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Many-body localization beyond eigenstates in all dimensions
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Isolated quantum systems with quenched randomness exhibit many-body localization (MBL), wherein they
do not reach local thermal equilibrium even when highly excited above their ground states. It is widely believed
that individual eigenstates capture this breakdown of thermalization at finite size. We show that this belief is false
in general and that a MBL system can exhibit the eigenstate properties of a thermalizing system. We propose
that localized approximately conserved operators (l∗-bits) underlie localization in such systems. In dimensions
d > 1, we further argue that the existing MBL phenomenology is unstable to boundary effects and gives way
to l∗-bits. Physical consequences of l∗-bits include the possibility of an eigenstate phase transition within the
MBL phase unrelated to the dynamical transition in d = 1 and thermal eigenstates at all parameters in d > 1.
Near-term experiments in ultracold atomic systems and numerics can probe the dynamics generated by boundary
layers and emergence of l∗-bits.
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I. INTRODUCTION

The development of synthetic quantum many-body systems
has rejuvenated interest in the foundations of statistical
mechanics. In particular, under what conditions does an
isolated system establish local thermal equilibrium? While
the general conditions are unknown, there is growing evidence
that strong quenched disorder can localize interacting quantum
particles and thereby prevent the exchange necessary for equi-
libration [1–7]. The primary observational signature of such
“many-body localization” (MBL) is the persistence of local
memory of initial conditions: this has been established in var-
ious lattice models theoretically and numerically [2–4,8–23]
and has also been observed in state-of-the-art experiments
in ultracold atomic [24–27] and trapped ion systems [28].
Although the understanding of MBL is in its infancy, it has
far-reaching consequences for quantum computation [29–31],
unconventional quantum phase transitions [32–34], and out-
of-equilibrium phases of matter [10,31,35–40].

As the distinction between thermal and MBL phases of
matter lies in their long-time dynamics, many recent studies
have focused on the structure of many-body eigenstates,
which prima facie probe infinite time behavior. There are
good reasons for this. Thermalization in classical Hamiltonian
systems emerges from the unbiased exploration of equal
energy surfaces in phase space [41]. After quantization, the
closest analogs of the fixed energy surfaces are provided
by the discrete collection of many-body eigenstates. The
eigenstate thermalization hypothesis (ETH) holds that these
eigenstates, like the classical stationary states, are as random
as possible subject to the global energy constraint [42–45]. In
particular, the expectation values of few-body operators within
individual eigenstates coincide with the thermal ones. There is
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a growing body of theoretical and numerical work supporting
this hypothesis [45–50].

On the other hand, the seminal perturbative work of Basko,
Aleiner, and Altshuler suggests that many-body eigenstates
in the MBL phase are localized in Fock space [2]. As a
vertex in Fock space is labeled by occupation numbers, several
groups conjectured that the localized eigenstates are labeled
by a complete set of dressed occupation numbers or “l-bits”
in addition to the energy [51,52]. This conjecture has been
rigorously proven in certain one-dimensional spin chains in
the limit of strong disorder [53] and many numerical and
perturbative constructions of the l-bits are now available
[54–57].

The eigenstate perspective has proven extremely useful for
studying localization. In this view, the many-body localization
transition appears as an eigenstate phase transition between
ETH-satisfying and ETH-violating states. Such ETH-violating
eigenstates have efficient tensor product representations with
area law entanglement entropy [12,58–63]. Further, they can
exhibit quantum and symmetry breaking orders disallowed by
statistical mechanics [10,30,31,35,36].

In this paper, we critique the eigenstate perspective and
argue that eigenstates need not detect the breakdown of
thermalization. It is entirely consistent, especially in d > 1,
for the MBL phase to have eigenstates which satisfy ETH
at all finite sizes so long as the spectral functions vanish
appropriately in the thermodynamic limit. Fundamentally,
the limits L → ∞ and t → ∞ do not commute: eigenstates
are well-defined in the limit t → ∞ followed by L → ∞,
while the dynamical phase of matter is well-defined in the
opposite order of limits. The incorrect order of limits may
lead to the conclusion that MBL does not exist in d > 1 and
misidentify the location of the dynamical transition in d = 1.

We propose a refined phenomenology of MBL in terms
of approximately conserved quasilocal operators (l∗-bits),
generalizing the strictly conserved l-bits of previous work.
Such l∗-bit systems satisfy ETH at all energy densities in d > 1
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FIG. 1. Phase diagram in d > 1 indicating dynamical phases
and eigenstate properties. The fully MBL phase is shaded pink
and described by l∗-bits at all disorder strengths. ETH is satisfied
everywhere in the phase diagram with the weight in the spectral
function vanishing as L → ∞ in the fully MBL phase. The black
line marks the delocalization transition.

and in an energy density window in d = 1. The corresponding
phase diagrams are shown in Figs. 1 and 2. In d > 1, we expect
ETH to hold throughout the phase diagram. In d = 1, as the
MBL phase is described by l-bits at strong disorder, there can
be an eigenstate phase transition within the MBL phase where
the description changes from l-bits to l∗-bits. In this scenario,
the eigenstate phase transition that has been observed in many
numerical studies [18,21,64,65] does not coincide with the true
dynamical transition. We suggest numerical tests of possibility.
Like the l-bit ansatz, the l∗-bit ansatz only describes localized
systems without many-body mobility edges.
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FIG. 2. Phase diagram in d = 1 indicating dynamical phases and
eigenstate properties. At strong disorder, the system is fully MBL
with l-bits and violates ETH. At intermediate disorder (shaded pink),
the system is fully MBL with l∗-bits. The red line marks the eigenstate
phase transition between ETH and non-ETH states in this regime. The
true delocalization transition is denoted by the black line and can lie
entirely to the left of the eigenstate phase transition.

In Sec. IV, we provide evidence that the refined phe-
nomenology is necessary in higher dimensions. Specifically,
in d > 2, we show that the l-bit structure is always unstable to
the inclusion of a thermal boundary layer at finite size, even
as the dynamics remain localized in the thermodynamic limit.
The combined system is described by l∗-bits and its eigenstates
satisfy ETH. As the l-bit structure is not robust to boundary
perturbations even at strong disorder, it is clearly not a stable
characterization of the thermodynamic phase. The d = 2 case
is marginal for the specific boundary instability we consider,
although we believe that l∗-bits are generic here as well. The
arguments do not apply in d = 1 as the boundary is finite. In
contrast, for single-particle Anderson localization in d > 1,
a delocalized boundary layer does not destabilize the l-bits
which are given by the localized orbitals of the noninteracting
problem. Thus some of the eigenstate diagnostics from single
particle localization will not have a many-body analog in
higher dimensions.

Our analysis of the thermal layer coupled to a strongly
localized bulk is of independent interest in the study of MBL
systems (see, for example, Refs. [66–69] that study MBL
systems weakly coupled to large thermal baths). It would
be very interesting to measure the dynamical influence of
a thermal boundary on a localized bulk. These experiments
are readily accessible with existing technology in ultracold
atomic systems [24,26,27,70]. We take up such experimental
considerations in Sec. V.

II. BACKGROUND

Consider an isolated quantum system with Hamiltonian H

prepared in the initial state |ψ〉. The dynamical phase is defined
by the behavior of expectation values of local observables O
at late times in the thermodynamic limit. More precisely, the
objects of interest are

lim
t→∞ lim

L→∞
〈ψ |O(t)|ψ〉. (1)

In a thermalizing phase, for a large class of initial states |ψ〉,1
such expectation values agree with those in the appropriate
Gibbs ensemble,

lim
t→∞ lim

L→∞
〈ψ |O(t)|ψ〉 = 1

Z TrOe−βH , (2)

where the inverse temperature β is fixed by the energy
density in the state |ψ〉. In a many-body localized phase, local
observables fail to reach their thermal values and Eq. (2) does
not hold.

In the opposite order of limits from Eq. (1), the expectation
values are controlled by the eigenstates |E〉. For example,

lim
t→∞

1

t

∫ t

0
dt ′〈ψ |O(t ′)|ψ〉 =

∑
E

|〈ψ |E〉|2〈E|O|E〉. (3)

There are two standard Ansätze for the structure of many-
body eigenstates: (1) the eigenstate thermalization hypothesis

1The initial states should be statistically translationally invariant.
Equation (1) does not hold for initial states that contain gradients in
conserved densities on the scale of the system.
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(ETH) and (2) l-bits. The first is generally associated with
thermalization and the second with MBL at all energy densities
or full MBL.2 One of the central points of this paper is that this
association is incomplete. Below, we review the two Ansätze
in more technical detail.

For concreteness, we consider a system of V = Ld spin 1/2
degrees of freedom σi on a d-dimensional lattice. The Hamil-
tonian H is short-ranged with random local couplings and
traceless (so that E = 0 corresponds to infinite temperature).

A. The l-bit ansatz

An l-bit (localized bit) is defined by a quasilocal Pauli
operator τ z

i localized near site i. Quasilocality means that the
expansion of τ in the physical σ basis,

τ z
i =

∑
j,α

Kα
ij σ

α
j +

∑
jk,αβ

K
αβ

ijk σα
j σ

β

k + · · · , (4)

has coefficients K
α1···αm

ij1···jm , which typically decay exponentially
with both the radius dmax of the cluster i,j1 · · · jm and the
Hamming weight m:

K
α1···αm

ij1···jm ∼ exp

(
−dmax

ξ̃
− m

θ̃

)
. (5)

ξ̃ is a localization length and θ̃ may be viewed as a Hamming
localization length.3

The l-bit ansatz posits that there exists a complete set
of mutually commuting l-bits that are constants of motion
[51,52]. These l-bits completely diagonalize the Hamiltonian:

H =
∑

i

J (1)
i τ z

i +
∑

i,j

J
(2)
ij τ z

i τ z
j +

∑
i,j,k

J
(3)
ijk τ z

i τ z
j τ z

k + . . . . (6)

Here, the coefficients J
(m)
i1···im decay analogously to the K

coefficients above. L-bits have been proven to exist at strong
disorder in d = 1 [53].

As the l-bits are conserved, local memory of initial
conditions persists as t → ∞ even at finite size L. Thus the
dynamics generated by Eq. (6) leads to MBL on taking the
thermodynamic limit.

The properties of the eigenspectrum follow from the l-bit
structure. The eigenstates are completely specified by their
±1 eigenvalues under the τ z operators: |{τ }〉. Consequently,
eigenstates with the same energy density can have different
eigenvalues under τ z, and can be distinguished by local mea-
surements. Adjacent states in the energy spectrum typically
differ by an extensive number of l-bit flips. Thus they do not
repel on the scale of mean level spacing, so that the level
statistics of the eigenvalues is Poisson distributed. Finally,
the bipartite entanglement entropy of eigenstates obeys an
area law [12,58]. Intuitively, this is because a partition only
disrupts the τ z eigenvalues straddling its boundary. These
properties have been used in previous studies to diagnose MBL
[12,18,21,65,71–74].

2We do not consider the possibility of many-body mobility edges
in this paper.

3In d = 1 and for line-like operators in d > 1, there is evidence that
θ̃ = ∞ [55,94].

B. The eigenstate thermalization hypothesis

The eigenstate thermalization hypothesis for H posits that
the extreme limit of the microcanonical ensemble defined
by a single eigenstate is locally indistinguishable from the
appropriate canonical ensemble [42–45]. Further, the matrix
elements of any local operator O between eigenstates |Eα〉
in a small energy window follow random matrix theory.
Mathematically,

〈Eβ |O|Eα〉 = Othδαβ + rαβ√
ρ(Ē)

f (Ē,ω), (7)

where Ē = Eα+Eβ

2 is the mean energy, ω = Eβ − Eα is the
energy difference, ρ(Ē) is the many body density of states at
energy Ē,Oth is the thermal expectation value ofO at the same
energy and rαβ are independent and identically distributed
Gaussian distributed with zero mean and variance one.4 The
many-body density of states is related to the thermal entropy
as ρ(Ē) ∼ exp(S(Ē)). We have included a smooth energy
dependence of the off-diagonal matrix elements on the scale
of the many-body level spacing through the spectral function
f (Ē,ω). At fixed Ē, f (Ē,ω) decays exponentially at large ω.
It is closely related to the spectral density of O and encodes
the dynamic susceptibilities within linear response [75,76].

Using the ETH Ansatz, it is easy to show that every initial
state reaches local thermal equilibrium as t → ∞, up to
corrections that are exponentially small in the volume V .
However, as we will see, the system need not thermalize in
the thermodynamic limit if the spectral functions f vanish as
L → ∞.

The properties of the eigenspectrum follow from Eq. (7).
Eigenstates with the same energy density are locally indis-
tinguishable from one another and the thermal ensemble as
〈E|O|E〉 = Oth for all such states (up to exponentially small
corrections in the volume V ). Next, as the off-diagonal matrix
elements in Eq. (7) are much larger than the typical level
spacing, we expect that the many-body spectrum exhibits level
repulsion. Further, the entanglement entropy in eigenstates co-
incides with the thermal entropy, and thus obeys a volume law
at all finite energy densities. All these properties differentiate
the l-bit from the ETH system.

III. APPROXIMATELY CONSERVED l∗-BITS

A finite sized system that locally equilibrates and satisfies
ETH can nevertheless fail to do so in the thermodynamic limit
if the local dynamics become sufficiently slow. Below, we
show that a system with approximately conserved quasilocal
l∗-bits realizes this scenario. The information about the
dynamical phase of the system is hidden in the functions f

which vanish as L → ∞.
We propose that MBL should be described by these l∗-bits.

In Sec. III B, we discuss the consequences and contrast them
with the fully conserved l-bit ansatz. We then turn to the well-
studied d = 1 case and show that the l∗-bit Ansatz permits
an eigenstate phase transition as a function of energy density

4The ETH ansatz applies to few-body observables in addition to
local observables.

144203-3



A. CHANDRAN, A. PAL, C. R. LAUMANN, AND A. SCARDICCHIO PHYSICAL REVIEW B 94, 144203 (2016)

from ETH violating to ETH satisfying states. This leads to the
phase diagram in Fig. 2, in which the MBL system is described
by l-bits at strong disorder and l∗-bits at intermediate disorder,
and the dynamical and eigenstate transition do not coincide.

A. The l∗-bit

A l∗-bit is a quasilocal operator τ ∗z
i localized in the vicinity

of site i that approximately commutes with the Hamiltonian.
The norm of the commutator with the Hamiltonian is a random
number that typically vanishes exponentially with L:5∥∥[

H,τ ∗z
i

]∥∥ ∼ K exp(−L/ζ ), (8)

where ‖ · ‖ denotes the operator norm, ζ is a localization length
and K has units of energy and depends subexponentially on
L. For simplicity, we assume ‖τ ∗z

i ‖ = 1 below.
Many dynamical consequences follow from the definition

in Eq. (8). Suppose the system is prepared in the state |ψ〉 at
t = 0. The subsequent dynamics is probed by unequal time
correlators of the form

C(t) ≡ 〈ψ |τ ∗z
i (t)O|ψ〉, (9)

where O is some local operator (for simplicity of norm
1). The variation of C(t) is exceedingly slow. Taking the
time derivative of C(t) and using the Heisenberg equation
of motion:

dC(t)

dt
= i〈ψ |[H,τ ∗z

i (t)
]
O|ψ〉. (10)

This derivative is upper-bounded by∣∣∣∣dC(t)

dt

∣∣∣∣ � K exp(−L/ζ ) (11)

using Eq. (8) and the submultiplicative property of the norm.
Thus the minimum time required for C(t) to change by some
fixed amount C is

τmin = C

K
exp(L/ζ ). (12)

Note that the system need not reach a steady state (thermal
or otherwise) on the time scale τmin; Eq. (12) is merely the
minimum time needed to do so (with probability going to 1).

As τmin diverges as L → ∞, the l∗-bit becomes constant
in the thermodynamic limit. That is, C(t) = C(0) for all times
and

lim
t→∞ lim

L→∞
C(t) = C(0). (13)

Generic local operators in the vicinity of i overlap τ ∗z
i and

similarly fail to reach their thermal values for any state |ψ〉.
At finite system size, however, the l∗-bit is not conserved

and nothing prevents it from decaying to its thermal value,

lim
L→∞

lim
t→∞ C(t) = Cth, (14)

5A random quantity A, which typically vanishes exponentially, has
a probability distribution, which satisfies P (A > Ce−L/ζ ) → 0 when
L → ∞ for some C > 0 and minimum length ζ .

ΔE ∼ e−sLd

τ−1
min ∼ e−L/ζ

f(Ē, ω)

FIG. 3. Schematic diagram showing the f function in Eq. (7)
for a l∗-bit system, which satisfies ETH in d > 1. The f function
is smooth on the scale of the many-body level spacing E, while
vanishing on the much longer frequency scale τ−1

min.

where Cth is the disconnected expectation value in the
appropriate Gibbs ensemble:

Cth =
(

1

Z Tr τ ∗z
i e−βH

)(
1

Z TrOe−βH

)
. (15)

Indeed, ETH is perfectly consistent with the existence of
l∗-bits for suitable functions f . As a system that satisfies ETH
thermalizes at finite size, this allows for Eqs. (13) and (14) to
be satisfied simultaneously.

In a bit more detail, let us suppose that the system satisfies
ETH at finite size L but also contains an l∗-bit τ ∗z

i . To translate
the constraint imposed by the l∗-bit Eq. (8) to functions defined
by ETH, consider the correlation function

I = 〈E|[H,τ ∗z
i

]2|E〉 (16)

in the eigenstate |E〉. Using the ETH Ansatz, it is straightfor-
ward to show that I is related to the spectral function f of τ ∗z

i
as

I =
∫ ∞

−∞
dω e−βω/2ω2|f (E,ω)|2 (17)

so long as f is smooth on the scale of the many-body
level spacing. For completeness, we include the derivation
in Appendix. Using Eq. (8),∫ ∞

−∞
dω e−βω/2ω2|f (E,ω)|2 � K2 exp(−2L/ζ ). (18)

As τ ∗z
i is a quasilocal operator, its connected correlator is

O(1) in the eigenstate:

〈E|τ ∗z
i τ ∗z

i |E〉 − 〈E|τ ∗z
i |E〉2 ∼ O(1), (19)

This imposes a second sum rule on the spectral function:∫
dωe−βω/2|f (E,ω)|2 ∼ O(1). (20)

The derivation follows the same steps as Appendix.
Equation (20) implies that e−βω/2|f (E,ω)|2 is proportional

to a probability density. The first sum rule, Eq. (18), then forces
the weight in the distribution to concentrate around ω = 0 on
a scale that vanishes at least as quickly as τ−1

min ∼ exp(−L/ζ )
(Fig. 3). In d > 1, f can be smooth on the scale of the many
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body level spacing E ∼ exp(−sLd ) at entropy density s,
while showing variation on the much longer scale τ−1

min:

τ−1
min ∼ exp(−L/ζ ), E ∼ exp(−sLd ) (21)

⇒ τ−1
min � E as L → ∞,d > 1. (22)

Thus ETH and l∗-bits are perfectly consistent for suitable
functions f at all energies E.

We end with a few comments. In the l-bit model of Ref. [51],
it is argued that the effective decay of two-l-bit interactions
is controlled by an energy dependent localization length.6

This arises due to correlations in the higher-body couplings
J in Eq. (6) rather than any explicit energy dependence in
the typical decay of couplings. Similarly, it seems likely that
an effective energy dependent localization length ζ (e) can
be defined, for example, by projecting the commutator in
Eq. (8) into energy windows. In the analysis of the boundary
instability in Sec. IV for d > 1, it is clear that ζ (e) coincides
with the effective decay length defined in Ref. [51]. The energy
dependence of ζ does not qualitatively modify the argument for
the coexistence of ETH and l∗-bits in d > 1 and for simplicity
we will ignore it henceforth.

Next, d = 1 is clearly special as τ−1
min and the level spacing

compete. Thus the above argument only applies at energy
density e = E/V if

ζ (e)s(e) > 1, (23)

where we have explicitly indicated the energy dependence.
We discuss the implications on the phase diagram in the next
section. Next, the definition of the l∗-bit assumes exponential
spatial localization of the operator and exponential suppression
of the commutator in system size. It is clear that it could be
generalized to other kinds of decays with L. Finally, we note
that a system with a single l∗-bit is not likely to be robust,
because a generic local perturbation would mix the l∗-bit with
other operators that are not conserved.

B. Phenomenology of MBL with l∗-bits (d > 1)

The discussion above suggests that a more general phe-
nomenology of full MBL is provided by a collection of
N = Ld − O(Ld−1) algebraically independent l∗-bits. This
relaxes the l-bit construction in two ways. First, the localized
bits are only approximately conserved at finite size. Second,
as we will see in Sec. IV, this accommodates the inclusion of
thermal layers. Further, we assume that the eigenstates are as
random as possible subject to the constraint in Eq. (11), i.e.,
they satisfy the ETH Ansatz with f appropriately vanishing in
the thermodynamic limit. Note that l-bits and l∗-bits lead to
MBL at all energy densities due to their definition in terms of
operator norms.

We summarize the properties of the MBL system with
l∗-bits in Table I for d > 1, and contrast it with an MBL
system with conserved l-bits and a thermalizing ETH system.
Many of the properties follow immediately from the previous
discussion. A few warrant further consideration.

6We thank D. Huse for drawing our attention to the energy
dependence of ζ .

TABLE I. Properties of systems that are thermal, have l-bits or
have l∗-bits.

Thermal l-bits l∗-bits

Eigenstate thermalization
hypothesis (ETH)

Yes No Yes

Eigenstate entanglement entropy Volume Area Volume
Level repulsion Yes No Yes
Local equilibration time Poly(L) Infinite Exp(L)
Forbidden eigenstate orders No Yes No
Dynamical phase at all energy

densities
Thermal MBL MBL

The scaling of the eigenstate entanglement entropy SE

with subregion size is a commonly used measure of MBL
[18,21,65,72,77]. With l-bits, SE scales with an area law, while
in ETH systems, SE coincides with the thermal entropy and
accordingly exhibits volume law scaling. As the eigenstates in
the l∗-bit system satisfy ETH, SE shows a volume law despite
being MBL in the thermodynamic limit. The special structure
of f in the l∗-bit system could be captured by a subleading
term in SE at O(L); we leave this question for future study.

Level repulsion arises when the off-diagonal matrix ele-
ments of local operators between adjacent eigenstates are much
larger than the level spacing. In thermal and l∗-bit systems, by
the ETH ansatz, the former ∼e−sLd/2 are much larger than the
latter ∼e−sLd

. The matrix elements are only enhanced by the
exponentially in L divergent f (Ē,0) in the l∗-bit system. Thus
the levels repel. In the l-bit system, on the other hand, typical
matrix elements ∼e−Ld/2θ have to be much less than the level
spacing ∼e−sLd

in order for the l-bits to be stable. See Ref. [64]
for more details.

By assumption, l∗-bits change on a time scale longer than
τmin ∼ eO(L). In thermalizing systems, on the other hand, the
slowest modes are typically diffusive and the equilibration
time for local operators is at most polynomially large in L.
Moreover, the short time dynamics of any local operator would
still take place on O(1) timescale. This differentiates thermal
systems from l∗-bit systems at finite size.

Finally, the seminal work of Huse et al. [35] proposed that
MBL could protect long-range order at finite energy densities
even when forbidden by equilibrium statistical mechanics.
They argued that the order manifests in individual eigenstates
and sub-classified MBL phases according to their eigenstate
orders. Several works have since extended these classifications
[31,36–40,58,78]. These extended classifications rely on the
identification of l-bits. In the presence of l∗-bits, it is still pos-
sible to have dynamically frozen order in the thermodynamic
limit. This order would, however, not show up as an eigenstate
order.

C. Phenomenology of MBL with l∗-bits (d = 1)

As mentioned at the end of Sec. III A, d = 1 is special
because τ−1

min and the many-body level spacing compete [see
Eq. (23)]. There are also rigorous results at strong disorder
about the existence of a complete set of l-bits at finite size
[53]. The l-bits impose ζ = 0 and Eq. (18) cannot be satisfied
by a smooth f function.
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As the strength of disorder is reduced, ζ could become
nonzero producing an intermediate l∗-bit regime. In this
section, we will explore the consequences and the existing
evidence for this scenario. The general mechanism for pro-
ducing l∗-bits in d = 1 is an interesting open question; the
instability identified in Sec. IV only applies in d > 1.

1. Apparent many-body mobility edges

An outstanding theoretical problem regards the ex-
istence and description of many-body mobility edges
[18,19,21,73,79,80], that is, delocalization transitions as a
function of energy density within a single sample. Neither
the l-bit nor the l∗-bit Ansatz permit mobility edges as they
lead to MBL at all energy densities in the thermodynamic
limit. However, in d = 1, there can be an eigenstate phase
transition within the l∗-bit phase between ETH-satisfying and
ETH-violating states when ζ s = 1. This is shown as the red
line in Fig. 2, which lies entirely within the MBL phase. This
transition need not coincide with the true dynamical mobility
edge in the thermodynamic limit, shown as a black line in
Fig. 2.

Eigenstate-based studies could incorrectly identify the red
line as the mobility edge. A physical diagnostic of the true
MBL transition is provided by the relaxation time of local
observables after global quenches. The l∗-bit phase would
exhibit an exponentially growing relaxation time with system
size even when the eigenstates satisfy ETH. In contrast, in
the thermal phase, relaxation is limited by (sub-)diffusion
which produces power laws in system size. In the well-studied
random field Heisenberg chain, there is some evidence that the
transition identified from the variance of late time observables
after global quenches [23] lies at a lower disorder value than
the eigenstate phase transition [21], consistent with the phase
diagram of Fig. 2. This is worthy of further investigation.

2. Inverse participation ratios

The l∗-bit ansatz suggests a numerically accessible measure
to detect the delocalized eigenstates in the pink region in Fig. 2.
Consider e = 0 for simplicity. The inverse participation ratio
(IPR) in the energy basis of an eigenstate acted on by a local
operator O|Eα〉 typically decays as

I =
∑

β

|〈Eβ |O|Eα|〉|4 ∼ 2−Lη. (24)

For an ETH system without l∗-bits, I ∼ 2−L from Eq. (7). For
the l∗-bit system on the other hand, I ∼ 2−Lτmin ∼ 2−Le+L/ζ ,
so that η < 1. Previous numerical studies [21,73,81] have
looked at other (Hilbert space) IPRs but we expect the IPR
defined above to be more sensitive to l∗-bit structure of the
eigenstates.

IV. BOUNDARY INSTABILITY OF l-BIT SYSTEMS

In this section, we show that l-bits are unstable due to their
extreme sensitivity to boundary effects. Specifically, we argue
that a thin thermal boundary layer at the surface is sufficient to
cause all local operators to decay on an exponentially divergent
time scale. The original l-bits remain long-lived only in the
thermodynamic limit, becoming the l∗-bits discussed in the

Temperature T

τ∗z
iτz

i

Temperature T

Temperature T

FIG. 4. (Left) An MBL system with l-bits τ z
i . The shading

indicates that the operators are quasilocal with exponentially decaying
weights away from the localization center. (Middle) The l-bit system
coupled to a thermal boundary layer at temperature T . The boundary
induces incoherent l-bit flips in the bulk with a rate that decreases
exponentially with the distance from the boundary. (Right) As
t → ∞ at finite size, the bulk and boundary are locally thermal at
temperature T .

previous section. Our arguments do not apply in d = 1 where
boundary regions are finite. It turns out that the d = 2 case is
marginal as we describe at the end of the section.

A. Long-time thermalization

Consider a finite, d-dimensional l-bit system of linear
dimension L with Hamiltonian Hb. This system is coupled to a
(d − 1)-dimensional boundary layer with spin 1/2 degrees of
freedom γi and Hamiltonian H∂ that satisfies the ETH ansatz
(see Fig. 4). We assume that the coupling is local and only
connects the physical spins σ at the edge of the system to the
boundary. For example,

Hint = λ
∑

i∈edge

σx
L,iγ

x
i . (25)

λ characterizes the strength of the interaction between the
system and the boundary. In terms of the τ operators, Hint

contains τ x,y,z operators with weights decaying exponentially
into the bulk:

Hint = λ
∑

i∈edge

⎛
⎝∑

j

Cijτ
x
j + . . .

⎞
⎠γ x

i , (26)

where Cij ∼ exp(−Rij/ξ ), Rij is the distance between the site
(L,i) and j and we have not written out the other terms
in the quasilocal expansion. For convenience, we assume
Hb, H∂, and Hint are traceless.

In the absence of the coupling (λ = 0), the eigenstates of the
system are given by |E,{τ }〉 where E specifies an eigenenergy
of the boundary and {τ } is an l-bit configuration in the bulk.
The τ xγ x terms in Hint induce single l-bit flips in the bulk and
transitions between eigenstates in the boundary. To leading
order in λ, the total transition rate from |E,{τ }〉 to all states
|E′,{τ ′}〉 in which only the mth bit is flipped (τ ′

m = −τm) is
given by Fermi’s golden rule:

�m
+→− = πλ2

∑
i∈edge

C2
ime−βm/2|fi(E,−m)|2. (27)

Above, β is the inverse temperature of the boundary layer, m
is the energy difference between the l-bit state with +τm and
−τm and fi is the spectral function associated with γ x

i in the
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ETH ansatz. Note that the expression neglects the shift in the
energy of the bath E as m ∼ O(1) � E ∼ O(Ld−1). As Cim
decays exponentially with Rim, the transition rate is dominated
by the term with the smallest Rim. Denoting the distance to the
boundary by R,

�m
+→− ∼ πλ2e−2R/ξ e−βm/2|f (E,−m)|2. (28)

The Fermi’s golden rule calculation assumes that the
boundary layer is “large,” so that its many-body level spacing
is not visible to the l-bits. More quantitatively, it is only
valid when the rates �m

+→− far exceed the many-body level
spacing on the boundary E. The smallest transition rates are
associated with the l-bits deep in the bulk at a distance R ∼ αL

away from the boundary:

�min ∼ e−2αL/ξ . (29)

In d > 2, these exceed the many-body level spacing on the
boundary:

�min � E ∼ e−sLd−1
, d > 2 (30)

with the inequality getting better at larger L. Above s is the
boundary entropy density at energy E. Thus, at weak coupling
λ, the perturbative estimate of the decay rate in Eq. (28) is
trustworthy for all bulks l-bits in d > 2.

In d > 2, the boundary layer induces single l-bit flip
transitions everywhere in the bulk. Further, the transition rates
satisfy detailed balance:

�+→−
�−→+

= e−β, (31)

where we have suppressed the index m for clarity. This
follows from the symmetric property of the f function:
|f (E,−m)|2 = |f (E,m)|2. Any f function associated with
a local operator O must be symmetric as |〈Eβ |O|Eα〉|2 =
|〈Eα|O|Eβ〉|2.

If we assume that the induced dynamics is Markovian,
then detailed balance guarantees the equilibrium distribution
of the bulk is the Boltzmann-Gibbs distribution at the same
temperature as the boundary. Thus a thermalizing ETH
boundary layer destabilizes a bulk l-bit system in d > 2 and
leads to local thermal expectation values at infinite time. This
does not mean that the combined system thermalizes in the
thermodynamic limit as the time-scale for single l-bit flips
diverges exponentially with L. The system is therefore MBL
and is rightly described by l∗-bits, as we discuss next.

We end this subsection with several comments. First,
higher-order terms in the quasilocal expansion of Hint

[Eq. (26)] lead to multi-l-bit flip processes at leading order
in λ. As the transitions are incoherent, we expect these
terms to enhance local thermalization but continue to satisfy
detailed balance. Second, the single spin flip decay rate in
Eq. (28) neglects the shift in the boundary energy. This is
clearly a good approximation for the initial decays. As the
bulk system explores its phase space, it typically needs to
absorb O(Ld/2) energy from the bath. For d > 2, this energy
is boundary subextensive and it is consistent to neglect it.
Finally, as the stationary states are thermal, we expect the
eigenstates themselves to be thermal. Within the Markov
approximation, the joint eigenstates can be represented with
Lorentzian weights in |E,{τ }〉.

The marginal case for the above argument is d = 2. First,
the rate in Eq. (28) and the level spacing on the boundary e−sL

can compete. For strong enough disorder in the bulk (small
enough localization length ξ ), the individual l-bits further than
R = ξsL/2 from the boundary fail to decay to leading order
in λ. Moreover, even in the case where R > L and all l-bits
can decay, the typical energy fluctuations O(Ld/2) = O(L) in
the bulk in the presumed Markov equilibrium are of order the
energy in the boundary O(L). This implies that the Markov
assumption cannot hold.

B. Emergence of l∗-bits

At finite λ, the original l-bits deep in the bulk become
l∗-bits. Consider,[

H,τz
i

] = [
Hb + H∂ + Hint,τ

z
i

] = [
Hint,τ

z
i

]
. (32)

Hint only involves the physical bits on the boundary. As
the expansion of each physical bit in terms of the l-bits is
quasilocal, ∥∥[

Hint,τ
z
i

]∥∥ ∼ λe−R/ζ ′
, (33)

where ζ ′ is a localization length and we have neglected a
polynomial prefactor in L. Thus τ z

i is an l∗-bit if R ∼ O(L).
Further, the number of independent l∗-bits N scales as Ld as
L → ∞, as required in Sec. III B. Note that the scaling is only
asymptotic as N < Ld at any finite size L. This is because τ

bits at a finite distance away from the boundary always have a
finite lifetime and are not conserved as L → ∞.

Finally, we comment on the connection with the pertur-
bative calculation of l-bits presented in Ref. [55], which is
valid for sufficiently strong statistically homogenous disorder
in the thermodynamic limit. At finite size, the same method
produces l∗-bits at distance r ∼ L if one stops the real-space
perturbation theory when the support of the operator reaches
the boundary. The commutator with H would then be gO(L)

where g is the bulk coupling. Continuing with the perturbation
theory including operators on a thermal boundary layer would
cause the series to diverge. This suggests that l-bits do not exist
in this system while the l∗-bits do.

V. EXPERIMENTS

In this section, we describe experiments in current cold
atomic setups that directly test the l∗-bit phenomenology
of MBL. With the observation of MBL in two dimensions
using a quantum-gas microscope [27], such experiments are
well within the scope of current technology. The single-site
resolution for imaging and manipulating hyperfine states of
atoms in an optical lattice [82–84] allows to study the local
deviations from thermal equilibrium. This has been exploited
to probe the diverging length scale at the dynamical transition
between MBL and thermal phases in two dimensions [27].

Briefly, the current experiments prepare an initial Mott
insulating state of bosonic rubidium-87 atoms with a spatially
varying density profile in the x-y plane. Initially, all the atoms
occupy the left half of the harmonic trap at an average filling
of one per site, resulting in a sharp domain wall at x = 0.
On release, the atoms expand into the right half of the trap
in the background of on-site disorder that is varied from run
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r

r

r

(a) (b) (c) (d) (e)[P ]
(d)

(a-c)

t

tth

tdis ∼ Jer/ξ

FIG. 5. (a)–(d) Real space pictures of potential ultracold atomic experiments to probe the effect of thermal layers on localized bulk. Red
indicates the cloud of atoms and grey the speckle potential applied to only part of the cloud. White spots indicate holes in the initial density.
(e) The mean parity of density in the hole as a function of time in the experiments indicated in (a)–(d).

to run. In the thermal phase, the cloud reaches a steady state
with uniform density (up to trap effects), while in the localized
phase, the memory of the inhomogeneity in the initial density
profile persists at late times. The authors measure the parity of
the atoms on each site at different times and characterize the
two phases according the long time imbalance in the number
of atoms between the right and left halves.

The geometry of a localized bulk connected to a thermal
boundary is easily accessible in the current experimental setup
as the on-site disorder of the atoms can be spatially varied
at will and can be experimentally characterized. The simplest
possibility is to create a domain wall in the on-site disorder in
each run, as shown in Figs. 5(a)–5(d) in gray scale. In these
plots, the on-site disorder is drawn from a uniform uncorrelated
distribution in the bottom � rows and is absent in the top rows.
The disorder-free region thus functions as the thermal region,
while the strength of the disorder is chosen to be sufficiently
large so that the bottom � rows are localized. For a finite-size
system in d > 2, the exponentially long relaxation time of
local observables in the localized region is independent of the
volume of the thermal region as long as the level spacing of
the thermal region is parametrically smaller than the inverse
relaxation time, so that Fermi’s golden rule is applicable. It still
depends exponentially on r , the distance of the local observable
from the thermal region [Fig. 5(e)].

In order to characterize the dynamics of the combined
system, we propose using the single-site control in the
experiments to create density holes in the trapped cloud at
t = 0 and track their parity in time. In Figs. 5(a)–5(d), the cloud
of atoms in the trap is shown in solid red, while the density
hole is shown in white. In Fig. 5(a), for example, the hole is
created at a distance r from the domain wall in the disorder
distribution in the localized region. The setup is flexible and
offers many experimental knobs to test different aspect of
the dynamics. The experimental knobs include the distance
r , the strength of the disorder, the number of density holes
(b), the size of the localized region � (c), and the environment
of the density hole (d).

The discussion in Sec. IV suggests how the density hole
relaxes in time. Consider first a hole created in the disordered
region. If the localized region is described only by l∗-bits, then
the relaxation time tdis should be exponentially sensitive to
r/ξ , where ξ is a localization length. We expect that this time
is insensitive to the number of holes and to the size of the
disordered region �, as long as the disorder-free region acts
as a thermal bath. In contrast, in the disorder-free region that

is expected to be thermal, the relaxation time tth should be
independent of r and other details of the disordered region.

The proposed experiments are interesting for many reasons.
First, the discussion in Sec. IV is marginal in d = 2. Specif-
ically, at strong enough disorder, we expect l-bits far away
from the boundary to be stable despite the coupling to the
thermalizing region. However, the l-bits close to the boundary
will decay; mapping out the dependence of the relaxation
time with r , the strength of the disorder and the size of the
thermalizing region would provide invaluable insight into the
dynamics of the combined system. It would allow us to test
the general validity of arguments like those in Sec. IV that
rely on the competition between the typical matrix elements
and typical level spacing alone. Next, the relaxation time tdis

provides access to a different localization length ξ than the
imbalance studied in current experiments. Testing the relation
between the two would shed light on the issue of multiple
localization lengths in the localized phase. Finally, the setup
offers a controlled way to destabilize the localized phase and
study its response to a small thermal reservoir, an important
piece in the puzzle of the dynamical transition.

VI. CONCLUSIONS

The properties of finite size samples have played a pivotal
role in our understanding of Anderson localization beginning
with the work of Thouless and the Gang of Four in the
late 70s [85–87]. For example, Thouless observed that finite
size conductance can be measured by the sensitivity of
noninteracting eigenstates to boundary conditions and many
numerical studies have since relied on the associated spectral
statistics as a diagnostic tool [88]. The success of this approach
relies implicitly on the stability of the statistical properties of
the eigenstates to the varying boundary conditions encountered
as the thermodynamic limit is taken. Indeed, for noninteracting
electrons, the analysis of Sec. IV does not lead to an eigenstate
instability as the Fermi’s golden rule rate is much less than the
polynomially small level spacing.

In this paper, we have argued that this stability simply
does not hold for interacting systems in dimensions greater
than one. Rather as the thermodynamic and late time limit
fail to commute, the eigenstate properties of a many-body
localized system may satisfy finite size ETH. We have offered
a refined phenomenology of fully MBL systems in terms of
approximately conserved l∗-bits which we believe is more
robust than the current l-bit scenario. The most striking
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consequence for existing studies is that the eigenstate tran-
sitions need not coincide with the localization transition. We
have also proposed experiments that can probe the boundary
instability and test the l∗-bit scenario.

An analogy can be drawn between the theory of l∗-bits
and that of the weakly interacting Fermi liquid. Both have
effective Hamiltonian descriptions that are diagonal in a basis
of dressed operators. These Hamiltonians, however, neglect
terms that cause the decay of the quasiparticles or l∗-bits. In
the Fermi liquid case, the quasiparticle lifetime is controlled
by the deviation of the single-particle energy from the Fermi
surface while in the l∗-bit case it is controlled by finite size.
For a conceptually different analogy between MBL and Fermi
liquids, see Ref. [89].

It is widely believed that Griffiths-type effects play an
important role in the theory of the MBL transition, espe-
cially in d = 1 [32,34,90–93]. Indeed, in phenomenological
descriptions of the transition in d = 1, a sparse collection
of weakly coupled thermal regions drives the delocalization
transition [32,34]. In higher dimensions, little is known about
the transition, except in simple solvable models [33]. As the
boundary instability in Sec. IV relies on a thermalizing region
whose size diverges, we do not expect to find such large thermal
subregions except perhaps at the physical boundaries in d > 1.
Nevertheless, the typical size of thermalizing puddles grows
as disorder is reduced towards the transition and the associated
l∗-bits should play an important role.

A number of questions are raised by the possibility of
l∗-bits and ETH MBL. The arguments regarding the absence
of many-body mobility edges of Ref. [79] hinge on the
association of finite-size ETH with thermal phases and are
thus inconclusive in light of the thesis of this article. Many
of the classifications of “allowed” MBL quantum orders in
both Floquet and Hamiltonian systems rely heavily on the l-bit
model [10,31,35–40]. It would be very interesting to determine
what of these orders and classifications survives on relaxing
to the l∗-bit scenario. The phase diagram of Fig. 2 suggests
that the transitions identified in previous d = 1 numerics can
lie within the MBL phase. This raises questions about the
identification of subdiffusive phases and more generally how
to identify the true dynamical transition.
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APPENDIX: SPECTRAL REPRESENTATION FROM THE
ETH ANSATZ

Consider the correlation function

I = 〈Eα|[H,τ ∗z
i

]2|Eα〉 (A1)

in the eigenstate |Eα〉. In this appendix, we use the ETH Ansatz
to show that

I =
∫ ∞

−∞
dω e−βω/2ω2|f (Eα,ω)|2, (A2)

where f is the spectral function associated with τ ∗z
i .

Inserting a complete set of states in Eq. (A1) and using the
ETH ansatz for τ ∗z

i :

I =
∑

β

ω2

ρ(Ē)
r2
αβ |f (Ē,ω)|2, (A3)

where Ē = (Eα + Eβ)/2 and ω = Eα − Eβ . Assuming that
f is a smooth function on the scale of the many-body
level spacing E ∼ 1/ρ(Ē), the sum can be replaced by the
integral:

∑
β

r2
αβ →

∫
dEβρ(Eβ). (A4)

Note that ρ(E) ∼ eS(E), where S(E) is the microcanonical
entropy at energy E, and the many body density of states has
units of inverse energy. On further changing the integration
variable to ω, we obtain

I =
∫ ∞

−∞
dω

ρ(Eα − ω)

ρ(Eα − ω/2)
ω2|f (Eα − ω/2,ω)|2. (A5)

The f function is expected to decay exponentially at large
ω on a scale ω0 that is at most O(L0). As Eα ∼ O(Ld ),
ω0 � Eα and the domain of integration in Eq. (A5) may be
restricted to ω � Eα to obtain a very good approximation to I.
Quantitatively, the error in this approximation is exponentially
small in Ld/ω0.

Expanding S(E) and f for ω � Eα , we obtain

S(Eα − ω) − S(Eα − ω/2) ≈ −ωβ/2 + O(1/Ld )

f (Eα − ω/2,ω) ≈ f (Eα,ω) + O(1/Ld ),

where β is the inverse temperature dS
dE

|
Eα

= β. Putting it all
together, we obtain the desired result:

I =
∫ ∞

−∞
dω e−βω/2ω2|f (Eα,ω)|2. (A6)

In the same way, we can show from

〈E|τ ∗z
i τ ∗z

i |E〉 − 〈E|τ ∗z
i |E〉2 ∼ O(1), (A7)

we get ∫
dωe−βω/2|f (E,ω)|2 ∼ O(1). (A8)
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