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Abstract

Modern genomic analysis has a significant bioinformatic component due to the high volume

of complex data that is involved. During investigations into the genetic components of two

renal diseases, we developed two software tools.

Genome-Wide Association Studies (GWAS) datasets may be genotyped on different

microarrays and subject to different annotation, leading to a mosaic case-control cohort

that has inherent errors, primarily due to strand mismatching. Our software REMEDY

seeks to detect and correct strand designation of input datasets, as well as filtering for

common sources of noise such as structural and multi-allelic variants. We performed a

GWAS on a large cohort of Steroid-sensitive nephrotic syndrome samples; the mosaic in-

put datasets were pre-processed with REMEDY prior to merging and analysis. Our results

show that REMEDY significantly reduced noise in GWAS output results. REMEDY outper-

forms existing software as it has significantly more features available such as auto-strand

designation detection, comprehensive variant filtering and high-speed variant matching to

dbSNP.

The second tool supported the analysis of a newly characterised rare renal disorder:

Polycystic kidney disease with hyperinsulinemic hypoglycemia (HIPKD). Identification of

the underlying genetic cause led to the hypothesis that a change in chromatin looping at

a specific locus affected the aetiology of the disease. We developed LOOPER, a software

suite capable of predicting chromatin loops from ChIP-Seq data to explore the possible

conformations of chromatin architecture in the HIPKD genomic region. LOOPER predicted

several interesting functional and structural loops that supported our hypothesis. We then

extended LOOPER to visualise ChIA-PET and ChIP-Seq data as a force-directed graph to

show experimental structural and functional chromatin interactions. Next, we re-analysed

the HIPKD region with LOOPER to show experimentally validated chromatin interactions.

We first confirmed our original predicted loops and subsequently discovered that the local

genomic region has many more chromatin features than first thought.

2



Impact Statement

Many of the challenges presented by the vast amount of experimental data involved in

modern genomic analysis are overcome with software tools. By developing two different

pieces of software that specifically address two real problems which were encountered by

our research group, our work has contributed to at least three papers at different stages

of publication. Furthermore, our software has the potential to impact the broader research

community and has contributed to a better understanding of rare renal genetic diseases.

Our first tool REMEDY sought to aid in the pre-processing stages of preparing gen-

otyping datasets for genome-wide association studies (GWAS). We used the software to

successfully merge data in two different GWAS projects, which would have been impossible

without the technical research that is presented in this thesis. The first project, a study on

steroid-sensitive nephrotic syndrome (SSNS) [1], has contributed to our understanding of

the aetiology of this rare autoimmune kidney disease in children and may lead to better

diagnosis and treatment in the future. The second GWAS project that REMEDY has con-

tributed to is a rare blood disorder; our results again point to genomic regions which we

are currently investigating to better understand the disease mechanism.

REMEDY was developed to be a deployable package, usable by non-technical clini-

cians to aid the wider research community in processing large genotyping based datasets.

We believe our software can be useful to any genotyping data-based GWAS, especially

where large control datasets are required; hence, REMEDY the potential to have a signific-

ant impact in the study of the genetic architecture of many different diseases. Standardisa-

tion of study protocol is an important aspect of study design; we think REMEDY contributes

to the standardisation of GWAS practice and therefore, the reliability and repeatability of

this class of experiments.

Our second tool, LOOPER, was designed to aid in the analysis and visualisation of

chromatin interactions in the genome. We successfully used the tool to explore a specific

genomic region where we previously found a mutation which we showed to be important

in a newly characterised disease, Hyperinsulinism with polycystic kidney disease (HIPKD).
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The loop predictions and later visualisation helped our team to build a hypothesis around

the mechanism of change in the chromatin architecture which was contributing to the ge-

netic component of the disease, and was later published in a high-impact journal [2].

The 3D regulatory architecture of the genome affects crucial cellular processes and is

implicated in a wide range of diseases. 3D regulatory networks have been shown to be

extremely complex, even in a small area; consequently, tools to process and visualise the

raw data that allows researchers to explore this information in a concise and understand-

able manner are a critical component to understanding how the regulatory architecture of

the genome functions. LOOPER provides both a prediction framework for the analysis

of un-observed chromatin loops and provides a novel way of viewing existing chromatin

confirmation data as a force-directed graph, which we believe is novel in the field.

4



Acknowledgements

To my darling Emma, without your boundless love, tolerance and literal back support, I

would have not made it through the last year let alone been able to complete my PhD. I

love you always and forever.

To Tim and Maria, I cannot even begin to thank you for all the kindness you have shown

me over the last four years. Without your financial support, understanding and belief in me,

I would have not felt able to start this journey, and I certainly would have faltered long before

the end. I will make it up to you one day I promise!

To my mother and Steve, your limitless enthusiasm about my course of action has kept

me going throughout, even when I felt lost at sea. For both being the constant in my life

that I always need, that’s what truly great parents are, I think.

To my sisters and brothers: Holly, Jenny, Sophie, Bradley, Matt and Sam, for your love

and support over the last year when I really needed it. Also for reminding me that it’s not

all about me and that life exists outside of a PhD! Without our time together playing games

and relaxing over holidays, I may have lost sight of the big picture.

A very special thank you to Horia, my supervisor and friend, for your endless optim-

ism, support and your tolerance of my many mood swings over the last few months, and

for giving me a chance and believing in me in the first place; and for your encyclopedic

knowledge of basically everything!

To Robert, our glorious leader, who gave me the opportunity to study in his group in

the first place. Without your ability to see through everything and play ’devil’s advocate’,

nothing I have achieved in this group would have been to nearly as high a standard.

Finally, but by no means least, to all my colleagues in our little corner of the research

world, I love you all, I will never forget our time together: Matt, Sanj, Steph, Mallory, Anne,

Vaksha, Detlef, Anselm, Monika, Dana, Mel and Mehmet.

5



Viewing Recommendations

When viewing this in a PDF document, all citation, table and figure references can be

followed by clicking the hyperlink to the target by hovering over the number.

In Adobe Acrobat, once the user wishes to resume reading of the original section, the

keyboard shortcut [Alt]+[leftArrow] can be used to jump back to the previous section. To

jump back to the reference, use the keyboard shortcut [Alt]+[rightArrow]. Similar shortcuts

most likley exist in other programs but are not shown here.
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Chapter 1

Introduction

In this thesis, the development of two software tools is presented that were created in

response to problems that were encountered while performing genomic analysis during the

course of several projects. In this section, the concept of genomic analysis is introduced

and why computer science and technology are critical to this field. I then justify how our

developed software tools fit into the existing software ecosystem for genomic analysis.

Next, some fundamental theory and approaches to genetic analysis are discussed before

describing further in-depth theory regarding those concepts that are key to understanding

the operation of both software solutions.

1.1 Genomic Analysis

The study of genetics is concerned with one overarching goal: to map an organism’s gen-

otype to its phenotype. The genotype of an organism could be defined as a set of genetic

measurements which alter an observable set of characteristics or traits otherwise known

as a phenotype. The problem of genetics could be said to be solved when the phenotype

that will arise from any genotype can be determined. The field of genetics exists because

there is no exact mapping of genotype to phenotype. One must, therefore, infer genotype

to phenotype relationships while simultaneously attempting to improve the model of the

mappings to make future inferences more accurate.

The foundations of modern genetic analysis have been practised since prehistoric

times. Early humans used selective breeding (and continue to do so to this day) to se-

lect for desirable traits in both crops and animals [3] [4]. It is also highly probable that early

humans understood that certain visible traits such as hair and eye colour were transmitted
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to their children [5].

The foundation of classical genetics began in the mid-1800s with "the father of genetic

analysis", Gregor Mendel. Mendel’s experiments on pea plants led to the development of

Mendel’s laws of inheritance which set the foundation of our current understanding of ge-

netic inheritance and provided a framework for genetic analysis based within the scientific

method [6]. Further experiments on inheritance by scientists such as Thomas Morgan [7]

[8] and others refined the practice of quantitative genetic analysis using breeding as the

primary study mechanism.

The advent of biochemistry enabled a more fine-grained study of the biological mech-

anisms involved in genetics. As the volume of biological data grew exponentially, comput-

ing methods and data storage methods such as databases were applied to biological data,

thus creating the field of bioinformatics. Today the term genetic analysis applies both to

the methods used for genetic research and to processes which use existing models such

as in genetic diagnostic testing for diseases.

Bioinformatics is loosely defined as the application of software tools, databases and

data interfaces to study biological data. Genomics is defined as a field which looks at the

genome as a whole rather than the gene-centric approach of genetics. Modern genom-

ics often has a significant bioinformatic component given the large volume of data created

by genomic experiments such as whole genome sequencing. The bioinformatic portion

of genomic analysis utilises software tools, data interfaces, algorithms and sources of ge-

netic data to build in silico models of biological systems which can be used to generate

predictions.

1.1.1 Genomic Analysis Methodology

Bioinformatic genomic analysis ultimately starts with a biological sample set, which in-

cludes genetic information in the form of the molecule Deoxyribonucleic acid (DNA). The

samples must first be converted into digital data so that they can be acted upon using

software tools. Given that the source samples are biological, bioinformatic source data is

inherently noisy and must undergo several stages of quality control and filtering depending

on the project specification before it is ready for further analysis. The core genomic data-

set may also be augmented and annotated with other existing sources of data before the

principal experiments are performed that generate results.

Genomic analysis projects ultimately infer links between genotype and phenotype; this

is usually achieved by some form of comparative analysis. A comparative analysis takes
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data which is split on a dependent variable (e.g. disease status) and conditioned on an-

other set of variables (e.g. ethnicity) to infer some new information about the relationship

between the samples. New in silico inferences can then be tested by in vitro functional

analysis experiments that will support the computer model or not. In turn, this may drive

further changes to the bioinformatic model, which generate new functional wet-lab experi-

ments until a hypothesis is properly cemented or disproved.

1.1.2 Computing in Genomic Analysis

Early in modern genetic analysis, there was a drought of data; many problems were chal-

lenging to solve because of the lack of available experimental information. As experimental

science has progressed, the amount of data generated has increased exponentially, requir-

ing the use of computers to process the information in a timely and accurate manner. The

volume of data generated by some classes of experiments in genomics has made comput-

ing critical to these analyses.

Algorithms, software and databases provide the solutions, storage and processing re-

quired for the challenges of genomic analysis. Today, there are two main bottlenecks which

drive innovation in the bioinformatic part of genomics. The problem of managing, pro-

cessing, and analysing such large amounts of data requires evermore innovative solutions

to overcome rising storage limitations, long processing times and implementation of com-

plex algorithms. The second driver comes from the requirement for novel software tools

to analyse data from new experiments; genetics is a fast-moving field where hardware,

techniques to use existing hardware and experimental processes are continually updated.

Reliance on software solutions for genomic analysis has meant that computer scientists

are increasingly recruited into a role that could best be described as a genetic bioinform-

atician. This role is part computer scientist, software engineer, data scientist and geneticist.

1.1.2.1 Databases and Interfaces

In modern operating systems, data is stored in discrete packages known as files. The term

’file’ harks back to the hierarchical ways in which files are stored in folders in a filing cabinet,

but in a general sense, files are an encapsulation of data stored in a specific structure; the

simplest example being stored values in a sequence. Without any other logic, a file is

read in sequence from one value to the next. In order to store structure within data, some

logic must be applied to define access to the underlying information. Silberschatz et al.

(1997) [9] defines a database as an organised collection of data. The logical interface
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that sits between a program and the underlying data is known as a data interface. The

encapsulation of both data and data interface is known as a database.

Databases define the format in which data is stored, the protocols for access to the data

and the interface which connects the query engine with the requesting program or person.

As the volume and complexity of data increases, it becomes more challenging to store,

write and retrieve information in a consistent time frame. This problem is visible in many

different fields but is no more apparent than in genomics, where the explosion of sequen-

cing data has driven innovation in database design, data compression and efficient data

access. Database technology, therefore, constitutes a central tenet of genomic analysis.

1.1.2.2 Software Tools

Bioinformatic data generated by experiments is generally stored in databases or large file

repositories. To turn the raw data into results which can be used to test a hypothesis, a sig-

nificant amount of processing must be performed using algorithms implemented in software

and tools designed to streamline the flow and management of data during processing.

The number of software tools available for genetic analysis has increased exponentially

in the last 20 years. Initially, many pieces of software were implemented on hardware and

were directly connected to a wet-lab experiment. As genomic analysis has become more

complicated, it is now necessary to perform layers of meta-analysis on data which origin-

ated directly from experimental hardware; this has resulted in the development of many

more software tools than hardware systems. The burden of genomic analysis, therefore,

has mostly shifted away from the raw data and onto the many layers of post-processing

required to obtain a result.

Software is critical to all aspects of genomic analysis, and thus much of the change

required when facing one of the key drivers of innovation discussed in the previous section

results in a new or updated software tool.

1.1.3 Thesis Justification

Through several genomic analysis projects conducted by our team, we encountered two

situations where the existing methodology and software tools were found to be lacking. We

faced extensive difficulties when attempting to merge large, disparate genotyping datasets

where tools to deal with the encountered errors did not exist. Arguably, this highlights the

first key driver of genomic analysis innovation: volume and complexity of data.
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Secondly, we encountered challenges in a project where we lacked the software tools

to predict and visualise the mechanism by which a point mutation changed the three-

dimensional structure of chromatin. We developed a new software suite which predicts

and visualises chromatin loops, which allowed exploration of potential hypothesis for the

disease mechanism with greater clarity. We argue this highlights the second key driver of

innovation for genomic analysis, where new software tools are required to understand data

from new experiments.

This thesis presents our work in both genomic analysis methodology and software

technology that we believe furthers the field of genomic analysis. Our work has enabled

the delivery of three published research projects to date, that would have been much more

difficult without these innovations.

1.2 Basic Genetics

1.2.1 Deoxyribonucleic Acid

DNA is an essential molecule in life that stores all the information needed to create and

maintain an entire organism. The human genome is approximately 3.2 billion base pairs

long [10] and is composed of 4 bases: Adenosine (A), Cytosine (C), Thymine (T) and

Guanine (G); they combine into long polymers in a double helix configuration to form DNA

[11] [12] [13].

DNA consists of two strands of polynucleotides bound together with hydrogen bonds

in a double helical structure. A single nucleotide consists of a sugar-phosphate unit plus

a nitrogen base; the units of a nucleotide bind to the units of another nucleotide to form a

polymer chain. The sugar-phosphate chain is known as the backbone; bases bind to the

backbone and then form hydrogen bonds with each other that hold the two strands of DNA

together in a double helix configuration (Figure 1.1, p.43). The hydrogen bonds between

bases exist in a pairwise fashion between specific combinations of letters; A always pairs

to T (Figure 1.2, p.44) and C always pairs to G (Figure 1.3, p.44), each pair of letters is

known as a base pair [11] [12] [13].

The DNA backbone is formed from alternating deoxyribose and phosphate molecules

(Figure 1.4, p.45); the phosphate groups attach to deoxyribose at the third (3’) and fifth

(5’) carbon of the sugar ring [13]. The ends of the backbone will always have an exposed

phosphate group attached to the 5’ ribose carbon at one end and an -OH substituent at the

other end attached to the 3’ ribose carbon; thus, one end of a DNA strand is termed the
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5’ end and the other the 3’ (pronounced three-prime and five-prime). New nucleotides can

join to either end by forming a phosphodiester bond with the 5’ phosphate or the 3’ hydroxyl

group. DNA is structured such that the two strands are opposite in orientation with respect

to the 5’ and 3’ ends. The direction with regards to DNA can be defined as either 5’ to 3’

or 3’ to 5’ and is important in a number of genetic mechanisms discussed in the following

sections.

Figure 1.1: Simplified structure of DNA. Pairs of nucleotide units bound by hydrogen bonds are
assembled in a polymer using sugar-phosphate bonds. The hydrogen bonds are often
visualised as the rungs of a DNA ladder with the sides corresponding to the backbone.
The ladder configuration is twisted to form a double helix.
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Figure 1.2: The chemical structure of Adenosine and Thymine showing the hydrogen bonding that
forms between them when they are base paired in a molecule of DNA. The ’R’ groups
show the attachment point of the DNA backbone.
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forms between them when they are base paired in a molecule of DNA. The ’R’ groups
show the attachment point of the DNA backbone.
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top. The ’R’ groups show the attachment point of the nitrogen bases to the backbone.
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1.2.2 Proteins

Proteins are large macro-molecules, consisting of one or more chains of amino acids, they

perform a vast array of functions in the body and are essential to all life. Proteins were first

described as a class of biological molecules in the eighteenth-century [14]. Mulder and

Berzelius later characterised them and coined the term ’Protein’ in 1838 [15] [16]. Mulder

discovered that all proteins had the same empirical chemical formula that contained roughly

the same elements in the same proportions. Hoffmeister and Fischer (1902) [17] both

independently put forward the theory that proteins were made from chains of polypeptides.

The first protein sequence to be identified was Insulin by Sanger in 1951 [18] while the

first full structure to be solved was Myoglobin by Kendrew in 1958 [19]. The culmination

of these key papers and many others showed that proteins are formed from polypeptides

in specific amino acid sequences that fold into multiple levels of structure; therefore, the

amino acid sequence defines the structure and subsequent function of a protein.

1.2.3 Ribonucleic Acid

Ribonucleic acid (RNA) is another vital molecule in genetics that is essential for expres-

sion, regulation and maintenance of an organism’s DNA sequence. It is a polynucleotide

that is comprised of a sugar-phosphate backbone and three of the same bases as DNA,

Adenosine, Cytosine and Guanine; the fourth base Thymine is substituted for Uracil [20].

RNA also differs from DNA in that it is almost always found in a single strand configuration.

DNA is a very stable molecule and can be characterised as a long-term storer of inform-

ation; RNA is less stable and performs a wide range of functions both in the nucleus and

the cytosol. Perhaps RNAs most important function in genetics is its role as messenger

RNA or Messenger RNA (mRNA), which is used as an information transfer medium in pro-

tein production [21] [22]. The discovery of mRNA crucially linked DNA to ribosomes in the

cytosol, completing the route from DNA, to RNA to proteins.

1.2.4 The Central Dogma of Molecular Biology

The central dogma of molecular biology first stated by Crick in 1958 [23], states that inform-

ation is stored in DNA which is used to make RNA, which in turn is used to create proteins

(Figure 1.5, p.47). DNA can be copied to DNA (DNA replication), DNA information can be

copied to mRNA (transcription), RNA can be copied to RNA (RNA replication), DNA can

be synthesised from RNA (reverse transcription), and proteins can be constructed from

mRNA used as a template (translation).
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Figure 1.5: The central dogma of molecular biology. DNA is transcribed to mRNA which is then
translated to protein.

1.2.5 DNA as a Sequence

William Cumming discovered Threonine in 1935 [24], the last of the 20 amino acids univer-

sally present in proteins to be identified. After the discovery of the structure of DNA in 1953

by Watson and Crick [13], one of the most interesting questions was how the four bases of

DNA encoded for the 20 amino acid sequences that constitute proteins.

George Gamow first postulated that overlapping sets of three bases could be used to

encode for 20 amino acids with a four base encoding; this was possible via the diamond

shaped grooves formed from the bases on four sides inside the double helical structure of

DNA [25]. Known as ’Gamows Diamonds’, the overlapping triplet diamonds encoded for

exactly 20 amino acids; however, this elegant theory was later proved wrong by Brenner

(1957) [26] before Nirenberg and Matthaei (1961) [27] directly proved the specific sequence

for the amino acid phenylalanine (TTT). Nirenberg and his team then went on to discover

the code for several other amino acids, suggesting that codons were formed from sets of

non-overlapping triplets.

1.2.6 Genes

A protein’s function is determined by the linear sequence of amino acids from which it

is composed [28]. Amino acids are encoded in DNA using three-letter sequences called
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codons. All the codons for a single protein are encapsulated in a structure known as a

gene, first described so by Johannsen in 1905 [29]. The initial structure of the gene was

defined by Benzer [30] [31], which has then been refined to our current understanding in

subsequent years by many different scientists.

At the codon level, groups of sequential triplets that code for amino acids are called

exons. Exons are inter-spaced in a gene by untranslated units known as introns [32].

Sequences flank the alternating set of introns and exons called the 5’ and 3’ Untranslated

region (UTR)s. The 5’ UTR precedes a special ’start’ codon (ATG), which denotes the

start of the open reading frame for translation. The 3’ UTR immediately follows a stop

codon (TAG, TAA or TGA), another set of special codons which defines the end of the open

reading frame. An area important for transcription initiation and regulating the production of

mRNA from the gene called the promoter immediately precedes the 5’ UTR. The complete

set of the promoter, 5’ UTR, exons, introns and 3’ UTR are collectively known as a gene

(Figure 1.6, p.48).

Figure 1.6: The simplified structure of a gene showing a typical layout of the major parts.

1.2.7 Gene Expression

In order to produce a protein, a blueprint for the sequence of amino acids is required; the

blueprint is copied from the DNA sequence for the protein contained within a gene into

mRNA in a process called transcription [21] [22]. The mRNA transcript then undergoes

a complex process of transformations known as maturation until the final mRNA molecule

is translated into a sequence of amino acids by ribosomes in the cytosol [33]. Finally, the

string of amino acids produced by a ribosome undergoes a complex process of folding and

alteration until the mature protein is released and allowed to perform its function in the cell

[34]. A gene can be said to be ’expressed’ when it is actively transcribed.
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Transcription begins with the binding of specific DNA binding proteins known as Tran-

scription factors (TFs) to the promoter region of a gene. Over 100 proteins bind to form a

large complex which culminates in the binding of the enzyme DNA Polymerase II (POL2).

POL2 slides along DNA uncoiling the double helix as it goes, moving in the 5’ to 3’ direction

with respect to the gene sequence. The 3’ strand (3’ to 5’ direction DNA strand) is used

to create a molecule of mRNA using the corresponding complements of DNA to produce

a sequence that directly matches the 5’ strand (5’ to 3’ direction DNA strand) of DNA in

RNA; the gene, therefore, is read in the 5’ to 3’ direction [35]. The 5’ strand is known as

the sense strand (or positive +) as an RNA version of the same sequence is translated

or translatable into protein. The antisense or template strand (or negative -) corresponds

to the 3’ strand [36]. Sense and antisense strands are relative to the gene and not the

underlying DNA strand as genes can be defined on the 5’ or 3’ strands of DNA and thus

can be read in either direction with respect to DNA; however, a gene is always read from

5’ to 3’ in terms of the sense strand.

During transcription, a gene is read sequentially from the Transcription start site (TSS)

in the promoter to the end of the 3’ UTR to create an immature mRNA. After transcription,

the introns are cut out from the mRNA transcript in a process called splicing. The mRNA

may undergo further post-transcriptional modifications before being used in the translation

process to create a protein. The 5’ UTR contains the binding site for the ribosome to start

translation and both the 5’ and 3’ UTRs are thought to have a strong influence on the

post-transcriptional modification process and thus the regulation of protein production [35].

1.2.8 Chromatin

The genome is defined as the total genetic material of an organism [37]. Genetic material

in the cell resides in the nucleus and is organised into large single molecules of DNA in

structures called chromosomes. If all the DNA in a cell were laid end to end, it would reach

over 2m in length, but the average diameter of the human cell nucleus is just 6µm. Euka-

ryotic organisms have developed specific ways of packing DNA into smaller configurations

that balance compactness versus accessibility [38].

The nucleosome is the basic unit of DNA packaging in the genome and consists of an

octamer core made from proteins known as histones which act as a spool around which

DNA wraps approximately 1.5 times. The histone octamer is composed of a dimer of two

tetramer histones; one half is formed from the proteins H3 and H4, the other is made

from H2A and H2B. The histone core proteins are highly conserved not only in the human

genome but across many different species; this suggests that they perform an essential

role in nucleosome structure. Each histone core protein has an additional N-terminal ‘tail’
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element that enables covalent bonding of other proteins, allowing the histone structure to

be modified and its function changed [39].

Nucleosomes have a dynamic structure that is targeted by many Adenosine triphos-

phate (ATP) dependent Chromatin remodelling complexess (CRCs) [40]. In a process

known as nucleosome sliding, the DNA wrapped around the histone core can be shifted

and moved to ‘remodel’ the local DNA structure using CRCs. With additional protein com-

plexes known as histone chaperones, histone proteins can be removed from the DNA or

replaced with another histone core made from rarer histone core types such as the H2AZ-

H2B dimer. The positional change of nucleosomes, the modification of histones and the

exchanging of histones types is highly dynamic and warps the local structure of DNA to

make it less or more accessible to other protein types [41] [42].

Nucleosomes are linked by open stretches of DNA to form a model like ‘beads on a

string’. The nucleosomes, linker DNA and associated non-histone proteins that also bind

to aid in packaging are collectively known as chromatin. Chromatin itself can be packaged

into higher-order structures forming a layered structure similar to the way proteins are hier-

archically folded. This multi-level packing, through histone modification and remodelling, is

utilised in many areas of cell behaviour including division, differentiation and transcription

regulation [43].

Linked nucleosomes can be packed into a more compact form by folding together in

a zig-zag formation to make a 30 nm chromatin fibre (Figure 1.7, p.51). In metaphase

cells, 30 nm chromatin is packed even tighter using scaffolding proteins into the classical X

shaped chromosomes that are visible in light microscopy. This extremely tight configuration

makes replication and segregation of genetic material easier [44].

During interphase, the default chromatin configuration is the 30 nm fibre, which is also

known as heterochromatin or ‘closed’ chromatin. The tightly packed configuration of het-

erochromatin makes it difficult for proteins such as TFs and DNA polymerase II to bind to

their target sites; heterochromatin is therefore thought to be transcriptionally inactive [45].

It is possible through histone modifications and other protein-DNA interactions to un-

package chromatin back into the ‘beads on a string’ configuration, this is known as ‘open’

or euchromatin and allows for active gene transcription to take place. This does not ne-

cessarily mean genes in open chromatin are actively transcribed, but it does allow DNA

access for TFs [45].
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Figure 1.7: DNA packing into chromatin. DNA wraps around a histone core to form a nucleosome.
Nucleosomes have a ’beads on a string’ configuration where DNA is accessible to
proteins between the nucleosomes. DNA can be further packed into 30mn chromatin
fibre where the nucleosomes are compressed in a zig-zag formation and held by further
scaffolding proteins

1.2.9 Regulation of Gene Expression

Proteins perform a vast array of functions in an organism. Some must exist at specific

levels while others are only produced in distinct tissue types or at particular stages in de-

velopment. Control of when, where and how much of a protein that is produced is primarily

managed through the regulation of gene expression. Correct gene regulation requires the

dynamic integration of genetic, cellular and extra-cellular environment information, which

signal the correct combinations and levels of proteins that must exist in a cell at any given

time.

For regulation to be possible, there must be signal generators, signal receivers and a

medium of communication. The medium of communication in cells is primarily via protein

signalling. Signal generators may be any biological construct, such as a cell membrane

receptor or calcium sensor that is capable of triggering a protein ’signal’, which is often
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a cascade of protein signalling that eventually results in a final protein binding to a signal

receiver. In the nucleus, the receiver is principally DNA, and the signal proteins which carry

information to regulate transcription using DNA are TFs.

The first TF discovered was AP-1 [46], it was a DNA binding protein which bound to a

gene promoter. Since this discovery, over 1,600 TFs have been characterised in humans

[47]. Some TFs form the complex of proteins that immediately lead to transcription at

the promoter; however, some are indirectly responsible for regulating the formation of the

transcription complex and can actively accelerate, slow or block different stages of the

transcription process. Some TFs can bind directly to DNA, but other TFs known as co-

factors indirectly bind to DNA through other TFs in a chain-like structure [48].

TFs are the end of a signalling chain which may originate far from the DNA sequence;

they are said to be trans-regulatory elements. The DNA sequences that bind TFs are

close to DNA and therefore said to be cis-regulatory sequences [49]. Non-coding DNA

sequences are defined as sequences of DNA that do not encode for protein sequences.

Introns, UTRs, and promoters are all examples of non-coding regions.

Although many TF binding complexes have been identified at core promoters or prox-

imal promoter regulatory regions, there are also many other cis-regulatory regions which

affect gene transcription. Enhancers and silencers are sub-classes of cis-regulatory ele-

ments which have been shown to upregulate and downregulate target genes respectively

[50]. Promoters, UTRs and introns can also all have cis-regulatory elements. Other classes

such as insulators have a structural effect on DNA such that they have an indirect effect

on gene expression [50]. TFs bind at specific sequences known as Transcription factor

binding sites (TFBSs).

Ultimately, the signals from all affecting TFs are integrated into the binary decision of

whether to produce a new mRNA transcript. The number of transcripts produced and the

lifetime before their degradation controls the amount of protein that will be produced from

the gene.

1.2.9.1 Enhancers and Silencers

Enhancers and Silencers are short stretches of DNA that serve as platforms to integrate

cellular signals through TF binding. TFBS vary in specificity and form the basis from which

further co-factors are recruited to the enhancer to form a protein complex that can regulate

transcription of one or more genes [48] [51] [52].
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The combinatorial binding, pattern of occupancy and timing of TFs at enhancers all

contribute to the expression pattern of a target gene. An inactive enhancer can be defined

as a stretch of DNA to which no TFs are bound. To activate an enhancer, TFs known

as pioneer factors can bind to nucleosome-bound DNA at the ends of the enhancer do-

main. Pioneer TFs then recruit chromatin remodelling complexes which reposition the

nucleosomes to allow access to the enhancer for other TFs. Once the section of DNA is

open (nucleosome-free), a complex process of cascade TF binding occurs which ends with

a complex of proteins which can actively affect gene transcription. Enhancers can react

to various transcriptional signals by changing the state or timing of the TF population. For

example, two competing TFs may bind to the same enhancer; a cellular signal causes a

drop in one TF, and so the competing TF (which has an excitatory effect) is now more likely

to bind to the enhancer that causes transcription to increase. Enhancers also interact with

other cis-regulatory elements to further increase the number of regulatory possibilities for

a gene [48] [51] [53] [52].

Enhancers and silencers are similar in function except that in general, enhancers have

an excitatory effect on gene expression while silencers have an inhibitory effect [54].

1.2.9.2 Insulators

Regions of heterochromatin are thought to be formed from a complex process involving

reader/writer protein complexes that modify the nucleosomes and bind them to H1 histones

to condense the chromatin into a 30 nm filament. The reader/writer complex binds to the

chromatin and spreads along the genome in a wave of condensation. A pattern of covalent

histone modifications may be used by a code-reading complex to recognise where the

spread start sites are before binding to the reader/writer complex to guide the machinery

down onto the chromatin. Barrier DNA sequences can stop the spread of heterochromatin,

thereby creating regions of open and closed chromatin [55].

The cis-regulatory elements which bind proteins that block the spread of heterochro-

matin are called insulators. Cell differentiation emerges from patterns of gene expression

that changes the protein content of a cell to alter its structural and functional character-

istics [56]. The interplay between open and closed chromatin is thought to be a primary

mechanism in the transcriptional switching of genetic regions. The alternating pattern of

open and closed chromatin on a chromosome, are characterised as A and B compartments

respectively [57].

CCCTC-binding factor (CTCF) is a zinc-finger protein that was initially described as

a transcriptional repressor of the Myc gene, it is highly conserved in humans and has
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homologues in other species such as Drosophila melanogaster [58]. CTCF has a well-

defined binding motif that allows it to bind to DNA as well as other proteins. Its properties as

a transcriptional insulator were first reported when the placement of a CTCF binding motif

between an enhancer and promotor blocked transcription [59] [60]; one of the functions of

CTCF is thought to be to block the spread of heterochromatin, and consequently is termed

an insulator.

1.2.10 The Human Genome

The human genome is organised into 46 separate molecules of DNA in the cell nucleus

called chromosomes. Depending on the sex of a person, chromosomes are organised into

either 22 or 23 pairs; females have two X chromosomes whereas males have an X and

a Y chromosome [61]. The non-sex chromosomes in the human genome are known as

autosomes while the sex chromosomes are known as allosomes. Different chromosome

pairs have different lengths and contain varying amounts of genetic material.

Chromosomes pairs themselves are almost identical; broadly speaking, they have the

same genes and the same arrangement and configuration of genetic material, hence, there

are two copies of almost all autosomal genes. A pair of locations or loci, whether it is a

base pair or a whole gene are termed alleles; the singular allele, referring to one of the

loci in the pair [61]. In interphase cells, the chromosome pairs are treated independently,

they occupy different locations in the nucleus, and can both contribute to gene transcription

[62]. It is only during meiosis and mitosis that the chromosomes are brought together into

pairs giving the characteristic X shape.

It is estimated that less than 2% of the human genome codes for proteins, the remain-

ing 98% was once thought to be ‘junk’ DNA with no known function [10]. Some of this DNA

has little or no predicted function such as areas which consist of simple repeats of letter se-

quences that have low information content; however, much of the non-coding genome has

unique sequences and patterns suggesting that it contains valuable information. Recent

research has shown that in fact, 80% of the human genome is either transcribed, binds to

regulatory proteins, or is associated with some other biochemical activity [50] [63]; this has

lead to a paradigm change in the scientific consensus. It is now known that large portions

of non-coding DNA are responsible for regulating gene transcription in complex regulat-

ory networks that control everything from the complex nature of spatial and temporal gene

transcription in development to responding to intra-cellular environmental changes [63].
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1.2.11 3D Genome Structure and Organisation

Chromatin is packed into the nucleus in a hierarchical structure that occupies only 15%

of the nuclear volume [64]. The position of a chromosome or gene is non-random in the

nucleus and is probabilistic in terms of its radial distribution, and is cell-type- and tissue-

specific [62]. The prototypical examples of radial chromosome positioning are human chro-

mosomes 18 and 19, which localise preferentially to the centre (chromosome 19) and the

periphery (chromosome 18) of the nucleus in human lymphocytes but are arranged differ-

ently in other cell-types [62] [65].

The nuclear lamina is a fibrous structure at the nuclear periphery that provides both

mechanical support and has a role in chromatin organisation. Regions of chromatin called

Lamina-associated domains (LADs) bind to the lamina and are usually flanked by CTCF

binding sites [66]. LAD are typically 0.1–1 Mb in size and generally gene poor, and the

contained genes are either silent or expressed at low levels [66]. LADs correlate with the

A/B compartments which are demarked by insulators [57].

While LADs in chromosomes are anchored to the lamina and are associated with het-

erochromatin and transcriptional repression, there are other regions interspaced between

LADs that occupy the nuclear centre and are associated with euchromatin and transcrip-

tional activation. Spatially proximal regions of DNA outside of LADs are known as

Topologically-associated domains (TADs) [67] [62] [68] [69] [70] [71] [72] [66] [73]. LADs

and TADs alternate on the genome and broadly correspond to A/B compartments bounded

by the insulator protein CTCF [66].

1.2.11.1 3D Gene Regulation

TFs are available for binding to regulatory elements in response to developmental, cell-

specific, environmental or housekeeping activities. TFs can directly influence transcription

on promoters either by forming part of the transcription complex or by enhancing or blocking

other TF binding activity. In both cases, to directly influence transcription, the TF must be

present near the promoter site.

Enhancers have been found at proximal-promotor sites; however, many cis-regulatory

enhancers have also been shown to affect gene transcription megabases away from the

promoter, often skipping genes in-between [48] [51] [53] [52]. Given that an enhancer

needs to be in physical proximity to a promoter to act on it, how is it that cis-regulatory

elements such as enhancers can influence expression? It is clear that the genome cannot
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be thought of as a simple linear sequence but that the three-dimensional structure must be

taken into consideration when studying regulatory chromatin contacts [54].

In order to study 3D cis-regulatory contacts in the genome, a new class of experiments

was developed known as chromatin conformation. Several classes of chromatin confirm-

ation experiments exist that indicate which parts of the genome are in contact with each

other at a given time snapshot; one such high-throughput experiment known as Hi-C can

produce a genome-wide contact map for a given cell snapshot [74] [70]. Initial Hi-C contact

maps generated by Rao et al [70] showed that the genome was separated into specific

regions of contact in which there was a high frequency of interaction that was bounded by

a sharp border; these interaction compartments overlapped exactly with the A/B transcrip-

tion compartments defined earlier. The compartments were defined as TADs, the borders

of which were found to be significantly enriched for several proteins including CTCF [59]

[60] [67] [62] [68] [69] [71] [72] [73].

The sharp border pattern seen in the TADs was postulated to arise from chromatin loop

configurations where the bases or anchors of the loop were located at the TAD border.

CTCF and cohesin, a protein usually associated with metaphase chromatin compaction

were found to co-localise at TAD borders. Given that these sites coincided with CTCF

TFBS, it was hypothesised that CTCF provided the DNA binding anchor while cohesin

bound two CTCF sites together to form a loop which increased contact frequency within

the loop and decreased it outside [59] [60] [67] [62] [68] [69] [70] [71] [72] [73].

The chromatin loop has since been identified as a primary method of folding DNA so

that cis-regulatory elements such as enhancers can be brought into proximity to gene pro-

moters. To create a loop from a stretch of DNA, two sites must be ‘pinched’ together and

held for as long as the regulatory elements need to influence transcription. Loops can be

dynamic in that they are created in response to specific spatial-temporal or environmental

conditions, or they can be more structural and contribute to the permanent regulatory land-

scape of a differentiated cell. Importantly, loops both increase the likelihood of contact

for elements within the loop but also insulate elements external to the loop from elements

within. There are many different types of chromatin loop that have been postulated; how-

ever, there is only one that has been studied in detail: the CTCF/Cohesin loop [54].

1.2.11.2 CTCF/Cohesin Loop Formation

CTCF is a multi-function protein, but it was found that only when binding with cohesin and

when a CTCF pair was orientated in the correct way, that a TAD boundary was detec-

ted. Functional experiments showed that inverting or deleting CTCF sites severely affects
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TAD boundary formation and gene expression in the local region [67]. The most popu-

lar theory of CTCF/Cohesin loop formation is via loop extrusion whereby a loop is formed

from cohesin forming a loop around two sections of chromatin in a handcuff configuration.

Chromatin is then able to move freely through cohesin until an inward facing DNA-bound

CTCF protein is encountered which halts extrusion on that side. Once both sides have

encountered an inward facing CTCF motif, the loop is formed and stabilised [75]. Because

the chromatin is pinched together, regions within the loop through fluid dynamic principles

will statistically come into contact more often than areas outside the loop (Figure 1.8, p.57

and Figure 1.9, p.58). Through increased contact, cis-regulatory elements can interact with

each other to regulate gene transcription [59] [60] [62] [68] [69] [70] [71] [72] [73].

Although CTCF loop formation and maintenance is considered to be a dynamic pro-

cess, TAD locations and overall stability are thought to be stable and are defined during

cell differentiation. This gives rise to the postulation of more dynamic functional loop forma-

tion in response to non-developmental requirements; this area is less well understood, but

it thought that there are other proteins which can also form less defined loops such as the

ZNF143 loop (Figure 1.10, p.59 and Figure 1.11, p.59). Here, it is thought another protein,

known as Zinc-finger protein 143 (ZNF143), binds between a promoter and an enhancer

directly to form a sub-TAD loop that pulls promoters down to the CTCF loop anchors that

are enriched for cis-regulatory elements [76]. Other potential sub-loop formations have

also been proposed such as Yin-yang 1 (YY1) and CTCF/Cohesin loops [77].

Figure 1.8: A genomic region shown before CTCF/Cohesin loop extrusion begins. For simplifica-
tion, we only show a promoter (red) and enhancer (orange). The enhancer is too far
away from the promoter to have any effect. Convergent CTCF sites with bound CTCF
protein (brown) flank the region.
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Figure 1.9: A pinched loop of DNA bound by a CTCF/Cohesin complex. Cohesin is made from
the sub-components SMC1, SMC3, SA 1/2 and RAD21. The core components bind
CTCF while the SMC1 and SMC3 form handcuffs around DNA that can slide along the
molecule freely. The Loop extrusion theory hypothesises that cohesin binds around
DNA in its linear configuration before extruding a loop through the handcuffs until it
encounters a pair of convergent CTCF proteins bound to DNA where the loop formation
then fixes. Inside the loop, genes and regulatory regions are in closer contact to each
other and thus can form contacts.
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Figure 1.10: A CTCF/Cohesin loop with a gene shown at the top of the loop and a regulatory region
at the base of the loop. The gene region although in the loop is still not proximal to
the regulatory region at the base of the loop and thus the enhancers cannot act on
the promoter.

Figure 1.11: In a functional chromatin loop, ZNF143 binds to the gene promoter and the regulatory
region at the base of the loop; consequently top of the loop is ’pulled’ down towards
the loop anchor. The gene promoter is now in close proximity to the regulatory region
at the base of the loop.
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1.3 Genetic Variation and Inheritance

One of the defining characteristics of life is the ability to reproduce and pass heritable

information on to the next generation. The phenotype of an organism can change over

time which, as discussed above is a consequence of an individual’s genotype; thus, in

eukaryotes, this implies DNA is passed to successive generations and changes over time.

The change in heritable characteristics of a species over successive generations is called

evolution [78]. Evolution allows a species to adapt to the changing conditions of its envir-

onment.

In eukaryotic cells, DNA information is passed via cell division. Asexual cell division

occurs through a process called mitosis, where a cell divides into two genetically identical

copies; it is an essential mechanism for the development and maintenance of a eukaryotic

organism. In almost all eukaryotic organisms, new offspring are formed through the pro-

cess of sexual reproduction, where DNA is passed onto children to form a blueprint for a

new generation that uses a specialised form of cell division [79].

The changes to a species DNA sequence over successive generations is known as

genetic variation. Variation constitutes changes to a DNA sequence which may or may

not alter a phenotype; those that do alter a phenotype can be beneficial or detrimental

to an organisms ability to perform in an environment. The concept of natural selection

first defined by Darwin [80] states that over time, organisms which perform better in their

environments as a result of variation can reproduce and pass on their genetic information

at a higher rate than organisms that perform poorly. Fitness is a measure of the change in

the abundance of a genotype or phenotype in successive generations. A phenotype that

is better suited to an environment will be positively selected for over time through sexual

selection (an organism must be alive first to be chosen as a mate), and consequently, its

fitness will increase in the population [81].

Tracking genetic variation over generations is an essential tool for understanding the

genotype/phenotype mapping as it can reveal which genetic changes are attributable to

what traits. Genetic variation in eukaryotes arises from two processes: mutation and re-

combination. Mutation is defined as an alteration to a DNA sequence, whereas recombin-

ation is a shuffling process which occurs during cell meiosis. We discuss these concepts

in more detail below.

60



1.3.1 Mutation

Genetic mutations in organisms can arise from many different sources, both internal and

external. Biological errors in cell division or cell repair processes can cause changes in

a DNA sequence; external sources such as radiation and free radicals can also cause

breaks and changes in cell DNA. There are two types of mutations: somatic and germline;

germline cells are the reproductive cells of an organism, while somatic cells are all other

cells. Mutations occur in the nucleus of a single cell, if the cell divides the change will be

passed onto its progeny until the cell line dies out or the organism dies. Somatic muta-

tions importantly result in no genetic information being passed to the next generation, and

consequently cannot be defined as genetic variation at the species level. Some mutations

affect germline cells, and so have a chance of being passed on to the next generation,

these are known as germline mutations. When a mutation in the germline is successfully

passed onto a subsequent generation, it becomes known as a genetic variant [79].

Mutations are defined as a change in the sequence of DNA, depending on where the

change occurs and the type of change, it may or may not alter the phenotype. Muta-

tion from external actors such as radiation generally produce random mutations in a DNA

sequence; however, other processes such as cell division, DNA repair and somatic recom-

bination are distributed non-randomly and result in mutation “hot spots” on the genome

where changes are more frequent than in other areas [82]. Some areas of the genome

have evolved to have deliberately high mutation frequencies in order to generate sufficient

variation for phenotypes that must be highly adapted, such as the adaptive immune or

olfactory systems.

It is important to note that mutation in cells happens much more frequently than the

levels of somatic or germline mutation that become permanent in a cell line. Cells have

a DNA repair method that can identify and correct mutation errors in the DNA sequence.

This system is very efficient, resulting in very few mutations being transferred through cell

division [79].

1.3.2 Recombination

Genetic recombination is the process by which maternal and paternal chromosomal DNA

is shuffled during the creation of sperm and egg cells known as gametes. During mitosis,

the genetic information in a cell is copied so that the resulting child cells have identical sets

of DNA. Human cells have two sets of 23 chromosomes, organisms with this configuration

are known as diploid organisms. Gametes are created in a process known as meiosis that
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results in haploid cells, meaning they only have one copy of each chromosome [81] [79].

Meiosis begins in the same way as mitosis; with DNA replication, which creates two

identical sets of chromosome pairs known as homologs. Each homolog then undergoes

a process of genetic recombination called homologous recombination. For each pair of

chromosomes, the DNA is cut in random places and then swapped with the same place

in the paired chromosome creating crossovers. For autosomes, humans receive one ma-

ternal and paternal chromosome; by shuffling DNA between the two chromosomes during

gamete creation, a new genetically unique pair of chromosomes is generated that is a mix

of both maternal and paternal DNA. After recombination, the cell divides to create two

diploid cells and then immediately divides again to create four genetically unique haploid

cells. Because the process of recombination happens at the point of gamete creation,

every gamete produced in the human body is genetically different [81] [79].

Genetic recombination creates a vast amount of genetic variation as the space of all

possible permutations of maternal and paternal DNA is randomly traversed, which ensures

that every offspring that arises has a unique combination of maternal and paternal traits.

Evolutionary speaking, if the offspring’s parents have survived long enough to reach sexual

maturity and reproduce, then they must have adapted to their environments at least to a

reasonable degree. Accordingly, by randomly trying out different combinations of the two

parents traits there is a chance that the new offspring will combine the best traits from both

parents into an organism that is even better suited to its environment.

Recombination provides a vehicle for combining traits from parents, which over time

results in better-adapted organisms for an environment; however, it is a poor vehicle for

creating new adaptations as it only shuffles existing information. Although at the points

of recombination, there is a probability that two halves of a functional genomic element

will combine to create something new, mutations have a much more significant impact on

genetic diversity. The powerful combination of the optimisation of existing information via

recombination and the creation of new variation via mutation gives life the necessary tools

to evolve.

1.3.3 Human Genetic Inheritance

During human sexual reproduction, two randomly selected gametes come together to form

a new embryo. The haploid DNA in both gametes is fused to create a new diploid organism

before the single cell embryo divides via mitosis to eventually create fully formed offspring.

Because humans are diploid organisms, they have two alleles per position in their genetic

sequence. Genomic structures such as genes are active on both alleles (except in the
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case of gene imprinting); they can have independent levels of activation and can interact

with each other ways that are useful for genetic analysis. For a single genetic locus, we

define two different alleles as being heterozygous and two identical alleles as homozygous

[83].

Mendel’s first law of segregation states that during gamete formation, the alleles for

each gene segregate from each other so that each gamete carries only one allele for

each gene. Mendel’s second law of independent assortment states that Genes of different

traits can segregate independently during the formation of gametes. Mendel’s third law

of dominance states that some alleles are dominant while others are recessive [6]. A

dominant trait with at least one allele represented at the trait locus will mask the effect of

the other allele; in a recessive model, both alleles are required for the trait to show in the

phenotype. Penetrance in genetics is defined as the proportion of individuals which carry

a variant or allele that then express the associated trait in their phenotype [84].

Using the definitions above, a model for transmission probability can be built for human

autosomal and allosomal inheritance. We define the letter A to represent a dominant allele

and the letter a to represent a recessive allele. Applying Mendel’s laws and considering

autosomal inheritance, for a parental combination of Aa and Aa, the possible combination

of offspring would be Aa, Aa, AA and aa. In this example, 75% of offspring would show the

phenotypic trait given complete penetrance. Extending from this example, for an autosomal

dominant disease where one parent is affected, the chance that an offspring will exhibit the

disease assuming complete penetrance is 50%.

Given one or two affected parents and assuming complete penetrance, the probabilities

of an offspring exhibiting an autosomal recessive trait in their phenotype are 50% and 100%

respectively. In recessive disease models, an individual is said to be a carrier if they have

the alleles Aa; consequently, they are carriers of the trait but do not express the phenotype.

With two carriers and applying the same model, the chance of expressing an autosomal

recessive trait is 25%; however, the chance that offspring will be carriers is 75%. This can

result in inheritance patterns where the phenotype only presents every few generations

when two recessive alleles come together, such as the trait for red hair.

Allosomes and have different inheritance patterns when compared to the autosomes

due to the combinations of chromosomes that different sexes have. In the human genome,

males have one X and one Y chromosome, while females have two X chromosomes. In

males, the Y chromosome always inherits from the paternal side as there is none to inherit

from the maternal side; the X chromosome always comes from the maternal side. Females

receive one X chromosome from each parent. Consider a recessive trait that resides on

the X chromosome: the trait may be passed in a carrier pattern through females who
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are carriers for a trait through several generations before being passed to a male who is

hemizygous and so expresses the trait in their phenotype. Females will only express this

same trait if they are homozygous, leading to an inheritance pattern where the trait appears

to be expressed predominantly in men; this is known as an X-linked recessive trait. There

are additional inheritance patterns for X-linked dominant and Y-linked dominant that are

not discussed here.

From a genetic analysis point of view, these inheritance patterns give additional inform-

ation about a trait being studied and give certain mathematical ’toe holds’ when trying to

decipher where on the genome a trait may be located. In reality, thinking of traits as purely

qualitative is a simplification. A Mendelian trait is one that is controlled by a single locus in

an inheritance pattern where mutations in such loci can cause disease in a model obeying

Mendel’s laws. While there are some diseases such as sickle cell anaemia [85] and cystic

fibrosis [86] that obey Mendelian inheritance and other diseases that have complete pen-

etrance such as type I neurofibromatosis [87], the majority of traits are non-Mendelian with

incomplete penetrance. In addition, phenotypes are mostly continuous, as are the expres-

sion patterns of gene alleles; for complex diseases such as diabetes, there are hundreds of

variants with different inheritance patterns that produce millions of different combinations

of gene expression; some of which will give rise to the diabetes phenotype. Furthermore,

Mendel’s laws of independent assortment have been shown to only be true if the traits are

on different chromosomes; traits on the same chromosome have a non-random probability

to co-segregate during recombination [88] [7].

We can now define some more common genetic terms using inheritance as a back-

ground. A genotype is defined as a set of genetic loci that characterise an organism’s

genetic makeup. Genotypes are presented as pairs of sequences: one for each allele. Im-

portantly, a genotype contains no information regarding which allele is paternal and which

is maternal. A haplotype is defined the same as a genotype except that the maternal and

paternal source orders the loci. Genetic data presented with inheritance information is said

to ’be phased’ [83].

1.3.4 Genetic Variation

Genetic variants are mutations which have been inherited via an organisms germline and

consequently have become part of the population of genetic variation. Given that the goal

of genetic analysis is to explore the genotype-phenotype relationship then one could argue

that genetic analysis must focus on the genetic variance in an organism in order to better

understand this relationship; the identification, annotation and analysis of variants and their

inheritance is therefore an essential part of genetic analysis.
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Once a mutation becomes a variant, it becomes part of the local variance in a popu-

lation. Traditionally, humans tend to breed with others that are geographically or culturally

close to each other, which combined with migration patterns and other factors gives rise

to pockets of variation that exist only in specific regions known as genetic ethnicity. The

related phenotypic traits that arise from such groupings of variation can be broadly called

an individuals race, although there are many problems and caveats to this definition [89].

Ethnicity in terms of genetics is a broad multi-tiered definition that can define an individual’s

genetic variance at a continent level but also the village level.

If a variant exists in a population, then it will have a prevalence known as the allele

frequency. A population can be defined as any set of individuals; therefore, allele frequency

must always be accompanied by a population definition. For example, a variant has an

allele frequency of 5% in West European populations but 10% in South Asian and 1% in

London. A variant which exists in less than 1% of a population is considered to be very rare

or in some cases perhaps transient. Between 1% and 5% of the population is considered

a rare variant while greater than 5% is considered a common variant that has a significant

presence in a population [90].

The major variant at a given locus in a specific population would be considered to be the

most common with the highest allele frequency, while other variants would be considered

minor. We say allele frequency and not variant frequency because the human genome

has two alleles at every position, therefore, the variant frequency lies at the allele level.

Genetic drift is the process by which the allele frequency of an allele changes over time

due to random sampling and inheritance. Genetic drift can cause variants to disappear

entirely from a population over time or to become much more frequent [91].

There are many different forms of genetic variation that range from single letter point

mutations to duplications of whole chromosomes. Due to the importance of variation in

genetic analysis, we discuss the different types of variation in detail below.

1.3.4.1 Single Nucleotide Variants

The simplest type of mutations are Single nucleotide variants (SNVs); they are single point

mutations in the DNA sequence of a cell, for example, a change in sequence from an A to

G. They are the most heavily used of all variants as they can be highly informative yet are

the simplest to analyse.

There are two types of point mutation which are characterised by the chemical substi-

tution taking place at the molecular level. Adenosine and Guanine are known as purines
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and are chemically and structurally different from Cytosine and Thymine, which are known

as pyrimidines (Figure 1.2, p.44 and Figure 1.3, p.44). A substitution between two purines

or between two pyrimidines is known as a transition while a substitution from a purine to a

pyrimidine or vice versa is known as a transversion. Transitions are twice as likely to oc-

cur than transversions as substituting a ring for a double ring, or vice versa requires more

energy than substituting for the same structure [92] (Figure 1.12, p.66).

Adenine
(A)

Cytosine
(C)

Thymine
(T)

Guanine
(G)

Purines

Pyrimidine

Transitions

Transitions

Transversions Transversions

Figure 1.12: Transitions are interchanges purines or of pyrimidines: they therefore involve bases
of similar structure. Transversions are interchanges of purine for pyrimidine bases,
which involve the change of differently structured molecules.

The chemical mechanisms behind transitions and transversions are important as the

same mechanisms are present in functional patterns and structures in the genome. For ex-

ample, methylated cytosine is more prone to transition than unmethylated cytosine, which

leads to rare unmethylated CpG islands (islands of genetic sequence which contain altern-

ating C and G nucleotides) [93].

By focusing on SNVs in the genome instead of looking at the entire sequence, some

parts of genetics analysis can be simplified while still capturing enough variation to obtain

significant results.
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1.3.4.2 Insertions and Deletions

An insertion or deletion is defined as either the adding or removing of information from a

DNA sequence. For example, when comparing two genomes A and B, they are identical

except that A has the four extra letters ATTG inserted into the middle of its sequence. This

would be classified as an insertion if we took sequence B to be the reference while this

would be identified as a deletion in sequence B if we took A to be the reference. Consider

two more sequences C and D with C being the reference; it is identified that D not only has

a deletion of the letters AGGGC but in the same position has an insertion of CCC. This

swap of AGGGC for CCC is both an insertion and a deletion and is termed an indel [94].

Insertions, deletions and indels form part of a large group of variation known as struc-

tural variation. SNVs alter the sequence, but they do not change the overall length or

structure of the DNA; a structural variant is defined as any variant that results in a change

in length of a DNA sequence [94].

1.3.4.3 Duplicates and Copy Number Variation

Duplications are a particular form of insertion and cover a broad array of structural mutation

events in the genome. They range from the repetition of small DNA sequences to gene

duplication and up to chromosomal duplication. Gene duplication is thought to be one of

the primary evolutionary processes behind genes with similar functions, where a random

duplication event followed by a period of separate mutation in the two genes results in

functionally similar but different genes [95]. We discuss several specific types of duplication

below for broad information, but it is not exhaustive.

Copy number variation (CNV) is a broad type of structural variation that generally in-

volves repetition of a large number of base pairs; they are generally vaguely categorised

into short and long repeats. Short repeats are defined as a short sequence such as a

tri-nucleotide pattern repeated as a number of insertions in the genome. Long repeats are

large sections of the genome that are duplicated; examples may include whole genes or

even whole chromosomes [96].

Short sequences that are repeated multiple times in tandem are known as tandem re-

peats. Tandem repeats between 10 and 60 nucleotides are known as minisatellites while

shorter numbers of repeats are known as microsatellites or short tandem repeats. Vari-

able tandem repeats are sections of repeats which have a repeat pattern rather than being

identical such as a variable section of four letter repeats. This confusing terminology exists
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in part because of the large number of different ways in which sequences can be duplic-

ated and repeated mathematically; broadly speaking these terms are collectively known as

segmental duplication [97].

1.3.4.4 Other Structural Variants

Translocations are defined by the abnormal transfer of DNA between two nonhomologous

chromosomes [98]. Translocations may be non-reciprocated where a DNA sequence is

transferred and spliced into another chromosome with no exchange of material; whereas

reciprocated translocations involve the exchange material between chromosomes. Recip-

rocated translocations can be balanced where the exchange of material is equal, or unbal-

anced, which results in a disproportional material exchange. Translocations are implicated

in several disease types, including cancer [99] and Down’s syndrome [100].

A chromosomal inversion is a chromosomal rearrangement where a region of DNA

is reversed in-situ. Interestingly, inversions appear to cause no abnormality unless the

breakpoints cut a functional element in half such as a gene or regulatory element; or if the

rearrangement disrupts a cis-regulatory network [101].

1.3.5 Variation and Disease

A disease can be defined as a phenotype that is undesirable or detrimental to an organism;

hence, genetic variation and disease are inexorably linked. Linking genetic variants to dis-

ease is one of the primary applications of genetic analysis; by comparing and contrasting

genomes from multiple individuals that have been grouped into distinct phenotypes, one

can try to reveal which variants affect which disease phenotypes.

Once a link has been established between a variant and a disease, experiments can

be designed to explore the relationship and reveal the biological mechanisms that yield the

phenotype as the result of the genotype. The process of identifying variants in multiple

individuals, comparing and contrasting them to obtain some association and then identify-

ing the biological processes behind the link to form some causality defines one of the core

project flows of a disease study.

68



1.4 Genotyping Data Analysis

The primary data source for any genomic analysis is genetic information. There are many

experimental methods which enable the capture of this information from a biological sample

into digital data. Genotyping is one such method and currently forms the backbone of the

available data in research today for genomic analysis (although other methods such as

whole genome sequencing are quickly overtaking).

In this section, we present the relevant theory needed to understand how genotyped

data is handled and processed for genomic analysis, with a focus on the techniques relev-

ant for generating input data for our proprietary software tool, REMEDY.

1.4.1 DNA Sequencing

In order to perform genomic analysis, there must be some available information about the

DNA sequence of the individuals being studied. To obtain this information, the genetic

material must be read from a biological sample and converted into a digital signal. DNA

sequencing is defined as a process by which a sequence of nucleotides is read from a

DNA molecule. The first sequencing of a nucleic acid molecule was performed on RNA as

sequences were more readily available than DNA; RNA molecules are also single-stranded

and tend to be considerably shorter than many DNA sequences [102]. The first whole RNA

molecule was sequenced by Holley et al in 1965 [103], it was a short molecule of transfer

RNA (Transfer RNA (tRNA)) approximately 90 nucleotides long.

After the purification of DNA based bacteriophages [102], there was an abundance

of DNA to test new protocols with. In 1968 Ray Wu and Dale Kaiser discovered that at

the ends of the molecules of some types of bacteriophage DNA, the 5’-terminated strands

were 20 nucleotides longer than the 3’-terminated strands. They used DNA polymerase to

fill the single-stranded ends with radioactive nucleotides while measuring which nucleotide

filled each position in the sequence [104] [105]; thus, they succeeded in sequencing 186bp

of DNA. Further improvements were made by priming DNA polymerase so that an oligo-

nucleotide sequence could be read using radioactive nucleotides anywhere, not just at the

ends of bacteriophage genomes [106] [107] [108]. However, these methods still only read

small pieces of DNA and required considerable amounts of analytical chemistry.

Further advances in using electrophoresis through polyacrylamide gels led to separ-

ation and identification of polynucleotides by length, including Sanger’s ’plus and minus’

system [109] [110]. Sanger went on to use the system to sequence the first full genome, a
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bacteriophage known as PhiX [111]. Sanger’s plus and minus system and the Maxam and

Gilbert technique developed in parallel can be considered the ’first-generation’ of DNA se-

quencing [102]; however, the major breakthrough in sequencing technology came in 1977

with the development of Sanger’s ‘chain-termination’ or dideoxy technique [112]. Sanger

sequencing, also known as the "chain termination method", although similar to the plus

and minus system, had a much higher accuracy, robustness and ease of use that led to it

being widely adopted as the primary DNA sequencing method [102].

Additional improvements in the Sanger sequencing method led to the development

of increasingly automated DNA sequencing machines until the first commercial machines

were developed that produced reads of slightly less than one kilobase (kb) [113]. Many

genomes were significantly longer than 1kb hence further techniques to merge multiple

sequenced fragments, such as produced by ’shotgun’ sequencing were developed in the

1980s [114] [115]. This work culminated in the successful completion of the human gen-

ome project in 2002, a colossal effort to completely sequence the human genome [10].

It is important to note that DNA sequencing does not infer the absolute position of the

sequence fragment being read within the whole molecule. Indeed historically determining

the position for a sequence fragment was a laborious task which resulted in an approximate

position that, at its best, could be in a range of 500kb. The human genome project was

an attempt to sequence and link many independent fragments together to form a single

contiguous segment that described the whole human genome [10]. This first ’reference’

genome was, in fact, an amalgamation of many different genomes; the final sequence was

determined by the most common genotype at a given location. The first reference genome

allowed for the first time a genome-wide view of allele frequency in the initial population of

the samples that constituted the human genome project. Importantly, the reference also

provided the first global position for a genotype on the human genome.

Acquiring complete information about a genome would require a complete genome se-

quence with full knowledge of every current variant that exists; this is an impossible task

even without considering that genetic variation is a continuous process. The reference

genome, therefore, provides a ’best guess’ sequence representing the most common gen-

otypes seen at any given position. As new DNA sequences for an organism are discovered,

consensus on the most common reference sequences changes and thus new versions of

the reference sequence must be released. This has resulted in reference genomes being

given version numbers to identify the historical reference genome a given sequence maps

to; the current human genome version is 38 [116].

Today, input nucleotides sequences that are constituted together to form a reference

version for an organism are stored in sequence databases at key global locations by an
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international consortium. The National centre for biotechnology information (NCBI) Gen-

Bank [117] database, the European molecular biology laboratory (EMBL) and the DNA

data bank of Japan (DDBJ) all store public DNA sequences that are replicated between

them.

1.4.2 Defining Genomic Position and Strand

The concept of position on a genome is critical to all aspects of genomic analysis. The

absolute or relative positioning of a sequence allows it to be compared to other sequences

and enables mapping of the sequence to a model of a genome. Defining genomic position

without complete information is a challenge which has been approached in a multitude of

different ways since Watson and Crick first solved the structure of DNA [13]. In order to

biologically define an absolute position on a molecule of DNA, three things must be known:

which end of the molecule to count from, the number of bases to count in from the end and

the strand of DNA if a single nucleotide rather than a base pair is required. When extracting

a sequence, the end position or length of the sequence is also needed.

Orientation and strand when considering DNA is a confusing subject. A single strand

of DNA has an orientation as one end has an exposed phosphate group attached to the

5th carbon atom of deoxyribose, and at the other, a hydroxyl group attached to the 3rd

carbon atom; these are known as the 5’ and 3’ ends respectively. However, when in a

double-stranded configuration, the DNA molecules are orientated in opposite ways so that

from either end there is both a 5’ and a 3’ terminator. When studying DNA from a sequence

perspective, it is useful to display it as an untwisted ladder where the ’sides’ are the back-

bone, and the rungs are the base pairs; this then lends itself to displaying sequence on a

page as two lines of letters. From this configuration, one could count from left to right along

the bases to the desired position; however, the problem remains as to how to orientate the

DNA molecule to the page: which strand is the upper line and which is the lower? We will

hence use the term ’upper’ and ’lower’ strand when discussing a page representation of a

DNA sequence as two rows of corresponding letters.

Early attempts at solving the strand problem named the different DNA strands Wat-

son and Crick [118]. The earliest attempt at this used the cytosine-rich strand of the DNA

molecule of a phage to denote Crick and the cytosine-poor strand as Watson [119] [120].

The assignments were later reversed when Watson was designated as the pyrimidine-rich

strand , and the Crick the purine-rich [121]. The WC system was later applied to tran-

scription where the Watson strand was defined as antisense and the Crick strand as sense

[122]; however, this assignment is meaningless for orientation, as although transcription

moves from 5’ to 3’, this could be read from the upper strand from left to right, or the lower
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strand from right to left.

Arguably, the most popular way of assigning biological strand originated with the Sac-

charomyces Genome Database (SGD), which defines the Watson strand as the strand

which has it’s 5’-end at the left telomere and the Crick strand as its complement [123].

The left telomere was defined based on pre-genomics linkage maps and was consistently

chosen as the short arm. By adding an off-centre centromere point, a chromosome can be

determinately orientated (this of course only works for organisms that have centromeres

on their chromosomes) (Figure 1.13, p.72). Both the NCBI genome data viewer and the

UCSC genome browser also support this view.

Figure 1.13: Methods of linearly orientating DNA. DNA can be untwisted and shown as a ladder-
like, flat surface; the base pairs then correspond to the rungs on the ladder. Displaying
DNA in this way does not solve the orientation problem as the upper and lower strands
are mirrors of each other with respect to the 5’ and 3’ terminators (they are not mirrors
in terms of sequence). Chromosomes can be orientated as they have a short arm
and a long arm that switch at the centromere, allowing for determinate orientation.
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The definition of strand shown above requires a full view of a chromosome to determ-

ine the correct orientation; in reality, sequencing is performed on short fragments. How

then can small fragments be orientated to the correct strand? The human genome project

employed various methods to build overlapping sequences of DNA into one contiguous se-

quence for each chromosome. This process was not sequential and was done in parallel so

that multiple sections of contigs were built up at the same time. When building a reference

genome for an organism, the gaps in the sequence are filled and the existing sequences

are refined; hence the intervening sequences between the telomeres of a chromosome

can change orientation as more data becomes available. The fluid nature of this causes

any strand designation based on the centromeric 5’/3’ method to be tied to the genome

reference version of an organism.

Using the above definitions, we can finally define a genomic position bioinformatically

using the reference genome, assembly version, position from left (short) arm telomere end

and strand. Strand can be specified using the centromeric 5’/3’ method that is tied to a

reference and assembly; however, there are other also other methods to define strand

that we discuss below. When comparing two sequences, it is critical in genomic analysis

that the same system of positioning was used and that both sequences are defined on a

common strand using the same designation scheme.

1.4.3 Defining Variance Using a Reference Genome

A reference genome represents an agreed sequence for an organism that generally uses

the most common sequences in the global population. Many variants may exist for a given

reference position in multiple populations and sub-populations. The single nucleotide poly-

morphism database (dbSNP) is a database of variation that was designed to complement

GenBank as a controlled method of submitting and recording observed variation in different

populations [124]. dbSNP contains both SNVs and structural variation from many different

organisms.

Both SNVs and structural variants can be identified on a reference sequence by a

unique flanking sequence on either side of the variation. Using this method ensures that

even a large deletion or insertion will match to the reference as it is essentially reduced to

a single nucleotide to match the flanking sequence. A submitted observation of variance to

dbSNP is required to be at least 25bp long in terms of the experimental assay; the actual

submission must be at least 100bp in length. Any padding required must be obtained from

the reference sequence. The submission process also requires geographical population

information to be provided so that the variant can be assigned computed allele frequencies

[124] [125] [126].
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New submissions to dbSNP are given a unique SNP ID number (ss# or ssID). The

flanking sequence is used to align each submitted variant to a reference genome using the

Basic local alignment search tool (BLAST) and MegaBLAST [127]. If several ss numbers

map to the same position, they are clustered together and given a unique RefSNP ID

number (rs# or rsID). ss groups of only one are still assigned an rsID; new ssIDs can then

be added to the cluster as they are submitted. For each build of dbSNP, all RefSNPs

are recomputed and aligned against multiple versions of the reference genome. RefSNPs

during this process may be merged as a result of co-localisation with the lower RefSNP

number taking precedence [124] [125] [126]. Submitters to dbSNP can arbitrarily submit

variations on either strand of a DNA sequence. When building a RefSNP cluster, the

convention is that the ssID with the longest flanking sequence is used to set the orientation.

Once the orientation is set, a comprehensive set of alleles for the locus is calculated [124]

[125] [126].

The major or ref allele for an rsID is defined as the sequence reference allele, the

minor or alternate alleles are the calculated variant alleles defined during the build process

of dbSNP [124] [125] [126]. Both ref and alt alleles have allele frequencies in different

populations; the Minor Allele Frequency is a commonly used term that relates to the allele

frequency of an alt allele for a given population [128].

1.4.3.1 Sequence Ambiguity

Some variants have Ref and Alt nucleotides that are a complement to each other such as

A/T and C/G. When comparing an observed genotype of T for example, to a variant A/T, it is

impossible to know whether the observed genotype is the Ref or the Alt and consequently,

it is also impossible to assign strand. These are known as Ambiguous SNVs; they can

be problematic in genomic analysis if the flanking sequences are not used to orientate the

variant to the correct strand.

1.4.4 Strand Designation Schemes

1.4.4.1 POS/NEG (+/-)

The POS/NEG or +/- strand designation scheme reflects the 5’/3’ centromeric biological

strand designation of the subject sequence or variant. Because 5’/3’ strand designation

depends on the reference to which the sequence is mapped to, to adequately describe a

sequence designated in POS/NEG requires the reference genome and assembly version.
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+/- may also refer to the HapMap project [129] 5’/3’ designations, which were an early

attempt to give consistency to strand; care should be taken not to confuse the two. Se-

quence alignment tools such as BLAT [130] will provide the position and POS/NEG strand

designation for a given sequence. The genotypes for POS/NEG designated sequences are

generally encoded as GATC letters.

1.4.4.2 FWD/REV

The forward/reverse (FWD/REV) strand designation scheme is an internal system used by

dbSNP to denote variant orientation. The submissions that make up a RefSNP are re-

solved using BLAST to a contig sequence and finally, a position on the reference genome

during the build process of dbSNP. Each ssID will, therefore, have an orientation with re-

spect to the reference genome. When constructing a RefSNP, the ssID with the longest

flanking sequence is chosen as the orientation for the cluster; FWD designates the orient-

ation is on the + or forward strand, while a REV or reverse designation specifies that the

orientation is on the - strand. All ssIDs are subsequently re-designated to represent their

orientation with respect to the RefSNP [126].

To summarise, RefSNPs have a FWD/REV orientation with respect to a reference

genome, and ssIDs have a FWD/REV orientation with respect to the RefSNP. RefSNP

FWD/REV designations can change between builds of dbSNP; consequently, a variant

described using FWD/REV should include the reference genome, assembly version and

dbSNP build number. The genotypes for FWD/REV are generally encoded as GATC let-

ters [126].

1.4.4.3 TOP/BOT

Both the POS/NEG and FWD/REV designation schemes ultimately rely on the biological

strand assignment. The designation derives from a reference genome and so is perman-

ently tied to the assembly version. While convenient for analysis, these schemes invite

error as it requires sequence variant data to be always paired with meta-data describing

the source reference, version and dbSNP version in the case of FWD/REV. In real-world

data, this information can be lost or inaccurate. Furthermore, although the human gen-

ome reference is relatively stable and well characterised, other less developed genomes

for species such as Zebrafish have a much higher rate of release and a significantly higher

proportion of change within those releases [131] [132]. It is not uncommon for whole sec-

tions of chromosomes to switch strand, making correct strand designation more difficult

and consistency of results challenging [133].
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Illumina (The industry leader in sequencing technology) developed an internal strand

designation known as TOP/BOT [131]. Rather than referencing evolving public databases

such as dbSNP and reference genome versions, Illumina developed a method to consist-

ently designate strand based on the target sequence or variant and its surrounding con-

textual sequence alone. Despite the designation terminology, TOP and BOT do not have

any connection to the 5’ or 3’ strand; instead, the strand assignments are fixed for different

combinations of variant. The scheme is primarily aimed at SNVs however, there are provi-

sions in designation for structural variants, however, they will not be discussed here [131]

[132].

A variant which has a ref of A or T and an alt of G or C respectively is known as an un-

ambiguous variant, i.e. the alternate allele is different regardless of the strand designation.

In the case where the reference is G or T and the variant is C or A respectively then it is

unknown, which is the ref and which is the alt without first knowing the strand. The simplest

case of determining strand in TOP/BOT is with unambiguous variants, where a fixed strand

designation is called for each combination of unambiguous letters (Table 1.1, p.76). For

ambiguous cases, the surrounding sequence is used to determine the strand designation;

the sequence from positions n-1 and n+1 bases away from the target variant is read until

an unambiguous pair is encountered, strand designation is then set from this pair instead

(Figure 1.14, p.77). This process produces the same results as long as the local sequence

remains the same; this makes the scheme ideal for highly variable genomes [132].

TOP/BOT strand designation is important to understand as it is the internal represent-

ation of all genotyping data in Illumina proprietary software (the primary input source for

the REMEDY toolset). Genotypes designated as TOP/BOT can be encoded in GATC or

AB. Illumina AB encoding refers to another internal representation scheme for genotypes

that uses the Allele A and Allele B designations shown in Table 1.1, p.76. to encode a

genotype as A or B rather than the source encoding GATC. This is done so there is no

confusion regarding whether the source GATC is the original SNV or the ’walked’ SNV pair

in ambiguous variant cases.

SNP Strand Designation Allele A Allele B

G/T BOT T G

A/G TOP A G

C/T BOT T C

A/C TOP A C

Table 1.1: Strand and allele designations for unambiguous SNPs in the TOP/BOT strand designa-
tion scheme.
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Figure 1.14: Sequence walking method for determining strand when given an ambiguous SNP in
the TOP/BOT strand designation scheme. Sequence pairs are considered moving
outwards until an unambiguous pair is found.

1.4.4.4 DESIGN

Genotyping microarrays have oligonucleotide probes which match a target sequence so

that a target variant can be read. Each probe is designed to a biological strand based on

its thermodynamic stability and hybridisation characteristics.

While not a designation scheme in of itself, Illumina stores probe variant information

internally in what they call DESIGN designation. The DESIGN scheme indicates that each

probe is designated to + or - depending on the strand to which it was designed; all alleles

are then shown based on the designed designation. Each probe will also have an inherent

TOP/BOT designation and a FWD/REV designation along with the genome version and

dbSNP build number used for the FWD/REV and +/- designation [131].

1.4.4.5 Converting Between Schemes

For most bioinformatic data flows, it is required to orientate genotyping data to a single

strand before further processing. To convert data to a target strand in one of the encoding

schemes described above, all variants called on the opposite strand must be complemen-

ted to the target strand when DESIGN designated. For example, three microarray probes

in DESIGN are listed as TOP/FWD, TOP/REV and BOT/REV; the genotypes for the three

probes are AC, AG and TC. We currently have a mix of strand designations as the geno-

types are designated as DESIGN, to re-encode the data to TOP, we would need to comple-

ment the BOT genotype to flip it to TOP. In this case, the genotypes would become AC, AG

and AG. To convert to REV encoding the first genotype would need to be flipped yielding

TG, AG and TC and so on.
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1.4.5 Genotyping

Since the development of Sanger sequencing machines, there have been several break-

throughs in sequencing technology culminating in Whole genome sequencing (WGS), a

high-throughput method which can completely sequence a genome [134]. However, WGS

is a relatively new technology and is still costly, time-consuming and often unnecessary for

many forms of genomic analysis. When performing comparative genetic analysis, the most

likely informative portions of the genome are locations where genetic variance is already

known to exist. Using databases such as dbSNP, it is possible to identify a small subset of

genotypes from a reference genome that are potentially informative for the analysis being

performed. Many methods to obtain genotypes without direct sequencing were developed

in the years between Sanger sequencing and WGS; these are collectively known as geno-

typing [102].

Many common problems in genomic analysis require a set of specific variants to be

genotyped. For example, a researcher may want to compare the variance in specific areas

of the genome to reveal potential causal variants in disease, or they may want to diagnose

disorders in a patient by obtaining their variance in a specific gene and comparing it to

previously identified causal variants. In these cases, the reference genome and previously

identified variants can be used to create a set of target markers which, when read, will yield

enough information to complete the project goals but at a reduced cost when compared to

sequencing.

1.4.5.1 Microarray Technology

The most widely used genotyping technology in use today is DNA microarray technology.

There are several different types of microarrays; however, they all follow the same basic

principles. A single strand oligonucleotide probe is designed so that it maps to one area

of the reference genome where the target genetic variant resides, and so that the variant

to be read is the next letter in the sequence. The probes are attached to a processing

substrate during manufacturing as a pre-prepared unit. A genotyping run begins with the

preparation of the target DNA sample where it is denatured and fragmented before being

flowed in solution over the processing substrate. The DNA fragments only hybridize to

the probes where the sequence matches, hence theoretically, each probe only captures

DNA fragments from the target marker region only. When the fragments hybridize, they will

overlap by differing amounts depending on the size and relative position of the overlap to

the probe. The probes are then extended with a single fluorescently tagged nucleotide that

is the complement of the next nucleotide in the overlapping fragment. The next letter is
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the target variant therefore the tag is effectively reading what letter the fragment has in the

sequence for that position. The fluorescent signal is then read and interpreted to obtain a

base call for each allele at the target variant position (Figure 1.15, p.79) [135].

Figure 1.15: The Illumina BeadChip genotyping process. Oligonucleotide probes are designed so
that they match the immediate preceding sequence of a variant, and are attached
to beads mounted on silicon. DNA fragments hybridise to the probes as they are
passed over in solution. The probability of hybridisation is related to the size of the
matching sequence overlap between the probe and the fragment. The diagram shows
an overhang of just one nucleotide but, in reality, the overhang is variable in length as
the fragmentation process produces random sized sequences. The probes are then
extended using fluorescent tagged nucleotide that are the complement to the next
letter in the fragment sequence; this effectively reads the target variant due to the
design of the probe. The tags can then be read by an imaging machine to determine
the genotype of the variant.

1.4.5.2 Probe Design

In the context of microarrays, a probe can be defined as an engineered oligonucleotide

that is designed to target a specific locus on a genome. Theoretically, a perfect probe

will only hybridise with a DNA fragment that has a sufficient overlapping sequence that

matches the compliment of the probe exactly. If the rest of the read processes is also

perfect, the nucleotide which is next in the sequence after the probe end will be read with

100% accuracy [136] [137].

In reality, the hybridisation process results in multiple sequences binding to the same

probes causing noise in the read signal. A probe must be designed with a length that is

sufficient to bind to only one location on the genome, and so that other similar sequences

do not bind by accident; however, long probe lengths also decrease the binding affinity of

a sequence due to thermal considerations, so there exists a balance. Importantly, probes

are also affected by variation in the target sequence; variation in the marker being read is

desired as it is this data which is to be captured for further analysis, however, variation at

other positions in the probe can affect binding affinity as well as causing similar sequences
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to bind by accident. Structural variants; insertions, deletions and indels can also cause

probe hybridisation to fail or bind to unexpected sequences in undetectable ways [136]

[137].

New genetic variation is being discovered continuously therefore even though probes

are designed with the latest variant and sequence databases in mind and are assessed

for local variation which could affect the hybridisation quality, the nature of variation makes

building a perfect probe impossible. For this reason, microarray manufacturers will often

release updates to their arrays that remove faulty or poor-quality probes throughout the

lifetime of the product.

1.4.6 Illumina Genotyping

Our software tool REMEDY is targeted to work with Illumina genotyping file outputs and

encoding schemes. We also use Illumina Infinium bead chip technology in our case studies

presented in this thesis; therefore we will discuss Illumina technology in more detail in this

section.

1.4.6.1 Bead Chip Technology

Illumina bead chip technology is a proprietary method of manufacturing and reading DNA

microarrays. To manufacture a bead chip, a silicon wafer is etched so that it contains mil-

lions of evenly distributed wells approximately 5.7 microns apart. 3-micron silica beads are

next arranged on the chip so that they lie within the wells; the pre-manufactured oligonuc-

leotide probes are then attached to the beads so that each bead has thousands of copies

of a single probe. After hybridisation and enzymatic extension, each bead’s light signature

is read with a laser which can later be interpreted as a base call for each allele [138].

The raw light intensity signals that result from the laser reading the fluorescent tags at-

tached to the microarray probes are stored in IDAT raw intensity files. To convert IDAT files

into base calls, they must be processed by Genome Studio [139], Illumina’s free propriet-

ary software for managing genotyping data from their genotyping products. The IDAT files

are read by assessing the colour and intensity of light on each bead. Illumina technology

is designed to process two colours of fluorescent probe tags and hence, is capable only of

reading two different signals and is therefore optimised for bi-allelic variants. One possible

allele is tagged red and the other green, when reading together on the bead they produce

different colour combinations dependant on how much of each allele is represented on the

bead. For example, if the red represents T and green C, if the signal is red then this shows
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a clear allele of TT; if the signal is green this shows CC, and a colour mixture would show

mixed alleles of TC. When combined with a map of which beads map to which probes, the

intensity calls can be associated with the variants, encoded and outputted to a tabular file

format for further processing [138].

1.4.6.2 Manifest Files

Illumina manifest files are available from the manufacturer’s website and contain essential

probe information for each microarray product listed. Each manifest file contains inform-

ation for every probe referenced on the microarray with its internal id, sequence, genome

build, alleles and strand designations. The manifest file can be thought of as a bead chip

design document; it is critical when analysing genotyping data for consistency, quality and

for linking to meta-data sources such as dbSNP.

1.4.6.3 Genome Studio

Genome Studio [139] stores genotyping projects in the TOP/BOT AB format; however,

there are several other available output formats, strand designation schemes and genotype

encodings which a user can export data to. The export format and parameters are often at

the discretion of the laboratory technician performing the analysis and can be a significant

source of inconsistency when merging genotyping datasets.

There are two primary file formats, Final Report and Matrix. Matrix format is a simple

format detailing one variant per row with an id column followed by one column per sample

for genotype data; this format contains the minimum amount of information required to re-

port genotyping results (Figure 1.16, p.82). Final report format details one variant/sample

combination per row allowing for extra columns detailing additional probe or genotype

meta-data such as quality score or probe information; this is at the cost of much larger

file sizes (Figure 1.17, p.82).
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Figure 1.16: Example of a Illumina matrix report.

Figure 1.17: Example of an Illumina final report.
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1.4.7 Multi-allelic and Structural Variation

Illumina microarray probes are read with either red or green fluorescent tags and so are

only able to detect the relative mix of two different bases in a sample at a given locus. An

optimal probe design would incorporate only bi-allelic SNVs however, design considera-

tions and error based on changing variant information results in probes that target tri-allelic,

quad-allelic or structural variants.

Tri-allelic and quad-allelic SNVs are difficult to process with a two-way tagging system

and are therefore generally unsuitable for accurate genotyping on Illumina microarrays

[140]. Genetic variance data changes as new submissions are made to dbSNP resulting in

some SNVs initially classified as bi-allelic before being re-classed as tri or quad in a later

database version; they can be initially included on a microarray design as a bi-allelic SNV

before being upgraded at a later date.

Structural variation can also be read on a microarray by interpretation of one or more

probes that target different points of a structural variant. For example, a deletion results in

a genomic locus changing from a G to a T, this can be used as evidence that the sample

has a structural variant over the reference even though the exact variation has not been

sequenced. This methodology is problematic as it is only circumstantial evidence and

can be easily confounded by other variants in the same position. Furthermore, genomic

regions where structural variant exists can be a factor in hybridisation performance and

cause noise from non-specific DNA hybridisation [141] [142].

1.4.8 Data Consistency and Merging

Genotyping data is generated in batches, often by an external lab. The Genome Stu-

dio export process (unless strictly specified) can be different dependant on the lab or lab

technician that is carrying out the analysis; therefore, batched data must be checked for

consistency and merged as a critical first step in genotyping based genomic analysis. As

a matter of standard practice, data must be checked for the correct genotyping chip (in-

cluding version), genome build, encoding scheme, strand designation and output format.

Ideally, all of these variables should match across batches.

It is becoming increasingly common for large-scale genotyping analysis projects to

source data from multiple project sources, including both private and publicly available

data. Inadequate consistency checking and incorrect merging processes can result in

widespread errors in downstream analysis.
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1.4.9 Positional Cloning

Positional cloning has been one of the most successful methods used to enrich the geno-

type to phenotype model for an organism. Positional cloning uses both in vitro and in silico

methods to find associations genomic regions and phenotypes (primarily in disease).

There are two principal methods of detecting disease association. Direct sequencing

attempts to identify a protein linked with a phenotype that can then be sequenced to find its

amino acid code. The protein sequence is then mapped to a gene so that it can be char-

acterised [143]. So-called reverse sequencing or positional cloning attempts the opposite

approach whereby comparative analysis of phenotype carrying samples vs non-phenotype

carrying samples is performed independently of any functional knowledge of the pheno-

type being studied. In this way, regions of genetic difference between groups associated

with the phenotype can be identified and studied ‘position first’ with no previous knowledge

about the genomic region needed.

The areas of interest identified via positional cloning are known as Region of interest

(ROI). Identifying ROIs from positional cloning is one of the most common applications of

genomic analysis. ROIs are vital as they identify genomic regions which have some causal

relationship with the target phenotype and provide a focus for further analysis. There are

two main methods of positional cloning: Association studies and Linkage analysis, both

are discussed in more detail below.

1.4.9.1 Linkage Analysis

Linkage analysis is a form of association that uses genotyping data from families combined

with a family tree and trait inheritance model to reveal markers which tend to be inherited

together. If an unknown locus associated with a disorder is included as part of the set

of input markers, then a region of interest can be inferred from which markers tend to be

inherited with the unknown trait locus. The term linkage refers to the relationship between

the distance between two markers and the probability that they will be split by recombina-

tion and thus not be inherited together. The closer two markers are, the less chance of a

recombination point between them; therefore, the larger the chance they will be inherited

together. If this information is combined with a family tree and a model of the inheritance

pattern of a trait including penetrance, associations can be drawn between markers and

the target trait [88] [144].

Linkage analysis is used in the study of rare diseases where well-defined families exist
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that show the explicit inheritance of a disease phenotype; it is a powerful technique that has

been used extensively for positional cloning in genetic analysis. We do not discuss linkage

analysis in more detail as the technique was not used in our case studies presented in the

results.

1.4.9.2 Association Studies

Association studies are a form of genetic analysis where the genetic information of a set

of samples is compared to discern if, at any position, one sample or group of samples are

genetically significantly different from each other. In association analysis, the dependant

variable can be qualitative or can be continuous (quantitative). For qualitative variables,

the most common study design is to have a binary case/control dependent variable such

that the target trait exists exclusively in the case group while the control group forms a

cohort of ‘normal’ participants with respect to the target trait. For quantitative analysis, one

or more variables can be used to perform classical association testing such as regression

and T-testing. Importantly, non-disease traits (e.g. ethnicity) might also associate with a

particular genetic locus but not directly cause disease if those non-disease traits are asso-

ciated with disease through mechanisms unrelated to that genetic locus such as population

stratification. These traits must be controlled for during analysis to obtain accurate results.

Genome-wide association studys (GWASs) are a significant category of association

studies that search for association across the whole genome and have been instrumental

in identifying disease-related genetic variants [145]. They are used for positional cloning

when the input dataset contains unrelated samples and are therefore unsuitable for linkage

analysis. GWAS studies rely heavily on the number of cases and controls in the study to

yield significant results; the total number of cases and controls as well as the proportions

of cases to controls, affect the study power, whose requirements can be calculated from

the estimated effect size of a trait in a population [146]. With common diseases such as

diabetes, this may require many thousands of samples to achieve sufficient sample power

while rare diseases generally require fewer samples to reveal significant markers. With rare

diseases, the rarity, correct diagnosis, identification and collection of samples can make

gathering sufficient numbers for a study challenging. Both rare and common diseases

often require international collaboration and pooling of samples to achieve genome-wide

significance for potential causal variants [145].

For GWAS the primary source of biological input data is either whole-genome sequen-

cing data or genotyping data. Other relevant biodata about the patient and phenotype

data relating to disease meta-data such as progression or sub-typing may be collected and

used to refine GWAS results further. GWAS have been traditionally performed with data
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from relatively low-cost bead-chip genotyping and have been very successful in identifying

associated loci in rare diseases.

The success of a genetic association study depends on good study design, marker

selection and quality control protocols [147] [148] [149] [150]. Our REMEDY software tool

was designed to prepare data for GWAS and we also present a GWAS as a case study

in our results section; hence, we present some basic terminology and theory for standard

GWAS protocol in the sections below.

1.4.9.2.1 Basic Allele Testing Tests for genetic association in GWAS are performed

using SNVs; the data for each SNV can be encoded as minor allele a and major allele A.

The ref allele and alt allele for n individuals for a single marker can be represented in a 2x2

contingency table against cases and controls (Table 1.2, p.86).

An allelic association test can be performed by applying a chi-squared χ2 test for inde-

pendence of rows and columns; the null hypothesis is that there is no association between

the alleles and the target phenotype. The chi-squared test was developed in 1900 by Karl

Pearson [151]; It is considered the standard statistical hypothesis test when comparing

categorical data. When applied to an allele count contingency table, a test value can be

obtained by the summed differences between the expected outcome of no association vs

the actual association (Equation 1.1, p.86) [147].

Allele a A Total
Cases m11 m12 m1•

Controls m21 m22 m2•
Total m•1 m•2 2n

Table 1.2: Contingency table for case/control status versus major/minor allele

E[mij ] =
mi•mj•

2n

χ2 =
2∑

i=1

2∑
j=1

(mij − E[mij ])
2

E[mij ]
(1.1)

P-values are a measure of the statistical significance of results in hypothesis testing. A

p-value is the probability that the observed difference (or a quantitatively larger difference)

between groups would have occurred if the null-hypothesis is in fact true (i.e. there is really

no difference). A p-value of 1 represents certainty that the null hypothesis is correct; in
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contrast, a p-value of 0 represents a complete rejection of the null hypothesis. By setting

a threshold value α we can define the point at which the null hypothesis is rejected. By

convention, this is usually set to 0.05 or 0.01 (5% or 1% chance that the observations were

due to random chance and not a true rejection of the null hypothesis respectively).

In a GWAS, the concept of Bonferroni correction [152] must be applied to calculate a

α threshold as multiple statistical tests are being performed simultaneously on the same

dataset (per marker χ2 testing). Consequently, given the large number of markers present

in GWAS, the p-value thresholds used for significance are much lower than in other set-

tings. The number of markers used in a GWAS varies on the study, therefore, one would

assume that the α threshold is study dependant; however, there has been a significant

amount of research performed in this area that has resulted in a threshold of P < 5× 10−8

being selected as the standard for GWAS [153] [154] [155] [156]. The threshold is based

on the theory that there is a finite number of loci in the genome; so if millions of markers

are used, some of them will identify the same causal locus. The threshold of P < 5× 10−8

is therefore based on an estimate of the number of loci in the genome.

The χ2 test values can be converted to a p-value by sampling from the χ2 distribution for

one degree of freedom (Our contingency table is 2x2 for a basic allele test). The p-values

for all markers can be thresholded using a Bonferroni corrected α threshold to find markers

which are significantly associated with the case samples versus the control samples.

1.4.9.2.2 Linkage Disequilibrium Non-random associations between two or more ge-

netic loci are referred to as Linkage disequilibrium (LD). LD exists as a consequence of

several factors but results in the linked inheritance of the loci. Much in the same way as in

linkage analysis, specific combinations of markers form haplotypes that tend to be inher-

ited together. Association studies are often performed on genotyped data which is indirect

association as the associated SNVs are unlikely to be directly causative for the phenotype;

however, SNVs are present with such high density on microarrays that some are likely to

be in LD with an underlying causative variant. Associated SNVs in a GWAS conducted on

genotyped data are consequently indirect evidence that the SNV or another variant in LD

with the SNV is causative for the target phenotype [147].

1.4.9.2.3 Quality Control The basic allele test is a simple statistical test that is sens-

itive to errors in input data. Erroneous data can produce noise in the form of spurious

associations that can be misleading and hide any real associations in the data. Strict qual-

ity control methodology must be applied to GWAS data before any statistical association

testing is performed so that signal to noise ratios and false positives are minimised [147]
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[148] [149] [150].

1.4.9.2.3.1 Call Rate Call rate is a concept directly related to the experimental qual-

ity of genotyping data. When a genotyping platform scans a microarray, a miscall can oc-

cur for many reasons; these are represented by ’NC’ or ’- -’ in the output file. Call rate is

defined as the proportion of called genotypes versus non-called genotypes. Call rate filter-

ing can be applied by marker or by sample; samples with a low call rate may indicate that

something went wrong with the sample (examples include contamination or bad pipetting),

markers with low call rates may indicate a problem with the probe design. By filtering input

data by call rate on both sample and marker, potential sources of experimental error are

minimised.

1.4.9.2.3.2 Minor Allele Frequency Filtering of low Minor allele frequency (MAF)

markers can also protect against sources of experimental error. Consider a marker which

has GG called for 9,990 samples and GT for 10 samples. There is a probability that the

GT calls are real, but there is also a probability that they are miscalled. The threshold of

MAF at which calls are considered erroneous varies depending on the project; if the study

phenotype is rare, aggressive filtering risks losing the markers which are causative but,

with more common disorders, is it more likely that more common SNVs are causative for

the phenotype, and therefore, low MAF can be excluded relatively safely.

1.4.9.2.3.3 Hardy-Weinberg Equilibrium In a large, randomly mating, homogen-

ous population, a locus should have probabilistically stable combinations of major and

minor alleles from generation to generation dependant on a minor allele frequency. Mark-

ers which deviate significantly from the model are said to be out of Hardy-Weinberg equilib-

rium (HWE). HWE is another tool for detecting potentially erroneous data in much the same

way as MAF filtering, the same limitations and dangers of filtering out real associations also

apply [157] [158].

1.4.9.2.4 Principle Component Analysis Principal component analysis (PCA) is a

statistical procedure that converts sets of variables which have a possible correlation into

sets of linear uncorrelated values called principal components. The transformation is

defined so that the first principle component contains the most variation possible and so

on for the next principle component until the maximum number of components specified

for the transformation is reached [159]. PCA is a useful tool for viewing variance in high-

dimensional data; by plotting the primary principle components against each other, a large
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proportion of the variance in a dataset can be viewed in a small number of variance dimen-

sions. This technique is known as dimensionality reduction.

PCA can be used to plot the genetic distance in data by reducing the variance present

in a large number of markers down to two or three dimensions of variance. The Euclidean

distance between two samples on a plot of the first two or three principal components

shows how genetically different they are; this can be useful when grouping samples by

their ethnicity [160]. Associations in cases versus controls can be produced by their natural

ethnic separation reflected as genetic distance; this can hide true associations and must

be controlled for in a GWAS.

1.4.9.2.5 Imputation Many GWAS are performed on genotyped DNA samples as WGS

for large-scale studies is still prohibitively expensive for many research groups. Genotyping

is still informative for GWAS as a significant association for one SNV implies that other

unobserved variants on the same haplotype or those in LD may also be causative for the

target trait. Indeed, historical studies of <10,000 markers have been very successful in

identifying genes responsible for disease [161].

Imputation seeks to increase the resolution of genotyped data by imputing missing

genotypes using the both the directly observed genotypes and an ethnically matched ref-

erence genome. A statistical prediction model is used to infer missing genotypes that can

fill in gaps in unobserved genomic regions [162]. Modern genotyping microarrays have

>1,700,000 markers defined on them [163]; imputation can increase the marker density to

>10,000,000 [162].

1.4.9.2.6 Q-Q Plots Quantile-quantile (Q-Q) plots are 2-dimensional charts that plot

values from two probability distributions [164]. The purpose of the Q-Q plot is to show

graphically if the two datasets come from the same distribution. Two datasets on a Q-Q

plot are said come from the same distribution if the data points fall along the line x = y.

Q-Q plots can be used when analysing the quality of multiple statistical tests from which

p-values have been obtained for expected and observed results; such as a basic allele test

that has been applied to many SNVs.

An association study performed between cases and controls where there is no asso-

ciation between the target trait and the data will yield a situation where the expected and

observed p-values are from the same distribution and thus, will cluster along the line x = y.

In a typical positive association study, there will be a proportionally small number of SNVs

that have an associated low p-value; therefore, the Q-Q plotline will follow x = y except at
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the extreme top right of the plot (lowest p-values if reversed) where there will be a skew to

the observed values.

Q-Q plots can be used to identify association test results with large numbers of false

positives. Datasets such as these will have large skews away from the x = y line, showing

that there are many p-values with apparent significance. So many significant associations

in a genetic association study are indicative of noisy data with a poor signal to noise ratio.

1.5 Graph Visualisation

A graph structure represents a set of related objects; nodes represent the objects them-

selves while vertices represent the relationships, the total set of nodes and vertices defines

a graph. Graphs are useful ways of representing data as they can be traversed mathem-

atically using graph theory concepts; they are also useful in the visualisation of connected

data. A class of algorithms that can generate visually pleasing graphs are known as force

directed graph algorithms; they aim to present nodes so that as many vertices are the

same length as possible and there are as few crossovers as possible (Figure 1.18, p.91).

The primary function of regulatory chromatin looping in the genome is to bring distal

genomic elements such as enhancers and promoters into proximity so that they can act

on each other to regulate gene transcription. If the genomic elements are represented as

nodes, we can say that two nodes are connected if they have some relationship in terms

of physical proximity with each other, whether this is positional proximity on the genome

or proximity as a result of chromatin looping. Force-directed graphs are an intuitive way of

visualising chromatin confirmation experimental data.
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Figure 1.18: Example of a graph of force-directed nodes. The nodes are placed so that none
overlap and the edge lengths are equal as much as possible taking into account all
other graph generation parameters.
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Chapter 2

Methods

2.1 Genomic Analysis Methodology

We present here our general methodology for conducting the bioinformatic portion of gen-

omic analysis projects.

2.1.1 Golden Rules

Research projects have an inherently dynamic nature, and unless the concepts presented

below are observed, a genomic analysis project can quickly become muddled and un-

structured. Here we describe several core computer science principles and how they are

especially important in genomic analysis.

2.1.1.1 Version Control

Version control is a central tenant of professional programming. It not only allows tracking

of changes in a project but provides a framework for multiple people to work concurrently

and commit their changes to the source project without ambiguity about which changes

take precedence. Version control frameworks also allow for multiple branches of a project

to exist in parallel with methods to merge and split development branches.

The dynamic nature of genomic analysis makes correct version control across a project

essential. It is advisable to apply version control not only to any source code developed

for software tools but also to the data analysis pipeline, documentation, notes and results;
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this ensures an absolute time-mapped record of all work undertaken in a project. Changes

in data pipeline design occur regularly in a genomic analysis project either in response to

problems or to changes in experimental design; it is essential to know which version of a

pipeline a result set was generated from, version control provides a structured framework

to achieve this.

Git is a distributed version control system that was developed by Linus Torvalds in

2005 for the development of the Linux kernel [165]. It is an open-source project and the

most widely used of all source control systems; we therefore selected Git as our source

control framework. Git can be managed from the command line, or from a program with

a Graphical user interface (GUI); we selected GitKraken as our Git GUI as it is a popular,

free program with a rich feature set [166].

2.1.1.2 Naming Conventions

Another subject core to professional programming practices is naming conventions. While

this traditionally applies to program code, in genomic analysis, this can be applied across

the workflow as a whole. The premise of naming conventions is that functions, variables

and filenames follow a strict process of naming so that someone who reads another’s work

can immediately understand the type and function of the piece code. Names must balance

being concise with providing maximum information as to the type and function of the data

or code to which the name refers [167].

In genomic analysis, we apply naming conventions beyond code to every aspect of

a project. Defining a standard nomenclature for specific data sets, processes, software

tools as well as pipeline code is essential if proper communication about a project is to be

possible. Care should especially be taken when naming datasets and sub-datasets; raw

data will often go through several rounds of quality control and filtering before being used in

multiple downstream workflows. By using good naming convention practice, a downstream

user should be able to tell which raw dataset the data or sub-data he or she is working on

came from and the general steps that were applied to it to reach the current dataset.

2.1.1.3 Documentation

Proper experimental process requires that both planning and methodology be rigorously

recorded as well as any results or changes. Every data pipeline version or software tool ver-

sion must be documented describing the inputs and outputs at each stage of processing.

Version control must then be applied to this documentation so that it follows each change

93



in the underlying code [168] [169]. If for example, a colleague wished to view the version of

the pipeline from which a specific set of results originated from, the user would only have

the full set of information if they could see the documentation from that exact version.

2.1.1.4 Security and Redundancy

Rigorous data redundancy practices are ubiquitous in the data science world as it is often

difficult or impossible to reacquire raw source data. In genomic analysis, the source data

will often be patient data including highly sensitive information such as Deoxyribonucleic

acid (DNA) sequences and medical history. Once information enters the project domain,

it should be securely stored on servers with multiple redundancies both on and off-site.

Redundancy should be provided against both hardware failure and human error.

We suggest protecting against local hardware failure by storing data on disks in a Re-

dundant array of inexpensive disks configuration (RAID) [170]. RAID has several different

modes of which RAID 5 is the most redundant - protecting against disk failures and redu-

cing the amount of space required to implement it; however, RAID 5 has several perform-

ance issues when dealing with large amounts of data. RAID 1 is a simple mirroring of data

that sacrifices space for simplicity whereby data is automatically duplicated to two or more

disks. RAID 0 does not provide redundancy; instead, it specifies that files be split across

multiple disks so that a single disks speed does not limit read performance. RAID 0 can

be combined with RAID 1 resulting in a mirrored and striped configuration known as RAID

10. We recommend using RAID 10 when storing genomic data locally as raw data is most

likely to be written once, yet read many times.

To protect against location-based risk such as a building fire and to mitigate user er-

rors such as accidental deletion, we recommend storing long-term backups of data in one

or more other locations. Online cloud storage or backups stored in off-site safes are two

possible ways of achieving this. Local security can be managed by controlling who has

access to data on servers by implementing strict user control policies. Planning data se-

curity should also take into account local laws such as the recently introduced General data

protection regulation (GDPR) in the EU to ensure that any storage solution meets in the

minimum requirements for sensitive information [171].

2.1.1.5 Repeatability

Repeatability is a core principle of both software development and academic research.

Experimental repeatability ensures that results can be independently verified either with
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the same data or with different source samples to create an independent replicate. It also

allows for internal verification of results and increases confidence in the accuracy of the

results themselves. As well as verification, creating a repeatable experimental framework

requires adherence to good experimental practice, therefore, acting as a test for the quality

of a project design in general.

In genomic analysis, the initial stages of data collection and conversion from biological

data to digital such as the genotyping of DNA samples are generally one-off processes

due to time and cost constraints. The bioinformatic portion of the project, however, can

and should be made with repeatability at its core; to achieve this, all golden rules specified

above must be used to create a well-documented, version-controlled and secure analysis

pipeline that produces good quality, repeatable results. Data pipelines should be portable

and not tied to a single computer or operating system and made open-source where pos-

sible.

2.1.2 Project Planning

Proper planning is crucial to the successful execution of projects in any field. Research

projects, in general, are particularly difficult to plan as they tend to be open-ended, i.e.

although the stages to achieve any initial results can be planned, it is not known where

subsequent results will take a project. In the case of genomic analysis, there is always a

data gathering phase where biological data is processed, and some initial results can be

generated; the storage, organisation and pre-processing of this initial project data can be

pre-planned as there are few unknowns. The type of analysis that is to be performed and

thus the tools that are will be used can also be pre-planned however, because the results

generated are inherently unknown (a hypothesis is based on an unanswered question) it

becomes more difficult to plan beyond the point of first results. Once this stage is reached,

a research project becomes iterative and dependant on how the results support the re-

search question. Are there errors in the results? If they are accurate, what do they say

about the hypothesis?

Agile practices originated as a set of software design and project management method-

ologies. It is an iterative approach to software delivery that promotes incremental delivery

of items rather than everything at the end. Work is broken down into iteration cycles where

tasks are defined from goals which are then prioritised; the software run is then completed,

versioned and documented before any complications, failures or new requirements are

noted before the next iteration is planned [172]. Agile practices can be applied to genomic

analysis to manage the inherently iterative nature of research; and, when applied along-

side the golden rules detailed above, form a comprehensive framework for planning and
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managing a genomic analysis project.

For planning of the bioinformatics portion of a genomic analysis project, it is useful to

think in terms of pipelines. A data pipeline can be thought of as a directed graph of data

which is transformed at specific points. Results can be taken at any point of the pipeline,

but data only flows one way. The input to the pipeline is all of the points at which samples

transition from biological to digital, such as patient history, genetic data or blood work

analysis. The edges of the graph carry data to nodes which are responsible for processing

the data; building out a data graph in a design program such as Microsoft Visio can help

with visualisation and also provide documentation [173]. A complete pipeline design will

be an optimised data flow graph that uses the available source data to produce all results

required to test the specified aspects of a hypothesis. Using a data pipeline as a focus for a

genomic analysis project encourages good project planning practice and ensures that the

project data is always front and centre in the researcher’s mind.

2.1.3 Pipeline Design

Data pipeline design begins with all the points where source data enters a project space in

digital form. It may be that some data must be converted from analogue to digital as is the

case with DNA samples; however, this must be completed before entry into the analysis

pipeline. Identification of all raw digital sources of data as the ‘start’ nodes of the pipeline

is the first stage of pipeline design (Figure 2.1, p.99).

To continue the design of the pipeline from raw data, one must consider the set of res-

ults which are required to answer the questions set by the project. The challenge is then

to fill in the analysis gap between the source data and the results i.e. what transformations

need to be applied to the data and in what order to yield the desired results? Each trans-

formation step can be defined as a node and the nodes are then linked with edges along

the paths that the data will take.

Once all the edges and nodes have been created, the nodes can be scanned for sim-

plification points. If the node requires multiple programs or it requires significant amounts

of splitting or merging, then it may be eligible to be broken it down into smaller steps. This

process is repeated until the pipeline is optimally simplified. Version control is applied at

all points of design.

The transformation nodes can next be filled out by defining which software tools will

be used, the licensing that must be obtained and the versions and operating systems re-

quired to run the software. Further constraints may also be placed on the node resolution
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dependant on the type of genomic analysis performed. The software running within the

node defines node input and output data formats, this usually takes the form of text or bin-

ary encoded data in files which follow a specific standard. Inputs and outputs of connected

nodes must be matched so that only one format of data travels along an edge. Mismatched

inputs and outputs are resolved by including additional processing nodes or by changing

the parameters of the node to change the input or output format.

After input and output matching edges can be resolved to estimate the pipeline storage

and performance requirements. All data inputs will already have an exact or estimated size

in terms of data and the number of samples. Commencing with the start nodes, one can

travel along each edge using the information from previous edges to estimate file sizes and

storage requirements; this step enables proper planning of the redundancy and security

golden rule. Each edge on a graph represents a point at which data will need to be stored

either temporarily for the further processing or more permanently as part of a result set;

in our methodology, we identify edges that have a large storage requirement and seek to

reduce this via compression or by storing the data for less time.

After edge resolution, the estimated data volumes can be used to predict computing re-

quirements at each node. We define at this point a reasonable processing time threshold

for the whole pipeline; for a project to flow correctly, the pipeline cannot take an unreason-

able amount of time to run. What is reasonable depends entirely on the project, resources

and team. For example, In a large team project, it may be deemed that if the pipeline takes

longer than an 8-hour over-night run, then this will cause researchers to be waiting for the

pipeline to finish and thus be potentially wasting time. If the team is small, and the results

take several days to analyse before deciding on the parameters for the next pipeline run,

it may be deemed acceptable for the pipeline to be running in the background for several

days. The computing power required for the project is a balance between cost and the

acceptable run-time of the project.

Once the storage and computing requirements have been appropriately estimated, the

servers and run locations of each node can be defined. Given that software may run

on different platforms, it is possible that the pipeline is run on several different machines

and operating systems. At this point parallelism and batching can be employed to speed up

pipeline runs by running nodes in parallel on multiple machines thus maximising processing

power utilisation and minimising runtime.

In the final design step, we define how data will be summarised into results. Results

comprise two parts, the underlying data and the human-readable report. Often, the human

readable portion of a result set is generated after the fact and is not subject to the same

stringent quality control of a data pipeline. We propose that human-readable reports are

97



generated within the pipeline to the same standards, removing all manual processing pos-

sible. Results communication is an often-overlooked process but is critical to a project’s

success as results in binary data form although accurate are not publishable. Well com-

municated results help drive better feedback from a team and therefore help drive more

focused project iterations. All major presentation programs such as Excel, PowerPoint or

the Google equivalent have programming Application programming interfaces (APIs) that

can be utilised to automated report generation from inside a pipeline.
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Figure 2.1: Example data pipeline for a simple Next generation sequencing (NGS) workflow. The
final result required is defined as a variant report for the input raw sequencing data. A
reference genome and a local copy of The single nucleotide polymorphism database
(dbSNP) were also defined as a requirement to satisfy the results. An interim align-
ment report was also required to check sequencing quality. The three primary steps of
alignment, compression and variant calling were next defined along with the programs
that would be run on each node. The edges were then filled in to link the nodes and es-
timations of redundant and temporary storage were made for each edge. The resultant
pipeline shows that a single high performance Linux server is required that is attached
to a RAID array with at least 60TB of space and a non-RAID capacity of at least 10TB.

99



2.1.4 Pipeline Repeatability

Once the first iteration of the pipeline design is has been completed, it needs to be im-

plemented. One of the principal keys to a successful genomic analysis project is that the

results are repeatable from the raw data. Someone from another team must theoretically

be able to take the pipeline, run it with the raw data and obtain the same results; this en-

sures maximum transparency while ensuring good design and implementation practice is

used.

Repeatability of experimental results is a complex subject, as biological data is inher-

ently noisy, therefore, it is unlikely the same results will be obtained twice. Instead, results

must fall within a distribution defined by the expected model of noise for the experiment.

In computing, for most non-stochastic applications and excluding processor rounding er-

rors (which can be controlled for in code), running a pipeline should yield exactly the same

results every time.

In practice, it is ensuring the code, source data and results can be read, processed and

stored in a platform-independent manner, that is the challenge. If the tools and libraries

used in the pipeline are closed source code or unobtainable, then it will not be repeatable

by another team. If some of the tools used are custom in-house pieces but have not been

made publicly available and user-friendly, then again it will not be repeatable. The same

applies if the pipeline is not portable, if it is tied into a set of servers or a piece of computer

architecture then it will be impossible to run it elsewhere. Repeatability also has significant

implications within a research group; the pipeline will be run many times during a project,

and it must be able to produce repeatable results that do not change when everything is

kept constant. It must also be internally portable as computer equipment can be changed

and upgraded over time. We recommend containerisation of source controlled code to

achieve maximum portability [174] [175] [176].

2.2 GWAS Methodology

We present here our methodology for Genome-wide association study (GWAS) that was

developed during our Steroid-sensitive nephrotic syndrome (SSNS) project that we use as

a case study in the results section. Association study methodology has been developed

and applied extensively in literature; however, in our recent work we encountered several

problems to which there was no viable solution available, this drove us to develop the

proprietary tools presented in this thesis. The Re-coding For Merging of Genotyping Data

(REMEDY) tool required specific alterations and improvements to the agreed standard for
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GWAS methodology in literature to ensure that input data is correctly filtered and formatted

so that maximum value is gained from GWAS datasets when run through the REMEDY

pipeline.

The methodology is built around the rules and pipeline design guidelines set out in the

previous section and includes our REMEDY software tool. We show here only the parts

relevant for application to our reported case study, namely the methodology for projects

utilising Illumina genotyping data only.

2.2.1 Source Data Processing

Genomic analysis for GWAS begins with a sample cohort which will be cleaned, filtered and

merged with other data sources before final association testing. We identify what samples

exist and which data is available for each sample before moving on to any further planning

so that any missing sources can be obtained and there is no unforeseen absent data later

that affects any upstream analysis.

Sample data for the target phenotype will include a DNA sample as a minimum but may

also contain a mix of other sources of data such as blood work, medical records or other

potential co-variate information. Some of these sources will be in a biological form such

as is the case with unprocessed DNA samples and some will already be in digital form.

As we state in our pipeline design philosophy, we seek to convert all biological sources of

information into digital before entry into the data workflow; we therefore at this stage set

out a plan to achieve this.

In comparative studies, the source data owned by the project may not contain control

samples for an association study. It is possible for example for patients’ samples to be

collected for a study and compared to pre-processed controls from another project to save

on the considerable time and cost commitment of generating control data sets; hence, at

this stage any additional required control sets and source data are identified.

2.2.2 Microarray Selection

When planning genotyping, correct bead chip selection is paramount to project success;

our first stage of planning is defining what markers may be informative for a project. For

example, in a diagnostic scan, the variants that need to be tested to examine for a disease

will already be known. In an experiment, the hypothesis may focus on a genomic region

that has been identified in a previous study that must be tested further; in both situations
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the region of interest has already been identified. For a GWAS, the whole genome must

be considered; in this case, the optimal strategy is to define a broad set of markers across

the genome that focus on areas where variation is most interesting such as in genes and

regulatory regions. Study ethnicity must also be considered as many variants have different

allele frequencies in different populations; therefore, if the study cohort is European in

ethnicity, it makes little sense to include common variants from Asian populations. Marker

density or total marker numbers are also key as they increase the resolution of the data.

In large studies, it may be possible to have a manufacturer design a custom chip that

contains the specific markers required for a study, however, usually when designing gen-

otyping pipelines the microarray must be selected from a set of pre-existing chip designs.

When selecting the optimal chip design for a project, a balance must be found between

coverage of the whole genome, specificity to genomic regions important for the study and

ethnicity.

2.2.3 Sample Preparation and Genotyping

After the samples have been collected and the genotyping chip has been selected, the

sample preparation phase can begin. This process is mostly outside the scope of this

thesis; however, it is important to note that we follow the golden rules of naming convention,

documentation and version control at this stage. We assign every sample a sample ID

before being prepared for genotyping which will stay with the sample for the duration of the

project. The sample ID must contain no information that violates data protection (such as

the subjects name), but it must also be as informative as possible. The growing practice

of sending samples away for genotyping rather than analysing samples ‘in house’ makes

this step especially important as the data will need to be sorted and matched to its original

data on return.

We tightly manage sent and returned samples against our sample ID system by group-

ing samples into batches. Illumina genotyping returns data in the form of IDAT files; we

collect these files and assign them to the correct sample ID and batch on return from the

processing lab.

2.2.4 Illumina Base Calling

Once the raw IDAT files from the genotyping process are generated, the results are loaded

into Genome Studio [139] for base calling. The data can then be exported in several

different formats and encoding schemes as described in the introduction. This process
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will generally be undertaken by the lab which performed the genotyping and the raw IDAT

files as well as the data export from Genome Studio will be returned to the research team.

This introduces a source of human error into the project as every lab and lab technician

may have their own method of data exporting. Specifying or requesting the exact export

parameters used to export the data such as file format and strand encoding scheme is

advisable if data consistency is to be maintained. In our methodology, we obtain the raw

IDAT files, performing the load and base calling process internally within the project to

eliminate any source of external human error. We then export all data as an Illumina matrix

file in the DESIGN strand designation scheme. Although the primary strand scheme used

by our pipeline is dbSNP FWD, The DESIGN scheme enables re-encoding to the latest

version of dbSNP and represents the minimum amount of alteration by the Genome Studio

program; conversion to other strand designations is performed by REMEDY.

2.2.5 Data Collection and Merging

Once all data has been converted to digital form, this is defined as the core input for

the data pipeline. We next collect, document and create automated redundancy routines

for all the raw data to ensure that in the event of data loss or project corruption, the

non-repeatable aspects of the project are safe. Data merging is an important aspect of

early data pipeline processing and can be surprisingly complex. For example, genotyp-

ing samples are generally processed on 96 well plates in batches; the data may come

back from the processing lab in pieces and must be checked for consistency before being

merged back together again. Also, the sample genotyping output files will usually need

to be reformatted to a common tabular form to merge additional data such as disease

status or other non-DNA data that is needed for the analysis; this must all be automated,

repeatable, reliable and well documented.

A typical genomic analysis project for GWAS will consist of genotyping data from

samples that form the case-cohort and genotyping data from control samples which may

or may not have been generated by the same project. Additional patient data may also be

available such as medical records which must also be merged with the genotyping data.

Downstream analysis may also require significant amounts of meta-data to be pulled from

databases such as dbSNP to achieve project goals.

We first identify the format, data encoding, strand scheme and designations of all in-

put genotyping data. Association testing requires that all genotyping data be designated

to the same strand, to achieve this the format and data encoding must also match; we

use REMEDY to perform any re-coding or strand designation changes required. After the

genotyping data has been successfully merged, we then clean and format any additional
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meta-data; meta-data handling is dependant on the project specification and will not be

discussed in this section.

2.2.6 Data Integration

The data integration stage is concerned with merging internal project data with required

external meta-data sources such as variant databases. The data pipeline schematic must

be consulted to ascertain if any additional meta-data is required; for example, a future

analysis step may be to compare the allele frequency of cases and controls with that of

different ethnicities, consequently, in the data integration step a requirement to merge allele

frequency ethnicity meta-data from dbSNP is created and implemented into the pipeline.

2.2.7 Data Quality Control and Filtering

Data quality control and filtering is perhaps the most critical step in a genomic analysis

pipeline. After the initial collation, merging and integrating stages, a pipeline has one or

more unprocessed datasets. Many experiments such as association studies are noise

sensitive; therefore data must be appropriately controlled and filtered before being passed

further down the pipeline. Under-filtering increases the signal to noise ratio and increases

the likelihood of false positives while over-filtering may remove real signals leading to false

negatives.

Quality control is dependent on the content of the raw dataset and what primary tech-

niques exist to ensure the data is ‘clean’. We define in our methodology that data quality

control is concerned with cleaning data based only on the data itself and should be in-

dependent of the downstream analysis being performed. Call rate filtering is an example

of quality control as it is dependant on the intrinsic quality of the source data. Data fil-

tering occurs after quality control and is concerned with cleaning a dataset for a specific

experiment. This may result in several filtering sub-pipelines that exist within a pipeline for

different downstream experiments. The goal is to prepare the data so that the optimum

signal to noise ratio is achieved for the target experiment.

We follow the best practice techniques detailed in several key papers for GWAS quality

control and filtering. Zondervan and Cardon (2007) [148] and Clarke et al (2011) [147],

discuss a general protocol for genetic case-control studies that detail use of sample sizing

calculations, χ2 tests, Bonferroni correction for genome-wide significance levels and con-

trol of population stratification to accurately test for association. Pettersson et al (2009)

[149], review marker selection for genetic case-control studies on microarrays. Anderson
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et al (2010) [150], suggest quality control filtering based on call rate, linkage disequilibrium,

identity by state, population stratification, sample relatedness and Hardy-Weinberg equi-

librium (HWE). We combined these techniques with methodology from previous GWAS

conducted within the group [177] to produce our final list of standard quality controls; de-

tails of this can be found presented in the case study in our results section (3.1.11).

Genetic analysis pipelines will generally be run over a wide range of filtering paramet-

ers to help interpret and explore the results being generated. The filtering stage of the

pipeline must be sufficiently parameterised so that it can be efficiently run with many dif-

ferent configurations. The pipeline and subsequent parameterisation are documented and

versioned in a way that enables easy identification of the specific filtering configuration

used for a result run.

2.2.8 Variance Control

Variance in variables which are being directly measured for results is essential, otherwise,

an analysis has no informative value. However, to properly measure a target variable, we

must first control for the variance in other co-variants. Controlling for co-variants removes

the dependency on any variable except the one being measured so that any signal obtained

can then be attributed to the target variable.

GWAS analysis pipelines are comparative, and therefore co-variance minimisation is

a common processing step. For example, we may want to control for a specific variable

contained in the patients medical records so that this relationship is not shown in results.

Another classical example in association studies, is variance control for ethnicity in samples

to make sure that the results are not merely showing the differences between nationalities

and obscuring any real disease association signal.

We as standard in our methodology, control for ethnicity using Principal component

analysis (PCA) analysis [150] [177] and with numerical regression for association testing

[147]. Other co-variant analysis may also be performed dependant on the source data

available and the research question being answered.

2.2.9 Further Analysis

After all our initial steps have been planned into the pipeline, the data can be fed into one

or more experiments from which results can be generated. Further analysis is dependent

on the research questions and the type of analysis being conducted, it is mentioned here
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because planning for result generating experiments is an essential step in pipeline design

and because our second tool described in this thesis, LOOPER, was developed as a result

of further analysis experimental requirements.

2.3 REMEDY

GWAS are an essential tool for identifying trait-associated variants; in a qualitative GWAS

they compare a case-cohort that have a trait to be considered and compare them against

a control-cohort which does not have the trait. By statistically comparing the genotypes

of the two cohorts, genetic loci can be attributed to an association score to describe how

‘different’ the case set is from the control set at that locus. To obtain the statistical power to

detect significant associations, there must be sufficient numbers of cases and controls in

the study (a 1:1 ratio being the most efficient). Increasing the number of cases in a study

to improve power is preferable; however, often it is impractical to do so, therefore, it is

often the number of controls that is increased as these can be obtained from other studies

or public sources [148]. Large case and control sets can be difficult to generate in one

batch or even in one project, resulting in the need to merge multiple genotyping datasets

to achieve statistically significant findings [178] [179] [180].

Many genotyping data-based GWAS projects require the use of multiple genotyping

datasets that are sourced from different studies, that have been processed on different

microarrays or that must be merged from multiple processing batches. The problem of

merging those datasets into a clean source for further analysis can be problematic and may

be a considerable potential source of noise in the experimental portion of an association

analysis pipeline [178] [179] [180].

Several methods for combining multiple datasets to increase the power of a GWAS

have become popular. One approach is to combine complete GWAS results using meta-

analysis [181]. There has also been a significant increase in the amount of online genetic

data in repositories such as the European genome archive (EGA) [182] and the Database

of genotypes and phenotypes (dbGAP) [183]; furthermore, many journals now require the

datasets used to generate findings to be published onto one of these secure locations. The

requirement for large GWAS control sets has led to some projects being funded purely to

publish good quality control data to an online archive to be used by other teams [184].

Given the potentially large size requirements for GWAS control sets, it is often infeasible

to generate both a case and control set within the time and budget constraints of a single

project; this has given rise to a new strategy whereby all study resources are put into
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collecting and preparing cases, which are then compared to one or more publicly available

control sets. This strategy results in a situation whereby a mosaic of genotyping datasets

are compared in an association test. GWAS results are susceptible to data quality and

merging errors at the level of the genotype, if good quality control and screening are not

observed when merging the mosaic datasets, the resulting GWAS may contain noise and

false-positives.

Reliably merging different genotyping datasets requires that genotyping data must pass

several quality control steps and be encoded to the same strand designation and data

format. During the course of several genotyping analyses projects, we developed a strategy

for merging multiple genotyping datasets which we subsequently wrapped into a software

tool. REMEDY, is designed to assist users with the screening, re-coding, filtering and mer-

ging of disparate genotyping datasets; it is designed to perform individual and comparative

genotyping data quality analysis, filtering and re-coding in a fast, reliable and repeatable

way. REMEDY was applied successfully in several GWAS including the SSNS case study

presented in the results section. It forms an integral part of our genomic analysis method-

ology in the data collection, merging, quality control and filtering stages.

In the following sections we present our justification for developing REMEDY groun-

ded on the experiences of performing a GWAS based on merged genotyping data. We

also show our software requirements specification and design methodology; we show the

implementation of the REMEDY tool in the results section.

2.3.1 Initial Research and Challenges

2.3.1.1 Control Set Identification

Our team sought to perform a GWAS on SSNS in 2016. We collected a case-cohort of

1408 SSNS samples which were subsequently genotyped on an Illumina microarray with

approximately 1,700,000 Single nucleotide variant (SNV)s [163]. We initially had a set of

423 European controls from a previous project which were genotyped on a different Il-

lumina microarray with approximately 712,000 SNVs; they are referred to as the Oxford

controls henceforth. Given our methodological guideline of a 2:1 controls to cases ratio,

we estimated that we would need at least 3000 controls to perform a GWAS success-

fully; consequently, we searched for additional publicly available genotyped control sets to

supplement the Oxford controls.

We first identified a set of controls available from the Illumina website for testing the
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HumanOmniExpress-12 BeadChip [185] (the target microarray for the Oxford controls);

these were based on the HapMap project [186] and were split into four files based on

ethnicity: 95 CEU (Central European), 92 YRI (African), 47 JPT (Japanese) and 47 CHB

(Han-Chinese). We refer to this dataset henceforth as the Illumina ethnicity controls. We

next identified a large control set from the EGA [182] from a group known as the Wellcome

Trust Case Control Consortium [187]. The control set was split into two subsets, one based

on the 1958 UK birth cohort project and other on the UK blood service control group; the

cohort was comprised of 5604 individuals of reported European descent and were geno-

typed on a different Illumina microarray, the Human1-2M-DuoCustom. The total number

of control samples available was 6306 spread over three different microarray models (four

counting the case samples) and two different Illumina file formats (Table 2.1, p.108). The

addition of these datasets took us over our initial control estimate of 3000; therefore, we

began to attempt to merge the datasets so that some initial association testing could be

performed. At this point, we were unaware of the strand designation merging problem.

Dataset Source Case/Ctrl. Microarray Sample
No.

SNV
Count

File Format

SSNS Internal Case MEGA 1408 1,748,250 Matrix GATC

Oxford Internal Control OmniExpress 432 712,893 Matrix GATC

Illumina Eth Illumina Control OmniExpress 270 711,320 Final Report
GATC

WTCCC-1958 EGA Control DuoCustom 2867 1,106,184 Matrix AB

WTCCC-NBS EGA Control DuoCustom 2737 1,106,188 Matrix AB

Table 2.1: A Summary of the case-control sets identified for the SSNS GWAS project.

2.3.1.2 Association Test Noise

Each control set was imported into the SNP & Variation Suite (SVS) [188] and merged

together. Initial plots of association testing showed systematic noise throughout the whole

genome with many thousands of markers reaching genome-wide significance (Figure 2.2,

p.109). We launched an extensive study into the causes of the noise which led early on in

the investigation to the concept of strand designation. Subsequent literature research res-

ulted in the realisation that there are several different types of strand designation scheme,

we then designed some simple theoretical tests to ascertain what kind of noise would result

from the merging of two datasets on different strands.
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Figure 2.2: Top: Q-Q plot showing expected negative log p-values versus observed negative
log p-values from a basic allele test performed on the SSNS GWAS with no initial
processing. The plot shows a significant deviation from the expected at all levels of
significance, indicating a systemic issue with the data.

Bottom: Manhattan plot showing association scores for our SSNS GWAS. The
red line indicates a rough calculation of genome-side significance. The plot shows
high levels of noise present in the plot as large numbers of markers are above the
genome-side significance level, indicating the something was wrong with the data
merging and filtering stages of the GWAS pipeline.
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In conclusion, given the simplest case of a single unambiguous SNV with a ref of G and

an alt of A, that is uninformative for the disease being studied, we may see that all samples

have the genotype G for both alleles; consequently, this would produce an association

score of 1, as there are no differences between cases and controls. We then considered

a situation where the case-cohort was designated dbSNP FWD and the control-cohort

dbSNP REV for both alleles; this would result in all cases having G and all controls having

A, a perfect maximum association of 0. If one were to scale this out to the whole genome,

this would result in a single band of erroneous association scoring. In reality, if ambiguous

SNVs, heterozygous alleles and genotyping error are added in, the false positives would be

more randomly distributed as noise, which is what our results showed (Figure 2.2, p.109).

2.3.1.3 Strand Designation Scheme Detection

To further test our hypothesis that the noise in our GWAS was being caused by strand

designation mismatching, we needed to calculate the strand designation and strand en-

coding of our source data to ascertain if any of our datasets were incorrectly merged. To

detect strand designation we designed a novel strategy using a point of known strand des-

ignation, dbSNP. We hypothesised that by taking the ref and alt alleles of a SNV known to

be encoded as either FWD or REV in the FWD/REV designation scheme, one could then

re-code the alleles in TOP, BOT, POS and NEG and then match an example genotype to

all examples to check which one it most matched.

For example, consider a situation where only the FWD/REV strand designation scheme

existed. A variant with a ref of G and an alt of A called to the FWD strand could have a

corresponding REV encoding of C and T. Given a genotyping dataset with an unknown

strand designation, by comparing all genotypes for the variant to G/A and C/T, a percentage

match against FWD and REV can be calculated. If for example, all input genotypes were

either C or T, then it is clear that the input dataset is encoded to the REV strand in the

FWD/REV designation scheme.

The model can be extended to many designation schemes as, although a dataset en-

coded to TOP in the TOP/BOT scheme will have some matches with FWD and REV, there

will always be a higher percentage match to the scheme which the data is encoded in.

Consequently, by taking a variant from dbSNP, encoding it to all possible strand encodings,

matching input genotypes and taking the highest percentage match - one can detect the

source strand designation and encoding of a genotyping dataset.
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2.3.1.4 Strand Designation Transcoding

In order to implement our strand detection algorithm, we required two additional solutions:

a source of dbSNP data to pull variant data from (we discuss our implementation of this

in detail in the results section 3.1.4, p.134) and a methodology to transcode between the

different strand designations and encodings. Given the surprising lack of information re-

garding this subject in literature and online, this part of the project proved to be very difficult

to solve.

We first began with intra-scheme re-encoding. From our research, we understood that

FWD/REV in the dbSNP scheme were on opposite biological DNA strands and so the

algorithm to switch between them was to find the genetic complement. To test if TOP/BOT

was the same, we consulted the documentation provided by Illumina and constructed a test

platform using Illumina Genome Studio software. Genome Studio could already transcode

between FWD/REV and TOP/BOT; however, the code to do so was closed source, and

Illumina would not release their methodology. We, therefore, took a small amount of test

data, loaded it into Genome Studio and exported the data in TOP and BOT. Next, we

constructed a simple script to find the complement of the output data files and compare

them to the opposite strand; the result was a 100% match, thus confirming that TOP/BOT

re-coding is identical to FWD/REV re-encoding.

To find an algorithm to transcode between the encoding schemes we again used Gen-

ome Studio to export the test data into FWD, REV, TOP and BOT. We additional down-

loaded the manifest file for the target microarray from the Illumina support website [189].

The manifest file specified for each SNP, a TOP or BOT designation called IlmnStrand

along with an allele call, and another TOP/BOT designation known as the SourceStrand

(Figure 2.3, p.112). By comparing these to the FWD/REV allele encoding in dbSNP, we

developed a conversion table that utilised the IlmnStrand and SourceStrand columns to

convert to the dbSNP strand designation scheme from TOP/BOT (Table 2.2, p.112). After

successful manual testing, we implemented this into an algorithm and ’slotted’ the solu-

tion into our overall program for strand designation detection. Our test harness for strand

designation transcoding observed the following steps:

1. Implement a new version of the transcoding algorithm

2. Update scripts

3. Detect source designation and encoding of datasets

4. Convert all datasets to dbSNP FWD
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5. Run GWAS

6. Analyse the results

Figure 2.3: Screenshot of an Illumina manifest file showing the IllumStrand and Allele columns (red
box) that we used to construct the first version of the transcoding algorithm.

IllumStrand SourceStrand Complement Reverse

TOP TOP NO NO

BOT BOT NO YES

TOP BOT YES YES

BOT TOP YES NO

Table 2.2: Conversion table for initial strand designation transcoding algorithm shown for converting
from TOP/BOT to FWD/REV. The reverse column refers to reversing the alleles in the
Allele column shown in Figure 2.3, p.112.

We found the resultant Manhattan plots to have a significantly reduced noise profile

(Figure 2.4, p.113); however the noise level was still considered to be too significant given

the number of apparently random SNVs above the genome-wide significance level.
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Figure 2.4: Top: Q-Q plot showing expected negative log p-values versus observed negative log
p-values from a basic allele test performed on the SSNS GWAS after application of
the first implementation of REMEDY. The plot shows an improved signal to noise with
less low-level p-values at the extreme top right of the plot. There is still a significant
deviation from the expected at higher p-value levels however.

Bottom: Manhattan plot showing the results of the first implementation of our
transcoding algorithm. Although the noise levels are reduced when compared to
Figure 2.2, p.109, it is still significant.
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After this point, many iterations of the algorithm were tried until an obscure Illumina

document [190] was located which provided a ’rosetta stone’ to the transcoding problem.

The diagram showed that in every internal probe ID in the manifest, there exists a mark

showing the calculated strand for the TOP/BOT and FWD/REV schemes; for example, T_F

indicates TOP and FWD, while B_R would indicate BOT_REV (Figure 2.5, p.114). We

had already surmised that a file could be designated in DESIGN scheme where the strand

encoding of each genotype was tied to the probe design strand rather than being all to

encoded to a single strand. The diagram showed that the DESIGN scheme could act as

a ’middle man’ by using the internal ID to transcode between the different schemes. For

example, to change from TOP to FWD, one would have to convert to the DESIGN encoding

first using the ID and then encode to the destination scheme again using the ID.

Next, we constructed a new conversion table (Table 2.3, p.115) and implemented it into

the GWAS pipeline as per the test harness steps shown above. The resulting Manhattan

plot retained a strong signal (Figure 2.6, p.116), but with minimal noise, thus the strand

designation problem was deemed to be solved.

Figure 2.5: Screen shot from an online web-page [190] detailing critical information regarding the
format of the probe ID in an Illumina manifest file. The text highlighted in green shows a
calculated strand encoding for FWD/REV and TOP/BOT, enabling transcoding between
the two using the probe DESIGN designation as a ’middle man’.
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Illumina ID
Key

Probe TB Probe FR Source
Enc.

Dest. Enc. Conv.
DESIGN

Conv. Dest.

T_F TOP FWD FWD TOP None None

T_F TOP FWD FWD BOT None Flip

T_F TOP FWD REV TOP Flip None

T_F TOP FWD REV BOT Flip Flip

T_R TOP REV FWD TOP Flip None

T_R TOP REV FWD BOT Flip Flip

T_R TOP REV REV TOP None None

T_R TOP REV REV BOT None Flip

B_F BOT FWD FWD TOP None Flip

B_F BOT FWD FWD BOT None None

B_F BOT FWD REV TOP Flip Flip

B_F BOT FWD REV BOT Flip None

B_R BOT REV FWD TOP Flip Flip

B_R BOT REV FWD BOT Flip None

B_R BOT REV REV TOP None Flip

B_R BOT REV REV BOT None None

Table 2.3: Conversion table for final strand designation transcoding algorithm. The table shows
enumerations of source and destination encoding for different probe strand designa-
tions. The last columns show the route of conversion from source to design and then
from design to destination. In this table, we use the word ’Flip’ as a short version of com-
plement. To reverse from TOP/BOT back to FWD/REV the conversion schemes should
simply be reversed.
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Figure 2.6: Top: Q-Q plot showing expected negative log p-values versus observed negative log
p-values from a basic allele test performed on the SSNS GWAS after application of
the final implementation of REMEDY. The plot shows that number of observed p-values
over the genome-wide threshold has dropped significantly to the point where the trend
follows the expected line for much longer.
Bottom: Manhattan plot showing the results of the final implementation of our
transcoding algorithm. The signal to noise ratio has improved to the point where all
noise is pushed below genome-wide significance, leaving the real association signal
intact.
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2.3.1.5 Additional Noise Sources

Further refining of our GWAS protocols led to an initial degradation in the signal to noise

ratio of our Manhattan plot. The direct reason for this was because of increased numbers

of markers being used to test for association, but the underlying reason for the noise was

not well understood. Subsequent analysis showed that the GWAS false positives were due

to four primary areas: differences in the encoding and strand designation of the genotyping

datasets (this was already solved), differences in the variant databases used and quality

of variant used for analysis, differences in genotyping chip designs and genome version

changes.

Variant databases are dynamic sources of data and are updated continuously. Mi-

croarrays are relatively static (some version updates occur over the product lifespan, but

these are infrequent) therefore over time, variants included on an array may become un-

suitable for GWAS. During our investigation we identified many variants which were initially

bi-allelic but had since been upgraded to tri-allelic or quad-allelic status; this resulted in dif-

ferent genotyping microarrays calling SNVs in different ways depending on the version of

the variant database to which it was designed. These changes resulted in spurious allele

frequency differences during association testing leading to noise. Furthermore, we identi-

fied updates in strand designation between versions of dbSNP, which caused unforeseen

strand merging errors.

In addition to strand designation updates in dbSNP, we also encountered strand up-

dates in the probe design between different microarrays. We found differences in the

probe-target strand despite the fact the probe sequences were identical; this is most likely

an artefact of updated internal probe reference mapping pipelines.

Finally, we identified differences in the target reference genome between different mi-

croarrays. While not an error per se (microarrays are designed to the latest available

genome version at the time of manufacture), merging data targeted to different genome

versions can result in serious error. Despite this, we found it difficult in some cases to as-

certain the exact genome version of our input data and then to find the best methodology

to lift all data to a standard reference version successfully.

Each one of the areas discussed above was investigated in detail, and a solution was

developed to manually correct each error for a small sample set of data before being scaled

into our larger algorithm of strand detection and re-coding.
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2.3.1.6 Final Algorithm

The initial scripts developed for correcting the various types of noise sources we en-

countered during our investigations were subsequently turned into a single piece of soft-

ware and then scaled up into the software tool presented in the results, REMEDY.

In conclusion, we were required to merge locally generated source genotyping data

with control data from several separate projects; initial merging, and subsequent GWAS

results had severe data artefacts and spurious results. After an extensive investigation,

we discovered that our source datasets had a range of different strand encoding schemes

leading to erroneous allele frequencies in subsequent analysis. Within our case-cohort,

we had received our genotyping data in batches from our processing lab, but there were

inconsistencies in both file format and strand encoding scheme between batches; most

likely this was due to human error at the export stage from Genome Studio.

Our control samples were sourced from multiple projects each with their own pro-

cessing methodology; within these, we found a broad array of file formats, genotype and

strand encoding schemes. With some datasets, the source encoding scheme was not in-

dicated or was incorrect; this lead to the improper merging of our genotyping data, which

then led to many of the errors we observed in our results. To solve this problem, we

developed our REMEDY software. REMEDY was primarily developed to scan source gen-

otyping data and detect its source strand encoding scheme and be able to re-encode data

to a strand scheme of choice. After further investigation, several layers of SNV cleaning

were added to the core algorithm to remove as many potential sources of noise as possible

before standard GWAS quality control and filtering was applied.

The initial REMEDY design was to correct for inter-project merging errors arising from

differing encoding and strand designation schemes of genotyping data. It is important to

note that errors produced by genotyping technology or intra-project batch effects cannot be

detected by REMEDY. These effects can be corrected by other methods if the raw intensity

file are available but this is not the focus of the REMEDY software suite.

2.3.2 Software Requirement Justification

After the development of prototype scripts to correct the significant data inconsistencies

we were encountering in our datasets, we then searched for literature describing the same

problems to see how extensive this problem was and if there were any software tools which

could support us. At the time of development, we found a single tool, an unpublished yet
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publicly available tool known as the Oxford pipeline developed by the Wrayner group [191].

The tool was able to perform lift over functionality and strand correction functions as well

as handle A/B genotyping calling; however, the tool creator was required to create a new

set of support files for each microarray/strand encoding scheme combination. Given that

some of the microarrays contained in our datasets were unsupported and no methods for

detecting source encoding and designation were provided, we viewed this as insufficient

for our needs.

We realised that the problem of merging genotyping datasets was a relatively common

problem that would need to be solved again given the increasing size of both case and

control GWAS cohorts. While the current tool available could tackle some areas of the

merge process, there was no single tool able to correct for all of the errors which we

encountered during our work; we, therefore, sought to develop REMEDY into a tool that

could be used by other users and groups.

2.3.3 Programming Language Selection

Given that our tool suite was designed to be modular with many common operations

between different modules, we opted for an Object-oriented design (OOD) philosophy

[192]. OOD promotes encapsulation of code into reusable modules called classes. Meth-

ods and variables within a class allow grouping of pieces of functionality together while

enabling functionality inheritance and strict access to variables.

We predicted that our software may need to run on both Linux and Windows-based

operating systems; therefore, our language choice also needed to have cross-platform

compilation. Given this, we restricted our choice to either Python or C# as our project lan-

guage. C# is a modern, powerful OOD language with cross-platform compilation options

while Python is the current primary scientific computing language and has extensive sci-

entific library support. Python code can be run as a script with Just in time (JIT) compilation

and has some OOD functionality.

We selected C# as our main language over python primarily because of the perform-

ance requirements of processing large amounts of genotyping data combined with the

requirement for a custom, high-speed variant database. C# is a compiled language which

means that it must be compiled into an operating system specific executable before it will

run. This adds some complexity to the build process as one executable must be made

for each OS; however, compiled languages can take advantage of platform-specific oper-

ating system and processor directives making them significantly faster than script-based

languages. Python has good run-time performance despite the fact it is not compiled, but
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C# was selected as it still maintains the edge on native performance.

2.3.4 Development Environment

Microsoft provides extensive development environments both free and subscription-based

for C# with a full ecosystem of build and test tools. For this project we selected to use

Visual Studio 2017 as it provides a comprehensive set of code writing, debugging and test

development tools for C#.

2.3.5 Unit Testing

Unit testing is an essential part of modern software development. During software design

and development, computer code is split into many sub-modules called functions or meth-

ods. Each function should be designed so that it can be treated as a black box and tested

by passing arguments into the function and testing the output; a set of inputs with expected

outputs can be defined as one test; a method may have multiple tests to verify different

aspects of functionality. Each function can be defined as a unit, each test a unit test; to

verify a piece of code works a set of unit tests can be presented to the functions within it,

and a pass/fail condition can be ascertained for each test.

Good unit test design will verify a broad set of possible inputs for the function, pay-

ing particular attention to the boundaries of a function without having to generate large

numbers of tests. For example, for a function which adds two integers together, it would

be impossible to test every possible combination of two numbers; instead, we can gener-

ate two random numbers for a test and verify the expected output while adding specific

tests for boundary conditions such as unexpected values and negative numbers. In our

example, we may design tests for negative numbers, infinite numbers and other mathem-

atically strange numbers which may be encountered.

Unit testing has several benefits besides to be being able to verify that a piece of code

works correctly. Designing functions which fit into a unit testing framework requires a cer-

tain level of design modularity; this maintains a code-base in reusable chunks and forces

some level of good code design. Unit testing also increases confidence when changing

code to create new features or fix errors; when adding a feature, we can change the func-

tion code, add some tests to cover the new feature but also make sure that the existing

tests also pass. If all tests pass after a code change, assuming the tests were designed

correctly, then the change did not break any previous functionality.
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REMEDY is written in C#; therefore we used the Microsoft Unit testing framework

provided as part of Visual Studio. For the code portion of Unit testing, we used XUnit [193]

rather than Microsoft Test as we prefer to use open source options where convenient.

2.3.6 Version Control

Version control is an essential part of any software project as discussed in the introduction.

For REMEDY we used GitHub, a popular online GIT repository [165]. Visual Studio has ba-

sic built-in GIT functionality, for more advanced branching and merging we used GitKraken

[166], an free GIT repository visualiser. We selected GitKraken for its rich feature set and

its ethical charging structure.

2.3.7 Program Packing and Deployment

We selected continuous delivery as our build and deployment method; we opted to use

Visual Studio Online as the host for our build server. Continuous delivery is defined as

a process by which an automatic build is triggered on a successful commit of code to

a branch of a code repository. If the build passes all unit and Integration tests, then it

continues to packaging and deployment; this ensures that the latest working build of a

piece of software is always available via an automated process, removing the need for

a version release cycle. On completion of successful build and test runs the software

executables and other build files are copied into a compressed folder and uploaded to a

file repository hosted on the Microsoft Azure cloud computing infrastructure [194].

2.4 LOOPER

In this section we present our justification for the requirement of the LOOPER program

along with our software development methodology. We also show the methods that under-

pin our chromatin loop prediction and visualisation algorithms which are presented in our

LOOPER implementation in the results section.

2.4.1 Software Requirement Justification

Chromatin looping in the nucleus has been shown to fine-tune gene expression by me-

diating contact between cis-regulatory elements that can lie distant from one another on
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the linear genome [195]. As discussed in more detail in the introduction, many non-coding

variants are being found located in regulatory elements which then act on promoters over

large genomic distances. We discovered a promotor mutation during our study of a new

disease, Hyperinsulinism with polycystic kidney disease (HIPKD), that we hypothesised to

be affecting the expression of a gene through the alteration of the local chromatin architec-

ture [2].

Subsequent investigation of the local chromatin landscape was challenging primarily

due to a lack of software tools and available chromatin confirmation data. After many

attempts to draw the loop configuration on paper or develop static models, we sought to

develop a program that could predict and display potential chromatin loops to aid in our

visualisation of the HIPKD region of interest. After the publication of our initial results for

HIPKD, there was a rapid rise of new chromatin confirmation experiments and subsequent

experimental data. With the experimental confirmation of chromatin loops, we revisited the

LOOPER program to add functionality to visualise loops from existing experimental data

as well as the original de novo loop prediction.

2.4.2 Programming Language Selection

As with REMEDY, we opted for the C# programming language with an OOD philosophy.

OOD promotes encapsulation of code into reusable modules called classes. Methods and

variables within a class allow grouping of pieces of functionality together while enabling

functionality inheritance and strict access to variables.

2.4.3 Development Environment

Microsoft provides extensive development environments both free and subscription-based

for C# with a full ecosystem of build and test tools. For this project we selected to use

Visual Studio 2017 as it provides a comprehensive set of code writing, debugging and test

development tools for C#.

2.4.4 Unit Testing

As with REMEDY, LOOPER is written in C#; therefore we used the Microsoft Unit testing

framework provided as part of Visual Studio. For the code portion of Unit testing, we used

XUnit [193] rather than Microsoft Test as we prefer to use open source options where
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possible.

2.4.5 Version Control

Version control is an essential part of any software project as discussed in the introduction.

For REMEDY we used GitHub, a popular online GIT repository [165]. Visual Studio has ba-

sic built-in GIT functionality, for more advanced branching and merging we used GitKraken

[166], an free GIT repository visualiser. We selected GitKraken for its rich feature set and

its ethical charging structure.

2.4.6 Program Packing and Deployment

LOOPER was intended as a collection of scripts rather than a full program; therefore, no

program packing or continuous build delivery was required. The program was designed

to be downloaded by a competent user as source code and run locally with maximum

supervision. By hosting on GitHub, LOOPER is essentially already deployed as the source-

code can be downloaded as a Zip file from the web browser.

2.4.7 Common Tools and Methods

We present here relevant methods for tools and techniques which were used in both parts

of LOOPER.

2.4.7.1 Chromatin Immunoprecipitation

One of the leading experimental tools for investigating Transcription factor (TF) and DNA

interactions is Chromatin immunoprecipitation (ChIP). First used to detect histone binding

to the heat shock protein 70 gene in D. melanogaster [196], it can determine whether or not

a protein binds to a specific DNA sequence in vivo by enriching DNA fragments associated

with the protein. The ChIP process begins with cross-linking of chromatin in vivo using

formaldehyde which is then sheared into 200-600bp fragments by sonication. An antibody

that is specific to the TF of interest is then utilised to precipitate the DNA protein complex

before the DNA cross-linking is reversed, leaving the DNA fragments the protein was bound

to at the point of cross-linking [197] (Figure 2.7, p.127).
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Various methods have evolved to analyse the DNA fragments produced by ChIP as

DNA sequencing technology has improved. DNA was initially isolated in targeted stretches

and electrophoresed in agarose gel before being blotted and hybridised on labelled probes,

to indicate binding specificity [196]. The introduction of microarray technology allowed

fragments to be hybridised to a microarray enabling a faster, more accurate assay which

was genome-scale rather than localised to a specific region; this is known as ChIP-chip

[198] [199]. With the advent of NGS the DNA fragments were able to be sequenced directly

rather than being hybridised on an array; this is known as Chromatin immunoprecipitation

with next generation sequencing (ChIP-Seq) [200] [201] [202] [197]. ChIP-Seq offers single

base-pair resolution, fewer artefacts, greater coverage and a broader dynamic range which

produces significantly better data compared to ChIP-chip [203].

We obtained ChIP-Seq summary data from the UCSC browser ENCODE TFBS track

which contains ChIP-Seq data for a range of TFs across different cell lines. More inform-

ation on ChIP-Seq post-processing leading to the summary data we obtained from UCSC

can be found at [204]; whenever ChIP-Seq data is mentioned in LOOPER henceforth, we

refer to this dataset.

2.4.7.2 UCSC Genome Segmentation Track

The genome segmentation track in UCSC represents a common set of states across six

human cell types that were learned by computationally integrating ENCODE ChIP-seq,

DNase-seq, and FAIRE-seq data using a Hidden markov model (HMM) [205]. The chro-

matin states seek to functionally annotate regions of DNA with keywords such as Pro-

moters, Enhancers, Open chromatin and Closed chromatin. The segmentation track can

be downloaded from UCSC browser as a table with data for all six cell-lines.

2.4.8 Chromatin Loop Prediction Algorithm Methodology

We present here our methods for the tools, experiments and source data that we used to

develop our loop prediction algorithms.

2.4.8.1 Motif Discovery

Motif discovery uses collections of sequences to build a statistical model that shows the

similarities between them. Position weight matricess (PWMs) were developed to represent
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statistical similarity sequence models in a compact form. PWM were first introduced in

1982 as a method of representing Ribonucleic acid (RNA) binding specificity within aligned

Messenger RNA (mRNA) fragments [206]. By aligning training sequences together, a

probability map can be calculated for the occurrence of a nucleotide at a given position

in the aligned sequences. The likelihood then of a new mRNA fragment fitting the model

is found by applying the probability matrix to the new sequence. For example, if a position

is weighted 100% to A and we see a C in this position for a new sequence, this will score

a 0 where as if the position was weighted evenly across the nucleotides, then any letter

would score equally. The positions can be added up to give an overall gauge of likelihood

of similarity for a new sequence, given the sequence library used to train the PWM.

PWMs can be represented as a matrix (Table 2.4, p.126) but also in a more visual form

as a sequence logo where the proportion of the size of each letter in the sequence rep-

resents its probability in the PWM [207] (Figure 2.8, p.128). When applied to DNA-protein

binding, the PWM can be used to quantitatively assess for binding specificity; they have

limitations in that they incorporate no knowledge of molecular binding theory and are simply

a statistical tool however, they are generally considered to give a good approximation of a

binding site given enough data for most DNA-binding proteins.

TF binding is a major research application for PWMs; several tools and databases have

arisen to create, compare and store PWMS for Transcription factor binding site (TFBS). The

TRANSFAC [208] and JASPAR [209] databases store thousands of PWMs for TFs based

on experimental data of varying quality and quantity.

The most prominent toolset for PWM discovery and analysis is the MEME suite [210]; it

is a powerful suite of software for studying sequence motifs and contains a specialised tool

for generating binding motifs from ChIP-Seq data known as MEME-ChIP, which generates

binding motifs for a TF using randomly sampled, centred, DNA fragment data from a ChIP-

Seq experiment [211]. As ChIP-Seq experiments are already TF specific given that an

antibody for the TF must be selected for the experiment, the ChIP-Seq data can be thought

of as a library of TFBS fragments. Once aligned, these can be fed as a direct input into the

classical PWM formulae to give a consensus motif for the binding specificity of that TF.

2.4.8.2 Motif Scanning and Site Orientation

For motif scanning and orientation we used another tool in the MEME-Suite called Motif

alignment search tool (MAST) [213]. MAST scans an input sequence using a list of PWMs

using a sliding window to score a length of sequence for similarity. Each window is given

a score and the the statistically significant sites are outputted to results. If the input of
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Position A C G T

1 0.212938 0.264151 0.439353 0.083558

2 0.301887 0.196765 0.380054 0.121294

3 0.029650 0.743935 0.199461 0.026954

4 0.132075 0.867925 0.000000 0.000000

5 0.000000 0.000000 1.000000 0.000000

6 0.000000 0.000000 1.000000 0.000000

7 1.000000 0.000000 0.000000 0.000000

8 0.973046 0.000000 0.000000 0.026954

9 0.185984 0.045822 0.768194 0.000000

10 0.072776 0.312668 0.070081 0.544474

11 0.161725 0.167116 0.536388 0.134771

Table 2.4: Probability weight matrix for the ELK4 transcription factor in HEK293 cells reproduced
from Factorbook data [212]. Rows represent the sequence position and the columns
show the probability of each nucleotide at a given position.

MAST is a PWM generated for a TF, the resultant output sites show probable TFBS with

an associated p-value. MAST scans in both the 5’ and 3’ directions therefore, every site

prediction also has an orientation associated with it; this is important for chromatin loop

prediction.

2.4.8.3 Predicted Loop Visualisation and Interpretation

The predicted chromatin loops from LOOPER were outputted in the Browser extensible

data (BED) format [214] and coded so the loops would appear as black blocks on the

screen to show the loop domain in UCSC browser [215]. BED format files can be uploaded

to UCSC browser as custom tracks and shown on-screen alongside other tracks to aid

further analysis of chromatin looping in a region of interest.
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Figure 2.7: The ChIP-Seq process. Protein bound DNA is cross-linked and then sonicated to cre-
ate fragments. Antibodies which target the protein of interest (shown in green) are then
used to precipitate the fragments out of solution. The proteins and antibodies are then
washed away before the fragments are sequenced. After sequencing, the fragments
are aligned on the genome and a statistical curve is drawn over the fragment over-
lap to give an area of predicted binding. The depth of fragments collected at a site is
proportional to the final confidence value of the binding site.
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Figure 2.8: Web logo for the ELK4 transcription factor in HEK293 cells reproduced from Factorbook
data [212]. The positions visualise the relative nucleotide probabilities shown in the
PWM in (Table 2.4, p.126).
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2.4.9 Force Directed Graph Loop Visualisation

We present here our methods for the tools, experiments and source data that we used to

develop our loop visualisation algorithms.

2.4.9.1 Source Data

There are several different experiments currently that enable the study of chromatin inter-

actions in the genome. The first experiments developed were known as Chromatin Con-

firmation Capture or 3C based methods. They begin with cross-linking of DNA in the cell

using formaldehyde before various digestion and linking steps designed to produce paired-

end, tags pieces of DNA which when sequenced, show instances the sequence at one

paired-end was in contact with a sequence at another paired-end on the genome. If the

paired ends are aggregated and statistics applied, a picture can be built of chromatin con-

tacts. There are 3C, 4C, 5C and Hi-C experiments which build on each other and range in

their targeting method and scope. 4C, for example, can target all interactions with respect

to a target point whereas Hi-C is a high throughput, whole genome experiment [216].

Hi-C suffers from high levels of non-specific interactions which increase as the dis-

tance of the contacts increases; the signal to noise ratio limits the contact resolution which

can be achieved with these types of experiments and makes it difficult to study individual

interactions between transcription factors for resolving chromatin loops.

ChIP-Seq is a well-known technique for studying TFBS; however, the results are linear

and do not infer any interaction between TFBS. Chromatin interaction analysis by paired-

end tag sequencing (ChIA-PET) is a technique which incorporates both 3C and ChIP-Seq

methodologies to reduce the background noise level prevalent in Hi-C and thus increase

resolution. Contacts are effectively filtered by pulling down a target TF with immunoprecip-

itation, consequently removing non-specific interactions.

ChIA-PET is ideal for studying looping as different loop types can be targeted by se-

lecting the TFs involved in that particular structure. The ENCODE project has a repository

of ChIA-PET data which was generated from one protocol, making individual experiments

comparable with each other. We selected ChIA-PET as our data source for visualising

interactions in a force directed graph with LOOPER.

All ChIA-PET source data was obtained directly from the ENCODE project main data

portal in the form of FASTA files.
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2.4.9.2 Mango pre-processing

The ENCODE data repository contains the experimental outputs for ChIA-PET data in

FASTA format, the standard output for sequencing data [217]. Paired-end sequencing

data has two FASTA files to each sequencing run where each sequence in one file has

the corresponding pair in the other file; in ChIA-PET the two sequences represent the

points of contact for a single chromatin interaction. This data must be aggregated and

pre-processed to reach a state where single pairs of contact are represented by one row

so that a graph can be built with minimal processing.

Several ChIA-PET processing suites already exist, we selected Mango based on its

ease of use and prevalence in the research community [218] [219]. The primary output

from Mango provides all of the required information needed to build a graph; we use the

following columns: chromosome1, start1, end1, chromosome2, start2, end2, PETs sup-

porting the interaction and the adjusted P-value of the interaction.

The Mango pipeline uses statistical confidence estimates for interactions and corrects

for significant sources of bias in ChIA-PET experiments including differential peak enrich-

ment and genomic proximity. Long range intra-chromosomal interactions of greater than

1Mb and short-range interactions are filtered out by Mango as at both extremes experi-

mental error noise becomes a significant factor. PETs are grouped into putative interac-

tions and then anchored to the chromatin immunoprecipitation peaks calculated in previous

processing steps. Chromatin immunoprecipitation peak calling is not discussed in detailed

here, more information can be found at [220]. Mango next models the probability of ob-

serving a single PET linking two loci as a function of their genomic distance of separation

and the product of their read depths; the final interactions are then thresholded to produce

the final output file [218].

2.4.9.3 Graph Loading and Visualisation

Cytoscape is an open source program for visualising complex networks with tight integra-

tion of annotation data. It is used in many different domains including Bioinformatics and

Proteomics. Given the scope of this program, we deemed it unnecessary to develop a

proprietary graph visualisation suite, preferring to concentrate on enriching the annotation

that we pass to Cytoscape. In order to view our generated graphs correctly, some manual

configuration of Cytoscape is required.
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Chapter 3

Results

In this section, we present the implementation of the Re-coding For Merging of Genotyping

Data (REMEDY) and LOOPER software tools, where we also apply them to two different

case studies that demonstrate their effectiveness.

3.1 REMEDY

3.1.1 Design Specification

The design specification for REMEDY was split into several key areas: microarray screen-

ing and comparison, variant matching and filtering, strand re-coding and output formatting.

These were based on the requirements identified during literature research and by our

prototype software solution to our merging problem presented in the methods section (2.3,

p.106).

We developed our microarray screening specifications with the dual premises that mi-

croarray probe design is an imperfect process and that microarrays are designed against

snapshots of external sources of information that change over time. Both situations lead to

inconsistencies when merging genotyping datasets from different microarrays; therefore,

we created some requirements that would ensure these were minimised:
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• Detect and filter poorly designed probes that for example, map to multiple genomic

locations

• Detect and filter probes designed against structural variants

• Detect the target genome build of a microarray

• Match non-custom probes to variant databases so that meta-data can be used to

update or filter out out-dated information

• Summarise to the user general statistics about the probes

• Include features to compare two microarray designs to pre-empt any potential data

inconsistencies

Matching variants to The single nucleotide polymorphism database (dbSNP) to asses

their viability for Genome-wide association study (GWAS) was considered a critical com-

ponent to successful data cleaning and merging in our prototype solution. Variant data

is limited in a microarray manifest where just the bi-allelic call and its rsID (if it is a non-

custom probe) is provided. The rsID can be used to link a target variant into dbSNP where

additional meta-data can be matched to enable more in-depth quality control and filtering.

To identify the variant inconsistencies we presented in the previous section, we included

the following design specifications:

• Match manifest rsIDs to dbSNP for meta-data retrieval

• Detect and filter non-matching variants

• Detect and filter tri-allelic and quad-allelic SNVs

• Detect and filter structural variants

• Detect and filter other variants based on additional criteria dependant on available

meta-data

Strand designation was a significant source of data inconsistency when dealing with

datasets generated by different groups. There are several competing standards for strand

designation discussed in the introduction (1.4.4, p.74); we added requirements to detect

and manipulate between all designation schemes available from within Genome Studio.

• Predict source designation based on input genotyping data

• Re-code genotyping data to/from any designation scheme

Given the different input text formats that we encountered, we decided to specify the

capability to convert all input formats from Genome Studio into a standard format to ease

the process of post-processing merging. We elected only to specify Illumina input file
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formats for the initial version, to speed up development time but with the proviso that the

software was designed to support more in the future. We chose the Variant calling format

(VCF) file format [221] as our output format, as it is a well-supported file format that has

extensive merging capabilities built into the formats companion software, VCF tools [221]:

• Read all Illumina Genome Studio export file outputs

• Capabilities to add additional input file formats later

• Convert all input data to VCF format after processing

We also added further general design specifications:

• Variant matching is optimised as much as possible

• The software should be command line and run on both Linux and Windows

• Be usable by non-computer scientists

• Have multiple logging output levels

• Be modular in design so that the analysis can be done in stages that are transparent

and easy to record

3.1.2 Software Overview

There is currently no tool which can address all the problems associated with merging

and cleaning disparate genotyped datasets in preparation for a GWAS in one package.

We developed REMEDY; a software toolset that aims to import, clean and match all input

data against dbSNP while assuring strand and genome build consistency. As the source

encoding and strand may not be known for a dataset, REMEDY can automatically detect

the genotype encoding scheme and the strand designation that was applied to the data

and can transcode between common strand formats including FWD/REV, TOP/BOT and

DESIGN.

When merging disparate datasets, we required common point of comparison for vari-

ant position and meta-data for which we chose dbSNP [124], as it is the most well-known

and comprehensive variant database. To perform the high-speed, low memory matching

to dbSNP required for efficient processing of large input datasets we developed a propri-

etary, on-disk database representation of dbSNP called REMEDY-DB. Database files can

be generated for any combination of dbSNP version and genome build required and can

match by position or rsID.
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3.1.3 Data Workflow

The REMEDY workflow is split into three different sub-programs (Figure 3.1, p.135). The

first scans the target microarray manifest file for unmatched rsIDs to dbSNP, multiallelic

and structural variants, invalid variant data and other fundamental errors. Functions are

also available to compare manifests together in the case that multiple input datasets are

from different microarrays. The result of this stage is the output of several files which report

the assessment of the target microarray. The primary output file is a list of variants which

pass all the scanning tests that is used by the other sub-programs as a filter.

The second sub-program scans the genotyping data and makes a predicted strand

designation recommendation. This is important, as to merge genotyping data correctly,

all datasets must be designated to the same strand. Source encoding is not always re-

ported accurately, if at all, therefore, this stage forms an essential stage of processing for

REMEDY.

The third stage utilises a filtered list of valid variants from the first stage to filter out

unwanted variants while giving the user options to re-code data to another strand or strand

designation scheme based on the results of the second stage. The sub-program always

outputs to VCF file format regardless of the input providing a stable platform to merge the

cleaned genotyping data with publicly available tools such as VCF-Tools.

3.1.4 Custom Variant Database

Typical modern genotyping chips have millions of probes configured on the array surface;

to assess each variant for quality it can be evaluated on its own or it can be matched to

a variant database like dbSNP to pull additional meta-data, enabling more in-depth quality

control. dbSNP has an online API for requesting variant data; however, matching millions of

variants via the internet would take a prohibitive amount of time. The dbSNP SQL database

can be downloaded and hosted locally to improve matching times; however, the relational

design of SQL databases inherently slows down match times of simple queries for key-

value data [222]. Relational databases are designed to structure data so that it can be

queried with a structured query language such as SQL; data is modelled into relationships

based on unique keys and then split into tables. When data is queried, tables are then

linked together dynamically to produce a result set; this design enables flexible queries at

the cost of performance [223].

NoSQL databases or non-relational databases store data in a more simplified way by
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Figure 3.1: Flow diagram of the REMEDY program design. Sub-programs are shown in red, reports
and data in blue and the REMEDY-DB database in yellow.
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moving responsibility for querying the data correctly onto the user. NoSQL databases

can exist both on file and in memory and offer large performance increases for accessing

data with simple key-matching queries [222]. Key-value stores are a specialised form of

non-relational database where data is stored as a value that is referenced with a simple

key; the key can then be indexed in different ways to create a high-performance database

[224]. Key-value stores are acknowledged as the fastest databases currently in existence

for simple data.

The dbSNP SQL database is relational and contains many forms of additional data on

top of the basic variant data required by REMEDY; we, therefore, opted to design our own

high-performance key-value store for dbSNP variant data. We downloaded dbSNP variant

data in simple tabular from the UCSC Genome Browser [215]; we then created a custom

file-based key-value store called REMEDY-DB.

REMEDY-DB is a file-based database which uses a binary tree search system for fast

variant matching using rsIDs that integrates directing into REMEDY via a companion C#

interface. To build a new database, we start with the tabular representation of dbSNP

provided by UCSC browser. We then read the file line-by-line into a C# variant class

which contains all of the data required by the current version of REMEDY; by keeping only

the exact data required by our software, we aim to keep database size and search times

minimised. We next serialize our variant data into data in the JavaScript object notation

(JSON) format before converting it into byte code.

JSON is a compact way of representing data that is easily interchangeable to and from

C# data structures. We store the JSON variant data using a two-file system (Figure 3.2,

p.137). We first create a payload for the variant which contains the length of the variant data

in bytes, encoded as a 4-byte integer; we then write the variant data directly after before

recording the position of the data object in a separate position file as an 8-byte number.

Using a two-file system, a variant can be read using the index number of the variant in

the position file while keeping the data as compressed as possible. In a single file system,

variant data would need to be stored in fixed length chunks resulting in wasted file space.

Next, we implement a binary tree search that maps an rsID to an index in the posi-

tion file (Figure 3.3, p.138). We first arrange all the possible rsIDs in ascending order by

stripping the ’rs’ position of the identifier leaving a unique number. The median variant

of the initial list is found and stored as the root tree item based on the rsID. The list is

then split into two sub-lists and the process is recursively repeated, by finding the median

value, setting this to the next item in the tree and then splitting the lists again. The process

continues until all variants have been added to the tree. Using a binary tree cuts search

times by 50% compared to sequential searching in theory. In practice, this is increased
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further when processing multiple files by the caching system on a hard-disk; recently used

index locations are stored by the hard-drive internal systems and are retrieved an order of

magnitude quicker than random access.

When searching for a variant using the tree, the root node is assessed and compared

to the search value to determine which branch to travel down; this process is recursively

repeated until a leaf node is reached which will indicate the position in the position file to

read. The position file can then be used to obtain a location from which to read the payload

in the data file. Reading the data file location will first give a length in bytes of the rest of

the payload which can then be read as JSON. The variant JSON can be turned back into

a C# variant object before being passed on to the REMEDY program.

Figure 3.2: Top: Graphic representing how REMEDY-DB stores variant data. A 4-byte integer
defines the length of the payload in bytes immediately after. The payload contains
all the data for a variant encoded in JSON and are variable length. Bottom: Variant
payloads are stored sequentially in the data file, the start position of the payload length
integers are stored in a separate index file by 4-byte integers and are fixed length. The
index file can be used to read variants from the data file.

137



Figure 3.3: Graphic representing the method by which rsID indexes are arranged into a binary tree.
For each set of indexes, the median value is found and set as the next level in the tree.
The remaining items are split in half and the process is repeated for each subset until
none are left.

3.1.5 Command Line Inputs

REMEDY is called using a hierarchical function/option system. The primary system com-

mand remedy can be called with a set of options before a further sub-function can then

be called with its own set of options.

:\>remedy [OPTIONS] function-name [OPTIONS]

Command line options are supplied using industry standard command line syntax, with

a single dash for a single character option short-code and a double dash for the full option

identifier. The following paragraphs discuss the functions in detail.
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The primary REMEDY function has several general options for controlling logging level

and debug verbosity.

(-? / -h / --help) Show Help: Can be used at any function

level and shows usage instructions and options available

for the respective level.

(-v) Verbose Mode: Enables logging output. Logging output

defaults to the screen unless otherwise specified. Even if

disabled, error logs will still log to the screen as

default or to a log file if the -f option has been

specified.

(-d) Debug Mode: Enables debugging output. A more verbose

logging output, recommended when program or data errors are

encountered, and the user wishes to troubleshoot the

program to ascertain where the error may have occurred.

(-s) Log to screen: Routes logging output to the screen.

Recommended when manually running REMEDY so program output

can be viewed.

(-f) Log to file: Routes logging output to the file specified

as the option argument (can be used in conjunction with the

-s option to log to screen and file simultaneously). The

log file is overwritten on each program start of REMEDY

unless otherwise specified.

(-a) Append log file: Appends logging output to the log file

rather than overwriting.

(--silent) Silent run mode: Suppresses all logging, even

errors. Only use if absolutely required, the preferred

method when minimal logging is required is to write to file

errors only.

REMEDY can be called with any combination of the options listed above to configure

the program to the required specification. We recommend the following starting configura-

tion for manual running:

:\>remedy -v -s function-name [OPTIONS]
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3.1.6 Input File Formats

REMEDY accepts both the Illumina final report and matrix formats for genotyping data that

are available as export options in the Genome Studio software package. The Illumina final

report output represents each line as a combination of sample and variant (Figure 1.17,

p.82); a more compact representation is available via the matrix format where each line

represents a variant and each column a sample (Figure 1.16, p.82). The matrix format is

the preferred input file type for REMEDY as it provides all the required information in the

most compact form. If the Illumina final report format is supplied at input, REMEDY will

auto-convert the file to matrix format before continuing with processing.

REMEDY also requires manufacturer data files for the microarray the samples were

genotyped on; these are available from the Illumina website from the support section. As

a minimum, the manifest file that details all the probe information is required for microarray

scanning; however, further files can be supplied such as rsID mapping and comment files

which supplement the manifest and increase the accuracy of processing. Not all microar-

rays have all supporting files. Full details of all required input files are detailed below in the

function descriptions.

3.1.7 Primary Modules

Here we detail the operation of the three primary sub-programs in REMEDY.

3.1.7.1 Illumina Manifest Scanning

This sub-function can be called using the keyword scan-illumina-manifest. Its role

is to scan, compare and evaluate Illumina manifests and supporting files to determine a set

of valid variants that can be used for association studies. The minimum requirement for this

function is the manifest CSV file for target microarray, but additional rsID mapping files and

comment files can also be supplied to assist the scanning process. If mapping or comment

files are available for the target microarray, we recommend that these are downloaded and

included as inputs as default. The function outputs three files: summary.txt, mismatches.txt

and valid.txt.

The summary file contains all the data used to make the calculations for the valid vari-

ants file. It can be used as a reference when troubleshooting or when answering questions

regarding why a variant was included or not included in an analysis.
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The mismatches file contains the strand mismatches which were detected during pro-

cessing; this is discussed in more detail in the strand mismatches section below.

The valid file contains the same information as the summary file but with valid variants

only. This file is primarily for use by other REMEDY sub-functions as a list of valid variants.

scan-illumina-manifest option details and example syntax are shown below:

(--input) Input file path - required: Specifies the file path

to the manifest file that requires scanning.

(--output) Output file path: Specifies an output folder to

write the report files to, if this option is not specified

then the program will still run and log but will not write

any reports.

(--prefix) Output file prefix: Prefixes filenames before

writing to the output folder. Use if writing multiple

report runs to the same folder so that the results are not

overwritten.

(--rsid-map) rsID mapping file: Path to an rsID map file. Some

manifest files have an internal Illumina generated ID as

the marker id. To match to \gls{dbsnp} for further

analysis, the rsID of the marker is needed; this is

supplied as a marker mapping file by the manufacturer.

Failing to supply this file with data that contains

Illumina generated internal marker ids will result in a low

number of matched markers.

(--comments) Comments file: Path to a comments file. Some

manifest files have an accompanying comments file which

detail potential problems with the probes included on the

chip such as a probe sequence that maps to multiple

positions. Supplying this file to \gls{remedy} will cause

the program to take this additional information into

account when determining if a variant is valid or not. It

is recommended to supply this file as default if it exists.

(--comparison) Comparison file: Path to a comparison manifest.

Specifies another manifest to compare the target manifest
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too. Discussed in more detail below. Useful when merging

genotyping data from multiple sources after selecting a

primary microarray to merge other datasets too.

(--comparison-map) Comparison map file: Path to rsID mapping

file for comparison manifest.

The different processing stages of this sub-function are detailed in the following sec-

tions.

3.1.7.1.1 Probe Screening The manifest file is first screened for Single nucleotide vari-

ants (SNVs); variants with the IlmnStrand column in the manifest file marked as TOP or

BOT are classed as single nucleotide variants whereas any other designations are marked

as structural variation and removed from the final valid variant list.

The second stage of processing takes the comments file (if supplied) and uses it to

filter potentially erroneous variants out. Common design problems with probes can include

multiple position mapping and mapping to Pseudoautosomal regions (PARs). Probes are

designed with a finite length which can result in a single probe matching to more than

one position on the genome, which can cause incorrect base calls and produce noise

in a GWAS. PAR-like regions are genomic regions in allosomes that are inherited in an

autosomal manner. These areas of the genome can have regions that are homologs to

autosomal regions and thus are another potential source of noise as the probe may map

to either region.

Potential probe design problems that are identified on genotyping chips by the manu-

facturer are included in a comments file available as part of the chip documentation. Illu-

mina comment files only contain negative comments; therefore, any probes which contain

comment lines are logged and then filtered out by REMEDY.

3.1.7.1.2 rsID Mapping Once initial screening is complete the probes then need to be

matched to dbSNP using REMEDY-DB for further processing. As discussed before, some

manifest files contain internal Illumina ids so must be mapped to a rsID using a mapping

file generated by the manufacturer.

If this map file is supplied as a command line argument, it will be loaded at this point

and compared to the manifest file. Any variants which do not match to the rsID mapping

file are logged as a high number of these may indicate that the wrong mapping file is being
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used. In addition, some ids in the mapping file have no corresponding rsID as they are

custom probes; these are also logged and filtered out from the final list of valid variants. At

the end of this stage, all variants should have a valid rsID that can be used to search for a

match in REMEDY-DB.

3.1.7.1.3 Variant Matching REMEDY uses the meta-data available from dbSNP to fur-

ther assess variants for their potential quality in a GWAS. All valid variants from the previous

steps are matched to dbSNP using REMEDY-DB. The outcomes of the variant matching

stage are discussed below.

3.1.7.1.3.1 Unmatched Variants Microarray manifests are generated with the latest

version of dbSNP at the time of design but then remain static; this results in situations

where valid rsIDs do not match a valid variant in dbSNP. Assuming that REMEDY-DB is

operating with a newer version of dbSNP, we can conclude that either the variant been

merged with another rsID or that it has been removed from the database. In the case of

removal, this variant is no longer considered valid and is removed from the analysis, in the

case of merging, the merged rsID is located and substituted.

3.1.7.1.3.2 Structural Variants As previously discussed genotyped structural vari-

ants are unsuitable for GWAS and must be filtered out. During the initial probe screening,

any structural variants marked in the manifest file are removed; this is repeated at this

stage, but the structural variation designation is read from dbSNP instead. Some rsIDs

which are described as SNVs in the manifest file are described as structural in dbSNP.

3.1.7.1.3.3 Multiallelic Variants As described in the introduction, multiallelic vari-

ants can be difficult to call in genotyping and therefore are a potential source of error.

Despite this, they are regularly included on microarrays, perhaps because of coverage re-

quirements in the region. The probe may also have been initially designed against a SNV,

but in the latest version of dbSNP, this variant has now been reclassified as multiallelic.

Whatever the reason for inclusion, any SNVs identified as being multiallelic in dbSNP will

be filtered out by REMEDY.

It is important to note that this is different from having multiallelic SNVs in the local gen-

otyping data. When processing individual datasets, genotypes are likely to homogenous

with respect to major and minor alleles; however, once the genotyping merging process is

complete, there may still be some multiallelic SNVs in the merged dataset. These errors

can be due to design differences in microarrays or experimental error; REMEDY processes
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data on a per dataset basis and so is unable to catch downstream multiallelic errors such

as these, a check must therefore be included in downstream pre-processing of data for

GWAS.

3.1.7.1.3.4 Strand Mismatches A strand mismatch is defined as a situation where

the minor and major alleles of a variant in dbSNP and probes target nucleotides match,

but the strand is opposite. In order to calculate these errors, both the probe alleles and the

dbSNP alleles are re-coded to FWD, and the alleles are then reverse matched to detect an

inconsistency.

Strand mismatches can be the result of differences in the strand calling processes

between Illumina and dbSNP. Both use the Blast-like alignment tool (BLAT) [215] but in

differing pipelines; strand mismatches are the result of these slightly different approaches.

The fact that there are very few of these supports this hypothesis. Strand mismatches are

considered a potential source of noise and are filtered out from the final list of valid variants.

3.1.7.1.3.5 Invalid Positions The dbSNP database is not without its own errors;

entries can be incomplete or contain erroneous data. One of these situations occurs when

the genomic position in dbSNP is blank or invalid. These are relatively rare and are deemed

as a source of risk even though the position from the manifest file could be used (this is

supplied), they are therefore filtered out.

3.1.7.1.4 Manifest Comparison Manifest comparison is an optional function within

REMEDY that allows users to compare two manifests together to identify design differences

that may be potential sources of noise for a GWAS. When creating a merged genotyping

dataset that contains a heterogeneous set of microarrays, it is advisable to select a primary

microarray to which others will be compared. We recommend that this is the microarray

used for the genotyping of internal project samples as this is usually the newest design

given that the internal project samples will most likely have been genotyped for the project

and any controls genotyped at an earlier date. In the case of multiple internal microarrays,

it is recommended that the chip for the largest sample set is selected; we term this manifest

the reference manifest.

When scanning a new manifest, if a reference manifest is supplied for comparison,

three additional metrics will be calculated during the normal filtering process. The probe

sequences for the probes of the two microarrays will be compared, and any differences will

be logged; this helps to highlight if the probe design has changed between products. Differ-

ences in probe sequence for the same variant indicates that the probe sequence has been
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optimised during the period between the generation of the two manifests; this may indicate

that the genotyping calls for the older microarray may be less accurate. It is important to

note that probe differences are merely logged and are not filtered out automatically.

If the probe sequences for the variant match, then the strand designations and SNP

content will also be compared. Differences in strand or major/minor allele usually indicate

that the manifest was generated with a different version of dbSNP. These again must be

watched closely as potential noise sources but are not filtered out automatically.

3.1.7.1.5 Logging Output Interpretation We here describe the important aspects to

note when analysing log file outputs for this sub-program (Figure 3.4, p.146). Once the

manifest is first loaded, the logging will indicate how many loci were retrieved. This should

match the expected number for the target microarray. The logging will next show the dif-

ferent strand types within the file and how many duplicate ids and structural loci there

were overall. The number of loci remaining after these have been filtered out is shown

highlighted in green.

The logging for the comments file (if provided) will show the counts and types of mes-

sages that are present. After filtering, the number of loci left is then shown, highlighted in

green.

The logging for the mappings file (if provided) will show the total number of mappings

loaded and how many manifest loci did not have a corresponding mapping; this number

should be 0, a small number could mean that the manifest and mapping files are from

different versions of the same microarray - a larger number could indicate that the wrong

mapping file is being used. The "no. mapped rsID" field shows how many mappings had a

"." rather than an rsID in the mapping file; this usually indicates a custom probe that doesn’t

not have an entry in dbSNP. After filtering, the number of loci left is then shown, highlighted

in green.

dbSNP matching is shown in the final portion of the log with detailed match statist-

ics. The total number of loci (ignoring any previous filtering) with rsIDs in the manifest is

shown first. The basic balance of matched and unmatched rsIDs is shown next followed

by numbers for multiallelic, strand mismatches, invalid positions and then structural variant

types. The final count of valid variants after all filtering steps is then shown highlighted in

green; this represents the total number of variants which can be used to determine strand

designation and that are considered valid for a GWAS.
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Figure 3.4: Logging output for the manifest scan sub-program of REMEDY.

3.1.7.2 Genotype Data Scanning

This sub-function can be called using the keyword scan-illumina-genotypes. Its

role is to scan a genotype data file in either Illumina matrix or final report format to test

its match to the supplied manifest and to predict the strand encoding used when it was

generated. The required inputs to the function are the genotyped data input file and the

manifest file. The function does not output any summary files; it outputs all predictions and

statistics to logging.
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scan-illumina-genotypes option details and example syntax are shown below:

(--input) Input file/folder path - required: Specifies the

file or folder path to the genotyping file(s) that require

scanning. If a directory is supplied, the files inside will

be enumerated and processed sequentially.

(--manifest) Manifest file path - required: Specifies the file

path to the manifest file that provides data for the

scanning process.

(--delim) File delimiter: Specifies the column delimiter for

the input files. Defaults to tab.

(--filter) Filter: Path to the valid.txt output of the

manifest scanning step. By supplying this optional file,

only valid variants will be considered for encoding

prediction. This can improve prediction accuracy and is

recommended in a normal pipeline unless performing a custom

quick scan of a genotyping file.

(--ab) AB Encoding: Specifies that the source data is Illumina

AB encoded rather than GATC. The default outputs from

Genome Studio are all AB encoded, a quick look at the top

few lines of the input file will confirm to the user what

the encoding is.

The different processing stages of this sub-function are detailed in the following sec-

tions.

3.1.7.2.1 Genotype Scanning Processing begins with a basic file scan; if the input

file is in Illumina Final Report format, then this is first converted to matrix format before

further processing. The matching engine then checks the variant is contained in the filter

list (if supplied) and then checks that it also exists in the manifest. Large numbers of

non-matching variants in the manifest are indicative that the genotyping dataset was not

genotyped on the microarray for which the manifest was generated. After this, the final list

of valid variants is subject to the encoding scheme detection stage.
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3.1.7.2.2 Strand Designation Detection When merging disparate genotyping data-

sets, the information about how the dataset was formatted and processed is not always

complete. If critical pieces of information are not known such as the source genotype

strand designation, then this can cause significant errors later in the genomic analysis

pipeline. REMEDY was developed to auto-detect the source strand encoding scheme;

without summarising the information contained within the genotyping data file, it can be

time-consuming to detect the source encoding manually.

To detect strand designation, REMEDY scans the manifest for each variant and calcu-

lates the TOP/BOT/FWD/REV encoding for the reference and alternate nucleotides; it then

compares it to the genotyped alleles in the input data file. If the genotype matches one of

the encoding schemes, a simple count tally is kept for that encoding. As the file is scanned,

separate distributions over TOP/BOT and FWD/REV are calculated as percentages in real-

time. The percentages can be interpreted to infer the source encoding of the genotyping

file. For example, a file that was FWD encoded will have >95% of the genotyped alleles

matching either the reference or alternate of a bi-allelic variant that has been FWD en-

coded. In the same way, genotypes that have a >95% match for TOP/BOT/REV will be

encoded to those schemes respectively. If, however, there is a partial match across all en-

coding schemes then that can be interpreted as evidence that the source file was encoded

in the DESIGN scheme; this is because DESIGN encoded data is encoding unspecific and

is instead designated to the original design strand of the probe.

Source strand designation is outputted during the scanning stage of processing which

can then be recorded by the user to set a source encoding for the file so that it can be

appropriately re-encoded to the destination strand designation and encoding.

3.1.7.2.3 Logging Output Interpretation We here describe the important aspects to

note when analysing log file outputs for this sub-program (Figure 3.5, p.149). Once the

manifest is first loaded, the logging will indicate how many loci were retrieved. This should

match the expected number for the target microarray. The logging will next show the differ-

ent strand types within the file and how many duplicate ids and structural loci there were

overall.

Genotyped input files will then be shown in sequence, separated by a blue header.

The logging will show how many samples it detected for the new input file which should

be sanity checked. The scan will output the proportions of different strand designation

schemes during processing until the "Scan complete" message is displayed. The number

of loci scanned will be shown before showing how many genotype file loci did not match

the manifest; a large number here (over 10%) indicates that the wrong manifest file may
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have been used. The loci used for strand detection will be a combination of the matching

loci against the manifest and those that exist within the filtering file from the manifest scan

(if supplied), this is shown in the logging accordingly.

The final important messages are shown in green that show the final proportion of

strand designations and the subsequent predicted encoding. The predicted encoding

should be used as the "source encoding" field when calling the re-coding sub-program.

Figure 3.5: Logging output for the genotype scan sub-program of REMEDY.

3.1.7.3 Data Re-coding and Conversion

This sub-function can be called using the keyword recode-illumina-genotypes. Its

most fundamental role is to convert Illumina matrix files to the VCF standard genomic

format. During this conversion process, the outputs from the manifest and genotyping

scanning routines can be used to filter and re-code the data so that it can be successfully

merged with other genotyping datasets for the purposes of GWAS.
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recode-illumina-genotypes option details and example syntax are shown be-

low:

(--input) Input file/folder path - required: Specifies the

file or folder path to the genotyping file(s) that require

scanning. If a directory is supplied, the files inside will

be enumerated and processed sequentially.

(--output) Output path - required: Specifies the output folder

to write data to.

(--prefix) Output file prefix: Prefixes filenames before

writing to the output folder. Use if writing multiple

report runs to the same folder so that the results are not

overwritten.

(--manifest) Manifest file path: Specifies the file path to

the manifest file. This is required if any re-coding has

been selected in the other options.

(--mapping) rsID map file: Path to rsID map file. Some

manifest files have an internal Illumina generated ID as

the marker id. To match to \gls{dbsnp} for further

analysis, the rsID of the marker is needed. This is

supplied as a marker mapping file by the manufacturer.

(--delim) File delimiter: Specifies the column delimiter for

the input files. Defaults to tab.

(--filter) Filter: Path to the valid.txt output of the

manifest scanning step. By supplying this optional file,

only valid variants will be considered for output to \gls{

vcf} file.

(--ab) AB Encoding: Specifies that the source data is Illumina

AB encoded rather than GATC. The default outputs from

Genome Studio are all AB encoded, a quick look at the top

few lines of the input file will confirm to the user what

the encoding is.
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(--source-enc) Source Encoding: The source encoding scheme of

the data. This can be obtained by running the genotype

scanning routine on the input data prior to running this

function. Valid inputs are design, forward, reverse, top

and bot.

(--target-enc) Destination Encoding: The target encoding

scheme of the data. If this is different from the source

encoding then \gls{remedy} will re-code the data to the

target strand designation scheme. Valid inputs are design,

forward, reverse, top and bot.

The different processing stages of this sub-function are detailed in the following sec-

tions.

3.1.7.3.1 Manifest Scan Filtering The first stage of processing is general conversion

and filtering without re-coding. If the —filter flag is supplied, the input genotyping variants

are checked against the list, and any non-matches are filtered out. If the rsID mapping

option is supplied, the internal Illumina ids are swapped for rsIDs. If the –ab option is

supplied, the genotypes are converted to GATC.

3.1.7.3.2 Re-coding REMEDY can re-code from and to either strand of the most pop-

ular encoding schemes. If the source and target encoding schemes are different when

supplied to the routine, then this processing stage is triggered. The central premise of

re-coding is that any encoding scheme can be reached from the probe DESIGN encod-

ing. Any re-coding, therefore, will first be converted to design strand and then to the target

scheme. If the source or target is DESIGN, then this simplifies the process as no extra

work is required.

The key piece of information required for successful re-coding of a variant is shown in

the manifest file in the IlmnID column; this details in native DESIGN encoding, whether the

variant is called as TOP or BOT and FWD or REV. The ID essentially specifies the rules

for translation from that scheme to another. From DESIGN encoding, to convert to another

scheme is trivial as the target scheme must simply be compared to the variants call for the

scheme. For example, to convert to TOP when the variant is already TOP, nothing must be

done, but if the strands are different, then the genotype letter must be reversed. To convert

to DESIGN from another scheme is similarly trivial, if the strands are different between the
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ID and the source scheme, the letter must be reversed. More information on switching

between designation schemes can be found in the introduction (1.4.4.5, p.77).

3.1.7.3.3 Genome Build Differences Merging disparate genotyping data sets often

results in the merging of datasets that were genotyped at different times. In each new

genomic build, there is a possibility that a variants position may change due to updates

in that area of the genome. When combining temporally different genotyping output files,

there is a possibility that the outputs were generated against different genome builds.

The genome build that the genotyping files were generated against will be available in

the chip manifest file. Variant positions can be lifted to the new genome build by merely

taking the position from the mapped dbSNP entry rather than the source file; this ensures

that all variants that run through REMEDY have only one source of genomic position. This

feature is automatically implemented when generating VCF files.

3.1.7.3.4 VCF File Output VCF is a text file format and is the global standard file for

storing uncompressed, human-readable variant information data. Binary calling format

(BCF) is the sister specification for storing this data in compressed binary format. The VCF

file output was chosen as the final output for REMEDY as is allows users to easily link into

the wealth of genomic command line tools in the public domain. The format was developed

with large-scale genotyping and sequencing in mind and was developed as the primary

file format for the 1000 genomes project. The format allows for extensive meta-data to be

written alongside the primary variant and genotyping content while still showing the data in

a compressed, human-readable format [221].

REMEDY creates a custom VCF header to show that it was processed by REMEDY

along with a timestamp of when the pipeline was run and other runtime parameters. Output

data is written in the simplest way allowed by the VCF specification.

3.1.7.3.5 Logging Output Interpretation We here describe the important aspects to

note when analysing log file outputs for this sub-program (Figure 3.6, p.153). When the

manifest is first loaded, the logging will indicate how many loci were retrieved. This should

match the expected number for the target microarray. The logging will next show the differ-

ent strand types within the file and how many duplicate ids and structural loci there were

overall.

Genotyped input files will then be shown in sequence, separated by a blue header. The

logging will show how many samples it detected for the new input file which should be sanity
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checked. The logging will show progress for the re-coding process before outputting how

many loci did not match to the manifest; a high number indicates that the wrong manifest

file is being used. Logging finally shows the total markers written to the VCF file.

Figure 3.6: Logging output for the re-coding sub-program of REMEDY.

3.1.8 Data Merging

Each input file provided to REMEDY for re-coding and conversion results in a single VCF

output file; in general, each input file will be the output from Genome Studio for a single

well plate. In order to make data management, storage and further processing easier, it is

recommended to merge the output VCF files into one VCF file. REMEDY does not provide

functionality to do this as VCF Tools already provides this functionality.

VCF Tools is a software toolset design to work with VCF files created by the creators of

the VCF specification [221]. There are three ways in which VCF files can be stored so that

they can be interacted with by their software packages: native VCF format, BCF format and
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GZIP with a tab index format. For native and GZIP with tab index interaction, VCF-Tools

should be used while for BCF interaction, BCF Tools (produced by the same team) should

be utilised.

GZIP is a standard compression format in Linux systems that is lossless. The tab

index feature generates an additional index file which indexes genomic position within the

compressed file to make navigation of large compressed VCF files faster; this is the primary

storage format for most genomic data in VCF format and is the required input for many

further analysis programs.

The BCF file format is a binary non-human readable, compressed VCF format. It was

developed to increase the performance of some of the standard functions within VCF Tools.

It allows a computer to perform operations at maximum performance without worrying

about making the data human readable.

VCF Tools and BCF Tools provide functionality to merge VCF files to create one large

output VCF file. This operation is strongly recommended to be included in any pipeline that

uses REMEDY.

3.1.9 Installation and Setup

To install REMEDY, download the latest version for the operating system of choice from

the GitHub Wiki. Unzip the compressed folder to a directory and add the bin folder to

the system path so that the toolset can be called from anywhere on the operating system.

Completed releases can also be downloaded directly from Microsoft Azure or REMEDY

can be updated automatically by triggering the updater included with the base software.

The updater will check the file repository for a new version and download the relevant

system update files. REMEDY builds are available for Windows 7, 10 and Linux; this

ensures REMEDY can run optimally in a range of environments with or without an internet

connection.

REMEDY requires REMEDY-DB to be downloaded and placed in a folder named

vardb alongside the bin folder inside the main program folder. Multiple versions of

REMEDY-DB can be downloaded from the GitHub Wiki for different versions of dbSNP.

To update REMEDY-DB GitHub must be periodically checked and any new versions down-

loaded. Alternatively, we provide a sub-program within the REMEDY package to generate

a new database from the UCSC base table file.

To verify installation, REMEDY can be called on the command line by typing remedy;
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a welcome screen will be displayed with some version information and basic run options.

It is recommended that a projects folder be created for all REMEDY data. For each new

project create a new folder that contains all the data for REMEDY to complete processing

for that particular project.

3.1.10 Software Performance

We conducted performance testing on REMEDY using a high-end desktop computer run-

ning Windows and Linux in a dual boot configuration with a Samsung 950 Pro solid state

drive, the full specification can be found in the appendices A.1, p.280. All three REMEDY

sub-programs were testing using a subset of data from the SSNS GWAS project. The data-

set consisted of seven samples which were genotyped on the Illumina Infinium Multi-Ethnic

Global microarray detailed in the Steroid-sensitive nephrotic syndrome (SSNS) case study

section below.

The manifest scanning took 14 minutes and 10 seconds to scan 1,748,250 variants,

equating to 2056.7 variants per second for matching and processing. Genotype scanning

on the seven sample test set took 30 seconds to complete a scan of 12,237,750 genotypes

equating to 407,925 genotypes per second. Re-coding the data from DESIGN to FWD took

15 minutes and 20 seconds equating to 13,302 genotypes per second.

We found all testing to be more than acceptable in terms of quality and run-time to

work inside of a GWAS pipeline, especially given that the REMEDY process would usu-

ally only be performed once on input data during a project and the result saved for future

use. No significant differences in processing time or output were found between running

REMEDY on Windows versus Linux operating systems. The processing time for genotype

scanning and re-coding increased linearly with the number of samples included for ana-

lysis. Both the manifest scan and re-coding portions of REMEDY require variant matching

to REMEDY-DB which occupies approximately 95% of the processing time during a run;

therefore, increased sample sizes on the re-coding sub-program although increasing run-

time linearly was negligible overall, equating to under 20 seconds even when scaled to a

full well-plate of 96 samples. We also ran REMEDY on a similar test desktop, but with a

standard magnetic hard drive, the full specification can be found in the appendices A.1,

p.280. We found the processing times for manifest scanning and re-coding to be signi-

ficantly longer; this was due to REMEDY-DB operating as an on-disk NoSQL database.

NoSQL database performance is directly tied to storage drive performance, so this result

was unsurprising. We strongly recommend REMEDY to be run on computers with solid-

state drives for optimal performance.
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We compared our re-coding output to Illumina Genome Studio by importing the same

seven sample test file and exporting the data in TOP, BOT, FWD and REV strand designa-

tions. We then programmatically compared the four outputs to runs of REMEDY and found

zero differences between the two programs. This confirmed that our re-coding algorithm

produced the same results as Illumina software.

3.1.11 Steroid-Sensitive Nephrotic Syndrome Case Study

We undertook an investigation into SSNS where we collaborated with several teams glob-

ally to collect a large cohort of over 1700 samples to perform a GWAS.

The large sample cohorts in our study, presented some additional technical challenges

as we did not have the resources to generate proprietary control data; the microarray that

was selected for the SSNS GWAS also made locating matching control data more difficult.

We used the methodology shown in our methods section to build a data pipeline capable of

handling the larger volume of genotyping data present, and that was designed to overcome

the technical difficulties we faced. One of the primary challenges we encountered was the

requirement to merge multiple large, disparate, genotyped datasets from different exper-

iments in an accurate, repeatable way; we developed REMEDY to address these issues

within our GWAS methodology.

Here we first present the pipeline design process for our SSNS GWAS, highlighting

how REMEDY fits into the overall data flow. We then show a summary of the pipeline

results to demonstrate the effectiveness of our tool. For more information on the SSNS

study including detailed methods and results, we direct the reader to Dufek et al. [1].

3.1.11.1 Introduction

SNSS is the most common form of nephrotic syndrome in children with an incidence of ap-

proximately one to ten per 100,000; the majority of affected children experience a chronic

relapsing course. The onset of disease manifestations is commonly associated with a pre-

ceding activation of the immune system, typically by an upper respiratory tract infection. As

the name implies, SSNS is characterised by a therapeutic response to glucocorticoids, as

well as to other immunosuppressants. The apparent triggering of the disease by infection

and the therapeutic effect of immunosuppressive treatment have suggested that SSNS is

an autoimmune disorder [1].

Investigating the genetic architecture of diseases through GWAS has proven success-
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ful in many autoimmune diseases, the most common finding in GWAS is the identification

of an association to the Human leukocyte antigen (HLA) region. Arguably, however, it is the

regions outside HLA that are found to be associated that can provide the most meaningful

insights into the disease mechanism. Our team previously showed that Membranous neph-

ropathy (MN) had a significant association in the region of the gene Anti-Phospholipase-

A2-Receptor (PLAR2) outside of HLA which was separately shown to be crucial to the

disease mechanism [177].

SSNS is a well-known disease that has been the subject of several studies, however,

although a significant immune component for the disease had already been identified, fur-

ther non-HLA causal regions were yet to be identified. In situations such as this, a GWAS

of significant power can reveal new causal genomic regions leading to better understanding

of the disease aetiology.

3.1.11.2 Project Planning

The project premise for the SSNS project was to use a scientific collaboration to collect a

large cohort of SSNS patient samples; this would potentially provide the necessary study

power for a GWAS to reveal previously unidentified genomic regions of interest or show

new significant variants in the current Region of interest (ROI). GWAS have historically

been used to great effect in the study of rare disease to identify causal ROIs and variants,

given the size of the cohort and the lack of large pedigree families available a linkage

study would be infeasible in this situation; instead, we selected a GWAS as our method of

positional cloning.

For our SSNS study, we collected 1698 Deoxyribonucleic acid (DNA) samples from pa-

tients with confirmed SSNS in a global collaboration with teams from Europe and Asia; the

samples were collected as an input data source with no other associated clinical data. Our

genomic analysis methodology was applied to create a data pipeline that would identify

potential causal variants for SSNS when compared to a control cohort without SSNS. After

causal variant identification, additional functional analysis would then be performed as re-

quired.

Samples genotyped on a high-density microarray was selected as the primary genetic

data source for the project. The overall strategy for data collection was to collect samples in

batches, label them according to our sample ID methodology and have them genotyped by

an external lab. We would then collect the raw IDAT files as well as the Design output matrix

files from Genome Studio as our data pipeline input data. We required a control cohort to

compare against the SSNS samples which we did not have internally in our project; we,
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therefore, obtained data from multiple public external sources to form a control set large

enough to provide significant statistical power to the GWAS.

Given the multi-ethnic nature of the study cohort, the Illumina Infinium Multi-Ethnic

Global BeadChip v.A1 [189] was selected as our microarray for the case samples. This

relatively new chip contained over 1.7 million markers, which were spread over multiple

ethnicities and was designed explicitly for multi-ethnic GWAS by a consortium. Given

the excellent marker distribution and density and the multi-ethnicity of the variants, it was

deemed that this chip would give the best probability of a successful GWAS given the study

samples.

As discussed in the introduction, in a normal GWAS, we control for variance in the eth-

nicity of samples using Principal component analysis (PCA). Given the multi-ethnic char-

acteristics of our patient cohort, we opted to perform a GWAS initially on our largest group

of samples - the Europeans, thus retaining the remainder of the samples for meta-analysis

or for creation of replicates; this maximises the power of the data while keeping study

complexity to a minimum.

We opted to identify the European group of samples using PCA with standard devi-

ation filtering of samples that were outliers when compared to the European cluster centre.

Excluding samples based on ethnicity removes samples and thus lowers the power of a

study, however, simply including all samples increases the genomic inflation factor and can

introduce false positives in the data that are due to ethnic differences in samples rather the

target trait being measured.

To control for ethnicity while retaining as many samples as possible in the study co-

horts, we employed a two-pronged approach. First, we would perform PCA and standard

deviation filtering with relatively relaxed filter parameters to remove samples which were

from distant ethnic groups such as Chinese or Africans. We would then perform logistic re-

gression association testing using the first 10 principal components from the PCA to control

for any remaining deviations in ethnicity.

3.1.11.3 Sample Preparation and Genotyping

Source data collection was problematic for both cases and controls, primarily due to the

mosaic nature of both datasets; the samples for both cases and controls were collected

from multiple sources with different processes, documentation and levels of pre-analysis.
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3.1.11.3.1 Case Samples The patient samples were collected in biological form, our

study was an international collaboration which resulted in samples being received in

batches over several years with differing sample naming schemes. We developed a new in-

ternal sample naming system before they were sent for genotyping by creating a versioned

mapping file between the two ID schemes (Figure 3.7, p.159). The DNA samples were

sent for genotyping at the Institute for Child Health after being prepared on 96 well plates

with the required excel documentation and their original source identifiers. As the samples

were returned, all data was matched to the internal sample IDs, catalogued and saved to

drives that were part of our data redundancy infrastructure. Any misformatting of data or

missing samples were dealt with at the point of receipt of data — the final genotyped input

dataset for SSNS comprised 1698 samples from 20 separate sample sets.

We manually filtered these samples to a set of 712 samples of reported European

ancestry based on the location of the global centre from which they came; this comprised

the input data for cases to our data pipeline.

Figure 3.7: Internal Sample ID scheme for our SSNS GWAS.

3.1.11.3.2 Control Samples We identified potential sources of control data by search-

ing online repositories such as dbGaP and EGA as well as large-scale projects such as

the 1000 genomes project [225] and also control samples provided by Illumina based on

samples from the Hap Map project [186]. Our final list of control data comprised of a study

named the ’Oxford’ dataset, Illumina controls based on the HapMap project, and a set of

controls from the Wellcome trust case control consortium (WTCCC):

• The Oxford dataset is available through the European Genome Archive

(EGAD00010000144 and EGAD00010000520), it provided data from 432 Individuals

[226] [227].
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• CEU Illumina ethnicity controls were obtained from Illumina and provided data from

90 individuals [228].

• WTCCC controls. This is a combined dataset comprising the 1958 UK birth cohort

controls and the UK blood service control group controls (Consortium 251), a total of

5,604 individuals. Data is available through the WTCCC website [187].

Despite the control data already being genotyped, pre-processing presented a unique

set of challenges. Identifying what level of pre-processing had already been applied to the

data combined with the challenges inherent with merging the case and control datasets to

each other, presented a unique set of challenges. We discuss how we overcame these

difficulties in detail in our methods section (2.3.1, p.107). Our control sets were genotyped

on a range of microarrays, strand designation schemes and input file formats (Table 3.1,

p.160).

Dataset Microarray Sample
No.

SNV
Count

Encoding File Format

Illumina Controls HumanOmniExpress-
12v1-C

270 711,320 FWD Final Report GATC

Oxford Controls HumanOmniExpress-
12v1-J

432 712,893 FWD Matrix GATC

WTCCC-1958 Human1-2M-
DuoCustom-v1-A

2867 1,106,184 DESIGN Final Report AB

WTCCC-NBS Human1-2M-
DuoCustom-v1-A

2737 1,106,188 DESIGN Final Report AB

Table 3.1: Control data subsets for the SSNS GWAS. The table shows the range of formats and
encoding schemes encountered.

3.1.11.4 Pipeline Design

Here we first present our generalised pipeline design for a GWAS based on genotyping

data (Figure 3.8, p.161); we show the flow of data from first inputs through to the primary

result required (the association testing results). We then expand on this template and

apply the full pipeline design principles shown in the methodology to develop a processing

strategy for our SSNS GWAS (Figure 3.9, p.163). We discuss the full pipeline in detail

below, highlighting each node and edge as per our methodology.
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Figure 3.8: A generalised pipeline design for a GWAS using REMEDY with genotyping input data.
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Figure 3.9: Full SSNS GWAS pipeline data graph.
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3.1.11.4.1 Source Data The input data for our SSNS pipeline comprises the SSNS

case dataset in the form of one file per well-plate in Genome Studio matrix format, which

was requested to be designated to the Design strand, and the three control datasets from

our selected online resources. The control datasets were also contained within a series of

files in the case of the WTCCC and Oxford controls or a single file as was the case with

the CEU Illumina data.

It is important to note that the SSNS case dataset is not merged before entry into the

pipeline; although the case data was processed by the same lab and the same machine,

it was generated by different technicians at different times; therefore, the data must be

subject to extensive genotyping data consistency checks before merging. REMEDY was

designed with this in mind; therefore, each SSNS data node is, in fact, one file per batch.

We extended REMEDY to handle folder processing as well as single files; therefore, the

processing steps do not change; the data merging step simply has more files to merge.

3.1.11.4.2 Microarray Supporting Data We accessed the support file repository on

the Illumina website and downloaded all available manifest, comment and rsID mapping

files for human genome version GRCh37 and dbSNP version 150 for each of the three

microarrays used to genotype our source data. While the Multi-Ethnic Global chip had

a comments file and required a mapping file, other arrays did not need a mapping file

(rsIDs were used in the manifest instead of Illumina internal identifiers); comments files

were available for two out of three of the microarrays. Given that the Human 1.2M Duo

BeadChip is a relatively old array, it is possible that comments files did not exist at the time

of manufacture.

3.1.11.4.3 REMEDY-DB As discussed in our methods section, REMEDY-DB is a cus-

tom file-based representation of dbSNP that has fast tree-based indexing for searching by

rsID. Variant data is used the manifest scanning and re-coding portions of REMEDY; we

show it as a separate item in our pipeline as it operates as a stand-alone database that

has its own space and performance requirements.

3.1.11.4.4 Redundant Data Storage We describe in our methodology that project data

(especially source data) should be stored in a redundant storage configuration. We show

in our data pipeline points at which data is retrieved or transferred from long-term storage;

this aids in storage planning and also when making edge calculations. We show our actual

storage configuration in the pipeline implementation section below.
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3.1.11.4.5 Manifest Scan We perform a manifest scan for each of the three target mi-

croarrays in the pipeline. We define a manifest report node to represent the various report-

ing outputs for this stage (including logging) that should be manually checked by the user

to ensure the correct files are being used and output is as expected. The primary output

for the data pipeline for the manifest scan is the list of valid variants; this is used by the

other portions of REMEDY to filter for variants that are valid for GWAS only.

3.1.11.4.6 Genotype Scan REMEDY scans the genotyping data, the primary output is

a logged strand designation prediction which is needed to select the correct command line

inputs for the re-coding and conversion section. We show this in our pipeline as a strand

report node that feeds into subsequent nodes.

3.1.11.4.7 Re-coding and Conversion The re-coding and conversion system is the

last stage of the REMEDY processing block. It takes inputs in various input file formats

and strand designation schemes and re-encodes them to a common scheme in VCF file

format; only variants technically valid for GWAS are included in the final data files. The

VCF files are saved to redundant storage before further processing.

3.1.11.4.8 Per Sample QC Per-sample quality control is designed to identify low-quality

samples, duplicates and related individuals. We break out the process into a separate box

for space considerations but also to show that it is a modular process. The full methods for

quality control can be found in Dufek et al. [1].

In summary, quality control per sample included removal of individuals with a call rate

of < 90%, removal of duplicates or related individuals via Identity by descent (IBD), removal

of samples with average identity by state distance (DST) of < 0.66 and heterozygosity rates

of more than three standard deviations below or above the mean.

3.1.11.4.9 Per SNV QC Per-SNV quality control is designed to identify low-quality vari-

ants and variants which are unsuitable for GWAS. We break out the process into a separate

box for space considerations but also to show that it is a modular process. The full methods

for quality control can be found in Dufek et al. [1].

In summary, quality control per variant included the removal of markers with a call rate

of < 99%, markers with more than one alternate allele and a minor allele frequency of <

1%. Markers in control datasets with a significant deviation (p-value < 0.001) from Hardy-

Weinberg equilibrium (HWE) were all removed.
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3.1.11.4.10 Data Merging The data merging stage is responsible for combining all of

the single genotyping files into one dataset. At this point, it is essential to include extra

information into the dataset to indicate which dataset the sample came from and whether

it is a case or control. We used SNP & Variation Suite (SVS) to perform the merging and

extra annotation.

3.1.11.4.11 PCA Ethnicity Control It is essential to control for population stratification

prior to performing an association test. We pre-selected input samples for European an-

cestry based on collection location; we add in process nodes for more precise PCA-based

stratification control here.

3.1.11.4.12 Imputation Imputation is a standard method in GWAS for increasing the

marker density and thus the resolution of association testing; we add process nodes for

Imputation at this point. Post-imputation quality control is a designed to apply similar prin-

ciples to that of per-SNV Quality control (QC) on our imputed dataset, which now contains

many SNVs which did not pass through our initial QC and filtering checks. We break out

the process into a separate box for space considerations but also to show that it is a mod-

ular process. The full methods for post-imputation quality control can be found in Dufek et

al. [1].

In summary, we remove those markers with Dosage R-Squared (DR2) of < 80%, minor

allele frequencies of < 1%, call rates of < 99% and Hardy-Weinberg deviation for p-values

of < 0.001. We also remove all structural variants, in-line with our GWAS methodology.

3.1.11.4.13 Association Testing Association testing is the primary result generator for

our data pipeline. It is responsible for producing a list of variants included in the analysis

with their associated p-values that represent how different the cases are from controls at

that loci. We add a report node for all reports that can be generated from the base result

set including Manhattan plots and other related reporting data.

3.1.11.5 Node Resolution

Using the completed pipeline and following our design methodology, we next resolved our

nodes in terms of selecting software and toolsets to complete the process tasks. The initial

stages of the pipeline up to the quality control section are handled by REMEDY. Several op-

tions exist for quality control; SVS for all our GWAS analysis. SVS is a GUI based analysis
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suite which has options for importing VCF files into an internal storage scheme from which

operations can be performed including QC, merging and association testing. We used

SVS as our base for data processing during these stages; for any external operations, we

exported to file, performed the operation and then re-imported back into SVS. Per-sample,

per-SNV and data merging were performed on the imported VCF files from within SVS

except for the IBD and DST calculations for which we selected the PRIMUS software suite

[229]. Ethnicity control was conducted from within SVS before we exported our dataset for

imputation by Beagle 5.0 [230]. During initial testing, SVS was unable to handle the num-

ber of SNPs generated by imputation; we, therefore for post-imputation QC, used bcftools

for DR2, Minor allele frequency (MAF) and CR filtering [221] and PLINK v1.90 beta [231]

for HWE thresholding to reduce the total number of SNVs prior to re-importing back into

SVS for association testing.

3.1.11.6 Edge Analysis

Edge resolution further resolves the data graph to predict data storage requirements during

processing and identify potential performance bottlenecks. Following our pipeline design

methodology, we used the known data volumes at the input nodes combined with know-

ledge of the selected node programs to create a prediction of storage at key edges on the

graph (Table 3.2, p.168).

While it is impossible to know the exact volume of data until pipeline run-time, we

predicted values based on approximate known ratios between different file formats and on

test data. We estimated we needed at least 7.6TB of working storage to store all data

in a pipeline run, but only 1.1TB of redundant storage for storing the final results. Based

on the edge information we created a new 40TB storage server specifically to deal with

the large volume of imputed data which was predicted by our pipeline design. In terms

of performance considerations, we identified that imputation of 8000 samples could be a

significant bottleneck given the large volumes of data predicted by the edge analysis.
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Dataset Final
Report

Matrix
Conversion

Re-coding Imputed Compressed Total

Illumina 14GB ∼0.5GB ∼0.7GB ∼90GB ∼5GB

Oxford 36GB ∼1.2GB ∼1.4GB ∼180GB ∼10GB

WTCCC-1958 311GB ∼10GB ∼12GB ∼1600GB ∼90GB

WTCCC-NBS 298GB ∼10GB ∼12GB ∼1600GB ∼90GB

SSNS N/A 18GB ∼20GB ∼3100GB ∼180GB

Total Working 659GB ∼40GB ∼46GB ∼6500GB ∼400GB ∼7645GB

Total Stored 659GB ∼40GB ∼46GB N/A ∼400GB ∼1145GB

Table 3.2: Storage predictions for key parts of the SSNS pipeline. these values were calculated as
part of the edge analysis stage of our data pipeline methodology. The predictions were
based on approximate known ratios between different file formats and on test data. We
estimated we needed at least 7.6TB of working storage to store all data in a pipeline
run, but only 1.1TB of redundant storage for storing the final results.

3.1.11.7 Pipeline Implementation

We first identified the required operating systems based on the node resolution steps per-

formed in previous sections. REMEDY is capable of running on either Windows or Linux

based systems while all other tools with the exception of SVS run on Linux only. SVS

is a windows based software suite; therefore, we identified the need to use at least two

machines running Windows and Linux separately. Given the performance requirements of

the Linux part of the computation from our edge analysis, we opted to run all of our Linux

tools on an in-house compute server. REMEDY and SVS processing nodes were run on a

high-performance windows desktop custom created for the project.

We created a 40TB RAID 10 redundant storage array in-house using a custom built

server, we then additionally stored all raw data onto portable hard disks and stored them

off-site to give multiple-location redundancy. We installed a 1Gbit s−1 network between the

storage server, Windows desktop and Linux compute servers to enable high-speed data

transfer between nodes in the pipeline. Data transfer could have been automated between

the servers to better adhere to our design practices; however, in this instance, we opted to

manually storage and transfer data between servers.

3.1.11.8 REMEDY Processing

We present here the results for all REMEDY based processing in the initial stages of the

pipeline.
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3.1.11.8.1 Manifest Scanning We scanned each of the three manifests pertaining to

the set of microarrays utilised in our cases and controls; additional manifests from three

other popular human genotyping arrays manufactured by Illumina were also assessed by

REMEDY to provide more test samples for comparison at the manifest scanning stage. De-

tails of the microarrays assessed and their column alias for the results summary table are

shown in Table 3.3, p.169, the REMEDY processing results are summarised in Table 3.4,

p.172.

Microarray Summary Table Alias

HumanOmniExpress-12 v1.0 Omni Ex

Human1-2M-DuoCustom v1.0 Duo Custom

Multi-Ethnic Global Array MEGA

InfiniumOmni2.58 v1.3 Duo Custom

HumanCore-24 v1.0 Core

Infinium Global Screening v3.0 Screening

Table 3.3: List of Illumina microarrays assessed using REMEDY.

The initial loaded SNV count for each microarray falls broadly in line with the age of the

array, with older products such as the Duo custom and the Omni Ex having lower numbers

of SNVs than current products such as the MEGA and Omni 2.5 (Illuminas flagship microar-

ray with 2.5m SNVs). The exceptions are the Infinium core, which is a more economical

but newer array and the Global screening, which is targeted more for pharmacogenomics

studies, and precision medicine research.

None of the arrays contained duplicate Ids, which was expected as the manifests were

downloaded directly from the manufacturer’s websites. This feature was added to REMEDY

when the origin of the manifest could not be confirmed and is a sanity check step only.

The strand analysis stage showed that the majority of SNVs on all arrays were de-

signed to TOP or BOT. MINUS and PLUS designations denote probes that are targeted

to structural variation on the 3’ and 5’ biological strands. The Omni range of arrays were

designed with very little structural variants included as opposed to the MEGA, Infinium core

and Global screening arrays, which have a number of structural variants included that in-

creases approximately in proportion to their size. The outlier is the Duo custom, which has

a disproportional amount of structural variants configured for the 5’ strand. This array is the

oldest of the group therefore, this could be due to older design considerations; however,

the true reason cannot be deduced from the source data and therefore, is not discussed

further here.
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Most of the arrays were supplied with comment files except for the Duo custom; this

is most likely due to the age of the array. The number of comments in each category fell

broadly in line with the size of the array except for the MEGA, where there was a signi-

ficantly larger number of SNVs included on the array that mapped to multiple or PAR-like

regions. This, again, is most likely due to the intended function of the array that is specific-

ally designed to target ethnicity-specific variants. The design decision to include a variant

onto the textitMEGA array relied upon further considerations in addition to genomic cover-

age and therefore, technically less desirable SNVs were included; specifically, additional

variants were included by an external consortium.

The rsID mapping stage attempts to find a valid rsID with which to map the variant to

dbSNP using a mapping file supplied by the manufacturer. The Omni Ex and Duo Custom

arrays had the manifest row ids already encoded as non-Illumina internal Ids and thus

required no mapping file. For the other arrays, there were a number of different counts of

invalid mappings included in the mapping file. REMEDY attempts to find a valid rsID for

every variant; therefore, at this stage, if a custom variant is included on an array that does

not have an id that begins with ’rs’, it is listed as invalid at this stage. If no mapping file

exists, then this check falls through to the dbSNP matching stage; no direct comparison

can be drawn between the arrays without mapping files and the arrays with at this stage

of processing. For the arrays that do include mapping files, there is no discernible pattern

between the numbers as this is simply due to design considerations as to how many custom

variants were included on the chip.

The most inter-array comparison can be performed at the dbSNP matching and meta-

data retrieval stages. The Duo custom has a large number of SNVs (>100k) that do not

match to dbSNP; this is unsurprising as it is the oldest array and, as REMEDY uses the

latest version of dbSNP for the most up-to-date meta-data, many more SNVs have been

removed or merged since the design of the array. On the other arrays, there is a small

number of unmatched variants in proportion to the size of the array versus the age and

amount of structural variants included in the design.

The number of multi-allelic SNVs removed by REMEDY is directly proportional to the

size of the array and does not have any correlation with age. This at first seems counter-

intuitive until the release schedule of dbSNP is taken into consideration. Recent releases

of dbSNP have significantly increased the number of submissions used to create the rsIDs

due to the explosion of genetic information being generated by the scientific community.

This has resulted in a situation whereby many variants have gone multi-allelic within the

space of a small number of recent dbSNP releases; consequently, the number of multi-

allelic SNVs on an array becomes a function of size.
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The number of strand mismatches is a more complex situation. The counts between

arrays are broadly a function of both size and age; the Duo custom for example, has the

largest count of mismatches due to the age of design versus the latest version of dbSNP

while the Core, being one of the smallest yet newest arrays, has the lowest amount. The

outlier is the Global screening array, this is due to the number of structural variants such

as CNVs that are included on the array. This is related to the intended function such as

screening for pharmacogenomics sites; these variants are usually less-well described in

dbSNP and are therefore subject to strand changes as more submissions are collected

that affect the rsID calculations.

In conclusion, across all metrics that are not a result of design considerations, the

number of ’lost’ or filtered variants by REMEDY is a function of size and the age of the

array. Old arrays fall out of touch with dbSNP and therefore find many variants have been

removed, merged with other Ids or have been designated multi-allelic. Larger arrays have

statistically more chance of having problematic variants; the counts are then skewed by

array age. Arrays which have more specific functions other than genome-wide population

genetics may or may not fall into this model dependant on how many structural variants or

areas of the genome that are difficult to genotype are included in the array design.

In terms of the first three arrays included in the analysis that were used by sample sets

in our study dataset, the results show that many thousands of variants on each microarray

are unsuitable for GWAS; these SNVs all have the potential to cause noise in subsequent

result sets, but are detected and removed by REMEDY.
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Phase Metric Omni Ex Duo
Custom

MEGA Omni 2.5 Core Screening

Manifest
Load

Loaded SNVs 719,665 1,238,733 1,748,250 2,372,784 654,027 306,670

Duplicates 0 0 0 0 0 0

Strict Loci Rem. 719,665 1,238,733 1,748,250 2,372,784 654,027 306,670

Strand
Analysis

No. BOT 349,809 572,048 877,057 1,183,883 322,354 143,436

No. TOP 369,855 591,763 846,738 1,188,860 321,555 150,571

No. MINUS 0 237 11,493 11 4,868 5,743

No. PLUS 1 74,685 12,962 30 5,250 6,920

Strict Loci Rem. 719,664 1,163,811 1,723,795 2,372,743 643,909 294,007

Comments Comments
Loaded

1,363 - 15,768 4,675 1,388 801

Multiple Mappings 546 - 11,451 1,860 507 683

PAR-like Region 722 - 4,311 2,558 879 106

No Probe
Mapping

77 - 6 257 2 12

Strict Loci Rem. 718,302 1,163,811 1,708,643 2,368,070 642,531 293,587

rsID
Mapping

Unmatched to
Manifest

- - 0 0 0 0

Matched to
Manifest

- - 1,748,250 2,372,784 654,027 306,670

Invalid Mappings - - 12,534 2,491 5,700 23,859

Valid Mappings - - 1,735,716 2,370,293 648,327 282,811

Strict Loci Rem. 718,302 1,163,811 1,707,934 2,367,697 638,225 282,284

rsID
Matching

Loci with rsIDs 719,665 1,238,733 1,735,716 2,370,293 648,327 282,284

Unmatched to
dbSNP

1,198 100,757 7,280 5,831 6,859 535

Matched to
dbSNP

718,467 1,137,573 1,728,436 2,364,462 641,468 282,276

Multi-allelic 45,018 72,016 148,545 160,296 45,332 17,800

Strand
Mismatches

115,616 184,351 66,972 112,589 39,476 43,116

Invalid Positions 5 50 2 0 1 0

Deletions 0 189 15,307 1 4,191 249

Insertions 0 206 5,023 12 1,379 97

Indels 0 8 34 0 67 0

Strict Loci Rem. 672,361 1,065,696 1,565,402 2,201,986 591,669 264,182

Total Removed 47,304 173,037 182,848 170,798 62,358 42,488

Total Valid SNVs 672,361 1,065,696 1,565,402 2,201,986 591,669 264,182

Table 3.4: Summary of the core output from the manifest scan stage of the REMEDY toolset when
run inside the SSNS GWAS pipeline. The Strict Loci Rem. rows show how many valid
variants are left in the dataset after each filter pass.
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3.1.11.8.2 Genotype Scanning Each dataset was made up of multiple individual files

that we scanned as a batch. We show the results for the Illumina controls in Table 3.5,

p.173, for the Oxford controls in Table 3.6, p.173, for the WTCCC birth cohort in Table 3.7,

p.174, for the WTCCC blood cohort in Table 3.8, p.174 and the SSNS cases in Table 3.9,

p.175.

Filename Strand Prediction TOP (%) BOT (%) FWD (%) REV (%)

47CHB_11162012 FWD 49.92 50.08 99.75 0.25

47JPT_11162012 FWD 49.94 50.06 99.79 0.21

92YRI_11162012 FWD 49.97 50.03 99.84 0.16

95CEU_11162012 FWD 49.91 50.09 99.73 0.27

Table 3.5: Processing results for the REMEDY genotype scan run inside the SSNS GWAS pipeline
for the Illumina controls dataset.

Filename Strand Prediction TOP (%) BOT (%) FWD (%) REV (%)

Oxf1 DESIGN 51.29 48.71 49.85 50.15

Oxf2 DESIGN 51.3 48.7 49.86 50.14

Table 3.6: Processing results for the REMEDY genotype scan run inside the SSNS GWAS pipeline
for the Oxford controls dataset.
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Filename Strand Prediction TOP (%) BOT (%) FWD (%) REV (%)

20100416_10 TOP 96.81 3.19 48.71 51.29

20100416_11 TOP 96.85 3.15 48.73 51.27

20100416_12 TOP 96.57 6.43 47.09 52.91

20100416_13 TOP 96.62 3.38 48.62 51.38

20100416_1 TOP 96.57 3.43 48.59 51.41

20100416_2 TOP 96.61 3.39 48.61 51.39

20100416_3 TOP 96.64 3.36 48.63 51.37

20100416_4 TOP 96.77 3.23 48.69 51.31

20100416_5 TOP 97.06 2.94 48.84 51.16

20100416_6 TOP 96.24 7.76 46.41 53.59

20100416_7 TOP 96.88 3.12 48.75 51.25

20100416_8 TOP 95.92 4.08 48.27 51.73

20100416_9 TOP 96.43 3.57 48.52 51.48

Table 3.7: Processing results for the REMEDY genotype scan run inside the SSNS GWAS pipeline
for the WTCCC birth controls dataset.

Filename Strand Prediction TOP (%) BOT (%) FWD (%) REV (%)

FCR_NBS_1_1 TOP 95.49 4.51 48.16 51.74

FCR_NBS_1_2 TOP 95.68 4.32 48.26 51.74

FCR_NBS_2_1 TOP 95.46 4.54 48.15 51.85

FCR_NBS_2_2 TOP 95.6 4.4 48.22 51.78

FCR_NBS_3_1 TOP 94.97 5.03 47.89 52.11

FCR_NBS_3_2 TOP 95.44 4.56 48.14 51.86

FCR_NBS_4_1 TOP 95.75 4.25 48.29 51.71

FCR_NBS_4_2 TOP 95.86 4.14 48.35 51.65

FCR_NBS_5_1 TOP 95.59 4.41 48.21 51.79

FCR_NBS_5_2 TOP 95.49 4.51 48.16 51.84

FCR_NBS_6_1 TOP 95.13 4.87 47.98 52.02

FCR_NBS_8_1 TOP 96.03 3.97 48.44 51.56

FCR_NBS_8_2 TOP 95.23 4.77 48.03 51.97

Table 3.8: Processing results for the REMEDY genotype scan run inside the SSNS GWAS pipeline
for the WTCCC blood controls dataset.
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Filename Strand Prediction TOP (%) BOT (%) FWD (%) REV (%)

Kleta 10 Full Data Table DESIGN 52.35 47.65 54.67 45.33

Kleta 11 Full Data Table DESIGN 52.31 47.69 54.66 45.34

Kleta 12 Full Data Table DESIGN 52.31 47.69 54.66 45.34

Kleta 13 Full Data Table DESIGN 52.35 47.65 54.67 45.33

Kleta 14 Full Data Table DESIGN 52.33 47.67 54.67 45.33

Kleta 15 Full Data Table DESIGN 52.41 47.59 54.68 45.32

Kleta 16 Full Data Table DESIGN 52.31 47.69 54.66 45.34

Kleta 17 Full Data Table DESIGN 52.39 47.61 54.67 45.33

Kleta 18 Full Data Table DESIGN 52.29 47.71 54.66 45.34

Kleta 19 Full Data Table DESIGN 52.34 47.66 54.67 45.33

Kleta 20 Full Data Table DESIGN 52.33 47.67 54.67 45.33

Kleta 21 Full Data Table DESIGN 52.3 47.7 54.66 45.34

Kleta 22 Full Data Table DESIGN 52.29 47.71 54.66 45.34

Kleta 23 Full Data Table DESIGN 52.29 47.71 54.66 45.34

Kleta 24 Full Data Table DESIGN 52.31 47.69 54.67 45.33

Kleta 25 Full Data Table DESIGN 52.31 47.69 54.67 45.33

Kleta 26 Full Data Table DESIGN 52.28 47.72 54.66 45.34

Kleta 27 Full Data Table DESIGN 52.29 47.71 54.66 45.34

Kleta 28 Full Data Table DESIGN 52.28 47.72 54.67 45.33

Kleta 4 Full Data Table DESIGN 53.02 46.98 54.69 45.31

Kleta 5 Full Data Table DESIGN 52.55 47.45 54.69 45.31

Kleta 6 Full Data Table DESIGN 52.35 47.65 54.66 45.34

Kleta 7 Full Data Table DESIGN 52.32 47.68 54.67 45.33

Kleta 8 Full Data Table DESIGN 52.28 47.72 54.66 45.34

Kleta 9 Full Data Table DESIGN 52.31 47.69 54.67 45.33

Kleta Plate 3 Full Data Table DESIGN 52.45 47.55 54.67 45.33

Kleta Plate 2 Full Data Table DESIGN 52.36 47.64 54.67 45.33

Kleta1 Full Data Table DESIGN 52.32 47.68 54.67 45.33

MRC MN 1 Full Data Table DESIGN 52.29 47.71 54.67 45.33

MRC MN 2 Full Data Table DESIGN 52.36 47.64 54.68 45.32

MRC MN 3 Full Data Table DESIGN 52.33 47.67 54.68 45.32

Nijmegen 1 Full Data Table DESIGN 52.36 47.64 54.66 45.34

Nijmegen 2 Full Data Table DESIGN 52.43 47.57 54.66 45.34

Plate 29 Full Data Table DESIGN 52.31 47.69 54.67 45.33

UKM8121 Full Data Table DESIGN 52.33 47.67 54.67 45.33

UKM8122 Full Data Table DESIGN 52.3 47.7 54.67 45.33

Table 3.9: Processing results for the REMEDY genotype scan run inside the SSNS GWAS pipeline
for the SSNS cases dataset.
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3.1.11.8.3 Re-coding and Conversion Each file shown in the genotype scanning

stage was subject to re-coding by REMEDY. For each dataset, the predicted strand desig-

nation from the genotype scan stage was supplied to the re-coding REMEDY sub-program

as the source encoding; the destination encoding for every file was set to FWD. A list of

valid SNVs from the manifest scan stage for each dataset was also supplied so that only

valid GWAS SNVs were included in the final VCF file.

3.1.11.9 Quality Control, Filtering and merging

Per-sample and per-SNV QC were performed in SVS per case or control dataset. After

re-coding and conversion, we merged all batch file sets into a single dataset for each

overarching dataset classification of SSNS cases, Oxford, Illumina CEU and WTCCC. We

formed QC on these four datasets individually as per the pipeline design. Per-sample QC

results were as follows:

• For the SSNS cases (n=712), samples were removed because of call rate (CR)

<90% (n=3), IBD >0.1875 (n=58), average DST <0.66 (n=0) and heterogeneity >3SD

(n=26). Remaining were 625 individuals.

• For the Oxford controls (n=432), samples were removed because of CR <90% (n=0),

IBD >0.1875 (n=6), average DST <0.66 (n=0) and heterogeneity >3SD (n=6). Re-

maining were 420 individuals

• For the Illumina CEU controls (n=90), samples were removed because of CR <90%

(n=0), IBD >0.1875 (n=30), average DST <0.66 (n=0) and heterogeneity >3SD (n=1).

Remaining were 59 individuals.

• For the WTCCC controls (n=5604), samples were removed because of CR <90%

(n=55), IBD >0.1875 (n=67), average DST <0.66 (n=0) and heterogeneity >3SD

(n=82). Remaining were 5400 individuals.

After QC of the samples, the total number of cases was 625, and the total number of

combined controls remaining was 5879. Per-SNV QC results were as follows:

• For the cases (autosomal markers n=1,512,983), markers were removed because

of CR <99% (n=222,889), MAF <1% (n=700,397) and multiallelic (n=0). Remaining

were 669,943 markers.

• For the Oxford controls (autosomal markers n=653,959), markers were removed

because of CR <99% (n=13,310), MAF <1% (n=67,724), multiallelic (n=0), HWE

p<0.001 (n=2,889). Remaining were 571,616 markers.
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• For the Illumina CEU controls (autosomal markers n=653,959), markers were re-

moved because of CR <99% (n=79,777), MAF <1% (n=68,185), multiallelic (n=0),

HWE p<0.001 (n=1,795). Remaining were 516,372 markers.

• For the WTCCC controls (autosomal markers n=1,025,437), markers were removed

because of CR <99% (n=133,778), MAF <1% (n=135,992), multiallelic (n=0), HWE

p<0.001 (n=16,941). Remaining were 788,849 markers.

We combined the control sets at this point: the number of overlapping markers in the

combined control dataset was 372,137. After combining with the case dataset, the over-

lapping marker count was 158,314. Subsequent QC was performed on the combined

case-control dataset with HWE testing on controls only. The final number of markers in the

combined dataset was 158,217.

3.1.11.10 Principal Component Analysis

We performed PCA on our combined cases and controls dataset using the first ten eigen-

vectors as our measure of variance. We subsequently used the eigenvectors to remove

outliers from our dataset of greater than three standard deviations from the mean. We

specify that outliers in terms of a PCA represent samples that are significantly different ge-

netically than the average sample and are therefore of a different ethnicity (non-European);

as discussed in our introduction and methods, large variances in ethnicity are a source of

noise for GWAS and must be controlled. We visualised the two most significant eigen-

vectors as a 2-dimensional graph for reporting purposes (Figure 3.10, p.178); after filtering

the dataset comprised 422 cases and 5642 controls with 158,217 markers.

3.1.11.11 Imputation

Imputation requires a source reference panel to make inferences about missing data; we

selected the current industry standard, the 1000 Genomes Phase 3 data (version 5a) [232].

We exported our dataset from SVS before running imputation with the recommended set-

tings for Beagle, we then performed the post-imputation QC described in our data pipeline

immediately after. Our final dataset contained 5,216,266 markers, we then imported the

output file back into SVS for further analysis.
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Figure 3.10: PCA of our SSNS combined cases and controls after filtering outliers of more than
three standard deviations. We plot the first and second principle components against
each other. We include the full Illumina ethnicity controls in the input data for the
PCA calculation so the ethnicity clustering is more clearly shown. The Asian cluster
in the top right in light green and the African cluster in the bottom right have no addi-
tional sample dots. The European cluster in black is hidden by the sample dots from
our case control set. The plot shows our case/control samples are clustered in the
European sector indicating that they are all European in genetic origin.

3.1.11.12 Association Testing

We performed association testing under a logistic regression model using the first ten prin-

cipal components of a PCA performed without filtering out any samples on our final dataset.

By using a regression model rather than basic allele testing only, we can minimise the effect

of population stratification on our final results. The widely accepted p-value threshold of

P < 5× 10−8 was used to declare genome-wide significance [153]; we generated a Man-

hattan plot to visualise our results for reporting purposes using the in-built functionality of

SVS (Figure ??, p.??). The genomic inflation factor was calculated to quantify potential in-

flation of type I error due to stratification or technical artefacts. No substantial inflation was

noted (λ = 1.027). We also show the original Manhattan plot generated before REMEDY

was developed and integrated into the SSNS analysis pipeline (Figure ??, p.??). We also

show overlaid Q-Q plots, empirically showing the reduction in noise as a result of REMEDY

processing (Figure 3.12, p.181).

Association testing revealed three genetic loci achieving genome-wide significance: a
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broad peak in the classical HLA region at band 6p21.32, some significant markers around

a gene known as Calcium Homeostasis Modulator Family Member 6 (CALHM6) and an in-

tronic peak inside the Prostate Androgen-Regulated Mucin-Like Protein 1 (PARM1) gene.

The discovered associations stood up to rigorous statistical testing and were present with

a low signal to noise ratio; this demonstrates the effectiveness of our GWAS and pipeline

design methodology and our REMEDY software suite. For more detailed results and dis-

cussion of our findings, see Dufek et al. [1].
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Figure 3.11: Top: Manhattan plot showing the original noisy plot with many artefact’s. REMEDY
was primarily responsible for cleaning and merging the data so that a clear plot could
be generated (shown in the bottom diagram). Bottom: Manhattan plot of a basic
allele test (BAT) performed on our case/control SSNS dataset. Each plot point shows
the BAT calculated for one variant. The X axis shows the genomic position of the SNP
and the Y axis shows the p-value of the BAT. The smaller p-values show higher on the
graph. The plot shows several large peaks in the HLA region on chromosome 6 and
some smaller significant peaks in other regions. The graph is clean with a high signal
to noise ratio indicating that the cleaning and QC was done correctly.
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Figure 3.12: Q-Q plot showing expected negative log p-values versus observed negative log p-
values from a basic allele test performed on the SSNS GWAS. The plot shows an
improved Q-Q plot that only deviates away from the expected at lower p-values. There
is still a significant deviation away from the expected at high p-values as the signal on
chromosome 6 is so strong.

181



3.2 LOOPER

Our proprietary software, LOOPER, was developed in two parts; the loop prediction al-

gorithms were developed during the initial Hyperinsulinism with polycystic kidney disease

(HIPKD) project while the loop visualisation portion was developed as a result of maturing

chromatin confirmation experiments triggering a revisit of the project data.

We first present our algorithms for both loop prediction and loop visualisation before

introducing the HIPKD project as a case study. We then apply both modules of LOOPER

to the HIPKD region of interest and study the results to show what inferences can be

made about chromatin looping using the toolset. Finally, we show how LOOPER can be

integrated with other similar tools to increase further the value of insights gained from the

input data.

We do not present any design specifications for LOOPER as the program is more a col-

lection of scripts which grew organically with the HIPKD project. Given their experimental

nature, they are designed to be used from code rather than be wrapped up into a program

such as was the case with REMEDY.

3.2.1 Software Overview

LOOPER is a collection of small programs and scripts which aid in the prediction and visu-

alisation of localised chromatin loop architecture. LOOPER integrates data from several

different experimental sources that target analysis of chromatin interactions such as Chro-

matin immunoprecipitation with next generation sequencing (ChIP-Seq) [200] [201] [202]

[197], Hi-C [70] and Chromatin interaction analysis by paired-end tag sequencing (ChIA-

PET) [233].

The first portion of the software suite aims to predict structural CCCTC-binding factor

(CTCF)/Cohesin chromatin loops and functional Zinc-finger protein 143 (ZNF143) loops

within a region of interest and display the results linearly in the UCSC browser as a custom

track; this is achieved through integration of ChIP-Seq data from the ENCODE project

[234] [235] combined with transcription factor binding motif discovery which is then used

to predict chromatin loops in a region of interest. Analysing potential chromatin loops in a

region of interest can aid in understanding the regulatory architecture present in a region

and thus how non-coding mutations may affect gene transcription.

The second portion of the suite enables visualisation of chromatin loops as a force dir-
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ected graph. The program output can be directly loaded by Cytoscape [236], a user-friendly

force directed graph visualisation program. Loops are visualised as connections between

transcription factor binding sites which are shown as nodes with connecting edges showing

the relationships between different regulatory elements. The combination of LOOPER and

Cytoscape enables end users to understand better the potential loop configurations that

exist in their region of interest.

3.2.2 Loop Prediction Algorithm

We developed a CTCF/Cohesin loop prediction software algorithm that outputs predicted

loops to custom tracks which can be visualised in the UCSC genome browser. As de-

scribed in the introduction (1.2.11.1, p.55), chromatin loops are anchored via DNA binding

Transcription factors (TFs). The first step in loop prediction, therefore, is identifying high

probability binding sites for TFs involved in 3D chromatin architecture. To achieve this,

we take existing ChIP-Seq data from the ENCODE project (2.4.7.1, p.123) for a range of

cell lines and use the experimental binding sequence data to generate a Position weight

matrices (PWM) (2.4.8.1, p.124) for the TF, which can then be used to scan the region of

interest for high probability binding sites [206]. We do not use the experimental binding

data directly as this is only available for a small subset of cell lines; instead, we use the

data to create a statistical prediction model for binding which can then be applied to any

cell line. Once the TF sites are predicted, further analysis regarding site orientation and

co-occurrence of signals is performed before final loop prediction (Figure 3.13, p.184).
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Figure 3.13: LOOPER loop prediction program workflow.

184



3.2.2.1 ChIP-Seq Data

Given the abundance of publicly available ChIP-Seq data in the ENCODE project, we opted

not to perform de novo experiments. Instead, we obtained ChIP-Seq summary data from

the UCSC browser ENCODE Transcription factor binding site (TFBS) track which contains

ChIP-Seq data for a range of TFs across different cell lines (2.4.7.1, p.123).

To obtain ChIP-Seq data for input to LOOPER, we filtered the flat-file TFBS table for

our target TF to give a list of chromosome number, start position, end position and strength

of the ChIP-Seq block signature. The blocks represent a genomic region that the TF was

bound to with a confidence value proportional to a strength value of 0-1000; the regions

are typically 200-400bp.

3.2.2.2 Motif Discovery

To build a statistical model that we can use to predict TFBS for a given sequence, we ob-

tained ChIP-Seq data for each target TF in the loop prediction algorithm. We then used

the hg19 reference genome to pull all of the sequences predicted to be bound by a target

TF. We achieved this by constructing a small script that loaded each chromosome DNA

sequence into memory before sequentially traversing a list of ChIP-Seq sites for that chro-

mosome ordered by start position. The program then extracts the correct DNA sequence

for each site and stores it in FASTA format. Once the set of sequences were obtained we

passed them through the MEME-Chip [211] motif discovery pipeline to obtain a PWM for

the TF. If more than one motif was shown in results, we selected the highest confidence

(lowest p-value) logo (2.4.8.1, p.124).

We here acknowledge that there is in fact now a well-known tool for obtaining pre-

calculated motifs for specific cell lines obtained using ENCODE ChIP-Seq data call Factor-

book [212].

3.2.2.3 Motif Scanning and Site Orientation

Once a PWM for the target TF has been obtained we then use another MEME suite tool

known as Motif alignment search tool (MAST) to scan the sequence from our region of

interest for probable TFBS [213]. MAST returns a list of sites with a p-value and importantly,

site binding orientation; a TFBS can be on either strand and thus effects the direction with

which a protein binds to DNA. Orientation information is essential for predicting CTCF
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structural loops as they rely on convergent CTCF binding sites to form. After this stage of

processing we have a list of TFBS in our region of interest for our target TFs with associated

p-values and site orientation.

3.2.2.4 Structural Loop Prediction

CTCF/Cohesin loop formation is hypothesised to follow the loop extrusion theory (1.2.11.1,

p.55); this involves Cohesin forming a handcuff configuration around DNA in two adjacent

sections of DNA before the DNA extrudes through the Cohesin until it meets a correctly

orientated CTCF motif with a bound protein. We define the CTCF site pairs as loop anchors

and a single CTCF site as ‘half-anchor’.

The first stage of structural loop prediction is to identify the half-anchor sites in the

region of interest. CTCF is implicated in a wide range of regulatory activities as well as

chromatin architecture; therefore, is it not sufficient to use all CTCF binding sites within

the ROI as half-anchors. In the loop-extrusion model, Cohesin does not bind directly to

DNA but binds indirectly through CTCF. ChIP-Seq is configured to identify DNA binding

proteins; however, when the target TF is pulled down using immunoprecipitation, it does

not distinguish if the protein is bound directly or indirectly to DNA, meaning that Cohesin

can still be targeted and studied via ChIP-Seq.

Cohesin is a large protein that consists of several sub-units, instead of targeting cohesin

as a whole with antibodies there are two antibodies which target different sub-units: SMC3

and RAD21. Searching for co-occurrence (overlapping ChIP-Seq signals) of both SMC3

and RAD21 provides strong evidence for cohesin indirect DNA binding. Given that a loop

anchor must contain both CTCF and cohesin, we can filter for potential CTCF half-anchors

by searching for SMC3 and RAD21 signals which overlap with CTCF signals and a pre-

dicted PWM-based CTCF binding site (the PWM is used for further CTCF site confirmation

and for site orientation).

Once loop half-anchors have been identified, we then use this data to identify potential

loop anchor pairs in the ROI. The loop extrusion theory requires that CTCF sites be conver-

gent in their orientation and loops are predicted to be less than 500Kb in size; we search

an ROI using these parameters to identify predicted loop anchor pairs. Given that loops

can exist within other loops and multiple loops can anchor to the same CTCF sites, the

total space of predicted loops in the region is the exhaustive combination of all convergent

half-anchors within 500Kb of each other.

ChIP-Seq experiments are performed not only on specific TFs but also on a selected
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cell line; hence, we sought to identify cell lines within ENCODE for ChIP-Seq that fitted

with the observed symptoms for HIPKD, notably in the kidney, pancreas and liver. Unfortu-

nately, no kidney or pancreatic cell lines were included in the March 2016 ENCODE release

for CTCF or Cohesin ChIP-Seq data; furthermore, HEPG2, an immortalised human liver

cancer cell (the closest potential candidate cell model for HIPKD) although available, only

had CTCF data available and thus was unsuitable to be used for structural loop prediction.

Given the lack of cell-specific data, we opted to generalise our loop prediction model

for structural loops by selecting ubiquitous CTCF and Cohesin ChIP-Seq sites based on all

available cell lines in ENCODE.

3.2.2.5 Functional Loop Prediction

Functional chromatin loops are more difficult to predict as they are less well described in

the literature. The current best hypothesis for functional looping involving ZNF143 (our

primary functional looping TF) is that it binds to a promoter on one side and then to a

mediator complex formed on an enhancer at loop anchors to facilitate gene transcription

(1.2.11.1, p.55). Given this hypothesis and using the TF residue principle of indirect DNA

protein binding in ChIP-Seq experiments we would expect there to be cohesin residue

at ZNF143 sites in promoters and ZNF143 residue at loop anchors for ZNF143 proteins

actively involved in functional loop recruitment.

To predict functional loops, we first search gene promoters defined by the genome seg-

mentation track in UCSC browser in our ROI (2.4.7.2, p.124); we extracted predicted pro-

moters by pulling all genome segments with the promoter tag listed in the region. We then

use MAST to identify high probability ZNF143 sites within promoters; we also searched

for SMC3 and RAD21 signals to indicate that the ZNF143 site was in contact with a loop

anchor at the time of the experiment. Next, the predicted loop anchors in the structural

loop prediction stage were searched for ZNF143 ChIP-Seq signals to identify loop anchors

that the ZNF143 promotor site may have been in contact with. Using this information we

then generated an exhaustive model of possible functional loop pair combinations between

promoters and loop anchors.

3.2.2.6 Predicted Loop Visualisation

The loop predictions outputted by LOOPER were defined by chromosome number, a start

position and an end position that represented the effective loop domain. We designed

LOOPER to output the predicted loops in Browser extensible data (BED) format and coded

187



so the loops would appear as black blocks on the screen to show the loop domain in UCSC

browser [215]. BED format files can be uploaded to UCSC browser as custom tracks and

shown on-screen alongside other tracks to aid further analysis of chromatin looping in an

ROI.

3.2.3 Loop Visualisation Algorithm

The primary function of regulatory chromatin looping in the genome is to bring distal ge-

nomic elements such as enhancers and promoters into proximity so that they can act on

each other to regulate gene transcription. If the genomic elements are represented as

nodes on a graph, we can say that two nodes are connected if they have some relationship

in terms of physical proximity with each other, whether this is positional proximity on the

genome or proximity as a result of chromatin interactions.

Force directed graphs are a simple, intuitive way to visualise connected data; we were

unable to find any programs which could generate force directed graphs from chromatin

confirmation experiments therefore, we added additional scripts to LOOPER that generate

data for Cytoscape [236] to render force directed graphs.

3.2.3.1 Source Data

ChIA-PET is ideal for studying looping as different loop types can be targeted by selecting

the TFs involved in that particular structure. The ENCODE project has a repository of

ChIA-PET data which was generated from one protocol, making individual experiments

comparable with each other. We selected ChIA-PET as our data source for visualising

interactions in a force directed graph with LOOPER (2.4.9.1, p.129).

3.2.3.2 Pre-processing

We downloaded FASTA format files from the ENCODE data portal for each target TF ex-

periment, we then fed the files into the Mango processing suite to obtain a list of chromatin

interactions (2.4.9.2, p.130). Pre-processing must be performed for each cell-line/TF com-

bination used for analysis. The results from Mango are then collected into one folder and

fed into the graph generation algorithm. LOOPER effectively generates a graph for each

ChIA-PET experiment but then merges the graphs to form a coherent picture of interaction

in a region of interest.
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3.2.3.3 Graph Generation Algorithm

Our graph generation algorithm was written as a C# script and currently must be run from

within Visual Studio or another such development environment capable of compiling and

running C# code; file paths and other parameters must be changed in code and recom-

piled before running the code. LOOPER is targeted at existing developers as experimental

software only; given the rate at which the chromatin loop research field is currently mov-

ing, we concluded that packaging LOOPER up in the same way as REMEDY would be

inappropriate at the time of writing.

We show the full LOOPER visualisation pipeline in Figure 3.14, p.190. The first stage

of processing is the loading of the interaction data described in the previous section into C#

data structures. The target TF and cell-line must be supplied when loading the files so that

multiple layers of interaction data can be loaded from different experiments; for example

for structural loop analysis, we would ideally load ChIA-PET data for CTCF, RAD21 and

SMC3. LOOPER provides functionality to layer all of this data onto one graph.

Cytoscape represents interaction strength in a graph by the thickness of the vertex

joining two nodes. After interaction loading, the interaction strength from the Mango output

is normalised to the inter-quintile range, as the strength of the interaction p-value in the

Mango output falls in a large range that can contain outliers. We first normalised all the data

between 0 and 1; however, we found the outliers skewed the visualisation of the strength.

Instead, we normalise using the bottom 20% and 80% range of the strength data as the

minimum and maximum; this removes outliers from the normalisation calculation while still

ensuring that the majority of the variance contained within the data is still captured.

After normalisation, we proceed to add artificial vertices that represent physical prox-

imity. During early testing, we found that although viewing interactions was interesting,

without the context of which elements were close to each other on the genome, the graph

was difficult to interpret. To solve this LOOPER provides quick functions to add in ad-

ditional vertices based on a threshold distance. Multiple thresholds can be supplied to

show multiple levels of proximity that is then mapped on top of the interaction data as addi-

tional vertices; this ensures that when the force directed graph is calculated, that physically

proximal elements are positioned close to each other on the graph rather than being on

opposite sides.

During development, we found the graph for a whole chromosome to be too complex,

and so included functionality to filter for objects within or connected to an ROI. We started

by filtering for nodes inside a region of interest but retaining any distal long-range contacts

outside of the ROI but found the resultant graph was still too complicated, especially in
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Figure 3.14: LOOPER loop visualisation program workflow.
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highly-connected regions; we, therefore, included additional filters to show only the long-

range contacts that fell with a Topologically-associated domain (TAD). We reasoned that

most regulatory interaction occurred intra-TAD and therefore, any inter-TAD communication

would either be spurious or subject to broader chromosome-wide regulatory processes that

are still not well understood [237]. Also, we placed some additional filtering constraints on

the graph, enabling users to filter based on strength and distance of interaction should the

graph complexity still be too large on generation.

The final stage of processing before the generation of the node and link files required for

Cytoscape is graph annotation. During testing, we found that although the graph was ini-

tially useful, there were many visual aspects of our generated graphs that were left unused.

For example, nodes were all the same colour, size and shape; we expanded LOOPER by

integrating gene and genome segmentation data from UCSC browser in order to place the

graph nodes in a better functional physical context (2.4.7.2, p.124). We first downloaded a

list of genes from the UCSC gene track and used this as a static reference to annotate the

labels of all overlapping nodes. We found that this extra data contextualised the graph to a

user by showing locations of known elements such as genes and cis-regulatory elements.

Twenty-five states are used to segment the genome in the UCSC genome segmenta-

tion track (2.4.7.2, p.124), these states were then grouped and coloured to highlight pre-

dicted functional elements including promoters and enhancers; we selected a subset of

these states that were relevant for chromatin looping. The genome segments can be nar-

row when compared to ChIP-Seq sites and are not 100% accurate; therefore we decided to

expand the range of effect for any sites of interest such as promoters and enhancers via a

user-specified parameter. Any expanded segments overlapping with a node are annotated

to that element. Joining functional annotation to nodes on the data graph adds additional

context and is especially useful when viewing the graph in terms of regulatory interactions.

After final processing, all of the data for the graph must be generated so that it is

readable by Cytoscape. Nodes and links must be placed into separate files with their

respective annotations so that they can be loaded correctly; nodes are written to file with

Id, Position Id, Segment Type and Label. The position ID is specified so that it can be easily

copied into the location finder box in UCSC browser; this allows for easy context switching

between LOOPER and other genomic analysis programs or references. Segment type and

label represent the annotation performed in the previous step which can be used to colour

and shape the generated graph in Cytoscape. The segment annotation corresponds to a

priority labelling algorithm which, in the case of multiple overlapping segments will annotate

the ’most interesting’ label as per the order listed in Table 3.10, p.192.

Interactions are written to file with Id-A, Id-B, Interaction Type, Distance and Strength.
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Priority
Level

Returned
Label

Label Description Comment

1 P Promoter Promoter only

2 PF Promoter flanking Promoter flanking region only

3 E Enhancer Enhancer only

4 WE Weak Enhancer Weak enhancer only

5 I Insulator Insulator only

6 T Transcribed region Transcribed region only

7 E Enhancer Enhancer and weak enhancer

8 P Promoter Promoter and promoter flanking

9 PE Promoter/Enhancer Promoter elements and enhancer
elements

Table 3.10: List of annotation priorities when assessing genome segments which overlap a node.

The two ID fields represent the Ids of the nodes to which the link is connecting; the inter-

action type corresponds to the TF which the ChIA-PET experiment targeted which allows

for layering multiple experiments in a single graph. The distance column corresponds to

the genomic distance between the two nodes and can be used as a parameter when gen-

erating a force directed graph. The strength column represents the calculated interaction

strength based on several output parameters from the Mango pipeline. Force-directed

graphs as a default aim to keep all edge lengths the same; however, by setting a strength

for the edge, the graph can be distorted to better represent the interactions in the under-

lying data. LOOPER provides two methods for achieving this: genomic distance can be

used to distort the graph to better represent the physical genomic position of the data, or

the interaction strength parameter can be used to distort the graph to represent the stat-

istical strengths of the contacts. We developed an in-house interaction strength formula

which is discussed in more detail below.

3.2.3.3.1 ChIA-Pet Interaction Strength Calculation There are two primary variables

which govern the strength of a ChIA-PET interaction as outputted from Mango: the read

depth of the interaction at the two anchors and the number of PETs that support the inter-

action (2.4.9.2, p.130). The read depth governs the confidence in the quality of the read

sequence at either end of an interaction; a low read depth may indicate potential inac-

curacies in the mapping of a tag and thus the genomic positioning of an interaction anchor

point. We define that the total quality of an interactions read-depth can be measured as a

function of both the total read depth for both paired-ends and the ratio of one read-depth to

the other; we can define a high-quality interaction in terms of read-depth as a high and bal-

anced versus low and unbalanced. For example, three interactions have total read depths
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of 60, 60 and 20; the first interaction has read depths of 30/30 while the second has 5/55

and the third 10/10. Initially we may have designated the interaction with a read depth of 20

as the lowest quality; however, we can see that one of the anchors in the second interaction

has a read-depth of just 5 and thus could be considered to be lower-quality. The number of

supporting PETs is also of critical importance when assessing the strength of interaction;

it essentially defines the level of supporting experimental evidence for a true interaction

between the two anchor points. By combining the total read-depth, anchor read-depth ra-

tio and the supporting PETs into a metric for interaction strength, we can use this to distort

our force directed graph into a representation of the most important regulatory interactions

in a region of interest.

We first define the weights wd, wt and ws for depth ratio, total depth and PET support

respectively. The weights are set to the open unit interval between 0 and 1 (Equation 3.1,

p.194) and can be configured in LOOPER to give an importance weighting to the concepts

discussed in the previous paragraph. We default the weightings to wd = 0.5, wt = 0.1 and

ws = 1.

For a set of n interactions we denote the i-th interaction strength as xi, the read-depth

at anchor A as ai, the read-depth at anchor B as bi and the supporting PETs as si. We then

define our formula for interaction strength as the product of the weighted formulas for depth

ratio, total depth and supporting PETs with intermediate values for each criteria defined as

vd, vt and vs respectively (Equation 3.2, p.194). Each input value is normalised before

being fed into the weighting calculation; the type of normalisation performed is dependant

on the characteristics of the dataset. For example, vsi and vti both had a possibility of

zero values, requiring corrections to stop divide by zero errors, while vti also required log

scaling to reduce the influence of outliers.
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wd = {x ∈ IR | 0 ≤ x ≤ 1}

wt = {x ∈ IR | 0 ≤ x ≤ 1}

ws = {x ∈ IR | 0 ≤ x ≤ 1} (3.1)

vdi = 1− min{ai, bi}
max{ai, bi}

vti = 1− 1

1 + log10
(
ai + bi

)
vsi = 1− 1

1 + si

xi =
(
1− wdvd

)(
1− wtvt

)(
1− wsvs

)
(3.2)

3.2.4 Case Study Introduction

We developed LOOPER to explore chromatin structure as a result of a discovered point

mutation in a newly characterised disease, HIPKD [2]. LOOPER was developed and ex-

tended in tandem with the HIPKD project and applied to the single ROI obtained from

positional cloning and sequencing.

In this section we present our analysis of the HIPKD ROI using LOOPER. We first dis-

cuss the initial research which led to the discovery of the putative causal point mutation, we

then show the further analysis which led to the implication of chromatin architecture play-

ing a potential role in the pathogenesis of HIPKD. Finally, we apply both the loop prediction

and force directed graph loop analysis modules of LOOPER to explore the regulatory land-

scape of the local genomic region.

The introduction and initial results presented below were generated by our team and

was not the work of the writer. The results presented in the bioinformatic analysis section

were parts of the project on which the writer directly worked.
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3.2.5 Initial Research

3.2.5.1 Clinical Presentation

Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder with an estim-

ated incidence of 1:20,000, it is characterised by a combination of polycystic kidneys and

hepatic fibrosis. Causative mutations in PKHD1 are found in approximately 85% of cases;

other mutations in ciliary genes are also known to phenocopy the disease. Our team in-

vestigated patients with ARPKD-like clinical presentation but had no previously described

mutations for ARPKD; they additionally presented with a concurrent diagnosis of hyperinsu-

linemic hypoglycemia (HI). HI in itself is also a rare disorder, with an estimated incidence

of 1:50,000 and most commonly associated with mutations in the ABCC8 and KCNJ11,

genes involved in the regulation of insulin release from pancreatic β cells; however, no

previously described mutations were found in patients within these genes [2].

The co-occurrence of these two rare disorders in multiple patients and without identified

mutations in known disease genes strongly suggested the existence of a yet undescribed

Mendelian disorder with recessive inheritance. Our team noted the co-occurrence of the

clinical diagnoses of HI and polycystic kidney disease (HIPKD) in 17 patients from 11 famil-

ies of European descent, including a consanguineous family with four affected individuals.

Multiple siblings were affected in three further pedigrees, consistent with autosomal re-

cessive inheritance [2].

Eight patients from seven families had been referred for genetic testing for HI through

an international study of 1250 families. All patients had been tested for ABCC8 and

KCNJ11 mutations, which are the most common cause of HI, yet none were found. Muta-

tions in PKHD1, the causative gene for ARPKD, had been excluded by linkage and/or

sequencing analysis in 14 patients [2].

3.2.5.2 Genetic Analysis

Autozygosity analysis of genotyping data in a consanguineous family showed a homozyg-

ous 2.5 Mb ROI on chromosome 16p.13.2. Whole genome multi-point parametric linkage

analysis in the consanguineous and four other informative families confirmed and refined

the ROI to a single significant locus of 2.3 Mb on chromosome 16 in region 16p.13.2 with

a combined LOD score of 6.5 [2].

The refined 2.5Mb single genomic ROI identified via linkage analysis while a significant
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LOD score was a comparatively large region to search for causal variants at 2.5Mb with

14 genes lying with this region and significant numbers of known variants. Next-generation

sequencing on patient samples identified a non-coding variant in the promoter region for

Phosphomannomutase 2 (PMM2), c.-167G>T; this was a previously undocumented vari-

ant in common databases. Subsequent Sanger sequencing confirmed the mutation in all

patients; it was present in a homozygous state in four patients in the consanguineous fam-

ily, and in a compound heterozygous state with previously described mutations in PMM2

in all others [2].

3.2.5.3 Functional Analysis

The identified Guanine to Thymine mutation lies in a predicted promoter region of PMM2

[238]. The effect of the promotor variant on the transcription of PMM2 was assessed in

vitro, using human kidney and pancreatic β cells. In both models, a significant reduction

in gene transcription was observed in mutated cells versus wild-type. Kidney cells from

a patient that was compound heterozygous for the promotor mutation and a missense

mutation in PMM2 were also assessed for transcription levels; digital quantitative PCR

showed reduced expression for the allele containing the promotor variant when compared

with the other allele.

After linking the promotor mutation to PMM2 activity, our team then went on to analyse

the mechanism of action by which the promotor mutation controls expression. Given the

target was a promoter, the most likely path of action was through transcription factor bind-

ing; we found our mutation to lie within a recognised binding site for the transcription factor

ZNF143. Our team assessed binding of ZNF143 to the promotor region experimentally

using an Electrophoretic mobility shift assay (EMSA), which revealed significantly reduced

binding in the mutation versus the wild-type. The consequences of decreased PMM2 activ-

ity on insulin production were also investigated, and a direct link was established between

glycosolation and insulin secretion.

In summary, functional analysis revealed a chain of causality beginning with a promo-

tor mutation in PMM2, leading to reduced binding of ZNF143 to the promoter region which

in turn leads to reduced transcription of the PMM2 gene; subsequent proteins produced

from PMM2 transcripts were linked to glycosylation of proteins involved with insulin secre-

tion (one of the key parts of the HIPKD phenotype). The mechanism by which ZNF143

affects PMM2 transcription remained hidden, until a paper showing ZNF143 loop forma-

tion presented a possible hypothesis whereby reduced ZNF143 binding may affect local

chromatin-loop structure [239]; we present our bioinformatic analysis that resulted from

this new hypothesis in the next section.
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3.2.6 Bioinformatic Analysis

We present here the bioinformatic analysis performed in the genomic region around PMM2

including application of the LOOPER software suite to characterise the chromatin looping

architecture.

3.2.6.1 Binding Motif Discovery

The first stage of our loop prediction algorithm requires the generation of PWMs for the tar-

get TFs for structural and functional loop prediction: CTCF, RAD21, SMC3 and ZNF143.

We used ChIP-Seq data as described in the sections above to provide the binding se-

quences required for motif discovery.

3.2.6.1.1 CTCF CTCF was used as a positive control for our motif discovery pipeline

as the PWM was already well described in the literature [240] [241]. We obtained the

same base ChIP-Seq data and ran this through our custom pipeline, the resulting motif is

equivalent to the published 2011 motif [240] and was also in consensus with other literature,

indicating the pipeline was working correctly (Figure 3.15, p.197).

Figure 3.15: Consensus binding motif for CTCF from [240]. The sequence is 20 base pairs long
and contains a GCCCCCT rich central motif combined with a secondary GTGT motif
with a one base pair gap. The overall letter stack height indicates the sequence
conservation at that position, while the height of symbol within the stack shows the
relative frequency of each base at that position.

The UCSC genome browser at the time of analysis had a newer 2012 ENCODE data

release with more ChIP-Seq data from additional cell lines for CTCF. We ran the new data

through the same pipeline to see if an update to the CTCF motif was required. The resulting

motifs were filtered for motif sub-sets, and then the highest p-value motif was selected as

the comparison (Figure 3.16, p.198). Our results showed no difference between the 2011

and 2012 motifs; this shows that CTCF is highly conserved in the human genome across

cell types (Figure 3.17, p.198). The reverse complement of the primary motif was also
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calculated so that CTCF site orientation could be deduced during the motif scanning phase

(Figure 3.18, p.199).

Figure 3.16: MEME-ChIP web result output for CTCF run on 2012 ENCODE data release from the
UCSC genome browser. The output shows three motifs with their calculated web-
logos and p-values (third column). The bottom motif is a subset of the larger motifs
and so was discounted. We selected the central motif as our final result as it had
the highest p-value. We compared the 2012 motif with the previously calculated con-
sensus motif from 2011 and found there to be no difference.

Figure 3.17: CTCF binding motif calculated from 2011 ENCODE release data used in [240]. ChIP-
Seq data was run through a custom pipeline that selected and transformed data for in-
put into MEME-ChIP. The sequence above was the consensus motif from the MEME-
ChIP output. Overall letter stack height indicates the sequence conservation at that
position, while the height of the symbol within the stack shows the relative frequency
of each base at that position. The motif contains the same two-part binding motif as
the consensus motif and has no other extra motifs; therefore, they can be considered
to be equivalent. When using the consensus motif as a positive control, this indicates
that the custom pipeline was functioning correctly.

To rule out any cell-specific changes to the CTCF motif, we filtered our dataset for cell

line which is present in organs affected by HIPKD: HEPG2 (a liver cell-line) and PANC1 (a

pancreatic cell-line); We found the binding motif to be identical to the ubiquitous motif in

both cases.
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Figure 3.18: Top: Calculated CTCF binding motif based on 2012 ENCODE data selected for use
in our loop prediction pipeline. The sequence is 18 base pairs long and contains a
two-part binding motif. Bottom: Reverse complement of the original sequence which
was used to detect binding orientation for CTCF.

Overall letter stack height indicates the sequence conservation at that position,
while the height of symbol within the stack shows the relative frequency of each base
at that position.

3.2.6.1.2 Cohesin Cohesin can be pulled down in antibody-based experiments such

as ChIP-Seq using antibodies that target two sub-units of the protein complex: SMC3 and

RAD21. We filtered our UCSC ENCODE TFBS summary dataset for SMC3 and RAD21

and ran the subsequent datasets through our motif discovery pipeline. Interestingly the

results obtained matched the CTCF motif exactly, suggesting that all three transcription

factors have the same binding motif. The loop extrusion theory used in LOOPER states

that cohesion factors bind indirectly to chromatin through CTCF forming a complex; our

results are in line with this theory.

As SMC3 and RAD21 do not bind directly to DNA in this context, we could not calculate

a binding motif for either meaning that we only had a single motif for identifying all three

binding site types. We mitigated this by altering the loop anchor identification strategy

slightly; instead of looking for the co-occurrence of the motif and ChIP-Seq region separ-

ately, then finding overlapping sites of all three proteins, we instead searched for CTCF

binding sites with both motif and ChIP-Seq and then combined this with co-occurrence of

both SMC3 and RAD21 ChIP-Seq residue.

3.2.6.1.3 ZNF143 ZNF143 has well-defined antibodies with experimental data available

from the ENCODE portal as described in our methodology. We filtered our UCSC EN-
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CODE TFBS summary dataset for ZNF143 and ran the subsequent data through our motif

discovery pipeline (Figure 3.19, p.200).

Figure 3.19: ZNF143 binding motif calculated from 2012 ENCODE release data. Overall letter
stack height indicates the sequence conservation at that position, while the height of
symbol within the stack shows the relative frequency of each base at that position.
The motif is 22 base pairs long and contains several islands.

3.2.6.2 Region of Interest Initial Analysis

After generation of PWMs for our looping TFs was complete, we first performed an initial

annotation of our region of interest around the PMM2 gene. Using UCSC browser, we ad-

ded the UCSC genes track that shows the predicted positions, orientations and structures

of genes on the genome, and the Genome Segmentation track (2.4.7.2, p.124).

Zooming into the genomic region around PMM2, the gene is clustered inside a group

of genes that form a ‘gene island’ (Figure 3.20, p.201). The island is surrounded by gene

depleted areas of mostly closed chromatin which would suggest that these areas are tran-

scriptionally inactive. Conversely, the gene island is rich in open chromatin as well as

promoter regions and enhancers. Zooming into the local genomic area further, we see

a four-gene cluster approximately 200Kb in length (Figure 3.21, p.201 and Figure 3.22,

p.201). This area contains PMM2 and Transmembrane Protein 186 (TMEM186) in the

centre both facing away from a non-coding region where the mutation is located. Flanking

this area are two other genes: 4-Aminobutyrate Aminotransferase (ABAT ) and Calcium

Regulated Heat Stable Protein 1 (CARHSP1). Importantly, this region is flanked by strong

blue bands suggesting that the area is transcriptionally insulated and therefore could be

forming a TAD with loops inside. The region where the mutation was positioned was annot-

ated as a promoter region, given that the promotor region stretched unbounded between

the two adjacent genes and that their transcription direction faced away from the promoter,

we classified this as a bidirectional promoter.

We present a summary of each gene in the cluster below, we obtained our information

from three established sources of gene and protein information: RefSeq [242], GTEx [243]

and UniProt [244].
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Figure 3.20: A 3.2Mb region on chromosome 16 displayed in the UCSC genome browser, with
the targeted region of interest centred inside the red box. The genomic position is
shown at the top, genes are displayed in the centre. The three tracks shown at the
bottom are visual representations of the genome segmentation ChromHMM project
data; shown are predicted areas of euchromatin (green), heterochromatin (grey), pro-
motor regions (red), insulator regions (blue) and enhancer/regulatory regions (yellow).
The three lines represent data from three different cell lines for which this track has
been calculated for (GM12878, H1-hESC and K562) [205]. The gene rich area in the
centre is clearly flanked by regions of gene depleted, closed chromatin. The red box
represents the zoomed in area shown in (Figure 3.21, p.201)

Figure 3.21: A 600Kb region centred on the HIPKD ROI. PMM2 is shown in the centre with
TMEM186 (the other half of the bidirectional promoter for PMM2) shown to the left.
There are finer grained areas of open and closed chromatin located within some of
the genes. The red box represents the zoomed in area shown in (Figure 3.22, p.201).

Figure 3.22: A 200Kb genomic region showing a four-gene local cluster with PMM2 and TMEM186
flanking a bidirectional promotor whilst themselves being flanked by ABAT and CAR-
HSP1. Promoter regions (red bands) are clearly shown for all genes with some in-
sulator regions (blue) flanking the whole region. Some enhancer activity (yellow) can
also be seen towards the periphery of the region
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3.2.6.2.1 PMM2 PMM2 codes for an enzyme called phosphomannomutase 2. This en-

zyme is involved in glycosylation, which attaches groups of sugar molecules (oligosac-

charides) to proteins. The PMM2 enzyme is involved in one of the early steps of the

glycosylation process.

3.2.6.2.2 TMEM186 TMEM186 is a potential transmembrane protein expressed across

the body, but most significantly in the brain, liver and pancreas. Little else is known about

this protein.

3.2.6.2.3 CARHSP1 CARHSP1 is a calcium-regulated, heat stable protein that binds

mRNA and regulates its stability in vitro. It is expressed primarily in the brain, testis and

some muscular tissue. The promotor for CARHSP1 is located close to regional CTCF sites

and is near to several sites enriched in enhancers.

3.2.6.2.4 ABAT ABAT (4-aminobutyrate aminotransferase) is a nuclear gene encoding

a mitochondrial protein. It is responsible for the catabolism of gamma-aminobutyric acid

(GABA), an important inhibitory neurotransmitter in the central nervous system. It is ex-

pressed in the liver, pancreas, brain, heart and placenta. Mutations in this gene are linked

to neurological defects such as psychomotor retardation, hypotonia and hyperreflexia.

3.2.6.3 ZNF143 Binding Analysis

During the functional analysis of our promoter mutation we found that it lied within a re-

gion significantly enriched for ZNF143 in ChIP-Seq data. ChIP-Seq binding regions are

approximately 400bp whereas a typical protein binding site is less than 20bp.

To narrow down the actual predicted binding site(s) for ZNF143 and following our

LOOPER methodology, we obtained the sequence from UCSC browser that overlapped

the ZNF143 ChIP-Seq signal and passed the sequence and our PWM for ZNF143 into

MAST from the MEME-suite to scan the binding region for statistically probable binding

sites. Several sites were predicted within the ChIP-Seq region, indicating that multiple

ZNF143 binding sites exist in the promoter (Figure 3.23, p.203). The mutation was located

inside the centre of the lowest p-value predicted ZNF143 binding site, suggesting that a

mutation at this location would affect binding.
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Figure 3.23: UCSC genome browser view of the bidirectional promoter containing the HIPKD muta-
tion. The top row shows the location of the one base mutation while the second row
shows the predicted ZNF143 sites from MAST. The third row shows the transcription
start regions of both PMM2 (left) and TMEM186 (right). The fourth row shows binding
site prediction for ZNF143; the black region representing strong ZNF143 ChIP-Seq
binding while the green area shows the predicted strongest binding site.

3.2.6.4 Binding Site Prediction and Analysis

After initial analysis, we proceeded to use our generated PWMs to scan for CTCF and

ZNF143 motifs.

3.2.6.4.1 CTCF we scanned for well conserved, ubiquitous CTCF sites. Outside the

ABAT promoter, we identified a cluster of three strong CTCFs with predicted motifs and

with chromatin states predicted as insulators by ChromHMM (Figure 3.24, p.204). We

found the left-most site to be orientated to the 3’ strand, the centre to the 5’ strand and the

right-most to the 3’ strand. We identified one CTCF site with a 5’ orientation to the left of

TMEM186 (Figure 3.25, p.204). To the right of our region of interest we identified a cluster

of four sites to the right of the CARHSP1 promoter (Figure 3.26, p.204). The left most site

was of medium strength, had a 3’ orientated predicted binding site and was classified as a

predicted enhancer by ChromHMM. The second site was also 3’ orientated and was in a

region classified as promoter/enhancer/insulator. We discounted the third site as it did not

have a predicted CTCF binding site; the fourth site was 5’ orientated and predicted to be

an insulator by ChromHMM.
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Figure 3.24: UCSC genome browser view of three CTCF sites located in an inter-geneic region
to the left of the ABAT promoter. All three cites have a strong ChIP-Seq signature
(black boxes) with predicted binding sites that lie within the ChIP-Seq block. The
ChromHMM track shows the TFBS as predicted insulators. The sites are orientated
from left to right as 3’, 5’ and 3’ respectively.

Figure 3.25: UCSC genome browser view of three CTCF sites located near the TMEM186 gene.
The left most CTCF site was selected as a target loop anchor while the other two were
discarded. The centre motif was only partly well-conserved and had no predicted motif
while the right most was cell group specific and relatively weak.

Figure 3.26: UCSC genome browser view of four CTCF sites located to the right of the CARHSP1
promoter region. The left two sites both orientated to the 3’ strand, the third site has
no predicted binding motif and the right most site is 5’ orientated.
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3.2.6.4.2 ZNF143 we scanned for ZNF143 sites within the HIPKD ROI. Outside of the

ABAT promoter region, we identified several ZNF143 ’residue’ marks comprising of a weak

ZNF143 signal with no binding motif (Figure 3.27, p.205). Two of these sites overlapped

with previously identified CTCF sites and one was located in a region predicted to be a cell

specific enhancer; these sites are characteristic of potential indirect binding of ZNF143.

We also identified one weak ZNF143 site overlapping a CTCF insulator to the right of the

CARHSP1 promoter region; this site had an off-centre predicted binding motif (Figure 3.28,

p.205).

We identified several ZNF143 sites within the region around PMM2 (Figure 3.29, p.206);

two sites were characteristic of weak ZNF143 residue binding, one overlapped with our pre-

viously identified CTCF site from this region and one was positioned within the bidirectional

promoter for PMM2 and TMEM186. The third ZNF143 site was confirmed as the putative

mutation ZNF143 binding site; we noted it was different from the other sites in our region

of interest as it had a strong ChIP-Seq signature with a low p-value that is characteristic of

direct DNA binding.

Figure 3.27: UCSC genome browser view of ZNF143 sites to the left of the ABAT promoter region.
We additionally show the CTCF sites identified in the previous section. We show
several weak ZNF143 sites with no binding motif, two of which overlap with previously
identified CTCF sites.

Figure 3.28: UCSC genome browser view of ZNF143 sites to the right of CARHSP1. We show the
CTCF sites identified in the previous section and a single weak ZNF143 site overlap-
ping a CTCF insulator with an off-centre predicted binding motif.
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Figure 3.29: UCSC genome browser view of ZNF143 sites located near the TMEM186 gene. We
show the CTCF sites identified in the previous section and two ’residue’ style sites,
one overlapping a CTCF insulator site and one with in the PMM2 promoter region.
The third site shows a strong ChIP-Seq signature with a binding motif; this was con-
firmed to be the TFBS identified in our functional analysis overlapping with the putative
mutation.

3.2.6.4.3 Cohesin For cohesin analysis we searched for ChIP-Seq ’residue’ marks only,

indicating indirect binding to CTCF at loop anchor sites. Outside of the ABAT promoter

region, we identified strong ChIP-Seq marks for SMC3 and RAD21 indicating the presence

of cohesin on the right most two CTCF sites that we identified earlier (Figure 3.30, p.206).

In our centre region to the left of TMEM186, we also confirmed a strong cohesin signature

over our target CTCF site (Figure 3.31, p.207). To the right of CARHSP1, we show that the

left most CTCF site identified earlier had a medium cohesin signature while the centre two

CTCF sites have a weak cohesin marks. The right-most site which was orientated to the 5’

strand, has a strong cohesin signature (Figure 3.32, p.207).

Figure 3.30: UCSC genome browser view of cohesin sites to the left of the ABAT promoter region.
We additionally show the CTCF and ZNF143 sites identified in the previous sections.
We show that the left most CTCF had only weak RAD21 binding when compared to
the other two sites which have strong SMC3 and RAD21 cohesin ChIP-Seq marks.
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Figure 3.31: UCSC genome browser view of cohesin sites located near the TMEM186 gene. We
additionally show the CTCF and ZNF143 sites identified in the previous sections. We
show that our target CTCF site in the region has strong SMC3 and RAD21 ChIP-Seq
marks indicating the presence of cohesin.

Figure 3.32: UCSC genome browser view of cohesin sites sites to the right of CARHSP1. We
additionally show the CTCF and ZNF143 sites identified in the previous sections. We
show that the left most site has a medium CTCF and cohesin signature while the
centre two CTCF sites have a weak cohesin mark. The right most site has strong
SMC3 and RAD21 ChIP-Seq marks indicating the presence of cohesin.

3.2.6.5 Structural Loop Prediction

After the initial analysis of our region of interest was complete, we then fed the TFBS

ChIP-Seq dataset and our MAST motif scanning results (including site orientation) into

our LOOPER chromatin loop prediction algorithm. LOOPER first identifies potential loop

half-anchors by searching for highly-conserved CTCF sites with binding motifs that overlap

with RAD21 and SMC3 ChIP-Seq signatures. An exhaustive set of potential loops is sub-

sequently generated from all the combinations of convergent half-anchors in the region of

interest. LOOPER automatically converts the final loop set into a BED track for display in

UCSC browser (Figure 3.33, p.208).

LOOPER predicted 18 possible CTCF structural loops in our wider region of interest.

Given the number of potential loops, identifying the ’true’ loop(s) was challenging; we

sought to obtain further experimental data to confirm one loop over another. After the
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Figure 3.33: LOOPER chromatin loop prediction results visualised as a bed track in UCSC browser.
The potential loops are shown with IDs at the top as black blocks showing the loop
domain; the loop anchors for each loop are located at the ends of each block. Below
we show the gene and genome segmentation tracks for localisation.

construction of the LOOPER pipeline, the chromatin confirmation experiment Hi-C was de-

veloped to provide the first genome-wide experimental confirmation of chromatin loops. We

obtained Hi-C data from an early paper [245] and visualised the predicted loops in UCSC

browser alongside our loop prediction results. The Hi-C data matched loop ID 14 accur-

ately, confirming the existence of a potential structural loop that spanned from the ABAT

and the CARHSP anchor regions described earlier in our results (Figure 3.34, p.208).

Figure 3.34: UCSC browser diagram showing the LOOPER predicted loop number 14 (out best
loop candidate. We overlay the Hi-C interaction experimentally detected from Belton
et al, lending confirmation that LOOPER does indeed predict valid chromatin loops.
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3.2.6.6 Functional Loop Prediction

Our hypothetical functional looping model states that ZNF143 binds to promoter regions

before interacting with other regulatory elements such as mediator complexes bound to

enhancers. We show in our motif analysis that there is a single strong ZNF143 site with a

binding motif in the bidirectional promoter of PMM2 and TMEM186. Weak ZNF143 ChIP-

Seq signals are also detected at both loop half-anchors of the putative structural loop in the

ROI. Our results suggest that there is a functional loop that is pulling the PMM2 promotor

down towards the identified primary loop anchor.

3.2.7 LOOPER Graph Analysis

We present here our results from the analysis of the PMM2 ROI using our LOOPER graph

visualisation tool. We chose to layer both CTCF and POLR2A (a sub-unit marker for DNA

Polymerase 2) ChIA-PET experiments into the same graph to capture both structural and

functional looping interactions. Given that we could not obtain ZNF143 ChIA-PET data,

we hypothesised that an indirect POLR2A signature would be present from any functional

looping in our ROI. We present our pre-processing results before showing the resultant

graph structure; we then show additional results from other similar tools which add context

to our graph.

3.2.7.1 Source Data and Pre-Processing

We obtained ChIA-PET data from ENCODE for the K562 (human immortalised myelogen-

ous leukaemia) cell line; this was the only dataset that had both CTCF and POLR2A data to

compare. Both experiments were completed under the ENCODE ChIA-PET protocol, the

raw FASTQ data for each experiment was downloaded from the ENCODE data repository

from experiment ENCSR000BZY [246] and ENCSR000CAC [247] for POLR2A and CTCF

respectively. We obtained TFBS, genome segmentation and TF motif position data from

the UCSC browser database for graph annotation.

We subsequently ran the two paired-end FASTQ files for each experiment through the

Mango pipeline (2.4.9.2, p.130). After processing, we obtained a list of 37,522 CTCF and

21,400 POLR2A interactions for graph generation.
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3.2.7.2 Graph Analysis

We used the pre-processed files from Mango as input to LOOPER, filtering for the ROI.

To analyse functional and structural looping, we wished to visualise the graph for all intra-

TAD interactions for CTCF and POLR2A inside the local TAD for PMM2. To define our

TAD, we used the genome interaction tool 3DIV [248] where we generated a TAD diagram

using K562 and PMM2 as the target (Figure 3.35, p.211). The resultant graph shows a

double TAD in the ROI comprising one large and one small TAD. Given the methodology in

which 3DIV generates TADs we argue that the area of missing data shown in white causes

a double TAD to be erroneously shown; we also argue that given the additional signal

above the whited out area within the primary TAD, the TAD should actually encompass both

TADs. We therefore define our region of interest TAD as the area spanning from the left

of Transmembrane Protein 114 (TMEM114) to the right of Chromosome 16 Open Reading

Frame 72 (C16orf72) - chr16:8,568,000-9,265,000; we set LOOPER to filter for contacts

within this area. The resulting graph shows a network of CTCF and POLR2A interactions

spanning the whole TAD (Figure 3.36, p.212). We also show the region as viewed in the

UCSC browser to show the linear distribution of genes in the TAD (Figure 3.37, p.212). The

full run parameters and output for the graph generation are listed in Appendix C, p.283.

The LOOPER graph has two distinct regions on the left and right with distinctly fewer

and weaker contacts linking the two together. The genes on the left side of the graph such

as Ubiquitin Specific Peptidase 7 (USP7 ) and C16orf72 are all located towards the right

side of the TAD and have little connectivity with the target PMM2 promoter. To reduce

complexity, we only discuss the right hand side of the graph (left side of the TAD) in detail

in this section, mentioning where needed other elements for completeness.

We first centre our analysis on the bidirectional promoter for PMM2 and TMEM186, this

is defined by the node labelled M189_[TMEM186_PMM2] (Figure 3.38, p.213). The node

has three connections: one proximal connection to another contact site (green dotted line),

one CTCF ChIA-PET contact (blue line) and one POLR2A (red line) ChIA-PET contact.

We also show the analysis of the ChIA-PET region covered by the contact in the UCSC

browser for context.
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Figure 3.35: Diagram of the predicted TAD around PMM2 in the K562 cell line. The blue lines
demark the TAD boundaries. Each red square has a red scale in proportion to the
number of Hi-C contacts present at the intersection between the two sites on the x-
axis. We propose that the actual TAD surrounding PMM2 comprises both the primary
TAD and the small TAD adjacent to the left.
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Figure 3.36: LOOPER Graph output for the PMM2 TAD region. The nodes represent points of
contact from ChIA-PET data, the edges show which contact points were in contact
with each other. The edge colour shows blue for CTCF ChIA-PET and red for POLR2A
ChIA-PET. The edge thickness shows the relative interaction strength of the contact.
The node colour shows blue for insulators, red for promoters, yellow for enhancers and
orange for regions which contain both promoters and enhancers. The green dotted
arcs represent nodes which are physically close to each other on the genome. The
node labels show the contact site type, the ID and the gene promoters which are in
proximity to the contact point.

Figure 3.37: Target region for LOOPER graph analysis shown in the UCSC browser.
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(a)

(a)

Figure 3.38: A Highlighted section of the LOOPER analysis graph. (a), PMM2 promoter node - has
proximal connection to another contact site (green dotted line), one CTCF ChIA-PET
contact (blue line) and one POLR2A ChIA-PET contact (red line). UCSC browser of
(a) shows the PMM2/TMEM186 bidirectional promoter that overlaps with the ZNF143
ChIP-Seq block which contains the HIPKD mutation. The genome segmentation track
shows red for promoter. There is a strong, well conserved POLR2A signature, indicat-
ing that the region is transcriptionally active. Refer to Figure 3.37, p.212 for positional
context of (a) within the TAD.
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M189_[TMEM186_PMM2] is connected via a weak CTCF connection to the

CTCF_11263 node. CTCF_11265 is the most connected node in the TAD in terms of

CTCF contacts, indicating that it is a major loop anchor hub (Figure 3.39, p.215). Analysis

of the node in UCSC browser shows evidence for a loop anchor with strong CTCF and

cohesin marks. The genome segmentation track shows several enhancers nearby in the

intronic regions of TMEM114; the enhancers only show on one cell-line suggesting that

they are not ubiquitous and may exhibit tissue specificity. The anchor also shows evidence

for for indirect binding of ZNF143 and POLR2A. The POLR2A signature indicates that one

or more promoters are in contact with the anchor. The ZNF143 indirect binding signature

strongly suggests that the PMM2 promoter is in contact with the loop anchor, as it is the

only ZNF143 TFBS in the region. We believe this may be a significant regulatory region for

this TAD.

CTCF_11263 has a strong CTCF connection to CTCF_11265 and CTCF_11282 (Fig-

ure 3.40, p.216). CTCF_11263 is a loop anchor that is intronic to Methyltransferase Like 22

(METTL22), it has a strong connection to the left TAD boundary enhancer cluster and has

strong evidence for indirect binding of POLR2A and ZNF143, suggesting contact with the

PMM2 promoter, most likely through contact at the TAD boundary through CTCF_11263.

CTCF_11282 is a loop anchor at the extreme right of the TAD that has a strong connec-

tion to CTCF_11265. The node also has weak ZNF143 and POLR2A signatures, giving

tantalising evidence that the two TAD ends are in contact with each other.

Interestingly, the three nodes discussed above span the whole TAD (one on the left TAD

boundary, one in the centre left and one on the right TAD boundary), suggesting both the

ends of the TAD and points along the region all occupy the same physical space. This is

inline with the CTCF/Cohesin loop theory that TADs are major structural loops that anchor

at the boundaries, thus bringing the two sides of a TAD into proximity (Figure 1.9, p.58).

CTCF_11265 acts in the middle of the nodes suggesting a more complex looping pattern

than a single chromatin loop.
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(a)

(a)

Figure 3.39: A Highlighted section of the LOOPER analysis graph. (a), highly connected loop
anchor to the left of TMEM114 (CTCF_11263 highlighted in blue). Strong evidence
for contact with the PMM2 promoter through the graph connection and indirect binding
of ZNF143 and POLR2A. The site has several enhancers downstream in the intronic
regions of TMEM114. Refer to Figure 3.37, p.212 for positional context of (a) within
the TAD.
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(b)

(a)

(a)

(b)

Figure 3.40: A Highlighted section of the LOOPER analysis graph. (a), a loop anchor situated in
an intron of METTL22 with a strong connection to the enhancer cluster at the left TAD
boundary (highlighted in blue). Evidence for indirect ZNF143 and POLR2A binding is
present. (b), a loop anchor situated on the right TAD boundary (highlighted in blue).
Evidence for indirect ZNF143 and POLR2A is present. Refer to Figure 3.37, p.212 for
positional context of (a) and (b) within the TAD.
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CTCF_11264_[TMEM114], another loop anchor on the left TAD boundary located on

the opposite side of TMEM114 (Figure 3.41, p.217), has a weak CTCF connection to

CTCF_11265 which would bring this site into contact with the TAD anchor regulatory region

in the same way as the connections shown in Figure 3.40, p.216.

Figure 3.41: UCSC browser capture of the CTCF_11264_[TMEM114]. The node region is high-
lighted in blue. We show that the site is a loop anchor with several predicted enhan-
cers clustered around the TMEM114 region. The site has evidence for indirect binding
of ZNF143 and is located near the promoter for TMEM114.

CTCF_11268_[PMM2] is a physically proximal node (not linked by ChIA-PET data but

by proximity on the genome) to M189_[TMEM186_PMM2] and has a strong CTCF con-

nection to CTCF_11267 (Figure 3.42, p.218). Both sites are loop anchors with ZNF143

residue. Interestingly, CTCF_11267 is the left loop half-anchor predicted to the best candid-

ate loop for HIPKD in our loop prediction algorithm; this is evidence that this loop exists but

also suggests the loop is part of the wider looping structure for the TAD. CTCF_11268_[PMM2]

has two CTCF contacts with other nodes; CTCF_11265 is a putative loop anchor in METTL22

and CTCF_11271_[CARHSP1] is discussed below.

The next graph section we focus on is the cluster of contact nodes around CARHSP1

(Figure 3.43, p.219). CTCF_11272 and CTCF_11270 are weak loop anchors located in the

CARHSP1 region; the four nodes in proximity of this region while having no other detected

CTCF contacts between each other are located in a region with several enhancers. we

suggest these nodes form an interaction ’backbone’ with CTCF_11263, CTCF_11265 and

CTCF_11282; these sites span the TAD from left to right, contacting at key promoters and

enhancer clusters.
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(b)

(a)

(a)

(b)

Figure 3.42: A Highlighted section of the LOOPER analysis graph. (a), a loop anchor situated
to the left of TMEM186 (highlighted in blue), it is the closest anchor to the PMM2
promoter. Evidence for indirect ZNF143 binding is present. (b), a loop anchor situated
to the left of ABAT (highlighted in blue). Evidence for indirect ZNF143 binding is
present. Refer to Figure 3.37, p.212 for positional context of (a) and (b) within the
TAD. 218



Figure 3.43: A Highlighted section of the LOOPER analysis graph. Four nodes are physically
located in the same region while CTCF_11272 and CTCF_11270 have connectiv-
ity to the regulatory hub at CTCF_11263. CARHSP1 is shown with all splice vari-
ants in the UCSC browser. Two connected loop anchors: CTCF_11272 (blue high-
light) and CTCF_11270 (purple highlight) are located at either end of the diagram.
POLR2A_3701_[CARHSP1] is located in the promoter region for CARHSP1 (red high-
light) with the enhancer CTCF_11271[CARHSP1] located to the right (yellow high-
light). Refer to Figure 3.37, p.212 for positional context of CARHSP1 within the TAD.
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We now focus on the strong POLR2A connections seen on the right hand side of the

graph that link the promoters of several genes in the TAD. POLR2A_3698 is defined as

an enhancer/promoter despite being located at the extreme left of the TAD in a gene de-

pleted region (Figure 3.44, p.220). The UCSC browser analysis shows a triplet of POLR2A

indirect binding signatures, suggesting a triple enhancer site. More detailed analysis of

TFs binding to this site show three definitive enhancers with over 100 different transcrip-

tion factors binding to three distinct enhancers. Interestingly, the ChIP-Seq data suggests

this site is cell specific to the K562 cell line. POLR2A_3702_[USP7] is shown to be the

promoter for USP7 in an area highly populated with regulatory elements; it has also has a

functional connection to the PMM2 promoter region (Figure 3.45, p.220).

Figure 3.44: UCSC browser capture of the POLR2A_3698 node. The site is located at the extreme
end of the LHS TAD boundary and shows a predicted enhancer element with several
strong POLR2A signatures suggesting promoter contact.

Figure 3.45: UCSC browser capture of the POLR2A_3702_[USP7]. The site is located at the USP7
promoter which shows a cluster of regulatory elements including CTCF signatures and
several enhancers.
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3.2.7.3 Additional Tool Assessment

The NIH 4D nucleosome project [249] has a repository of assessed software tools that

can be used to process data from interaction experiments such as Hi-C and ChIA-PET.

LOOPER was designed to sit within this existing ecosystem of databases, pipelines and

chromatin architecture visualisation tools. We performed an assessment of the existing

software ecosystem to demonstrate that LOOPER is unique in this space and to find other

visualisation tools with synergies to LOOPER that could be used to perform additional

analysis on the HIPKD region of interest.

The 4DN software list was used as a guide to assess the tool ecosystem as this list is

up-to-date and maintained by a consortium of research groups. Tools were only selected

for analysis if they produced visualisations (not just processing pipelines) and if they pro-

cessed Hi-C or ChIA-PET data (3C and 4C were not counted). Our results are summarised

in Table 3.11, p.222.

UCSC browser is used extensively by the scientific community and can integrate large

amounts of experimental data displayed in a linear manner. We do not discuss UCSC

browser further as we already show the integration of LOOPER results with UCSC browser

information earlier in this section.

Many of the other tools in the ecosystem concentrate on Hi-C data visualisation either

using heatmaps, linear genome annotation or a combination of both. Only GIVE and 3DIV

visualised interaction data in a way similar to LOOPER, albeit on a linear genome. Both of

these tools highlight a key difference between LOOPER and other visualisation software

assessed: all interactions are anchored to a linear genome so that it is comfortable for the

user to visualise the genomic location and so that other annotations such as ChIP-Seq

binding data can be easily shown in parallel. In LOOPER, the linear genome is removed

and the interactions are displayed in a force-directed graph; thus, the true pattern of in-

teractions is revealed in an intuitive way. This view is extremely useful when exploring

chromatin looping in a region of interest; however, LOOPER is perhaps best used in con-

junction with a tool that has a connection to the linear genome so that both views can be

considered simultaneously. GIVE was also the only tool other than LOOPER that we found

was able to display ChIA-PET data in a reasonable way by comparing two linear genomes

on top of each other and using banding to link areas of interaction between the two.

In terms of data availability, many of the tools do not have any built-in datasets, includ-

ing LOOPER. 3DIV, GIVE and Juicebox all have integrated datasets; 3DIV has the most

comprehensive set of Hi-C with many different cells and tissue types available through the

browser.
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We selected 3DIV to perform additional analysis on the HIPKD region of interest as it

displayed Hi-C data, had a large selection of integrated datasets and produced filterable

interactions on a linear genome as well as a 2D heatmap. Integrating Hi-C analysis along-

side ChIA-PET visualisation from LOOPER allows for the coarser-grained analysis of the

overall interaction landscape for all proteins rather than the single targets of ChIA-PET;

subsequently, this allows for major structures such as TAD boundaries to be identified and

for sanity checking of interactions identified in ChIA-PET.

Tool
Name

Data Type Visualisation
Type

Data Availability Comments

UCSC
browser

All Linear
visualisation

All Classic go-to genome
visualiser

3DIV Hi-C 2D Heat map over
linear gene
annotation

315 experiments
from 80 human
samples

Easy to use with integrated
data and intuitive
interaction mapping

HiCtool Hi-C 2D Heat map None Full pipeline with contact
map visualisation options
using python

GIVE Hi-C, ChIA-PET,
ChIP-Seq

Linear gene
annotation

ENCODE and
up-loadable

Excellent linear
visualisation tool but limited
built-in data

Hi-C
data
browser

Hi-C 2D Heat map None Older browser, superseded
by Hi-glass and Juicebox

Hi-C
Plotter

Hi-C 2D Heat map over
linear gene
annotation

None Python based visualisation
generating data similar to
3DIV

HiGlass Hi-C 2D Heat map over
linear gene
annotation

None Web-based heatmap and
gene annotation tool

Juicebox Hi-C 2D Heat map Much of the
classical Hi-C data

Web-based heatmap
generation and comparison

Table 3.11: List of Hi-C and ChIA-PET visualisation tools with comparison comments from the 4DN
software portal.

3.2.7.4 Further Analysis

In this section, we now conduct additional analysis of our ROI using a one of these tools to

further our understanding of the regulatory network identified by LOOPER.

We used the 3DIV tool [248] to generate a TAD analysis plot for a liver sample to better

match the phenotype of HIPKD. We show that the predicted TADs are the same for liver

tissue samples are the same. 3DIV uses H3K27ac histone modification data to identify en-
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hancers and super-enhancers; we show that 3DIV identifies a liver-specific super-enhancer

within our PMM2 TAD (Figure 3.46, p.223).

Figure 3.46: 3DIV capture of the PMM2 TAD in a liver tissue sample. We show that the TAD
structure is identical to one generate for K562 presented earlier (Figure 3.35, p.211).
The TAD shows one liver specific super-enhancer: ’LI_superEnhancer_191’.

The liver-specific super enhancer is located in the region spanning the CARHSP1 gene

(chr16:8941669-8971669) (Figure 3.43, p.219). As described earlier, this region connects

to the CTCF ’backbone’ to which the PMM2 promoter also appears to interact with. Several

ZNF143 residue marks in the enhancer region also suggest contact with PMM2 and the

TAD boundaries.

We next used the Hi-C contact analysis feature of 3DIV to show which areas of the

genome were in contact with the PMM2 promoter in liver tissue; we used the HIPKD muta-

tion as bait to give a one to many contact view. In our initial analysis, we filtered for the

strongest contacts only - a fold change of above 5.40 the normal (Figure 3.47, p.224);

we show interactions with both ends of the TAD to two regulatory hotspots confirmed in

LOOPER with ChIA-PET data at the TMEM114 and C16orf72 genes. Lowering the fold

change threshold to 3.97, we see increased levels of contacts to the same areas and to

a loop anchor located between METTL22 and ABAT (Figure 3.48, p.225). Reducing our

threshold down to the minimum limit of 2, we see additional interactions to many of the en-

hancer areas identified by LOOPER including the liver super enhancer and the intergenic
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regulatory region between USP7 and C16orf72 which contacts the hub node ’M120’ in our

graph (Figure 3.49, p.226).

Figure 3.47: 3DIV capture of the PMM2 TAD in a liver tissue sample showing Hi-C contacts with our
HIPKD mutation. We show strong contacts with the TAD boundaries with previously
identified regulatory regions.
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Figure 3.48: 3DIV capture of the PMM2 TAD in a liver tissue sample showing Hi-C contacts with our
HIPKD mutation. We show strong contacts with the TAD boundaries with previously
identified regulatory regions and with loop anchors in intergenic reigons.
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Figure 3.49: 3DIV capture of the PMM2 TAD in a liver tissue sample showing Hi-C contacts with
our HIPKD mutation. Show contacts with many of the regulatory elements show using
ChIA-PET data in LOOPER including a liver specific super enhancer.
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3.2.7.5 Summary

In summary, we have shown that experimental evidence from ChIP-Seq, ChIA-PET and Hi-

C all suggest that the PMM2 promoter is connected to a complex TAD-wide regulatory net-

work. In the context of the HIPKD mutation we believe that the PMM2 promoter ultimately

links to a liver specific super-enhancer through structural and functional interactions at the

TAD boundaries. We showed that there are ZNF143 ChIP-Seq signatures at key sites

throughout the TAD despite there being only one ZNF143 TFBS at the HIPKD mutation;

this suggests that the PMM2 promoter is in physical proximity to many sites simultaneously.

Our results show that there is TAD-wide, strongly connected chain of CTCF/cohesin loop

anchors which we term the ’backbone’ that link together two enhancer clusters and other

structural sites. One enhancer cluster is at the left TAD boundary around TMEM114 and

one is downstream of the CARHSP1 promoter, where the putative liver specific super-

enhancer is located.

The Hi-C data from liver tissue samples visualised in 3DIV confirmed many of the reg-

ulatory interactions shown with the CTCF and POLR2A ChIA-PET data visualised using

LOOPER. We additionally identified a liver-specific super-enhancer that we showed to in-

teract with our HIPKD mutation.

We propose that the TAD is composed of a primary structural loop which spans the

whole region. There are then several sets of nested CTCF/cohesin loops which cluster

their anchors around the primary loop anchor at the TAD boundaries. The looping brings

the two enhancer clusters we have defined into contact with the primary loop anchor. The

PMM2 promoter is brought into contact with the primary loop anchor via ZNF143 functional

looping which brings it into contact with various cis-regulatory elements including the liver

specific super-enhancer. This mechanism can be visualised in the same way as a single

loop (Figure 1.11, p.59), but extrapolated to many loops where the loop anchors bunch

together at the same physical base [72].
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Chapter 4

Discussion

In this thesis, we have presented two different software tools which were developed to

solve problems which we encountered during bioinformatic investigations undertaken by

our research team.

We first presented our methodology for Genome-wide association study (GWAS) where

we applied computer science practices such as version control, naming conventions and

data pipeline analysis to standard GWAS methodology to build robust, repeatable and

transferable genomic analysis pipelines. We defined the route from source data to res-

ults as a data pipeline that can be represented as a graph, where the edges are routes

that data flows along and the nodes are transformations performed on data. A complete

pipeline consists of a set of transformation nodes and connecting edges that converts input

data into the final set of reports and results that satisfy the project goals. We subsequently

demonstrated the effectiveness of this framework by creating a data pipeline for a GWAS

based on genotyping data to investigate the genetic architecture of Steroid-sensitive neph-

rotic syndrome (SSNS).

Our initial GWAS results for the SSNS investigation contained significant noise in the

form of false-positive associations. Subsequent detailed analyses showed that the input

datasets were genotyped on different microarrays and subject to different analyses leading

to a mosaic case-control cohort that had inherent errors, primarily due to strand mismatch-

ing. We developed Re-coding For Merging of Genotyping Data (REMEDY) to counter these

issues when literature research revealed no viable alternatives; we then modified our data

pipeline to include the REMEDY toolset without needing to change the entire methodology.

We then re-ran our pipeline to produce the low signal to noise ratio Manhattan plots shown

in the results section, demonstrating that REMEDY functioned correctly but also that our

data graph methodology was able to adapt to problems we encountered.
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Our second tool, LOOPER, was developed to solve a different type of problem than the

data cleaning and quality control issues which REMEDY was designed to correct. Ana-

lysis of a newly characterised rare renal disorder Hyperinsulinism with polycystic kidney

disease (HIPKD), led to the hypothesis that a change in chromatin looping at a specific

genomic locus may be involved in the aetiology of the disease. A single point mutation

in the promoter of Phosphomannomutase 2 (PMM2), located in a binding site of the tran-

scription factor Zinc-finger protein 143 (ZNF143) was implicated in the dysregulation of

PMM2 through the alteration of the local chromatin architecture; specifically, a functional

chromatin loop made between the PMM2 promoter and a CTCF/Cohesin loop anchor me-

diated by bound ZNF143 protein.

We developed LOOPER, a software suite capable of predicting chromatin loops from

Chromatin immunoprecipitation with next generation sequencing (ChIP-Seq) data to ex-

plore the possible confirmations of chromatin architecture in the HIPKD Region of interest

(ROI). LOOPER predicted several interesting functional and structural loops that supported

our hypothesis. After data for new experimental methods that targeted chromatin confirm-

ation were released, we extended LOOPER to visualise Chromatin interaction analysis by

paired-end tag sequencing (ChIA-PET) and ChIP-Seq data as a force-directed graph to

show experimentally confirmed structural and functional chromatin interactions. Next, we

re-analysed the HIPKD ROI with the extended LOOPER software to show experimentally

validated chromatin interactions. We first confirmed our original predicted loops and sub-

sequently discovered that the local genomic region has many more chromatin features than

first thought. The force directed graph output was layered on top of other existing tools to

enhance our understanding of chromatin architecture in the HIPKD region of interest and

successfully improve our hypothesis regarding the aetiology of HIPKD.

4.1 REMEDY

REMEDY was developed in response to the false-positive associations that we came

across during our initial analysis on our SSNS dataset. Given the large number of case

samples that we had, it was deemed infeasible to identify, collect and process control

samples in-house as well as our cases. Instead, we identified a mosaic of genotyped data-

sets from online repositories such as European genome archive (EGA) that we merged to

produce a single control set for GWAS. The datasets collected were sourced from a range

of different studies and were genotyped on different microarrays and had been subject to

different pre and post-processing methodologies. After investigation of the merged case-

/control dataset, the source of the GWAS noise was deemed to be due to four primary

areas: differences in the formatting and strand designation of the genotyping datasets, dif-
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ferences in the variant databases used and quality of variant used for analysis, differences

in genotyping chip designs and genome version changes.

We first manually attempted to fix these problems before realising that an automated

script would be a better solution to the problem. After several script versions, further re-

quests for our team to conduct other GWAS and literature surveys showing very little in the

way of tooling to aid in these types of merging problems, we decided to turn our scripts into

a fully featured tool, REMEDY. We adapted our GWAS methodology data graph to accom-

modate the three primary REMEDY sub-programs that asses, filter and perform quality

control on input genotyping data into a mergable standard format ready for GWAS. The

toolset fits into the data cleaning and Quality control (QC) portion of our pipeline; however,

it does not replace more traditional QC such as call rate filtering. Instead, it adds additional

stringent filtering specifically designed to remove false-positives from genotyping data used

for association studies.

We packaged REMEDY into a deployable software tool so that it could be used by

clinicians with little computing experience. REMEDY was successfully applied to several

GWAS, of which one is presented in the results section as our case study.

4.1.1 Manifest Scanning Evaluation

During our investigation of the false-positives in our SSNS GWAS results, we encountered

several problems that we traced back to the quality of the variants (from a GWAS perspect-

ive) that were included on the microarray. We located the primary reference file called the

manifest that contained all probe design and strand designation details. We initially imple-

mented an algorithm that utilised all of the available information in the manifest file to screen

for potential Single nucleotide variant (SNV)s that would cause false-positives before ex-

panding the filtering potential by integrating The single nucleotide polymorphism database

(dbSNP) data to provide more fine-grained variant analysis. We discuss our evaluation of

the different parts of the manifest scanning sub-program in the sections below.

4.1.1.1 Structural Variation

The first major source of noise identified was the utilisation of genotyped structural variants

in a GWAS. A basic allele test is based on the chi-squared test - a simple comparison of

categorical data, it is therefore not technically incorrect to perform the test on the binary

outcome of whether a genomic position contains one structural variant over another. We

argue that the problem lies in the genotyping process itself. The Illumina BeadChip process
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uses fluorescent tagging to identify single nucleotide complement extensions to the probe

sequence. Probes are designed so that the target variant overhangs the end of the probe

sequence by one. The probe sequence design must be a balance between uniqueness to

the target sequence where longer is more desirable, and hybridisation performance, where

longer probes can be problematic.

When considering structural variants, the probe design must also somehow use single

nucleotide variation to indicate which multi-nucleotide variant is present in the sample gen-

ome. Targeting areas of the structural variant that are different between the two target

sequences is the obvious starting point [142]; by using single or multiple probes to geno-

type the differences one can distinguish between the two. However, this is probabilistic as

by their multi-nucleotide nature, structural variants have many different possible combina-

tions that cannot be detected unless a probe is specifically designed for it.

During our analysis, we encountered several probes targeting structural variation that

were causing false-positive associations. It was difficult to ascertain whether the struc-

tural variants were being miscalled, or whether the differences in genotyping processing

between our different datasets was the root cause; we, therefore, decided to eliminate all

structural variation from our output. This decision was further compounded by the relat-

ively low number of structural variants included on our target microarrays ( 1-2%); while

more markers are important for association (structural or not), genotyped markers are not

causally linked to the phenotype and thus, reducing the marker density by a small amount

is unlikely to impact the final results.

As detection of structural variation becomes more accurate, it is being implicated in

many disease mechanisms, especially so with Copy number variation (CNV)s and cancer

[250] [251]. Despite the errors we encountered, popular genotyping manufacturers such

as Illumina and Affymetrix as well as literature [142] all claim that some types of structural

variation can be accurately detected on microarrays. With further research, is it conceivable

that developing algorithms for merging structural variation from multiple microarray designs

is possible; however, it would certainly not be a trivial problem. Given the rise of Whole

genome sequencing (WGS) that is able to detect structural variation much more accurately

[252], it is becoming more unlikely that microarrays will be used for detection of structural

variation of the quality required for GWAS in the future; REMEDY is designed for use with

genotyping data therefore, we believe our decision to remove structural variants was the

best solution.
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4.1.1.2 Comments File

During our assessment of the available data alongside the manifest file for each microar-

ray, we noticed that there was a comments file included with some of the newer designs.

Subsequent analysis revealed that the file contained a record of comments made against

probes on the microarray. The majority of the comments related to probes that matched

to Pseudoautosomal regions (PARs) as well as their intended target site, or probes which

matched to multiple regions. All of the probe comments were negative in nature which lead

us to the belief that the comments file was a record of design errors for the probes. Probe

designs that match to multiple genomic regions are an apparent source of noise in a GWAS

and given that the number was small ( 1%) we again decided as with structural variation, to

blanket remove any variant which had an entry in the comments file. Of course, this leads

to the potential error that as yet unseen commented variants that do not require filtering

are removed, thus causing the potential for false-negatives. At the time of design, this was

deemed an acceptable risk; however, we accept that this is a limitation of REMEDY in its

current version and is scheduled to be fixed in a forthcoming release. Our proposed solu-

tion uses a configuration file that recognises each comment and has a keep/remove binary

setting that the program uses to asses each probe on a case by case basis.

4.1.1.3 dbSNP Variant Assessment

During our investigation, we found several problems that could not be solved using the

manifest file alone; foremost of these was multi-allelic variation. Given that Illumina geno-

typing microarrays can only distinguish between two variations because of the red/green

labelling system (this is reflected in the A/B encoding of Illumina data), any variant which

contains more than two options has the potential to be misread by the genotyping system

and is therefore a possible source of noise.

Some multi-allelic variation can be detected by scanning within the dataset itself, by

searching for variants which have more than two different nucleotides present. This type of

local multi-allelic analysis is already performed as standard in GWAS methodology; how-

ever, it is not the whole story. A variant may be multi-allelic yet, in the data we only see

two of the genotypes, thus it would pass a standard allele count test; yet, if one of those

genotypes was, in fact, a miscall, this could still produce a false association where there

was none. Merging data from multiple microarrays also presents the problem of different

manifests using different alternate alleles of a multi-allelic variant, thus only causing noise

if these sets are merged. In addition, variants can begin life bi-allelic and are subsequently

upgraded to multi-allelic at a later time without this change being updated on the microar-
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ray. The broader problem of multi-allelic variants in GWAS cannot, therefore, be solved

with the manifest file alone.

We developed REMEDY-DB, a custom, file-based database as a high-speed, local rep-

resentation of dbSNP initially, to provide the additional data we required to filter out multi-

allelic variants. We used the latest record of multi-allelic variation that dbSNP provides

combined with the standard allele count filter in our GWAS methodology to ensure that

only strictly bi-allelic variants were included in our analysis. We found filtering for these

removed a significant amount of noise in our GWAS, while the integration of dbSNP data

opened several new doors for quality control given the amount of additional meta-data that

we now had at our disposal.

In addition to multi-allelic variant filtering, we also developed several other methods for

removing noise based on dbSNP data. The first was the removal of variants that did not

match in dbSNP; while this was necessary for the correct operation of REMEDY, removing

non-matching variants had several benefits. First, it filtered out custom probes that are

included on a microarray; these probes are included in the microarray design not because

of their suitability to being a genotype-able variant, but rather because of project-based

driving factors, thus they have the potential to be sources of noise. Given these factors,

we removed them as a precautionary measure despite not detecting any direct sources of

error.

The other problem that variant matching solves is one of removed or merged rsIDs.

During the evolution of dbSNP, variants are merged or removed much more frequently

than microarray versions; this leads to a kind of variation drift where the genotyping data

is no longer ’in-date’ on the microarray. We solved this problem by removing any non-

matching variants from our output data, thus removing the possibility that a variant that

was no longer valid was included in a GWAS. However, merged dbSNP variants are still

valid, they have been merged for admin purposes with another variant; we treat merged

and deleted dbSNP ID’s equally and delete both. While not a source of noise, this is a

limitation of REMEDY as the correct operation would be to remove deleted variants but in

the case of merged, to find the new variant ID and use this instead. This problem could be

corrected with a software update; however, this data is not readily available in the reduced

version of dbSNP which we obtained from the UCSC browser. We would instead, need

to build a new REMEDY-DB from the full version of the dbSNP database that contains the

history of all the merges and deletions. Given that the number of unmatched variants was

small in our testing (<1%), this was deemed to be a feature for a future version of REMEDY.

The inclusion of dbSNP meta-data also allowed us to scan for variants that appeared

to have corrupt information in dbSNP. Genotyping probes are designed from sources of
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information such as dbSNP; therefore, the quality of the probe is directly related to the

quality of information available for a variant. All variants are not created equal in dbSNP:

some are based on high numbers of submission counts, are well established and have cor-

rect meta-data while others are the opposite. During our analysis, we encountered several

variants where their genomic position was blank or had impossible positions; we deemed

these to be an unacceptable risk to include them in our analysis and were removed.

The final and most complex dbSNP meta-data based filtering we performed was the

strand mismatch. To our knowledge, this was a novel discovery and has not been men-

tioned in previous literature. Towards the end of our investigation, there were some variants

that we knew were producing errors, yet we could not find the reason, i.e. they appeared

to be normal. We eventually found that these variants had matching major and minor al-

leles between the manifest and dbSNP, but that their strand designations were different.

For example, a variant has A/G in both manifest and dbSNP, but the manifest has it called

TOP and dbSNP, BOT. This problem was difficult to detect as manifest files are DESIGN

encoded; thus, these differences appeared normal unless the manifest file and dbSNP vari-

ant were re-coded to same strand designation. Once detected, we also found the reason

behind the error complex to ascertain. Our most favoured hypothesis is that there are

fundamental differences in the strand calling algorithms between Illumina and dbSNP; in

particular, dbSNP uses several additional in-house tools to designate strand than Illumina.

Without knowing what the exact algorithms are, we cannot correct these errors, and so

we filter them out. Unfortunately, this represents a much large number of variants in our

analysis ( 3-4%) and so is a limitation of REMEDY; however, it was still deemed acceptable

given the time constraints of the project.

4.1.2 Strand Designation Evaluation

Our most significant breakthrough regarding our investigation of our GWAS errors was re-

garding strand designation. We noticed early on that there appeared to be several different

strand designation schemes mentioned in our data. Illumina termed their strands TOP/BOT

while dbSNP referenced FWD/REV; in literature, we also came across POS/NEG. We ini-

tially concluded that these were different terms for the 5’ and 3’ strands of Deoxyribonucleic

acid (DNA). We found there to be a lack of verifiable information on the subject of strand

designation in research, we eventually resorted to an obscure Illumina data sheet that

detailed their TOP/BOT strand designation scheme.

From this document, we were able to ascertain that indeed, despite the strand scheme

being denoted TOP and BOT, these keywords had no relation to the biological DNA strand.

This, in turn, meant that the schemes were not all the same and TOP/BOT was different
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from POS/NEG (which we had already found was equivalent to 5’ and 3’) and FWD/REV.

After a detailed investigation into the origins of strand designation we began to find more

papers on the subject through better domain knowledge search terms. The subject had

been acknowledged as necessary terminology to reference the correct strand when dis-

cussing a variant; however, few had encountered problems when merging data from differ-

ent encoding schemes. We concluded that the problem of merging large mosaic genotyp-

ing datasets was relatively new, given that the size of datasets and genotyping microarrays

has been steadily rising. We identified this as a problem which required a novel solution;

after a literature search for tools to help us we came across the software tool we refer to as

the ’Oxford pipeline’ [191], but after assessment, we deemed it insufficient for our needs.

After defining the different strand designation schemes and what they represented, we

realised that merging two different genotype datasets that were on opposite strands would

cause catastrophic noise in any subsequent association testing. Interestingly, although

we were encountering significant noise levels, when we tested our data, we found that

not all of the genotypes were on opposite strands, the level fluctuated at around 50%.

We ultimately determined that our data, although sometimes on the opposite strand, was

usually designated in a different scheme altogether. Two datasets that are encoded to TOP

and FWD will have, by chance an overlap of variants that match and do not cause errors

thus obscuring the real problem. We found this to be the most difficult challenge that we

overcame during our development of REMEDY.

We next needed a method to transcode between the different schemes so that our data

could be converted into the same designation scheme and strand for merging. Given that

there was very little in the way of information on strand conversion, this was more challen-

ging than perhaps it should have been. This was made more frustrating by the discovery

that the Illumina tool, Genome Studio was able to convert between all schemes, yet it was

closed source, so the solution was obscured. After several early software versions, we

found a key clue in the Illumina manifest file - an undocumented legend hidden within the

ID of the variant. This small-scale Rosetta stone enabled us to convert to and from the

Illumina DESIGN scheme to TOP/BOT and FWD/REV and thus to and from TOP/BOT and

FWD/REV by using DESIGN as a middle-man.

After finding a solution to the strand designation problem, we then encountered more

frustration as our data still had large-scale noise problems. We subsequently identified

that the cause of this was that some source datasets had their strand misreported in the

documentation. We expanded REMEDY to counter this by including a major sub-program

that’s function was to scan the manifest and genotyping data to auto-detect the source

strand designation scheme.
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To detect strand designation, REMEDY scans the manifest for each variant and calcu-

lates the TOP/BOT/FWD/REV encoding for the reference and alternate nucleotides; it then

compares it to the genotyped alleles in the input data file. If the genotype matches one of

the encoding schemes, a simple count tally is kept for that encoding. As the file is scanned,

separate distributions over TOP/BOT and FWD/REV are calculated as percentages in real-

time. The percentages can be interpreted to infer the source encoding of the genotyping

file. For example, a file that was FWD encoded will have greater than 95% of the genotyped

alleles matching either the reference or alternate of a bi-allelic variant that has been FWD

encoded. In the same way, genotypes that have a >95% match for TOP/BOT/REV will be

encoded to those schemes respectively. If, however, there is a partial match across all en-

coding schemes then that can be interpreted as evidence that the source file was encoded

in the DESIGN scheme; this is because DESIGN encoded data is encoding unspecific and

is instead designated to the original design strand of the probe.

The strand auto-detection algorithm is novel to our knowledge and represents a signi-

ficant improvement in the field towards properly managing the merging of disparate gen-

otyping datasets. REMEDY does not currently convert between the POS/NEG encoding

scheme as this scheme is more difficult to define than the others. POS/NEG may refer

to the biological 5’ and 3’ strands, but it may also refer to the HapMap project [186] initial

attempts to produce a stable strand designation for a genome build. We found there was

no real way to distinguish between the two and that the scheme was uncommon; therefore,

we omitted this from the final functionality of the program.

4.1.3 Re-coding Evaluation

The final sub-program we developed for REMEDY used the results from the manifest scan

and the genotype strand designation scan to perform the actual re-coding and filtering

steps on input data before outputting to a common file format, Variant calling format (VCF).

We separated this stage of REMEDY from the others so that the initial two scanning stages

could be run without converting any data for diagnostic purposes. We also favoured mod-

ularity in our software design so that different portions of the program could be built into

pipelines if needed. The sub-program was broken into three parts; we first employed our

proprietary algorithm for converting between strand encoding schemes to re-encode from

a source to a destination scheme (supplied by the user). Variants are then filtered based

on the manifest scan so that only those deemed valid for GWAS are included, we then

finally convert all data to the VCF file format.

The decision to convert files to VCF was primarily based on the fact that both SNP

& Variation Suite (SVS) [188] and PLINK [253] (the main GWAS software packages) both
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import and process data in the VCF file format. Rather than re-inventing the wheel, we also

wanted to integrate with the existing software ecosystem by merging data after processing

by REMEDY using other tools. VCF-tools contains several functions to merge VCF files

reliably and is considered an industry standard; therefore, we selected VCF as our output

format. In addition, we also wished to distance ourselves from the Illumina proprietary file

formats, preferring open source alternatives. It is a limitation of REMEDY that VCF is the

only output file format, in future versions, we would wish to include more outputs such as

Illumina Matrix and simple tabular formats.

The VCF file format has two compressed sub-formats which allow for faster processing.

The tabindex format compresses a VCF file to a tarball [254] file before indexing the con-

tents in a separate tabix file. The Binary calling format (BCF) format is a binary represent-

ation of the VCF file design for fast processing by glsbcf-Tools [255]. We found that after

testing with PLINK and SVS, that although they took VCF as an input format, they required

the VCF files to be either in glsbcf of tabix formats. REMEDY provides no functionality to

output to these formats; however, as part of a pipeline, one would be able to add in func-

tions to convert the raw VCF files into a compressed format for further processing. In the

interest of not re-inventing the wheel, we felt that it was more correct to integrate with other

tooling rather than provide functions for converting to compressed formats. We recognise,

however, that if REMEDY was used to process very large files, the ability to compress VCF

files to GZIP format would be useful to save on storage space during pipeline processing.

4.1.4 REMEDY-DB Evaluation

REMEDY-DB was developed in response to the requirement to integrate dbSNP data into

the REMEDY workflow so that more stringent filtering strategies could be employed us-

ing the additional variant meta-data. As mentioned in our results, we evaluated several

strategies for obtaining and processing dbSNP data before developing REMEDY-DB. Given

the number of variants present on modern microarrays, requesting data for each variant

from National centre for biotechnology information (NCBI) via an internet connection would

have been prohibitive. We were aware of the NCBI dbSNP batch query service [256],

however, at the time of development the service was scheduled to be replaced and its

successor, an Application programming interface (API)-based service was still in the im-

plementation phase where it was unclear what the performance characteristics of the new

service would be.

After ruling out online queries, we were left with several options for interfacing with a

downloaded representation of dbSNP. The primary candidate was a direct download of the

dbSNP MySQL database that contained all dbSNP information, we also located a reduced
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version of the database, pared down to critical information only in the UCSC browser. We

first assessed interfacing with the MySQL database but found querying to be complicated

and slow, we, therefore, favoured the UCSC single flat-file as our input data source as it

contained all the data required to perform the extended filtering REMEDY required in a

single table.

We also found a paper detailing a web-based package that provided an interface to

the dbSNP SQL database [257]. Unfortunately, the detailed links were non-functional (the

tool was no longer maintained) and we did not assess this further given that we could not

download the software.

The primary function of the dbSNP interface was search and retrieve. The design spe-

cification required submission of an RSID and retrieval all data regarding a variant in the

fastest possible time. The simplest form of search is the linear search where items are

sequentially traversed in a list until the correct item is found; this at worst takes O(n) com-

parisons where n is the total number of items in the list. Given that the dbSNP database

currently contains over 650 million records [258] and the largest microarray used for the

SSNS project has over 1.7 million variants on it, a linear search for a single microarray

would require at worse 1.105× 10−15 searches. At the time of writing, the fastest solid-

state drives deliver 500,000 random read operations per second [259]. In the best case

scenario, where performing one search comparison requires one read (a simplification),

this would take 613,888 hours or 1,681 years to complete. It is possible to load the table

into memory for faster searching in RAM; however, the memory required for this would also

be infeasible to implement.

NoSQL databases have been shown to be better than relational databases in storage

and retrieval of genomic information [260]. To solve the search problem, we designed a

custom on-disk, NoSQL database that employed an efficient binary search strategy. Binary

search is a search algorithm that finds the position of a target value within a sorted array via

a divide and conquer strategy [261] [262]; it has a computational complexity of O(log 2 n)

where n is the total number of items in the list. In terms of the timings shown above, the

worse case number of operations would be 1.498× 10−7, 13 orders of magnitude better

than a linear search in this situation. We implemented a binary search algorithm using a

Binary Tree, which is an efficient option to represent a binary search in programming as

the connections between branches on the tree are created using pointers; each bifurcation

on the tree represents a stage of binary search. The leaf nodes on the tree were linked to

file positions where the data for the variant resided. We then constructed a simple payload

for storing variant data that allowed variable length variants to be sequentially written by

including the length of the next payload in a fixed length header. The data was encoded in

JavaScript object notation (JSON), a standard programmatic data format.
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We believe the file-based binary tree representation of dbSNP to be novel in the field

and provides a high-speed search database for variant data which is unparalleled. NCBI

has recently released a new batch API service based on up to date API technology; how-

ever, while convenient, it will always be slower than direct access to file data. REMEDY-DB

follows the web paradigm concept of local caching. There are several web-caching data-

bases such as CouchDB [263], where their role is to provide local fast access key-value

store of information that sits in front of a more complex database. We view REMEDY-DB

as a similar database, providing a fast access point to dbSNP without the performance

considerations of a web connection or a relational database.

The primary limitation of REMEDY-DB is that it is dependant on new versions of both

dbSNP and the UCSC flat-file table representation, thus requiring a level of maintenance.

The database could be improved by the removal of the dependency on UCSC, by building

it directly from the dbSNP MySQL database. In addition, this would enable access to more

detailed meta-data regarding a variant, thus enabling the potential for more features in

REMEDY.

In terms of the database storage footprint, improvements could be made to the storage

of the variant payload. JSON is structured and therefore has a level of redundancy in the

format of the text; if the variant payload were designed as a sequential list of data for each

field of information it would be smaller as the formatting constraints of JSON would not

be required. Further compaction would require compression of the text data which would

severely impact read performance.

Another potential area of improvement for REMEDY-DB lies with the search algorithm

and indexing of data. Binary trees, while efficient to represent in computing terms, are an

imperfect binary search as the search tree has the potential to become unbalanced; this

leads to slightly worse performance than the theoretical maximum. Hashing is a well-used

search and indexing method that is proven to be better than binary search in problems

where best-guess matches are not allowed [264] [265]. In dbSNP, a search for an ex-

act match to rsID is required, therefore, using hash tables instead of Binary Tree’s while

more complicated to implement, may offer better performance. While hashing’s worst-case

complexity is O(n), the average is O(1), making it on average faster than binary search

[266].

A more popular method for computing based indexing and search is the B-Tree [267]

[257]. The B-Tree is a generalisation of a binary tree where nodes can have more than

two children, and the tree is self-balancing. B-Tree’s take advantage of the way in which

storage disks operate to improve search times; algorithms use sparse indexes across disk

blocks to reduce the amount of disk that needs to be searched. B-Trees improve on the

239



search time fromO(log 2 n) toO(log b n) where b is known as the blocking factor. Swapping

the REMEDY-DB search algorithm to a B-Tree based approach would most likely have a

considerable positive performance impact on search times for variants.

4.1.5 Software Performance

We conducted performance testing on REMEDY using a high-end desktop computer run-

ning Windows and Linux in a dual boot configuration with a Samsung 950 Pro solid state

drive, the full specification can be found in the appendices A.1, p.280. All three REMEDY

sub-programs were testing using a subset of data from the SSNS GWAS project. The data-

set consisted of seven samples which were genotyped on the Illumina Infinium Multi-Ethnic

Global microarray detailed in the SSNS case study section.

We found the performance of REMEDY to be most affected by choice of storage drive;

this is unsurprising considering the most processing is done by REMEDY-DB when match-

ing variants stored on-disk. The difference in run-times for operations between a solid state

drive versus a standard magnetic drive was several order of magnitude faster. We would

therefore strong recommend using a solid state drive for any REMEDY processing.

4.1.6 Oxford Pipeline Comparison

The Oxford pipeline was an unpublished software tool for re-coding genotyping data de-

veloped by the Wrayner group at Oxford University [191]. The tool is split into two parts;

the first generates a conversion file set using the input manifest file of the target microarray

and the second uses the conversion file to convert a genotyping file in Illumina TOP format

to a user-specified genome build in FWD designation. To build a conversion file, each

probe sequence from the selected manifest is matched to a target reference genome using

the Blast-like alignment tool (BLAT) to obtain the genomic position and biological strand.

The program assumes the input data is in Illumina TOP format and then applies a stand-

ard conversion from TOP to FWD using the strand designation from BLAT and the TOP

alleles of the manifest file. Conversion files for most Illumina and Affymetrix microarrays

and genome builds 35, 36 and 37 are available. The website also states that more can be

generated on request. There are some significant differences between REMEDY and the

Oxford pipeline, which we will refer to as the OP from now on. We discuss these in detail

below.

To transcode between strand schemes, an algorithm must know the start strand, the

destination strand and a method for re-coding between the two. The OP achieves this
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through the requirement that all input data be encoded to Illumina TOP while the output is

fixed to FWD, thus eliminating the need to transcode between multiple schemes. Strand re-

coding is achieved using BLAT to map the probe sequence to a strand on a target genome

build which allows re-mapping of the TOP encoded alleles to FWD. The use of BLAT allows

the correct genomic position to be outputted for any genome build, essentially performing

both a lift over and re-coding at the same time. REMEDY uses the strand information

embedded within the manifest file and a target version of dbSNP to transcode between

different designation schemes.

Illumina provides strand designation for the genome build for which the microarray was

designed for, hence merging data from multiple microarrays on different genome builds

becomes impossible. The OP solves this by calculating the strand for a target genome build

using a custom BLAT pipeline that is internal to the program. REMEDY obtains genome

build specific data and strand information from dbSNP through REMEDY-DB.

While both methods of transcoding between strand designation schemes are valid, the

OP requires that all input data be in a single scheme which is left to the user to calculate.

This requirement presents potential problems as many datasets are not in Illumina TOP

format before re-coding, yet it provides no solution other than a custom conversion file

being generated by the OP team on request. REMEDY was developed to solve such

situations; this reveals a fundamental difference between the two tool sets. The OP was

developed with correcting lift over to different genome builds as the primary goal with strand

re-coding as an additional feature. REMEDY was designed with strand transcoding and

quality filtering as the primary goals; this has led to different design priorities during the

development of the tools.

The OPs reliance on the BLAT pipeline forces a new conversion file to be generated for

every microarray/genome build required, hence generating a significant maintenance cost

associated with managing the tool. Furthermore, if the OP supported transcoding between

multiple schemes, a new file would need to be generated for each microarray/genome

build/source strand/destination strand combination. REMEDY uses the reference file dir-

ectly rather than generating an intermediate conversion file and can transcode between

TOP, BOT, FWD and REV; however, it is not entirely maintenance free. REMEDY-DB must

be generated against a target dbSNP build; thus, for each target dbSNP build, a new data-

base must be generated. While this allows the latest version of dbSNP to be used (the

OP uses the manifest file dbSNP version), it does require extra maintenance. We have

mitigated this by providing tooling to create new databases from the UCSC flat file pack-

aged with REMEDY as a utility program; this allows users to create a custom REMEDY-DB

against any target dbSNP version without contact with the REMEDY developers.
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The reliance on custom generated conversion files, and the fixed TOP->FWD transcod-

ing was one of two primary drivers behind the choice to develop new software rather than

using the OP for our in-house GWAS. The second was that the OP only provides lift over

and re-coding. Although strand designation mismatching was our most significant source

of noise that we encountered, other causes such as structural variants, multi-allelic variants

and poorly designed probes were also issues. REMEDY seeks not only to correct strand

designation but also to perform quality control using the manifest file and dbSNP. A feature

comparison table between the OP and REMEDY is shown in Table 4.1, p.242.

Feature Oxford Pipeline REMEDY

Core strand designation reference BLAT dbSNP

Method of strand conversion Manifest + BLAT Manifest + dbSNP

Supported transcoding pairs TOP->BOT TOP/BOT/FWD/REV

Required conversion file for re-coding Custom file Manifest file

Output format Custom VCF

Auto-strand scheme detection 6 4

Supports lift over 4 4

Support for Illumina microarrays 4 4

Support for Affymetrix microarrays 4 6

Supports multiple dbSNP versions 6 4

Windows Support 6 4

Linux Support 4 4

Structural variant filtering 6 4

Multi-Allele filtering 6 4

Strand mismatch filtering 6 4

Invalid position filtering 6 4

Deleted variant filtering 6 4

Multi-position alignment filtering 4 4

Table 4.1: REMEDY and Oxford pipeline feature comparison table.

We performed a direct comparison between the OP and REMEDY using the same test

data set detailed in the performance testing section above. REMEDY was not provided with

a list of variants to filter consequently, effectively switching off the variant cleaning parts of

the software tool leaving just the re-coding. The seven sample test file was inputted into

both pipelines for conversion from TOP to FWD. The output files had a match percentage

of 99.75%. We then assessed the 4227 non-matching variants to identify the cause of
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the mismatch. 50% of the differences were attributed to differences in the strand calling

between the manifest and the OP BLAT pipeline and 50% were due to inconsistencies

between the OP BLAT pipeline and dbSNP. During the development of REMEDY, we also

encountered strand mismatches between the Illumina alignment process and dbSNP. The

testing setup above adds in the OP alignment process as a, which is the reason that two

different classes of error are seen in the results. We conclude that these variations are due

to differences in the alignment pipelines between Illumina, the OP and dbSNP; therefore,

we can treat the outputs of the OP and REMEDY as equivalent.

In summary, the OP pipeline and REMEDY both perform strand re-coding to equivalent

outputs but with different internal pipelines. The OP’s reliance on BLAT for alignment overall

leads to a large maintenance cost and limited transcoding options. REMEDYs reliance on

dbSNP produces a lower maintenance cost overall, which we have significantly mitigated

by publishing the database generation algorithms; this also allows for transcoding between

all strand designation schemes. REMEDY also provides a much richer set of features for

filtering variants for GWAS based on meta-data from both the manifest file and dbSNP. Per-

haps REMEDYs most substantial advantage is its ability to auto-detect the source strand

designation and encoding scheme of the input data. When combined with the capability to

transcode between all major encoding schemes it essentially negates any potential source

of error from strand encoding when merging two disparate genotyping datasets.

4.1.7 Future Work

REMEDY is feature complete and tested to a high standard. It has already been used in two

different GWAS, one of which has been published [1] and one is in pre-publishing; both are

published or targeted to their respective top of field journals. However, the various minor

improvements suggested in the evaluation section, such as options for auto compressing

to VCF tabix format could be packaged up into a new ’quality of life’ release to improve

usability. One of the significant limitations of REMEDY currently, is that it can only process

Illumina microarrays; the inclusion of algorithms to process Affymetrix microarrays would

be a notable improvement to REMEDY.

REMEDY at its core relies on the flat-file generated by UCSC browser that targets a

specific version of dbSNP. As discussed in the evaluation section, removing the depend-

ency on this file by building the REMEDY-DB directly from the dbSNP MySQL database

would remove a significant point of failure from the REMEDY maintenance plan. Also, this

would enable additional features based on the richer source of variant data such as the

ability to distinguish between deleted and merged variants. While a major programming

project, we conclude that this would be a significant boon for the REMEDY program and
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would constitute our next major release.

Utilising the full power of dbSNP would also enable more complex quality control filter-

ing to be developed and tested. We, for example, propose a variant quality score for suit-

ability to a GWAS based on the number and quality of submissions for the target variant.

Researchers may wish to distinguish between a variant which is based on 100 submis-

sions from major projects versus a variant which has one submission from an independent

group. Other data, such as ethnicity frequency could also be used to filter variants for an

ethnic-focused study. dbSNP also provides links to other NCBI databases such as ClinVar

to provide additional filtering possibilities based on disease status, for example.

REMEDY-DB is a powerful tool in its own right. Despite being developed to sit along-

side REMEDY, there are currently no high-speed, document-based versions of dbSNP

available. For users developing programs that require fast, programmatic access to variant

data, REMEDY-DB would be a compelling alternative to working with the raw MySQL data-

base. We propose to develop REMEDY-DB into an independent software package, that

self-updates from dbSNP via either the downloaded database or through the web API to

provide programmers with a robust library for accessing variant data in C#.

GWAS are a type of positional cloning that also includes linkage studies. Linkage ana-

lysis performs positional cloning via the study of families; however, it is likely that variants

which are unsuitable for GWAS are also unsuitable for linkage. It is possible that REMEDY

could be tested on linkage studies to assess if any improvements to the output can be

made by filtering out unwanted variants.

Finally, while genotyping is currently the most ubiquitous method in the field, WGS

is the new gold standard for sequencing. REMEDY in its current form is incompatible

with WGS given that many of the filtering and strand re-coding techniques are designed

specifically for handling genotyping data. WGS, while having its own set of problems does

not suffer from many of the hurdles corrected by REMEDY. Genotyping can still be used

to potent effect in rare, Mendelian disease genomic analysis, for a much lower cost than

WGS; therefore, we expect the requirement for REMEDY to exist for the foreseeable future.

Furthermore, by separating REMEDY-DB into an independent toolset, we believe that this

will be useful for many more types of genomic analysis beyond positional cloning.
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4.2 LOOPER

4.2.1 Loop Prediction Evaluation

The loop prediction portion of LOOPER was the first set of scripts to be developed. At

the time of development, chromatin conformation experiments were relatively new, with

sparse amounts of low-resolution Hi-C data available for analysis [237]. While useful

in determining genome-wide Topologically-associated domain (TAD)s and the basis for

CCCTC-binding factor (CTCF)/Cohesin structural loops, this data was unsuitable for ex-

ploring mega-base sized regions of interest; we, therefore, sought to develop a prediction

algorithm for different types of chromatin looping in the HIPKD region of interest. We opted

to focus on two types of loops: the structural CTCF/Cohesin loop because it is the most

well-characterised chromatin loop and the functional ZNF143 loop, given that our mutation

resided in a binding site for ZNF143.

4.2.1.1 CTCF/Cohesin Loop Prediction

The current best hypothesis regarding CTCF/Cohesin is the loop extrusion model which

proposes that DNA is extruded through pairs of convergent CTCF Transcription factor bind-

ing site (TFBS) bound by cohesin until the CTCF sites meet and form a loop anchor com-

plex [75]. The resultant DNA trapped in the ’pinch’ is known as the loop. We do not discuss

the merits of this model of loop formation in this thesis; we take it to be canon.

We hypothesised that a reasonable model for predicting potential loops could be con-

structed by identifying convergent CTCF sites which had some evidence that cohesin had

also been in contact. We selected ChIP-Seq data as our primary source of TFBS data

given the large amount of data available for the experiment through the ENCODE project

[234], where the experimental methodology for ChIP-Seq and the strict adherence to data

cleaning and management was considered to be best in the field.

To predict structural loops, we required both CTCF and Cohesin ChIP-Seq data. Ideally,

performing ChIP-Seq analysis for CTCF and the Cohesin sub-units SMC3 and RAD21 on

cells in different tissues obtained directly from patients with HIPKD would have have been

optimal; however, this was infeasible for our project. Hence, we sought to identify cell

lines within ENCODE for ChIP-Seq that fitted with the observed symptoms for HIPKD; not-

ably in the kidney, pancreas and liver. Unfortunately, no kidney or pancreatic cell lines

were included in the March 2016 ENCODE release for CTCF or Cohesin ChIP-Seq data;
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furthermore, HEPG2, an immortalised human liver cancer cell (the closest potential can-

didate cell model for HIPKD) only had CTCF data available and thus was unsuitable to be

used for structural loop prediction.

Given the lack of cell-specific data, we opted to generalise our loop prediction model

for structural loops by selecting ubiquitous CTCF and Cohesin ChIP-Seq sites based on all

available cell lines in ENCODE. We recognise this as a limitation of our methodology as this

model only includes highly conserved CTCF and Cohesin sites when the HIPKD disease

model is tissue-specific. This effect was somewhat mitigated in the HIPKD ROI as the size

of the region was relatively small, and there were no tissue-specific CTCF loop anchor

sites anywhere; we, therefore, do not believe that our results were expressly affected in

this project by the exclusion of cell-specific TFBS.

To increase the accuracy of the ChIP-Seq binding data and reduce false-positives, we

opted to scan the TFBS sites for binding motifs so that we only included CTCF sites which

had both a statistical and experimental backing [268] [269]. While ChIP-Seq can determine

the presence of a transcription factor, it does not provide evidence of actual binding to DNA.

As we have seen in our analysis, cohesin likely indirectly binds through CTCF to DNA, but

this is indistinguishable in the ChIP-Seq data. Consequently, we calculated Position weight

matricess (PWMs) for our target transcription factors and used them to detect any probable

binding sites within the ChIP-Seq predicted binding site in order to separate actual DNA

binding from residual binding through other proteins.

We recognise a limitation in this approach as the data used to generate the PWMs

was the same source of data that the experimental binding sites were calculated from,

hence introducing potential bias. Despite this drawback, we believe this approach still helps

to remove false-positive binding sites as sites where indirect binding or where residual

protein was present in the formaldehyde fixing complex are removed due to there being no

statistical predicted binding site present in these sites.

PWMs also suffer from some principle drawbacks [270]. They are at their core, a simple

statistical model of the frequency of base pairs at a position in a motif; consequently, they

oversimplify actual protein-DNA binding processes. The molecular dynamics of protein

interactions are not considered as each nucleotide is considered as independent from its

neighbours. Furthermore, PWMs do not consider that Transcription factors (TFs) may bind

to multiple motifs and to motifs of varying lengths. They are, however, a useful tool for

separating parts of DNA that have a higher likelihood for binding than their surrounding

areas and the PWMs themselves are calculated using experimental results from assays

such as ChIP-Seq i.e. they are not statistical models based purely on theory. Given their

simplicity, they are a useful tool for de novo motif discovery if one is aware of their specific
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limitations.

Our loop prediction algorithm was based on the loop extrusion model where we identi-

fied pairs of convergent CTCF sites with SMC3 and RAD21 residue (indirect binding identi-

fied by a ChIP-Seq signature with no binding motif) that represented probable loop anchor

sites. As we used no experimental evidence to confirm the loops, we enumerated all pos-

sible loops from all valid loop half-anchors; while not incorrect, we accept that not all pre-

dicted loops will exist. To increase the loop prediction specificity, we could indeed include

some measure of likelihood; we propose an improvement to our loop prediction algorithm

where the strength of the ChIP-Seq binding sites and the p-value of the PWM binding motif

are included in a measure of loop strength.

Our results showed several sets of overlapping structural loops present in the HIPKD

ROI. One of the loops was later confirmed experimentally using ENCODE data; this was

our most favoured loop based on our hypothesis and provided evidence to support the

accuracy of our loop prediction model.

4.2.1.2 ZNF143 Loop Prediction

The exact mechanism of ZNF143 mediated chromatin interactions is still poorly understood

[76]. Rather than developing a specific algorithm for detection, we opted for a simpler

approach by distinguishing between direct and indirect binding. As described in the last

section, indirect binding is characterised by ChIP-Seq data with a binding motif where

indirect binding can be defined by weak ChIP-Seq binding with no binding motif. In the

immediate HIPKD ROI, only one ZNF143 site was detected, with multiple binding motifs

within it. We then detected indirect binding in several key predicted loop anchors, thus

supporting evidence in the literature to suggest that ZNF143 mediates contacts between

promoters and loop anchors [76].

The evidence that we detected for ZNF143 mediated interactions is circumstantial;

much more experimental evidence would be required to define further how ZNF143 me-

diated chromatin contacts form and what kinds of algorithms could be developed for pre-

diction. We do believe, however, that the presence of indirect ZNF143 at so many key

loop anchors while observing a singular strong ZNF143 site in a promoter is compelling in

convincing us that the transcription factor has a role in 3D chromatin architecture.
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4.2.2 Loop Visualisation Evaluation

After the initial LOOPER analysis for HIPKD was completed, the volume of available chro-

matin confirmation data increased dramatically. New Hi-C experimental data and analysis

tools combined with new experiments such as ChIA-PET made the prospect of using ac-

tual data rather than predictive models to analyse an ROI a reality. This is not to say that

the predictive part of LOOPER is obsolete, there are still many cell lines and loop types

for which experimental loop data still does not exist, leaving a space for loop prediction al-

gorithms to be still useful; however, a window for visualisation tools based on experimental

chromatin interactions was open. Many new visualisation tools were developed by other

groups, but from previous research, our team favoured using force-directed graphs to show

connected data, but no such tools existed; consequently, we sought to develop in-house

software to visualise chromatin interactions as a force-directed graph.

4.2.2.1 Chromatin Interaction Experiment Selection

We selected ChIA-PET as our data source for chromatin interactions due to the finer-

grained interaction analysis afforded by targeting specific transcription factors; this is

achieved by using chromatin immunoprecipitation, cross-linking and next-gen sequencing

[195]. In addition to the higher resolution that ChIA-PET provides over Hi-C, the ability

to target specific transcription factors enables selection of the type of interactions that are

to be analysed. For example, to target CTCF/Cohesin loops, one may target CTCF and

RAD21 in two separate experiments and then combine the data while to target a Yin-yang

1 (YY1) mediated loop, antibodies for YY1 could be used to pull down only those interac-

tions specific to those loops. Selective targeting of different loop types allowed for greater

control over bioinformatic analysis, which we utilised in building layers of interactions into

our output graph.

The selection of ChIA-PET also allowed for close integration into existing ChIP-Seq

data as the experimental protocols have some fundamental similarities in their use of chro-

matin immunoprecipitation; hence binding sites identified with ChIP-Seq can be closely

correlated with the interaction sites of ChIA-PET data. The straightforward merging of

these two sets of experimental data allowed us to accurately annotate the ChIA-PET in-

teraction sites represented as nodes in our graph; we believe this was key to making the

force directed graph understandable.
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4.2.2.2 Source Data

At the time of analysis, there was a limited set of ChIA-PET data available in the ENCODE

project. The only viable cell line with enough usable data was K562 (human immortalised

myelogenous leukaemia cells); we accept this as a severe limitation of our HIPKD analysis

given that cancer cells have been shown to have markedly different chromatin architectures

with respect to healthy cells [271].

The K562 ChIA-PET data repository contained several useful experiments for studying

both structural and functional loops. Initially, CTCF and RAD21 data for K562 were selected

for analysing structural loops; however, the RAD21 experiment had very few actual inter-

actions after processing via Mango [219]. We believe this was due to poor experimental

quality and resulted in a key transcription factor for structural loop identification being un-

available for processing by our pipeline. We consequently had to rely on CTCF data only;

CTCF has a number of functions in the genome but has to date only been shown to inter-

act with cohesin at loop anchors [237]. Removing cohesin detection from the interaction

model disabled a key filter in excluding non-looping CTCF interactions. We accept this as a

limitation, but we deemed this as acceptable given that CTCF to date has only been shown

to participate in chromatin interactions with regards to forming chromatin loops.

Locating source data for studying ZNF143 functional interactions proved to be chal-

lenging as no ChIA-PET experiments existed for ZNF143 at the time of analysis. Instead,

we hypothesised that given the literature supported a model of ZNF143 mediated interac-

tion between promoters and cis-regulatory elements, that identifying contact sites between

promoters and regulatory elements from ChIA-PET data and then filtering for ZNF143 spe-

cific loops using ChIP-Seq data, would give a reasonable estimate of the true chromatin

architecture. To identify promoter interactions, we used DNA Polymerase II (POL2) data to

show points of contact between actively transcribing genes and cis-regulatory elements.

Of course, identifying actual ZNF143 ChIA-PET would be preferable, and we recognise this

a limitation of our HIPKD ROI analysis.

4.2.2.3 Graph Generation Algorithm Evaluation

Our graph generation algorithm integrated several sources of data to produce output files

for nodes and links in a graph that was in the correct format to be loaded by Cytoscape -

our selected visualisation program. In the first iteration of the LOOPER graph algorithm,

we sought to display ChIA-PET data only with the contacts anchors as nodes and the

edges as the contacts derived from the output of the Mango pipeline [219]. The primary
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challenge we faced was how to aggregate the contacts together to produce a graph that

was understandable to the end user. The Mango output format produces a contact for

each line but does not perform any aggregation of contacts; therefore, we first grouped the

contacts by location using the Mango internal ID system to merge the data points.

The resultant graph contained a large number of contacts that were unreadable due to

the amount of information displayed. Reducing the field of view was not possible as we

required a view of the whole HIPKD ROI; therefore we developed implemented a hierarch-

ical clustering algorithm in order to group the contacts under a threshold distance together

as one node. The simple algorithm recursively merged the closest nodes together, until no

two nodes were under the threshold distance for merging. Having a merged set of data

both in terms of nodes and edges presented two challenges: how to properly annotate

merged nodes and how to show the relative strength of merged contacts on an edge.

For calculating the strength of a set of merged contacts, we identified three key pieces

of information: sequencing depth ratio (between the paired-end contacts), total sequencing

depth and PET support. We borrowed from data science practices by converting all values

into a normalised value between 0 and 1 before combining them as a weighted sum after

cleaning. Developing the formula for interaction strength was one of the most challenging

areas of developing the graph generation algorithm.

The methods of normalisation for each value was selected based on the statistical char-

acteristics of each value. The depth ratio as a bounded mix of two read depths required

only simple min-max normalisation [272]; however, when calculating both the total read

depth and PET support, we encountered several zero values which, if min-max normal-

ised, would have caused infinite numbers. Instead, we employed a standard mathematical

technique to avoid dividing by zero by placing all values in the pattern 1
1+x where x is the

value to be normalised (Equation 3.2, p.194). For the total read depth, we were faced with

significant outliers in our dataset, we, therefore, sought to ’squash’ these down before they

were used in normalisation by taking the log of the raw value. While no novel mathemat-

ical techniques were used here, we believe our strength formula as a whole to be novel

because we incorporate the depth ratio into a pair of contacts; thus, we only give high

strength to contacts which have a read depth on both sides. This is not represented in any

other work to our knowledge. We represented the calculated strength as the thickness of

the edge as this is ubiquitously recognised in graph representations as a visual measure

of strength.

We solved the challenge of annotating merged nodes by using meta-data downloaded

from UCSC browser from the Chrom-HMM project [205]. The data allowed annotation

of genomic segments as several categories, including enhancers and promoters. Where
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different genomic segment types had been merged, we developed a colouring system that

distinguished these from regions that were all enhancer or all promoter. We believe that

the Chrom-HMM annotation gave critical visual feedback to the user regarding the map of

enhancers and promoter interactions.

4.2.2.4 Case Study Graph Evaluation

Graph analysis of the HIPKD ROI revealed that the broader TAD within which the PMM2 bi-

directional promoter is located had a complex regulatory network made from distinct areas

of interaction between CTCF and POLR2A contacts (Figure 3.36, p.212). The regulatory

network had two distinct sections with only weak CTCF interactions between the two; these

regions were also separated physically in the TAD, with the right-most genes occupying the

left of the graph and the centre and left areas of the TAD (containing PMM2) occupying the

right section of the graph. We shall only discuss the right side of the graph directly related

to PMM2 in the following paragraphs.

The CTCF network on the right of the graph (in blue), shows a highly interconnected set

of loop anchors, with no CTCF contact sites showing without a cohesin signature, confirm-

ing that in this genomic region, CTCF mediated contacts are most likely all from CTCF/Co-

hesin structural looping. Analysis of the CTCF sites in our prediction model showed many

possible loops, and it is clear from the graph analysis that several loops interconnect and

share common loop anchors within the region. Several recent papers proposed a nested

loop configuration of chromatin when multiple CTCF loops appear to be present [72] [73];

we propose that a set of nested loops is present in this TAD region, resulting in many loop

anchors bunching up into one large loop super-anchor.

Analysis of the PMM2 promoter shows a strong interaction with the super-anchor; this

is further confirmed by weak ZNF143 residue being present on several key loop anchor

points. We argue that the PMM2 promoter is being pulled down to the super-anchor to

interact with cis-regulatory elements clustered in this region. Evidence for this is supported

by the 3DIV program [248] showing a liver-specific super-enhancer that has strong links to

the super-anchor, suggesting that the loop configuration places this element at the base of

a loop, in proximity to the PMM2 promoter (Figure 3.46, p.223).

Without representing the ChIA-PET data as a force-directed graph, we argue that the

observations made above would have been difficult to ascertain from other software tools

given the highly connected nature of the genomic elements in the HIPKD ROI. Our as-

sessment of the LOOPER visualisation package is that it provides a novel and critical view

of regulatory action, which was essential in exploring the potential regulatory pathways of
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PMM2 gene expression.

4.2.2.5 Comparison with software ecosystem

The HIPKD project identified a point mutation in a putative ZNF143 TFBS that was hypo-

thesised to interact with other regulatory elements in the local TAD to regulate the PMM2

gene. During the initial analysis, it became clear that the location on the linear genome

was largely inconsequential to the analysis of the looping structure of the chromatin in-

teractions. We identified that the primary data points for looping analysis were properly

annotated loci (nodes) and their interactions with each other (edges).

LOOPER was developed out of a requirement for a visualisation which concentrates on

the pattern of interactions, rather than the mapping of loci to other loci on a linear genome.

We applied force-directed graphs to map the annotated nodes and interactions in an easy

to visualise way using colours to show annotations. Applying these graphs to the HIPKD

region of interest, we were able to see the patterns of interaction between the ZNF143

TFBS and the rest of the TADs interaction structure.

When compared with other tools assessed in the results section (3.2.7.3, p.221), there

are several key differences that set LOOPER apart, but that also show potential synergies

with other existing tools for a more complete analysis. The tools mentioned in the following

paragraphs are already summarised in Table 3.11, p.222.

One of the key enablers that allows for fine-grained interaction analysis is the ChIA-PET

experiment. The majority of tools for interaction visualisation focus on Hi-C, which shows

coarse-grained interactions with a resolution of approximately 5Kb for all proteins. This

kind of high-level analysis is excellent for defining genome-wide structures such as TADs.

We found the identification of TADs to be essential in bounding our analysis to a specific

region; experimental data is inherently noisy, therefore, restricting the analysis to a specific

region can reduce the number of interactions for analysis. Hi-C is unable to detect finer

grain interaction sites in the same resolution as other non-interaction based experiments

such as ChIP-Seq which can detect sites in the region of 400bp.

ChIA-PET uses chromatin immunoprecipitation to pull down proteins of interaction and

is, therefore, has a much higher resolution that makes it ideal for visualising interactions in

a TAD. Perhaps because ChIA-PET requires selection of a specific protein and because of

the relative lack of experimental data in the public domain, there are many fewer tools able

to visualise ChIA-PET when compared to Hi-C. As a result of the HIPKD study, we wished

to concentrate on the CTCF loop and the functional ZNF143 loop; therefore, there was
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a clearly defined set of proteins which we required analysis for; this made ChIA-PET the

clear choice for interaction analysis. In summary, LOOPER already sets itself aside from

many other interaction tools as a virtue of the input data type that it processes, allowing for

fine-grained visualisation of intra-TAD chromatin interactions.

When comparing the type of interactive visualisation which is generated, we believe

LOOPER is unique in this space. All other tools that we assessed attempt to map in-

teractions to a linear genome so that annotations can be easily added and so users are

grounded in the genome position of the interaction loci. We argue that by tying the visu-

alisation to a 1D line, much of the nuance of the interaction pattern is lost. Force-directed

graphs are generated procedurally such that the graph attempts to keep strongly interact-

ing, highly connected items close together. When applied to ChIA-PET data, this results in

strongly interacting genomic elements occupying the same section of the graph regardless

of their actual genomic position. LOOPER also provides options to generate a graph that is

halfway between abstract interactions and absolute genomic position by including ’dummy’

interactions between elements that are physically close to each other. In this mode of op-

eration, LOOPER produces a hybrid graph where the position of each node is a weighting

of the strength of interaction and physical position; this is also unique in the field.

Displaying interactions as a force-directed graph allows for the strength of the inter-

action between two loci to be intuitively displayed; this is something that is much more

difficult when using a linear genome for reference. 3DIV provides features to filter out

lower strength interactions and tools such as GIVE use strength of colour and opacity to

give the same effect; however, we believe the thickness of the interaction line as well as

baking the interaction strength into the graph generation algorithm itself produces much

more informative visualisations. In summary, LOOPER is unique in the field as it allows for

loci-free interaction patterns to be visualised.

In terms of computing knowledge required and ease of use, LOOPER has an imme-

diate disadvantage, as it is not polished into a browser and is in reality still a collection of

scripts. The tools we assessed had varying levels of computing skill required ranging from

a full python pipeline that is required to be run from the command-line to a fully hosted

browser-based tool that simply required knowledge of the experiment performed to inter-

pret the results. We would say LOOPER sits at the bottom of the list because some of the

file paths are hard-coded into the script thus requiring some alteration of code to be able

to generate the required results. This is a key disadvantage of LOOPER; to improve this,

we would seek to first parameterise the scripts so that they could be run from the com-

mand line and eventually integrate the graph generation into a browser tool using existing

force-directed graph javascript libraries.
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One of the key factors that we found affected usability, was the availability of data. The

majority of tools we assessed, including LOOPER required input data to be able to function.

This adds significant amounts of effort on the user side before interpretable plots can be

generated. Some tools we assessed such as 3DIV, GIVE and Juicebox had integrated

experimental data that could be selected without needing to upload any data. We found

this to be hugely beneficial and was a primary reason for selecting 3DIV as our further

analysis tool in the HIPKD analysis. Again, LOOPER is at a disadvantage as it has no

integrated data; however, we argue that although very useful, maintaining a database of

existing data in such a fast-moving field adds a significant amount of upkeep time to the

maintenance of the tool.

Genomic analysis relies heavily on integrating multiple sources of information, espe-

cially when creating human-readable visualisations. One of the primary reasons that so

many of the tools we assessed are tied to the linear genome, is so that other sources of

annotation can be easily mapped on top of the interactive visualisation to provide additional

context. LOOPER has a disadvantage as all annotation has to be converted into the graph

’space’. For example, we used node colouring to show putative enhancers, promoters and

insulators and edge-colouring to show which type of experimental data was shown. Even

though LOOPER displays the most important annotations, there is limited scope to include

further annotations on a force-directed graph without overcrowding the visualisation. For

this reason, we believe LOOPER is best used in conjunction with other linear visualisation

tools such as 3DIV. In a future browser-based version of LOOPER, we would seek to show

a linear genome alongside the force-directed graph with the interaction between the two

diagrams for maximum analysis power.

4.2.2.6 Future Work

Chromatin confirmation is currently a research focus, including structures such as the chro-

matin loop, due to the discovery that 3D chromatin architecture heavily influences both nor-

mal and abnormal gene regulation [273]. In normal gene regulation, regulatory processes

in cell differentiation, response to extracellular stimuli and apoptosis have all been linked to

chromatin architecture [274]. In abnormal situations, chromatin loop malformation and reg-

ulatory network disruption has been linked to cancer [271] as well as many other disorders

such as the discovered disorder, HIPKD [2].

The rush of new experiments to study chromatin confirmation underpins the intense

research focus on this subject. Despite this, there is still some way to go before the the-

ory, experimental protocols and volume of experimental data are available to model the

3D chromatin landscape completely. While we believe our chromatin visualisation tool
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LOOPER was essential in developing our hypothesis for the regulation of PMM2, there is

much additional work that could be done with the availability of additional datasets.

While inferring functional loop interactions from POLR2A was useful, and we believe

that we would now include this data as standard in any LOOPER analysis, to study ZNF143

interactions directly, a ZNF143 specific ChIA-PET experiment would have been crucial

to understanding the role this transcription factor has to play in the local TAD regulatory

network. In addition, layering data from RAD21 or SMC3 ChIA-PET for more accurate

CTCT/Cohesin loop analysis would have been extremely beneficial. We would seek in the

future to re-analyse this ROI if this data were to be published.

Another limiting factor that would also trigger a re-analysis of the HIPKD ROI would be

if more cell lines such as HEPG2 for ChIA-PET were made available through the ENCODE

portal. As we mentioned in the previous section, the reliance on a cancer cell line as our

disease model is sub-optimal at best, we would seek to move to a different cell-line as a

matter of priority in our future work.

In addition to improving on the existing loop analysis quality in LOOPER, we would

also see to layer additional loop type data as it became available. YY1 has recently been

shown to be a potential loop mediator in a similar way to ZNF143 [275]; we propose that

there are many more loop types to be discovered. As other teams publish their ChIA-PET

or other chromatin interaction data, that we could layer this information onto our LOOPER

data graph to further unravel the regulatory network within the HIPKD TAD.

We also propose expanding LOOPER to analyse other genomic areas. Graphs of dif-

ferent genomic regions could be compared and, and perhaps a taxonomy of force-directed

graph regulatory networks could be built. We would employ machine learning techniques

for graph pattern recognition to group the graph topologies. We believe this vein of re-

search to be a potentially important one and would require no extra data; therefore, we

would pursue this as a matter of priority in future work.

Finally, in terms of the LOOPER software suite, the first major improvement we would

pursue would be to remove the dependency on Cytoscape for the graph generation. We

propose to migrate the LOOPER algorithm into a web-based tool that uses the D3 JavaS-

cript library [276] for creating annotated force-directed graphs. This change would enable,

richer more featured graphs and would mean little or no configuration on the user side to

use the tool. This approach is also in line with other software tools in the field.
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4.2.2.7 Combined REMEDY and LOOPER Opportunities

REMEDY and LOOPER were presented in the same thesis as we believe that they oc-

cupy different portions of the same bioinformatic workflow when studying the aetiology of

disease. REMEDY occupies the initial portion of the workflow where raw experimental

data leads to the identification of genetic loci associated with the target disease. LOOPER

broadly occupies the later stages of analysis where the loci or regions of interest are linked

to the disease aetiology. Given this knowledge, we here present a candidate study where

both REMEDY and LOOPER could have been used together to improve the workflow an-

d/or results.

Work on inflammatory bowel disease (IBD) published by Jostins et al 2012 [277] and

Meddens et al 2016 [278] was found to be a candidate for re-analysis with REMEDY and

LOOPER. In the first paper, a GWAS meta-analysis combined with new genotyped data

is presented that identified 163 SNVs associated with IBD. The second paper identified

92 of the 163 loci as being in non-coding regions of the genome that contained regulatory

elements. They then performed 4C chromatin interaction analysis to identify candidate

genes that were regulated by the 92 regulatory elements; thus, implicating those genes as

candidates affecting the aetiology of IBD.

The first paper combines meta-data from different studies we believe primarily because

the source datasets were genotyped across a multitude of different arrays making the mer-

ging of the source data problematic. This resulted in a situation where only summary stat-

istics were used to produce a meta-analysis which may have lost some of the nuances in

the data that would have been retained if the data had been merged into one large GWAS.

We argue that by employing REMEDY on the source datasets, the multi-array source data

could have been successfully merged and a high power GWAS could have been performed

on the super-set of data; consequently, more genome-wide significant SNVs could have

been identified.

In the second paper, 4C is performed on the non-coding loci identified to build an

interactive map of the data. In the results, a force-directed graph of 4C interactions is

shown alongside a linear genome for a specific candidate gene. We feel that the force-

directed graph they show is not informative as it does not take into account any structural

looping. LOOPER could have been employed alongside this analysis to show the broader

looping structure at this locus and thus, how the 4C interactions fit into a broader regulatory

structure in the region.
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4.2.2.8 Research Impact Summary

Many of the challenges presented by the vast amount of experimental data involved in

modern genomic analysis are overcome with software tools. By developing two different

pieces of software that specifically address two real problems which were encountered by

our research group, our work has contributed to at least three papers at different stages

of publication. Furthermore, our software has the potential to impact the broader research

community and has contributed to a better understanding of rare renal genetic diseases.

Our first tool REMEDY sought to aid in the pre-processing stages of preparing gen-

otyping datasets for genome-wide association studies (GWAS). We used the software to

successfully merge data in two different GWAS projects, which would have been impossible

without the technical research that is presented in this thesis. The first project, a study on

steroid-sensitive nephrotic syndrome (SSNS) [1], has contributed to our understanding of

the aetiology of this rare autoimmune kidney disease in children and may lead to better

diagnosis and treatment in the future. The second GWAS project that REMEDY has con-

tributed to is a rare blood disorder; our results again point to genomic regions which we

are currently investigating to better understand the disease mechanism.

REMEDY was developed to be a deployable package, usable by non-technical clini-

cians to aid the wider research community in processing large genotyping based datasets.

We believe our software can be useful to any genotyping data-based GWAS, especially

where large control datasets are required; hence, REMEDY the potential to have a signific-

ant impact in the study of the genetic architecture of many different diseases. Standardisa-

tion of study protocol is an important aspect of study design; we think REMEDY contributes

to the standardisation of GWAS practice and therefore, the reliability and repeatability of

this class of experiments.

Our second tool, LOOPER, was designed to aid in the analysis and visualisation of

chromatin interactions in the genome. We successfully used the tool to explore a specific

genomic region where we previously found a mutation which we showed to be important

in a newly characterised disease, Hyperinsulinism with polycystic kidney disease (HIPKD).

The loop predictions and later visualisation helped our team to build a hypothesis around

the mechanism of change in the chromatin architecture which was contributing to the ge-

netic component of the disease, and was later published in a high-impact journal [2].

The 3D regulatory architecture of the genome affects crucial cellular processes and is

implicated in a wide range of diseases. 3D regulatory networks have been shown to be

extremely complex, even in a small area; consequently, tools to process and visualise the

raw data that allows researchers to explore this information in a concise and understand-
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able manner are a critical component to understanding how the regulatory architecture of

the genome functions. LOOPER provides both a prediction framework for the analysis

of un-observed chromatin loops and provides a novel way of viewing existing chromatin

confirmation data as a force-directed graph, which we believe is novel in the field.
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Appendix A

Hardware Specification

REMEDY and LOOPER were developed on the hardware specification below. All perform-

ance tests used the same hardware except where explicitly defined.

Component Make/Model

Motherboard Asus Intel Z170-WS Skylake ATX Workstation

Processor Intel Core i7-6700K 4.0GHz (Skylake) Socket LGA1151 Processor

RAM Corsair Dominator Platinum Series 64GB DDR4 DRAM 3333MHz

Storage Samsung 950 Pro 512GB M.2 PCI-e 3.0 x 4 NVMe SSD

Graphics Card 2 x Asus Poseidon-GTX980TI

Table A.1: Test and development hardware specification.

280



Appendix B

Software and Source Code

All source code and downloads for REMEDY and LOOPER are available from Github.

REMEDY source code is available from https://github.com/chris-cheshire/project-priestley.

LOOPER source code is available from https://github.com/chris-cheshire/project-banner.

The source code for this thesis including digital copies of all images shown is available

from https://github.com/chris-cheshire/phd-thesis.

The images and diagrams shown in this thesis were generated using the following pro-

grams:

• LucidChart - https://www.lucidchart.com

• BioRender - https://biorender.com/
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Appendix C

Graph Visualisation

The following parameters in the LOOPER graph generation program were used in the

production of all graphs shown in the results. Items in italic are variable names.

• targetChr=chr16

• targetStart=8551669

• targetEnd=9231669

• targetCell=K562

• segmentExpansion=2000

• geneExpansion=10000

• proximalThreshold1=2000

• proximalThreshold2=10000

• proximalThreshold3=20000

• distanceThreshold=1500

• strengthThreshold=0.00
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ID PosID Seg-Type Label

CTCF_11263 chr16:8617164-8618549 I CTCF_11263

CTCF_11265 chr16:8728778-8730031 I CTCF_11265

M189 chr16:8890795-8892964 P M189_[TMEM186_PMM2]

CTCF_11272 chr16:8973570-8974916 I CTCF_11272

M120 chr16:9102190-9103495 E M120

CTCF_11277 chr16:9143850-9145097 E CTCF_11277

CTCF_11280 chr16:9232490-9233658 PE CTCF_11280

CTCF_11283 chr16:9351911-9353102 I CTCF_11283

CTCF_11264 chr16:8622468-8623631 E CTCF_11264_[TMEM114]

CTCF_11268 chr16:8885350-8886518 I CTCF_11268_[PMM2]

CTCF_11282 chr16:9349574-9350741 I CTCF_11282

CTCF_11267 chr16:8754373-8755583 I CTCF_11267

CTCF_11271 chr16:8967049-8968171 E CTCF_11271_[CARHSP1]

CTCF_11270 chr16:8948771-8949998 I CTCF_11270

CTCF_11279 chr16:9228251-9229448 E CTCF_11279

CTCF_11273 chr16:8998635-8999810 I CTCF_11273

CTCF_11274 chr16:9029348-9030559 I CTCF_11274_[USP7]

CTCF_11276 chr16:9126900-9128085 I CTCF_11276

CTCF_11290 chr16:10274138-10276178 I CTCF_11290_[GRIN2A]

POLR2A_3698 chr16:8159239-8160968 PE POLR2A_3698

POLR2A_3701 chr16:8961792-8963678 PE POLR2A_3701_[CARHSP1]

POLR2A_3702 chr16:9056978-9058311 P POLR2A_3702_[USP7]

POLR2A_3707 chr16:9184379-9187388 PE POLR2A_3707_[C16orf72]

POLR2A_3704 chr16:9146490-9147898 E POLR2A_3704

POLR2A_3705 chr16:9161426-9163040 PE POLR2A_3705

POLR2A_3706 chr16:9172349-9173820 E POLR2A_3706

Table C.1: Full details of the graph nodes generated from the LOOPER visualisation algorithm.
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Source Target Interaction Distance Strength

CTCF_11263 CTCF_11265 CTCF 111.55 1

CTCF_11263 M189 CTCF 273.75 0.35

CTCF_11263 CTCF_11272 CTCF 356.39 1

CTCF_11263 M120 CTCF 484.96 0.21

CTCF_11263 CTCF_11277 CTCF 526.62 0

CTCF_11263 CTCF_11280 CTCF 615.22 0.1

CTCF_11263 CTCF_11283 CTCF 734.65 0

CTCF_11264 CTCF_11265 CTCF 106.36 0.33

CTCF_11265 CTCF_11268 CTCF 156.53 0.2

CTCF_11265 CTCF_11282 CTCF 620.75 0.96

CTCF_11267 CTCF_11268 CTCF 130.96 0.81

CTCF_11268 CTCF_11271 CTCF 81.68 0.34

CTCF_11270 CTCF_11272 CTCF 24.86 1

CTCF_11270 M120 CTCF 153.43 0.07

CTCF_11272 CTCF_11279 CTCF 254.61 0.01

CTCF_11273 M120 CTCF 103.59 0.04

CTCF_11273 CTCF_11279 CTCF 229.63 0.97

CTCF_11274 M120 CTCF 72.86 0.89

CTCF_11274 CTCF_11276 CTCF 97.54 0.25

M120 CTCF_11290 CTCF 1172.34 0.63

M120 CTCF_11277 CTCF 41.66 0.33

M120 CTCF_11279 CTCF 126.03 0.02

M120 CTCF_11280 CTCF 130.26 0.81

CTCF_11276 CTCF_11277 CTCF 16.98 0.12

POLR2A_3698 POLR2A_3701 POLR2A 802.63 0.79

M189 POLR2A_3702 POLR2A 165.76 0.34

POLR2A_3701 POLR2A_3702 POLR2A 94.91 1

POLR2A_3701 POLR2A_3707 POLR2A 223.15 0.8

POLR2A_3704 POLR2A_3705 POLR2A 15.04 0.7

POLR2A_3704 POLR2A_3707 POLR2A 38.69 0.43

POLR2A_3705 POLR2A_3706 POLR2A 10.85 0.36

POLR2A_3705 POLR2A_3707 POLR2A 23.65 0.91

POLR2A_3706 POLR2A_3707 POLR2A 12.8 0.49

CTCF_11263 CTCF_11264 PROX2 5.19 0.1

M189 CTCF_11268 PROX2 5.95 0.1

CTCF_11272 CTCF_11271 PROX2 6.63 0.1

CTCF_11277 POLR2A_3704 PROX2 2.72 0.1

CTCF_11280 CTCF_11279 PROX2 4.22 0.1

CTCF_11271 POLR2A_3701 PROX2 4.88 0.1

CTCF_11272 POLR2A_3701 PROX3 11.51 0.1

CTCF_11277 CTCF_11276 PROX3 16.98 0.1

CTCF_11277 POLR2A_3705 PROX3 17.76 0.1

CTCF_11271 CTCF_11270 PROX3 18.23 0.1

CTCF_11270 POLR2A_3701 PROX3 13.35 0.1

CTCF_11276 POLR2A_3704 PROX3 19.7 0.1

POLR2A_3707 POLR2A_3706 PROX3 12.8 0.1

POLR2A_3704 POLR2A_3705 PROX3 15.04 0.1

POLR2A_3705 POLR2A_3706 PROX3 10.85 0.1

Table C.2: Full details of the graph links generated from the LOOPER visualisation algorithm.
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