
Game-Theoretic Analysis of Development Practices:
Challenges and Opportunities

Carlos Gavidia-Calderona,∗, Federica Sarroa, Mark Harmana, Earl T. Barra

aDepartment of Computer Science, University College London, London, UK

Abstract

Developers continuously invent new practices, usually grounded in hard-won experience, not
theory. Game theory studies cooperation and conflict; its use will speed the development of effective
processes. A survey of game theory in software engineering finds highly idealised models that
are rarely based on process data. This is because software processes are hard to analyse using
traditional game theory since they generate huge game models. We are the first to show how to
use game abstractions, developed in artificial intelligence, to produce tractable game-theoretic
models of software practices. We present Game-Theoretic Process Improvement (GTPI), built on
top of empirical game-theoretic analysis. Some teams fall into the habit of preferring “quick-and-
dirty” code to slow-to-write, careful code, incurring technical debt. We showcase GTPI’s ability
to diagnose and improve such a development process. Using GTPI, we discover a lightweight
intervention that incentivises developers to write careful code: add a single code reviewer who
needs to catch only 25% of kludges. This 25% accuracy is key; it means that a reviewer does not
need to examine each commit in depth, making this process intervention cost-effective.

Keywords:
Game Theory, Empirical Analysis, Technical Debt, Software Engineering Practices

1. Introduction

What’s important is not just to develop the technology;
it’s to develop the processes. —Hal Abelson

Modern society revolves around software. We use it to communicate, understand global warm-
ing, operate machines, and decide what to buy. Like the human beings who write it, software is
fallible. Software engineers rely heavily on tools to write and maintain robust software: tools that
find bugs, repair bugs, or help developers avoid introducing them in the first place. Development
tools are important, but so are the processes that use them. In the words of Linus Torvalds, “All the
really stressful times for me have been about process: they haven’t been about code” [1]. Despite

∗Corresponding author
Email addresses: carlos.gavidia.15@ucl.ac.uk (Carlos Gavidia-Calderon), f.sarro@ucl.ac.uk

(Federica Sarro), mark.harman@ucl.ac.uk (Mark Harman), e.barr@ucl.ac.uk (Earl T. Barr)

Preprint submitted to Journal of Systems and Software October 5, 2019

their importance, researchers and practitioners have lacked the tooling to build bespoke formal, yet
still intuitive and explainable, models for software processes. Instead, they had to rely on generic,
coarse-grained models or models difficult to elicit and often hard to understand.

Developers, customers, and managers cooperate and compete to write software. These interac-
tions define a software process. Examples include effort estimation, where managers underestimate
to win a project bid, while technical leaders overestimate to minimise risk [2, 3], and defect priori-
tisation, where end users exaggerate the importance of their bugs to obtain their fix quickly, while
the engineering team needs accurate priorities (business value, not technical severity) to maximise
the value delivered per release [4].

These software processes can be viewed as games. Game theory studies mathematical models
of conflict and cooperation [5], and has already been used in the analysis of complex scenarios
like arms races between nations or duopolies in markets [6]. One of its more important findings
is the Nash equilibrium (NE): a game outcome where players have no incentive to deviate by
choosing different actions. Real-world scenarios where the players have mastered the game — like
professional sports — converge on their NE [7, 8]. When we model software processes as games,
we can compute their NE to diagnose their problems and prescribe fixes when needed.

We believe that most software processes are emergent phenomena that arise to solve problems.
Since they are not designed, many are suboptimal: they misalign a player’s payoffs with the overall
goals of a process, permitting, even encouraging, players to act in ways that undermine collective
goals. These games have an undesirable NE. Mechanism design identifies and fixes games whose
NE is undesirable. Players use strategies to decide their actions. Game designers apply mechanism
design to formulate games whose NE favours desirable strategies. We are proposing that process
engineers [9] be game designers, who craft software processes considering cooperation incentives
and conflict avoidance mechanisms.

Despite game theory’s obvious applicability to software processes, our survey of the state of the
art (Section 3) shows that software engineering researchers have not fully exploited game theory,
limiting their analysis to idealised models. The reason is that software processes are inherently
temporal: they are not one-off events; they comprise interactions over time. Game theory models
these scenarios with extensive form games. This formalism is intricate and its analysis must cope
with exponentially large game trees. Even constrained versions of poker have trees with 1018

leaves [10].
Our research agenda exploits abstraction to build tractable game-theoretic models of real-world

software development scenarios. Empirical game-theoretic analysis (EGTA) is an instance of a
large set of abstractions for dealing with extensive form games [11]. EGTA converts an extended
form game into a normal-form game that only considers a subset of the actions available in the full
game and the payoffs are expected values obtained through simulation. EGTA relies heavily on
data for simulation input analysis and output validation. Fortunately, software engineers can now
easily access a wealth of data building and using software products [12]. Our proposed solution —
called Game-Theoretic Process Improvement (GTPI) — relies on this data and EGTA models to
improve software development processes (Section 4).

Many tasks can be partially completed. At one end of the scale, one can use a quick and dirty
short term fix; at the other, one takes the time and care to find and implement a complete and lasting
fix. Neither approach is always better. Quick code can help a development team beat a competitor

2

to market, but, taken too far, turn a codebase into an unmaintainable mess. When developers are
not racing, we prefer more deeply considered code. Some development workflows settle into a
suboptimal point along this continuum. Lavallée and Robillard observed that some software teams
had a tendency to prefer quick-cheap solutions over time-consuming ones, incurring technical debt
due to fear of exceeding their budget [13]. We use this problem to showcase GTPI.

Our contributions follow:

• A survey on game-theoretic analysis of software development practices.

• An introduction to EGTA for software engineers; and

• A complete, end-to-end analysis and fix of budget-driven technical debt: we diagnose it using
game theory, then apply mechanism design to suggest a simple and inexpensive change —
the addition of a single reviewer — and validate the new process via its NE.

2. Background

In this section, we review key concepts from game theory using a software engineering scenario
to illustrate them. We also discuss the issue of game representation: the number of players, actions
and rounds over time have a large impact on the size of the game-theoretic model.

In game-theoretic context, a game is a scenario where multiple self-interested agents, or players,
interact and their actions impact the perceived utility of all of them. This definition fits nicely with
the traditional definition of game. For example, in rock-paper-scissors winning is a function of your
play — selecting an action — and the play of your opponent.

Consider a software project that hires two freelance engineers: a frontend engineer and a back-
end engineer. Their contract stipulates $50 upfront and an additional $50 upon completion. If the
project goes live before the deadline, they each receive an additional $50. They have two actions:
to cooperate and work together or to work individually, not cooperate and ignore each other. If they
cooperate, they will certainly finish before the deadline. Otherwise, they will certainly finish their
individual tasks, but lack of integration means the project will not go live. If only one cooperates,
the isolationist will finish their task quickly and free themselves to take another contract, while the
cooperating freelancer will not complete their task. We represent this game with a payoff table —
shown in Table 1 — that contains payoff information per player given the actions they performed.

A strategy defines the behaviour of the player in a game. Strategies fall into two categories. In
pure strategies, players select a single action; in mixed strategies players randomise over actions
according to a probability distribution [14]. In an NE, all the players adopt the best response to
their opponents’ strategies: any deviation lowers a player’s payoff. This explains the stability of an
NE. Nash proved that every finite game has at least one NE [15].

To put this in context, we return to our freelancers. When one freelancer cooperates and the
other does not, the outcome is unstable since only the uncooperative player has adopted the best
response, while the cooperative freelancer would be better off not cooperating. The NE for both
players is to adopt the same strategy: ignore each other. Any deviation from this strategy allows
their colleague to take advantage. Hence, NE analysis predicts the freelancers work independently
and obtain $100 each without completing the project. However, in the unstable scenario where they

3

Table 1: Pay-off matrix for the freelancer’s dilemma: each cell contains the payoff in dollars obtained by Freelancer A
and Freelancer B given their choice to cooperate or not.

B: cooperate B: not cooperate
A: cooperate A = $150, B = $150 A = $50, B = $200
A: not cooperate A = $200, B = $50 A = $100, B = $100

work together, they obtain $150 and a satisfied client with a completed project. This dilemma faced
by our freelancers is an instance of the prisoner’s dilemma: a game used to explain cooperation —
or the lack of it — in real-world scenarios like global warming and cigarette advertisement.

Game-theoretic models rely on strong assumptions regarding player knowledge. For NE con-
vergence, game structure, player rationality and player beliefs must be common knowledge. These
assumptions do not always align with human behaviour [16]. In contrast, bounded rationality ap-
proaches model rationality within the limits of attention, information, and mental capabilities of the
decision maker [17]. Prospect theory is a bounded rationality model that describes decision-making
under uncertainty. According to it, agents make decisions based on utility relative to current wealth
— gains or losses— rather than the absolute wealth obtained. Prospect theory has been successfully
applied to the design of drone delivery systems [18] and to the study of smart-grid adoption [19].
Cognitive hierarchy also relaxes game-theory’s rationality assumptions. Each player in a cognitive
hierarchy model has a level, which determines the number of strategic reasoning iterations the
player can perform. Level-0 players choose actions uniformly at random; players of superior levels
are “smarter” in their decision-making. Psychological games extend the utility function definition
to also depend on the players beliefs and their beliefs regarding the other players. This includes
social norms and emotions in the game-theoretic model. In this work, we adopt the conventional
game-theory approach that predicts convergence to NE under its rationality assumptions. We be-
lieve teams of experienced developers working over well-know codebases, like in open-source
projects or in mature software maintenance teams, meet these assumptions. Our results are already
strong despite being conservative and imprecise and they can only improve by adopting a bounded
rationality approach closer to team behaviour. This is left as future work.

Game theory has been widely applied. It has already been used to optimise student recruitment
in American hospitals, improve the auction of telecom operating licences in Britain and to analyse
transport networks in New York [20]. In static games, players select their actions independently
and simultaneously, like in rock-paper-scissors. Dynamic games, like chess or poker, unfold over
time and require players to sequence their actions. The most common representation for dynamic
games is the extensive form [16]. Extensive-form games can be described via game trees, like the
one in Figure 1. The non-terminal nodes of the game tree are called choice nodes. In each choice
node, a player is required to select an action and the available actions correspond to the outgoing
edges of the choice node. A pure strategy in an extensive form game defines which action to take
at each player’s choice node, while a mixed strategy is a probability distribution over these pure
strategies [14]. The size of the game tree can become inconveniently large when dealing with
real-world scenarios. These sizes quickly become unmanageable for NE calculation algorithms,
hence abstraction is needed.

4

Figure 1: Extensive form game for a multi-project freelancer’s dilemma: this figure contains the part of the tree
corresponding to the first two projects. The size of this representation grows with the number of projects, freelancers
and actions available to them. EGTA (Section 4) is crucial for managing this explosive growth.

3. A Survey of Game Theory Applied to Software Engineering

In the Section 2, we used game theory to analyse freelancers in a software project and showed
its potential as a formal technique to analyse development practices. Other popular approaches
are less formal but based on the consultants’ hard-won experience, although they sometimes lack
arguments to back their adoption [21]. Bayesian networks have also been proposed for process
improvement, and due to their use of models and their formal approach they are the closest to game
theory [22]. We start this section by exploring Bayesian networks, then review the work published
so far in game-theoretic applications to software engineering.

Bayesian Networks for Process Improvement. Scenarios like the tragedy of the test suite (Section 5)
can be analysed with tools from decision theory, like the Bayesian network in Figure 2, but this
approach fails to capture strategic interactions between agents. Decision theory can be seen as “the
study of games against nature”, where nature behaves stochastically instead of been driven by self-
interest [23]. Game theory models agents’ interests and how their interactions affect these interests.
In game theory, players, actions, and strategy profiles are all first-class elements. Model elicitation
is the coal face of process improvement, and it is here that game theoretic models shine, because
their primitives are easy to understand and are a natural fit for modelling software processes. In
contrast, building Bayesian networks rests on eliciting random variables that can have unclear
conceptual boundaries. Bayesian networks can, of course, model game theoretic models, at the cost
of further complicating their models.

Game Theory for Software Engineering. Game theory has been used before for exploring conflict
and cooperation in a software development context. Below, we survey game-theoretic analysis of
five types of interactions: interactions between developers, development and testing conflicts, inter-
actions driven by management, role-neutral interactions, and conflicts external to the development

5

Figure 2: A Bayesian network for the tragedy of the test suite (Section 5): redundancy awareness, understood as
the perception that underperforming can get a developer fired, influences the increase in velocity and the accumula-
tion of deprecated tests. Higher velocity and the accumulation of deprecated tests influence the collapse of testing
infrastructure.

team. However, the proposed models do not scale to global software development scenarios with
large teams and fast releases [11].

Researchers have modelled strategic scenarios between developers on a software team. Lagesse
explored task assignment between developers, using cooperative game theory to obtain an ideal
assignment considering the developers’ preferences [24]. Hasnain et al. modelled stand up meet-
ings, where developers had the option to work or shirk responsibility [25]. Bavota et al. approached
refactoring as a game between developers, where developers compete for refactoring opportunities
on a common class to refactor [26]. Kitagawa et al. explored the collaboration between code re-
viewers inside a software team, proposing that this scenario constitutes an instance of the snowdrift
game [27]. These papers succeed in identifying conflicting goals between software developers. In
the same fashion, all the games presented in this paper — the freelancer’s dilemma (Section 2),
technical debt (Section 4), and the test suite tragedy (Section 5) — fall in this category. However,
since they use techniques from classical game theory, their models cannot scale to large software
teams operating over time, as explained in Section 2.

Other authors have explored scenarios where developers are in conflict with the testing team.
Feijs models testing as a game between developers and testers, where the actions for both of them
are to do a good job or a poor job [28]. Kukreja et al. modelled testing as a security game: testers
are defenders that have a limited budget for test case execution while developers are the attackers
who commit poor quality code [29]. The tension between the testing and the developer role fits
naturally into the game-theoretic domain, and we expect to study it in the future. As with previous
work, they rely on classic game theoretic approaches that limit their scalability.

The connection between software project management and game theory was identified by
Boehm and Ross [30]. Models of software process improvement normally have the project manager
as player. Hata et al. modelled collaboration in an open-source project as a game between project
leaders and contributors; the project leader’s goal is to facilitate contribution and his actions include
doing nothing, writing documentation, or writing installation scripts [31]. Yilmaz et al. focused on
team members’ characteristics and personalty traits and their impact on productivity [32, 33]. Bacon

6

et al. proposed viewing software development as an economy. They present software estimation as
an example, where project managers are rewarded by accurate estimations and developers benefit
from quick feature delivery [34]. Following that vision, Rao et al. suggested a software maintenance
game where developers compete by submitting deep or shallow fixes, comparable with the fix-
kludge scenario we presented in Section 4 [35]. Rao et al. also mention the problem of scaling
game-theoretic models. They address this by using mean field games, which support a large number
of players. Some interesting topics covered by these authors are mechanism design [32, 34, 35],
data-based validation [31] and game abstraction [34]. However, they studied each of these topics in
isolation. A key contribution of this work is to integrate all these concepts into a formal framework
for process improvement at scale, from inception to deployment.

There are also approaches that model team members regardless of their role in the software pro-
cess. Wang and Redmiles [36] explore the impact of informal talk in the development of trust using
evolutionary game theory. Hassan and Dubinsky [37] described how cooperation and defection
would impact specific software development practices. Again, since no game abstraction approach
was adopted, those game-theoretic models do not scale.

Strategic interactions outside the software team have also been explored, especially with end-
users and clients. Since these proposals focus on clients and users, they obviate software devel-
opment practices, which is a focus of this research agenda. Garcı́a-Galán et al. reconcile conflict-
ing user configurations in product design by adopting a cooperative game theory approach [38].
Grechanik and Perry model software development as a game with three types of players: managers,
developers and customers [39]. Oza explores that idea that software outsourcing can be modelled as
a game between software vendors and their clients, configuring a prisoner’s dilemma scenario [40].
Sazawal and Sudan model software evolution as an extensive form game between the software de-
signer and its end-users [41]. Kumar et al. proposed a novel marketplace style for cloud computing
providers and customers based on the double auction mechanism [42].

4. Research Agenda: Game-Theoretic Software Process Improvement

Since software development is inherently temporal, time is a critical dimension of most software
processes. For example, the Scrum process framework divides development in time boxes, called
sprints, where development tasks are assigned and prioritised. At the end of each sprint, the status
of the project is assessed and the project plan is refined accordingly. Other process frameworks, like
the Unified Process, also propose guidelines for sequencing tasks and organising them over time.
Dynamic games and the extensive-form (Section 2) are more suitable for representing software
processes than static games, given static games inability to handle time [16]. However, real-world
software development — with large teams working over multiple releases — generate immense
game trees. Hence, abstraction is needed. Empirical game-theoretic analysis (EGTA) is one of
these abstraction approaches [43] [44]. EGTA reduces the action space by restricting it to a set of
heuristic strategies, which are a subset of strategies that are of interest to the game designer. In our
freelancer scenario, let us assume that the freelancers work together for an undetermined number
of projects under the contractual conditions of Table 1: strategies can go from “not cooperate on
any project” to “imitate my colleague’s last action”. In this strategy space, the game designer needs

7

Figure 3: The GTPI approach starts by detecting a candidate process that exhibits an aberrant behaviour. Such a process
is then modelled using EGTA and the Nash equilibrium is obtained. In case the equilibrium is not the one desired, the
EGTA model is updated iteratively until a desirable one is obtained. Finally, the improved process is adopted by the
team.

to select a subset of these strategies. Heuristic strategies can be obtained from data or hand-crafted
following first principles, based on the properties of the system under study [44].

EGTA uses a simulation-based heuristic payoff table instead of the game tree of the extended
form representation. This table has an entry for each action combination, where the actions available
for each player are heuristic strategies. Each entry also contains the expected payoff for each player
given the actions they perform, which are obtained through simulation. The heuristic payoff table
can then be processed by a game solver to obtain its NE.

Game-theoretic Process Improvement (GTPI) is our proposed process improvement framework.
It relies on EGTA abstractions to model software processes, diagnose process anomalies and pre-
scribe solutions to remove them. It is summarised in Figure 3. Anomalous processes are often itchy:
something about them mystifies or annoys their participants. Some behaviours that are apparently
irrational appear due to incorrect incentives. Identifying process anomalies is the first step of our
approach.

Workers of every discipline, when approaching a task, need to choose between “cutting corners”
or not. Technical debt is a software development instance of this seminal problem [13]. Practition-
ers [45, 46] and researchers [13, 35] have identified that software teams have an incentive to deliver
sub-optimal but quick solutions — like kludges — instead of optimal but time-consuming ones,
like proper fixes. One of the causes is the pressure put on teams to deliver on time and under budget,
which triggers them to maximise the number of features delivered regardless of quality. Individual
developers too balance getting things done quickly versus getting them done right. Developers face
this dilemma repeatedly and, of course, they seek a Goldilocks solution1.

The next step is the empirical game design, where we model the process to improve. Underlying
Figure 4 are two models. One is a simulation model designed to capture real world behaviour. To the
simulation model, we apply heuristic strategies to produce the other, an empirical game-theoretic
model in the form of pay-off table. Simulation of software processes is a well-developed area, with
plenty of options and paradigms [9]. Here, we adopted discrete-event simulation because it is easy
to reproduce and evaluate [47].

The parameters for our simulation model are described in Table 2. Technical debt can arise
because developers write sloppy code under pressure. Why? Game theory suggests the answer is
incorrect incentives, so the first modelling question to ask is “How are developers rewarded?”. The
answer is not directly money or reputation, so we look to the output of the process; Fi features

1“Goldilocks and the Three Bears” is a 19th century fairy tale, in which a girl, given a series of three-way choices,
consistently chooses the one between the extremes.

8

Figure 4: Empirical game design: the process engineer builds a heuristic payoff table using heuristic strategies as
actions: The entries of this table are expected payoff values obtained via simulation. They can later use any algorithm
to calculate the NE of the empirical game, once the payoff matrix has been built.

Table 2: Input and output variables of the simulation model of the development team: the output variable Fi corresponds
to the payoff function of developers. The process engineer needs to work with the customer to identify the relevant
variables of the process under analysis.

Input Description
T Resolution time for work items in days.

Ta Resolution time for work items coded with action a ∈ { f ,k}.
I Work item arrival probability at the “To-Do” column per day.

Si Heuristic strategy adopted by developer i.

D Number of developers available.

R Rework a work item after it is placed in “Done”.

Ra Rework a work item coded with action a ∈ { f ,k} after it is placed

in “Done”.

N Iteration duration in days.

Output Description
Fi Work items finished by developer i.

per release. We use Fi as the game’s payoff function below. Fi is governed by D, the number
of developers and the release periods of N days. Kanban is popular among agile teams, so the
development team in our model works a Kanban board with three columns: To-Do, In-Progress
and Done2. Tasks appear as To-Do’s with probability I. On average, a task project takes T days to
reach “Done” and increase Fi.

Technical debt is a tragedy of the commons: the codebase quality, the shared resource or com-
mon, progressively degrades as the team pushes kludges. So, we define our model to make kludges
faster to code than fixes at the expense of codebase quality and with a higher risk of rework. To
this end, we model the probability of reworking a “Done” task as due to a bug. Fixes take Tf
time and are R f likely to require rework, while kludges take Tk time and are Rk likely to require
rework. Kludges reduce the quality of the codebase and increase the average resolution time by
Qk. Of the myriad actions developers can take, our simulation model gives a developer only two:

2Kanban boards visualise workflows. They have several columns and work items flow between them [46].

9

write a kludge or code a time-consuming fix, as Figure 5 shows. The simulation model must be
validated against data with respect to the targeted behaviour, which is defined in cooperation with
the customer. In essence, one statistically compares the simulation outputs with actual process data
[48]. Consolidating data across sources is non-trivial and time-consuming: we discuss how one
might approach this problem in Section 5.

The EGTA approach also requires a set of heuristic strategies. These strategies model player
behaviour, and the game designer employs mechanism design to control their adoption in the empir-
ical game improvement step. Ideal candidates are behaviours we want to encourage or discourage.
To obtain the strategies players actually adopt, we extract data from bug tracking systems, source
code repositories, eliciting them from the customer or domain experts, or other relevant data sources.
When the available data is insufficient, we turn to experts to expand the strategy catalogue, keeping
in mind that the number of strategies determines the size of the game.

Our model uses two strategies that we believe are worth exploring. The first commits proper
fixes up to a week before the release, when, due to pressure, it shifts to pushing kludges. This
behaviour favours fixes over kludges, most of the time. The second is sensitive to the work items
accumulating in the “To-Do” column: when the “To-Do” backlog exceeds 2 items, it starts com-
mitting kludges. In a heavily loaded project, this strategy favours kludges. While actual player
strategies will be some more subtle mix of fix and kludge, we have picked two extremal strategies
to study how to reduce kludging. In focusing on extremal strategies, we are simply seeking to make
our process resilient to unwanted behaviour, following a long tradition in mechanism design [49].

Our development model is simple by design in order to capture fundamental behaviour. Our
key assumption is that the aberrant behaviour that we seek to capture has such strong signal that a
simple model can capture it. Also, the explanatory power of simple models greatly favours process
adoption; we believe customers and process performers will be more positively inclined towards
process changes justified using concepts they can understand. Further, capturing the essence of the
phenomena under study in a simple model generates more flexible models. Indeed, cutting corners
is not unique to software. With just a few modifications, we could easily port our simulation model
to non-software domains. Below, we show how our model suggests a simple, inexpensive solution
to budget-driven technical debt: “All models are wrong but some are useful”, G. Box.

From the simulation model and the heuristic strategies, we obtain the heuristic payoff matrix by
simulating each of the table entries and including the expected values over a number of iterations.
This payoff matrix represents our game-theoretic model. Once we have the payoff matrix, we obtain
its equilibria. Nash equilibrium calculation is a vast and diverse area with many options [50]. In
this paper, we rely on the Gambit game solver: a software tool that contains ready-to-use imple-
mentations of equilibrium calculation algorithms, facilitating quick experimentation [51].

An Eclipse Platform annual release has the simulation parameters T = 29.79 and N = 360 after
analysing its Bugzilla data [52]. Using our heuristic strategies and setting D = 2, I = 1.0,Tf =
1.1×T,R f = 0.9×R,Tk = 0.75×T,Rk = 1.05×R,Qk = 0.05×T , where R = 0.069 is raw rework
probability in the Eclipse data. We have extracted these parameters to use real-world values. We
want to emphasise that we do not assume that the Eclipse platform is kludge-prone. We simulated
each heuristic payoff table entry for 100 releases and recorded the average Fi per developer. Table 3
shows the resulting heuristic payoff matrix. Gambit finds a single equilibrium where both devel-
opers adopt the kludge-intensive strategy. This outcome matches the itchy behaviour identified at

10

Figure 5: Developers in our technical debt simulation: the implementation of work items can be fixes or kludges. Fixes
demand more time but are less likely to require rework. Kludges are quick but are more likely than fixes to be reworked.
Also, kludges negatively impact codebase health.

Table 3: Payoff matrix after the empirical game design stage in Figure 3: it has a single Nash equilibrium where
developer A and developer B adopt only the kludge-intensive heuristic strategy.

B: fix-intensive B: kludge-intensive
A: fix-intensive A = 9.80, B = 9.80 A = 8.34, B = 10.77
A: kludge-intensive A = 10.77, B = 8.34 A = 9.06, B = 9.06

the first stage of GTPI, and our empirical game model offers an explanation: developers have an
incentive to kludge instead of generating proper fixes.

Following design, we proceed with the empirical game improvement step. Our goal is a process
whose corresponding empirical game has a single equilibrium where the heuristic strategies we
believe beneficial have high probability. To remove technical debt, we seek an equilibrium where
the fix-intensive strategy has a significantly higher probability than the kludge-intensive one.

The analysis of Table 3 shows that the advantage of kludges — a reduced coding time — is
worth their cost — a higher rework probability — so it becomes dominant at equilibrium. The
absence of a code quality control mechanism before committing makes kludges very cheap, which
translates in a progressive deterioration of codebase quality. Thus, we knew any solution should
make kludges more expensive. Adopting pair programming can accomplish this but, due to its
cost, we did not consider it. We posited that adding a part-time experienced code reviewer who can
detect 10% of the kludges would be sufficient and also cost effective. So, we updated the simulation
model with Rk = 10% and use it to produce payoff values for a new heuristic payoff table. In this
configuration, Gambit found three equilibrium profiles and in one of them both agents perform the
kludge-intensive strategy, which was far from ideal. However, when we set Rk = 25% and rebuild
the payoff matrix, shown in Table 4, its equilibrium analysis produced the desired outcome: a single
equilibrium where both players adopt the fix-intensive strategy.

The last step is the process deployment. The results of this analysis would be pointless without
a feasible deployment strategy. Our improved process is deployable: most software teams already
review commits. Since we only require a 25% kludge detection accuracy, the reviewer needs only
to perform a lightweight quick-pass.

GTPI is a general approach to improving development processes. Here, we applied it to the

11

Table 4: Payoff matrix after the empirical game improvement stage in Figure 3: it has a single Nash equilibrium where
developer A and developer B adopt only the fix-intensive heuristic strategy.

B: fix-intensive B: kludge-intensive
A: fix-intensive A = 9.79, B = 9.79 A = 8.40, B = 7.77
A: kludge-intensive A = 7.77, B = 8.40 A = 6.83, B = 6.83

technical debt problem. In other work, we built a tool, which we christened TaskAssessor, that
applies GTPI to diagnose and remove priority inflation [53].

5. The Challenges of Applying GTPI

Adopting GTPI is challenging; data gathering, technical validation, and securing customer and
performer acceptance is hard. We will use the following scenario to illustrate these challenges.

Imagine a large organisation whose flagship software product has been under constant develop-
ment for years. Even though software products tend to grow by adding features, over time they also
lose some of them. These lost features obsolete some tests. The problem is that this subset is largely
unknown and, in practice, rarely removed. The main reason is that the engineering time needed
to identify these useless tests with certainty is significant. Also, mistakenly removing a useful test
can cost a software engineer their job. There are some — perhaps folkloric — stories of engineers
losing their jobs because they removed a test that would have detected a security vulnerability.
These factors explain why potentially useless tests are rarely removed, as illustrated in Figure 6.
This wastes testing resources.

We call this scenario the tragedy of the test suite since it constitutes a tragedy of the commons:
the test infrastructure is a shared resource that self-interested software engineers spoil by constantly
adding tests without removing unneeded ones. Over time, maintaining and running the test infras-
tructure becomes more expensive, and test execution takes more time, which is harmful for the
engineering team and the organisation as a whole. Adopting a test prioritisation technique can
mitigate the problem but it does not in general remove it. Ideally, when software engineers modify,
or remove, functionality that makes some tests redundant, they should proceed to remove them
from the test suite. Right after performing the change, engineers are in good position to identify
the obsolete tests, when compared to a spring cleaning approach done later. We believe it is more
efficient, and therefore cheaper, to incentivise software engineers to keep the test suite clean and
correct. GTPI is a good fit for approaching this problem from a strategic perspective, given the
large number of engineers in the company and the diversity of their behaviour.

Data gathering is hard in general. Depending on the complexity of the proposed simulation
model, the process engineer will need to mine from the source code repository data regarding
active tests, potentially useless tests and their evolution. Also, the pay-off calculation requires
data regarding how often a deleted test fails to discover a future bug and the consequences for
the developer in case this happens. Obtaining this kind of data can be time-consuming or even
infeasible. It might be the case that the model requires data that no one thought about collecting
before the process improvement effort. The process engineer needs to start its analysis by designing
a plan on how to build the dataset required for empirical game modelling, and backstop plans —
like proxies — in case the organisation has not collected the required data.

12

Figure 6: The tragedy of the test suite: job insecurity makes software engineers deliver more features without removing
potentially useless tests. Over time, this behaviour can cause the collapse of the test infrastructure.

In the tragedy of the test suit scenario, data identifying obsolete tests is unavailable because the
whole problem evaporates if the obsolete tests are known. Test prioritisation can be an effective
proxy for test utility, assuming it has been empirically validated [54]. Our intuition is that the test
prioritization outcome includes more useful tests than obsolete ones. Although is an imperfect
proxy, it can serve as an initial baseline until more elaborate approaches are put in place.

As discussed in Section 4, after acquiring an adequate dataset the process engineer must build
a simulation model of the process under study. Software process simulation is a well-known
technique in the process engineering domain [9, 55], and there is a rich literature on the topic.
It is critical in GTPI that the simulation model reflect the underlying process with fidelity. The
empirical game improvement stage in Figure 3 requires perturbing a validated simulation model
to obtain a process intervention that removes the undesired behaviour. Improving an imprecise
model is a waste of time, so the validation of the simulation model is of the utmost importance.
The validation of the model has two dimensions: technical and social. We address the technical
validation dimension first.

In the tragedy of the test suite scenario, the simulation model needs the test execution time
distribution as an input. A goodness-of-fit test can be applied to the data to see if, for example, it
behaves according to an exponential distribution [48, Chapter 9]. Given that the pay-off function
depends on the number of successful test executions, a statistical test can be applied to samples
of the simulation output to verify if they reflect what is observed in the data [48, Chapter 10].
Simulation model validation is a hard problem, and several iterations might be needed in order to
obtain a model with the required accuracy. Once the empirical game is ready, the process engineer
can use any software package to calculate its NE. The obtained equilibrium also needs to be
technically validated against the process data. The NE obtained from the model of the tragedy of
the test suite needs to match the useless test accumulation observed in the organisation.

The empirical game model also needs to be accepted by stakeholders: they must agree that the
model accurately captures the process. This is essential since GTPI’s recommendations are learned
from and justified by interventions in the model, as part of the mechanism design process. The key

13

challenge here is convincing the customer that the proposed model does not oversimplify.
The empirical game improvement stage requires exploring the space of potential games with

a desirable NE as discussed in Section 4. Building an empirical game can be computationally
costly — each pay-off matrix cell needs to be simulated by several iterations — so the search space
traversal needs to be done carefully. Also, a suggested process improvement intervention can fail
if it is not accepted. Going back to the tragedy of the test suite, if the improved process requires
a no-penalty policy for removing obsolete tests, companies can resist not punishing the unlucky
developer who removed the wrong test. Cost is also an important factor: if the cost of the proposed
intervention is low, convincing the stakeholders about its implementation should be easier. Given
that game theory has been sparsely used in process engineering, we believe stakeholder acceptance
is the biggest challenge to GTPI adoption.

The process deployment stage also proposes acceptance challenges regarding process perform-
ers, the people doing the actual work. The process engineer needs to ensure that the adoption of
the proposed practice goes as smoothly as possible. Tool support can be crucial to this end: if the
tragedy of the test suite is improved by minimising the cost of test removal, code analysis tools
would help identify obsolete tests and the impact of its removal. The process deployment step needs
to be monitored constantly, and perform corrective measures if needed. Without adoption, process
improvement fails.

6. Conclusion

The opportunities for applying game-theoretic tools to software process improvement are bound-
less. We call on the community to join us in their pursuit at https://www.researchgate.net/
project/Improving-Software-Processes-via-Empirical-Game-Theory.

Acknowledgments

This research is funded by the Dynamic Adaptive Automated Software Engineering Programme
Grant (EP/J017515).

References

[1] Talk of tech innovation is bullsh*t. shut up and get the work done – says linus torvalds, accessed: 17-09-2018.
URL https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_

harder_says_linus_torvalds/

[2] S. McConnell, Software Estimation: Demystifying the Black Art, Developer Best Practices, Pearson Education,
2006 (2006).

[3] F. Sarro, A. Petrozziello, M. Harman, Multi-objective software effort estimation, in: 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), 2016, pp. 619–630 (May 2016). doi:10.1145/

2884781.2884830.
[4] P. Butcher, Debug It!: Find, Repair, and Prevent Bugs in Your Code (nov 2009).
[5] R. Myerson, Game theory: Analysis of Conflict, Harvard University Press, 1991 (1991).
[6] R. Gibbons, A primer in game theory, Harvester Wheatsheaf, 1992 (1992).
[7] I. Palacios-Huerta, Professionals play minimax, The Review of Economic Studies 70 (2) (2003) 395–415 (2003).
[8] M. Walker, J. Wooders, Minimax play at wimbledon, American Economic Review 91 (5) (2001) 1521–1538

(2001).

14

https://www.researchgate.net/project/Improving-Software-Processes-via-Empirical-Game-Theory
https://www.researchgate.net/project/Improving-Software-Processes-via-Empirical-Game-Theory
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/
https://doi.org/10.1145/2884781.2884830
https://doi.org/10.1145/2884781.2884830

[9] J. Münch, O. Armbrust, M. Kowalczyk, M. Soto, Software Process Definition and Management, The Fraunhofer
IESE Series on Software and Systems Engineering, Springer Berlin Heidelberg, 2012 (2012).

[10] T. Sandholm, The state of solving large incomplete-information games, and application to poker, AI Magazine
31 (4) (2010) 13–32 (2010).
URL http://www.aaai.org/ojs/index.php/aimagazine/article/view/2311

[11] T. Sandholm, Abstraction for solving large incomplete-information games, in: B. Bonet, S. Koenig (Eds.), Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., AAAI Press, 2015, pp. 4127–4131 (2015).
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10039

[12] F. Sarro, Predictive analytics for software testing: Keynote paper, in: Proceedings of the 11th International
Workshop on Search-Based Software Testing, SBST ’18, ACM, New York, NY, USA, 2018, pp. 1–1 (2018).
doi:10.1145/3194718.3194730.
URL http://doi.acm.org/10.1145/3194718.3194730

[13] M. Lavallée, P. N. Robillard, Why good developers write bad code: An observational case study of the impacts
of organizational factors on software quality, in: Proceedings of the 37th International Conference on Software
Engineering-Volume 1, IEEE Press, 2015, pp. 677–687 (2015).

[14] K. Leyton-Brown, Y. Shoham, Essentials of Game Theory: A Concise, Multidisciplinary Introduction, Synthesis
Lectures on Artifici, Morgan & Claypool Publishers, 2008 (2008).

[15] J. Nash, Non-cooperative games, Annals of mathematics (1951) 286–295 (1951).
[16] S. Tadelis, Game Theory: An Introduction, Princeton University Press, 2013 (2013).
[17] K. Holyoak, R. Morrison, The Oxford Handbook of Thinking and Reasoning, Oxford Library of Psychology,

OUP USA, 2012 (2012).
[18] A. Sanjab, W. Saad, T. Başar, Prospect theory for enhanced cyber-physical security of drone delivery systems: A

network interdiction game, in: 2017 IEEE International Conference on Communications (ICC), IEEE, 2017, pp.
1–6 (2017).

[19] W. Saad, A. L. Glass, N. B. Mandayam, H. V. Poor, Toward a consumer-centric grid: A behavioral perspective,
Proceedings of the IEEE 104 (4) (2016) 865–882 (2016).

[20] Prison breakthrough, accessed: 10-09-2018.
URL https://www.economist.com/economics-brief/2016/08/20/prison-breakthrough

[21] The end of software engineering and the last methodologist, accessed: 22-01-2019.
URL https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-

the-last-methodologist/fulltext

[22] N. E. Fenton, M. Neil, Software metrics: roadmap, in: Proceedings of the Conference on the Future of Software
Engineering, ACM, 2000, pp. 357–370 (2000).

[23] S. Parsons, M. Wooldridge, Game theory and decision theory in multi-agent systems, Autonomous Agents and
Multi-Agent Systems 5 (3) (2002) 243–254 (2002).

[24] B. Lagesse, A game-theoretical model for task assignment in project management, in: Management of Innovation
and Technology, 2006 IEEE International Conference on, Vol. 2, IEEE, 2006, pp. 678–680 (2006).

[25] E. Hasnain, T. Hall, M. Shepperd, Using experimental games to understand communication and trust in agile
software teams, in: Cooperative and Human Aspects of Software Engineering (CHASE), 2013 6th International
Workshop on, IEEE, 2013, pp. 117–120 (2013).

[26] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, Y.-G. Gueheneuc, Playing with refactoring: Identifying extract
class opportunities through game theory, in: 2010 IEEE International Conference on Software Maintenance,
IEEE, 2010, pp. 1–5 (2010).

[27] N. Kitagawa, H. Hata, A. Ihara, K. Kogiso, K. Matsumoto, Code review participation: game theoretical modeling
of reviewers in gerrit datasets, in: Cooperative and Human Aspects of Software Engineering (CHASE), 2016
IEEE/ACM, IEEE, 2016, pp. 64–67 (2016).

[28] L. Feijs, Prisoner dilemma in software testing, Computer Science Reports 1 (2001) 65–80 (2001).
[29] N. Kukreja, W. G. Halfond, M. Tambe, Randomizing regression tests using game theory, in: Proceedings of the

28th IEEE/ACM International Conference on Automated Software Engineering, IEEE Press, 2013, pp. 616–621
(2013).

15

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2311
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2311
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10039
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10039
http://doi.acm.org/10.1145/3194718.3194730
https://doi.org/10.1145/3194718.3194730
http://doi.acm.org/10.1145/3194718.3194730
https://www.economist.com/economics-brief/2016/08/20/prison-breakthrough
https://www.economist.com/economics-brief/2016/08/20/prison-breakthrough
https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/fulltext
https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/fulltext
https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/fulltext

[30] B. W. Boehm, R. Ross, Theory-w software project management principles and examples, IEEE Transactions on
Software Engineering 15 (7) (1989) 902–916 (1989).

[31] H. Hata, T. Todo, S. Onoue, K. Matsumoto, Characteristics of sustainable oss projects: A theoretical and empirical
study, in: Proceedings of the Eighth International Workshop on Cooperative and Human Aspects of Software
Engineering, IEEE Press, 2015, pp. 15–21 (2015).

[32] M. Yilmaz, R. V. O’Connor, J. Collins, Improving software development process through economic mechanism
design, in: European Conference on Software Process Improvement, Springer, 2010, pp. 177–188 (2010).

[33] M. Yilmaz, R. V. O’Connor, A software process engineering approach to improving software team productivity
using socioeconomic mechanism design, ACM SIGSOFT Software Engineering Notes 36 (5) (2011) 1–5 (2011).

[34] D. F. Bacon, E. Bokelberg, Y. Chen, I. A. Kash, D. C. Parkes, M. Rao, M. Sridharan, Software economies, in:
Proceedings of the FSE/SDP workshop on Future of software engineering research, ACM, 2010, pp. 7–12 (2010).

[35] M. Rao, D. C. Parkes, M. I. Seltzer, D. F. Bacon, A framework for incentivizing deep fixes, in: Proceedings of
the AAAI Workshop on Incentives and Trust in E-Communites, 2015 (2015).

[36] Y. Wang, D. Redmiles, Cheap talk, cooperation, and trust in global software engineering, Empirical Software
Engineering 21 (6) (2016) 2233–2267 (2016).

[37] O. Hazzan, Y. Dubinsky, Social perspective of software development methods: The case of the prisoner dilemma
and extreme programming, in: International Conference on Extreme Programming and Agile Processes in Soft-
ware Engineering, Springer, 2005, pp. 74–81 (2005).

[38] J. Garcı́a-Galán, P. Trinidad, A. Ruiz-Cortés, Multi-user variability configuration: A game theoretic approach, in:
Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering, IEEE Press,
2013, pp. 574–579 (2013).

[39] M. Grechanik, D. E. Perry, Analyzing software development as a noncooperative game, in: IEE Seminar Digests,
Vol. 29, IET, 2004, pp. 1–32 (2004).

[40] N. V. Oza, Game theory perspectives on client: vendor relationships in offshore software outsourcing, in: Pro-
ceedings of the 2006 international workshop on Economics driven software engineering research, ACM, 2006,
pp. 49–54 (2006).

[41] V. Sazawal, N. Sudan, Modeling software evolution with game theory, in: International Conference on Software
Process, Springer, 2009, pp. 354–365 (2009).

[42] D. Kumar, G. Baranwal, Z. Raza, D. P. Vidyarthi, A truthful combinatorial double auction-based marketplace
mechanism for cloud computing, Journal of Systems and Software 140 (2018) 91–108 (2018).

[43] M. P. Wellman, Methods for empirical game-theoretic analysis, in: Proceedings, The Twenty-First National Con-
ference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference,
July 16-20, 2006, Boston, Massachusetts, USA, AAAI Press, 2006, pp. 1552–1556 (2006).
URL http://www.aaai.org/Library/AAAI/2006/aaai06-248.php

[44] W. E. Walsh, R. Das, G. Tesauro, J. O. Kephart, Analyzing complex strategic interactions in multi-agent systems,
in: AAAI-02 Workshop on Game-Theoretic and Decision-Theoretic Agents, 2002, pp. 109–118 (2002).

[45] P. Goodliffe, Becoming a Better Programmer: A Handbook for People Who Care About Code, O’Reilly Media,
2014 (2014).

[46] A. Stellman, J. Greene, Learning agile: Understanding scrum, XP, lean, and kanban, ” O’Reilly Media, Inc.”,
2014 (2014).

[47] A. Greasley, A comparison of system dynamics and discrete event simulation, in: Proceedings of the 2009
Summer Computer Simulation Conference, Society for Modeling & Simulation International, 2009, pp. 83–87
(2009).

[48] J. Banks, J. Carson, B. Nelson, Discrete-event System Simulation, Prentice Hall, 2010 (2010).
[49] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Always learning, Pearson, 2016 (2016).
[50] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani, Algorithmic Game Theory, Cambridge University Press, 2007

(2007).
[51] R. D. McKelvey, A. M. McLennan, T. L. Turocy, Gambit: Software Tools for Game Theory, Version 15.

URL http://www.gambit-project.org

[52] Q. Mi, J. Keung, An empirical analysis of reopened bugs based on open source projects, in: Proceedings of the
20th International Conference on Evaluation and Assessment in Software Engineering, ACM, 2016, p. 37 (2016).

16

http://www.aaai.org/Library/AAAI/2006/aaai06-248.php
http://www.aaai.org/Library/AAAI/2006/aaai06-248.php
http://www.gambit-project.org
http://www.gambit-project.org

[53] C. Gavidia-Calderon, F. Sarro, M. Harman, E. T. Barr, The assessor's dilemma: Improving bug repair via empirical
game theory, IEEE Transactions on Software Engineering (2019). doi:10.1109/tse.2019.2944608.
URL https://doi.org/10.1109/tse.2019.2944608

[54] S. Yoo, M. Harman, Regression testing minimization, selection and prioritization: a survey, Software Testing,
Verification and Reliability 22 (2) (2012) 67–120 (2012).

[55] R. Madachy, Software Process Dynamics, Wiley, 2007 (2007).

17

https://doi.org/10.1109/tse.2019.2944608
https://doi.org/10.1109/tse.2019.2944608
https://doi.org/10.1109/tse.2019.2944608
https://doi.org/10.1109/tse.2019.2944608

	Introduction
	Background
	A Survey of Game Theory Applied to Software Engineering
	Research Agenda: Game-Theoretic Software Process Improvement
	The Challenges of Applying GTPI
	Conclusion

