

and WT1 is an interesting observation that warrants further investigation. 
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Fig. 1. Cumulative distribution of runs of homozygosity (RoH) in TGCT cases and controls. Data is 

presented in such a way that each data point represents the cumulative fraction (y-axis) of the samples 

with the corresponding minimum total length of the genome covered by RoH (x-axis), as determined 

from PLINK. 
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Fig. 2. Frequency of consensus runs of homozygosity (RoH) in TGCT cases versus controls. Consensus 

RoH were defined on the basis of being present in 10 or more individuals.  
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Tables 

Table 1. Global Homozygosity Measures in TGCT Cases versus Controls 

Measure TGCT Cases (n=3206) Controls (n=7442) P 

Any size    

Average number of RoH per individual 12.9 12.9 0.8 

Average length per RoH per individual (Kb) 1,628.8 1,633.4 0.4 

Average total length of RoH per individual (Kb) 21,346.9 21,159.5 0.2 

< 1.6 Mb    

Average number of RoH per individual 8.4 8.3 0.7 

Average length per RoH per individual (Kb) 1,256.5 1,255.9 0.8 

Average total length of RoH per individual (Kb) 10,517.8 10,491.4 0.2 

> 1.6 Mb    

Average number of RoH per individual 4.7 4.6 0.7 

Average length per RoH per individual (Kb) 2,299.1 2,302.4 0.7 

Average total length of RoH per individual (Kb) 10,945.2 10,781.3 0.7 

RoH, runs of homozygosity. P calculated using Student's t-test. 
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Table 2. Consensus RoH with frequency > 25% in controls 

RoH ID Chr Start (b37) End Length (Kb) No. SNPs Controls Cases P Centromeric iHSmax Tajima Dmax Fstmax 

ROH164 8 29737732 70143771 40,406.04 3286 34.6% 34.8% 0.9 Yes 3.16 4.80 0.30 

ROH68 3 74113968 116444174 42,330.21 4272 34.0% 32.4% 0.1 Yes 3.27 5.02 0.25 

ROH117 6 23594993 40225964 16,630.97 7636 32.4% 34.0% 0.1 No 3.17 4.80 0.27 

ROH203 11 44966113 69074890 24,108.78 2174 30.6% 30.4% 0.9 Yes 3.91 4.48 0.24 

ROH43 2 132755417 169516830 36,761.41 3352 27.4% 28.2% 0.4 No 3.24 4.99 0.46 

ROH86 4 58139970 111262618 53,122.65 5794 26.0% 26.7% 0.5 No 3.25 5.10 0.33 

ROH120 6 53377834 91107018 37,729.18 3378 25.8% 26.1% 0.8 Yes 3.31 4.67 0.26 

RoH, runs of homozygosity. Chr, chromosome. iHS, D and Fst metrics were obtained from dbPSHP. P was calculated using Fisher's exact. 

 

Table 3. Consensus RoH putatively associated with TGCT risk (P<0.01) 

RoH ID Chr Start  (b37) End Length (Kb) No. SNPs Controls Cases P iHSmax Tajima Dmax Fstmax 

ROH200 11 24794324 33879547 9,085,223 866 3.3% 4.6% 0.001 4.05 4.91 0.25 

ROH101 5 79191702 115939896 36,748,194 3520 22.2% 19.7% 0.005 3.46 4.62 0.31 

ROH229 13 44234831 46712448 2,477,617 272 0.5% 0.1% 0.009 2.43 4.70 0.28 

RoH, runs of homozygosity. Chr, chromosome. iHS, D and Fst metrics were obtained from dbPSHP. P was calculated using Fisher's exact. 
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