
 

 

 

The Impact of Climate Change on 

a Tropical Carnivore: From 

Individual to Species 
 

 

 

Daniella Dakin Rabaiotti 

 

A dissertation submitted for the degree of 

Doctor of Philosophy 

UCL 
 

  



 

2 

 

  



 

3 

 

Declaration  

I, Daniella Rabaiotti, confirm the work presented in this thesis is my own. The research 

was supported by NERC through the London NERC DTP. 

All data analysis data visualisation and modelling was done by Daniella Rabaiotti. Tim 

Coulson provided training in individual based modelling. Mike Croucher assisted in 

code optimisation for the individual based model. 

All chapters of this thesis were written by Daniella Rabaiotti, with guidance and 

comments from Rosie Woodroffe and Richard Pearson. Tim Coulson provided 

comments on Chapter 4, and Rosemary Groom, J.W. McNutt and Jessica Watermeyer 

provided comments on Chapter 3. 

Data from Laikipia, Kenya, on wild dog survival and movements were collected by 

Rosie Woodroffe and the Kenya Rangelands Wild Dog and Cheetah Project. Data on 

wild dog mortality in Savé Valley, Zimbabwe were collected by Rosemary Groom and 

the Savé Valley team at the African Wildlife Conservation Fund. Data on wild dog 

mortality in the Okavango, Botswana, were collected by J.W. McNutt and the Botswana 

Predator Conservation Trust. Data on wild dog distributions were provided by the 

Rangewide Conservation Programme for Cheetah and African Wild Dogs.   

Cover art was designed by Daniella Rabaiotti and created by Selina Betts. Graphical 

abstracts were designed by Daniella Rabaiotti and Gaius J. Augustus and created by 

Gaius J. Augustus.  

  



 

4 

 

  



 

5 

 

Abstract 

Climate change is impacting species globally. Predicting which species will be 

impacted, where, when, and by how much, is vital to conserve biodiversity in a 

warming world. In this thesis, I evaluate the likely impacts of climate change on an 

endangered species, the African wild dog, Lycaon pictus, for which direct impacts of 

high ambient temperature on behaviour and recruitment have previously been identified. 

Wild dogs hunt mainly in daylight, and I show they are unlikely to be able to 

adapt to a warming climate by hunting at night. I found nocturnal hunting was 

constrained by the availability of moonlight, and by the need to guard pups in the den, 

restricting the use of cooler night-time hours. 

I also show high ambient temperatures are associated with increased adult 

mortality, appearing to increase mortality due to human causes and disease, which is 

linked to human pressures through transmission from domestic dogs. 

Having quantified the impacts of ambient temperature on key vital rates, I 

develop an Individual-Based Model to project the likely effects of climate change on 

population growth. I show that population projections for this species are sensitive to 

the emissions scenario and population size, with population collapse predicted for 

smaller populations under the worst-case scenario. 

Finally, I use my Individual-Based Model to make spatially explicit predictions 

of population changes throughout the species’ remaining range. My model predicts that 

populations in cooler coastal regions will suffer the smallest population declines, along 

with populations located in East Africa. Predicted threat status of the species was 

dependant on the emissions scenario. 

My study shows how behavioural and demographic data can be used to inform 

conservation planning in a changing climate. My findings also inform efforts to 

incorporate climate change impacts into assessments of species’ threat status by the 

IUCN Red List. 
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Impact statement 

Climate change is one of the biggest threats to species globally. In contrast with most 

other threats to species, protected areas provide little protection against climate change, 

which is slower and more difficult to reverse than threats such as habitat loss. 

Identifying how species will respond as temperatures rise, and where they are most 

likely to persist, will be vital to implementing conservation actions that ensure the 

survival of species under future climatic conditions.  

Whilst current methods of assessing species vulnerability work well with limited data, 

and can be used across high numbers of species, for those species where extensive data 

exist, focused, data driven models of the species’ responses to climate change may shed 

new light on climate change threats. The need for detailed, species specific models is 

especially acute for endangered species, which are often already range-limited due to 

other threats such as habitat loss or invasive species.  

This thesis presents novel evidence of climate change threats to the endangered African 

wild dog at individual, population, and species-wide level. Through identifying the 

drivers of temperature impacts on adult mortality it indicates that conservation 

interventions designed to mitigate other risks such as disease can also buffer the species 

from the effects of high temperatures. Similarly, through highlighting areas where the 

species is predicted to experience the highest and lowest level of climate-driven 

population declines the results of this thesis provide a valuable tool for conservationists 

to use when planning conservation actions for the species.  

By highlighting the ability of data-driven individual based model to assess future Red 

List Criteria for species this thesis also highlights ways in which predictions of climate 

change impacts on species can be used alongside the Red List Framework to predict 

species’ threat level. It also highlights some concerns with how these kinds of models 

are integrated into red listing.  

The methods used in this thesis are unique, but readily adaptable to other species, or 

even multi-species systems. They provide an example that can be followed for other 

species for which large datasets exist, which include many culturally and economically 

important species which are likely to be a priority for climate change mitigation actions 

in the future. 
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Chapter 1 Introduction 

1.1. Predicting climate change impacts on species 

Climate change is widely accepted as one of the greatest threats to species 

globally (Barros et al., 2014). Changes in temperature and rainfall influence many 

species’ ability to survive and reproduce. As the Earth warms and the climate becomes 

more variable, declines in population sizes and species richness, coupled with shifts in 

distribution, are predicted to occur globally, across a wide variety of flora and fauna 

(Walther et al., 2002). Increasingly, climate change is not just a future threat to species 

but a current threat, with impacts already observed in numerous species, and a number 

of species extinctions attributed to climate change (Wolfe et al., 2005; Parmesan, 2006; 

Pounds et al., 2006; Welbergen et al., 2008; Waller et al., 2017).  

Predicting the impact of climate change on species will be key in informing 

future conservation policy and practice. By identifying which species will be most 

impacted by climate change, where species will be most impacted by climate change 

and how species will be impacted by climate change, conservation interventions can be 

implemented which mitigate the impacts of changing temperature and rainfall regimes 

on wildlife. Interventions could potentially be implemented in the species’ current range 

through actions aimed at improving species’ capacity to cope with less favourable 

conditions, for example through supplementary feeding (Correia et al., 2015), increased 

shelter or creating buffers around the species’ current habitat (Heller and Zavaleta, 

2009). Conservation interventions designed to mitigate climate change impacts on 

species can also be used to facilitate the expansion of species, or to preserve habitat 

likely to be suitable for those species in the future (Heller and Zavaleta, 2009; Gillson et 

al., 2013). Interventions of this kind include facilitated range expansions, translocations 

and incorporating climate risk when planning protected areas (Lunt et al., 2013; Gillson 

et al., 2013). Predicting how, where, and which species will be impacted by climate 

change is key to informing where to implement interventions, which species to target, 

and what interventions should be carried out. These predictions are therefore essential 

for implementing successful conservation measures under climate change. 
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1.1.1. Which species are impacted by climate change? 

Many studies have sought to identify which species are most at risk from climate 

change (Midgley et al., 2002; Foden et al., 2013; Pearson et al., 2014; Pacifici et al., 

2015), often with the aims of identifying where resources should be focused as global 

temperatures rise (Pacifici et al., 2015). Species risk from climate change is generally 

identified using trait-based climate change vulnerability assessments, which use 

analysis of the traits of a species to determine the level of threat posed by changes to 

climatic variables (Pacifici et al., 2015). Because of the fact they can assess large 

number of species with a relatively small amount of data, climate change vulnerability 

assessments are increasingly being taken up by conservation practitioners and 

policymakers as a straightforward and low cost way of directing conservation efforts 

towards species deemed most at risk (Willis et al., 2015). 

Climate change vulnerability assessments primarily assess three components of 

climate change vulnerability: exposure, sensitivity, and adaptability (Bellard et al., 

2012; Foden et al., 2013; Foden et al., 2019). Exposure is the extent to which climate 

change is occurring, or predicted to occur, in the species’ current range; species that live 

in the areas predicted to undergo the greatest changes in temperature and rainfall would 

have the highest exposure. Sensitivity refers to the ability of a species to tolerate 

climatic variation; species considered most at risk are those with clear thermal links in 

their phenology - whereby they rely on certain temperature or rainfall properties for key 

parts of their lifecycle, and species with low thermal tolerances leading to deaths 

through heat stress at high temperatures. Adaptability is the ability of the species to 

change its behaviour or physiology to mitigate climate change impacts; this could be 

those changes already observed to result from anthropogenic climate change – shifts in 

range or phenology - or changes in behaviour such as utilising microhabitats that buffer 

the effects of rising temperatures (Moritz, Craig and Agudo, 2013; Foden et al., 2013). 

Equally a species could change its size or colour to buffer against climate impacts. 

Species with the lowest adaptive capacity are likely to be those that are highly 

specialised to a particular food or habitat, with low mobility and long generation times 

(Pacifici et al., 2015).  

 Climate vulnerability assessments have increasingly been used to advise 

future conservation strategies, and have proved popular with conservation practitioners 

due to the ease of assessing a large number of species using only the available literature 
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and climate data available online (Tuberville et al., 2015). Numerous tools and 

methodologies have been made available to conservation practitioners, with growing 

emphasis on developing easy-to-use open-access climate vulnerability assessment tools 

such as NatureServe (Young et al., 2010; Tuberville et al., 2015). Particularly in the 

United States of America, these assessments have increasingly been taken up by the 

government and state agencies and used to inform future conservation action plans 

(Hannah, Midgley, and Millar, 2002; Glick, Stein, and Edelson, 2011; Watson, 

Iwamura, and Butt, 2013). Shortcomings of this approach are increasingly being 

recognised, however, with studies finding limitations in their ability to assess 

vulnerability of herpetofauna (Tuberville et al., 2015), as well as migratory species 

where the climate vulnerability assessment may only capture threat in one section of 

their range (Small-Lorenz, Culp, Ryder, Will, and Marra, 2013). There is growing 

concern that these methodologies can be overly simplistic, and have the potential to 

miss key traits in data deficient species, underestimating their vulnerability (Tuberville 

et al., 2015; Pacifici et al., 2015).  

The threat level of species is most commonly determined using the IUCN Red 

List, which categorises species based on their population numbers, trends and the areas 

of range they inhabit. The Red List uses a combination of data and expert opinion to 

determine the likelihood that a species will go extinct in the near future, with the aim of 

focusing conservation efforts on those species most in need (Rodrigues et al., 2006). 

Numerous concerns have been raised, however, about the ability of the Red List to 

identify risks resulting from climate change, as a result of the assessment criteria 

involving declines over time-scales as short as 10 years, much faster than many 

predicted climate change impacts, and a much shorter time period than it would take to 

reverse climate change (Akçakaya et al., 2006; Keith et al., 2008). Previous studies have 

found that the Red List does provide ample warning of climate change threats, but that 

interventions must happen early, once the species is listed as vulnerable (Keith et al., 

2008; Stanton et al., 2015). For species that are already listed as endangered on the 

IUCN Red List, evidence of any climate change impacts will have implications for 

species persistence. Because of the Red List’s near-ubiquitous use in informing species 

conservation strategy, aligning climate change threats with the Red List criteria is likely 

to be critical in informing future conservation actions.  
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1.1.2. Where are species impacted by climate change? 

Predicting where species are anticipated to experience the greatest climate 

change impacts is key in both directing where conservation efforts should occur and 

also identifying the places to which species may move as the climate warms. The most 

commonly used method of predicting where species are likely to persist under future 

changes in temperature and rainfall are correlative species distribution models (SDMs). 

These models are based on the niche concept, which describes how environmental 

conditions determine whether a population persists (Hutchinson, 1978). These models 

identify the climatic conditions within the areas that the species currently inhabits, and 

identify the areas that are predicted to be within that species’ climatic niche under future 

climatic conditions (Kearney and Porter, 2009).  

Correlative models of this kind are increasingly important in both ecology and 

evolutionary biology, and can be used to direct conservation efforts, identify potential 

suitable habitat for rare species, as well as predict species' historical ranges (Kearney 

and Porter, 2009; Store and Jokimäki, 2003). This technique has been applied to a wide 

variety of species, both plants (Bakkenes et al., 2002; Thuiller, 2004; Thuiller et al., 

2005; Hamann and Wang, 2006) and animals (Peterson et al., 2002; Erasmus et al., 

2002; Thomas et al., 2004), across numerous continents and habitats, to predict future 

range shifts in species. Species typically move toward cooler areas, towards the poles or 

to higher altitudes, as temperatures rise, although this is not consistent across all species 

(Thuiller, 2004; Parmesan, 2006). 

These models can provide a good first approximation of climate change impacts 

(Green et al., 2008), and can be used on relatively sparse species occurrence data 

(Pearson et al., 2006). However, many species’ ranges today are not limited by climate, 

but are instead limited by habitat loss. This can be more difficult to model, as modelling 

future human impacts on existing habitat is challenging. Similarly, for species that have 

already lost much of their range to human activities, predicting areas that will be 

climatically suitable in the future may not be particularly useful, as many of these may 

no longer contain suitable habitat. SDMs do not establish a causal link behind the 

correlations observed in the model between the species and local environmental 

variables (Kearney and Porter, 2009). It is impossible in most cases to differentiate 

between causal relationships, indirect effects, and direct responses from another variable 

which may not be present in the model (Nally, 2000). Because of the correlative nature 
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of these models, it has been suggested that mechanistic data, linking functional traits of 

the study organism, such as ability to disperse (Leroux et al., 2013) or breed (Kearney et 

al., 2008), with local environmental data, such as temperature (Kearney et al., 2008) or 

vegetation cover (Porter et al., 2002), should be incorporated into SDMs for more 

accurate predictions of how species will respond to changes in climatic conditions 

(Kearney and Porter, 2009). 

1.1.3. How are species impacted by climate change? 

1.1.3.1. Species responses to climate change 

As the climate warms it is predicted a wide range of species will be impacted 

across the globe. Species’ responses to climate change have been split into three 

categories: changes in time, changes in space, and changes in self (Bellard et al., 2012). 

Change in time refers to species shifting the timing of key life history events, such as 

breeding seasons, in response to climatic changes. Change in space refers to shifts in the 

geographic range occupied by species. Change in self refers both to evolutionary 

adaptations to altered climatic conditions, and also to phenotypic plasticity, leading to 

changes in physical traits and behaviour of a species. These responses can help species 

to persist under changing climatic conditions, however they may also have harmful 

effect, for example loss of synchrony between the life-cycles of predators and prey 

(Miller-Rushing et al., 2010; Plard et al., 2014), moving into sub-optimal habitats 

(Laurance et al., 2011; Martin et al., 2015), or increased thermoregulatory behaviours 

leading to lower foraging success (du Plessis et al., 2012). Ultimately, the way in which 

species respond to changes in local temperature and rainfall will determine that species 

likelihood of persistence, and may have knock on effects at an ecosystem-wide level.  

Changes in time, i.e., the shifting of major seasonal life history events – or 

phenology – such as seasonal reproduction are the most common area in which species 

adaptations to changing climatic conditions, are already being observed. These changes 

in phenology have been noted in the majority of taxonomic groups, including 

amphibians (Blaustein et al., 2001; Gibbs and Breisch, 2001; Ficetola and Maiorano, 

2016), birds (Dunn and Winkler, 1999; Crick, 2004), mammals (Plard et al., 2014), 

insects (Roy and Sparks, 2000; Stefanescu et al., 2003), plankton (Edwards and 

Richardson, 2004) and plants (Menzel et al., 2006; Wolfe et al., 2005). In 2003 a global 

meta-analysis of 1700 species of birds, butterflies and alpine herbs found that 62% of 
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species showed spring advancement over time, by an average of 2.3 days per decade, as 

a result of rising temperatures (Parmesan and Yohe, 2003). Meta-analyses across taxa in 

Europe and China have found similar results, with 78% of leafing dates across Europe 

showing advancement (Menzel et al., 2006), and 90.8% of plant and animal species 

examined showing advancement in spring and summer in China (Ge et al., 2015). These 

shifts, however, vary between taxa, which can cause mismatches between different 

trophic groups (Edwards and Richardson, 2004; Thackeray et al., 2010).   

Changes in space have already begun to occur under current levels of climate 

change, with numerous taxa observed to be shifting their ranges in line with climatic 

shifts (Chen et al., 2011). Species typically move toward cooler areas, towards the poles 

or to higher altitudes, as temperatures rise, although this is not consistent across all 

species (Thuiller, 2004; Parmesan, 2006). Range shifts have been observed to be 

happening across a wide variety of taxonomic groups, across most of the globe (Chen, 

et al., 2011;Parmesan and Yohe, 2003; Parmesan, 1996).  This also results in range 

contractions in a wide variety of species, particularly those found in the polar regions 

and at and high altitudes, due to the fact they inhabit the edge of the thermal range 

meaning there is nowhere cooler for them to move into (Lesica and McCune, 2004; 

Foden et al., 2007; Jones et al., 2010; Elmhagen et al., 2015). In order for a species to 

persist in a warming climate by shifting its range it must have a great enough dispersal 

ability to move at least as fast as the pace at which its habitat is warming. Many species, 

however, such as plants with long periods between one breeding event and the next, 

may lack such dispersal abilities (Dullinger et al., 2004; Pearson, 2006). When such 

constrained dispersal is combined with the threat of habitat loss, species can have few 

suitable areas to move into as the climate warms, and those that are available can be 

heavily fragmented, meaning that even species with the ability to disperse over long 

distances can have difficulty moving in line with changing climates (Travis, 2003; 

Thomas et al., 2004).  

Climate change can also lead to habitat becoming less suitable for species 

through the movement of other organisms into that habitat, which can cause 

conservation problems such as novel predators, diseases or competitors move into areas 

where they were previously absent. One example is that rising temperatures have been 

attributed as contributing to amphibian extinctions as a result of the chytrid fungus, as 

warming meant the fungus was able to extend its range to higher altitudes (Pounds et 

al., 2006).  



 

25 

 

Changes in self describes shifts in both the genotype and phenotype of species in 

response to climate change. Whilst behavioural shifts resulting from climate change are 

not commonly studied, a large body of research has linked the impacts of temperature 

and rainfall on behaviour to climate change risks. Observed behavioural shifts at high 

temperatures include changes in habitat use (Hetem et al., 2012; Cunningham et al., 

2015; Pigeon et al., 2016), increased thermoregulatory behaviour (du Plessis et al., 

2012; Briscoe et al., 2014), changes in activity (Owen-Smith, 1998; Stokes et al., 2001; 

Woodroffe et al., 2017), and increased use of human infrastructure (Farmer and Brooks, 

2012). Other changes to species phenotype are even less well studied, and disentangling 

plasticity from evolutionary shifts in response to climatic conditions is challenging 

(Hoffmann and Sgrò, 2011). Where climate driven plastic and evolutionary changes 

leading to phenotypic change in species have been disentangled, plasticity has been 

highlighted as the driver of the changes observed (Gienapp et al., 2008; Ozgul et al., 

2010). Whilst there is experimental evidence for evolutionary change driven by 

changing environmental conditions (Hoffmann and Sgrò, 2011), so far evidence from 

the field remains sparse, and for longer-lived animals it is unlikely they have the ability 

to undergo genetic shifts that will keep pace with projected changes in climate (Hetem 

et al., 2014; Fuller et al., 2016).   

There have increasingly been calls for the incorporation of how species respond 

to climate change into models predicting what impacts climate change will have on 

species (Kearney and Porter, 2009; Pacifici et al., 2015; Urban et al., 2016), as biotic 

mechanisms have been found to be key in determining how species respond to changing 

climatic conditions (Post, 2013). Incorporating how species respond to weather in 

models predicting climate change risks can identify where species will be most 

impacted, and which species will be most impacted, more accurately than models 

lacking this mechanism (Kearney and Porter, 2009), and can give evidence as to what 

conservation actions should be implemented (Urban et al., 2016). Mechanistic models 

incorporating physiology were some of the first to be developed. These models use the 

biophysical characteristics of an organism to identify its temperature niche, and use this 

to predict the future range of the species, through identifying fitness curves at different 

temperatures (Strasburg et al., 2007; Kearney and Porter, 2009; Kearney et al., 2010). 

Mechanistic models can incorporate many ways in which species respond to changing 

climatic variables, however, including phenotypic shifts, impacts on demography and 

shifts in dispersal dynamics. 
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1.1.3.2. Demographic impacts of climate change 

Urban et al. (2016) identified six key factors for inclusion in mechanistic models 

of climate change impact on species: physiology, demography, evolutionary potential, 

species interactions, dispersal, and responses to environmental variation. Ultimately 

however, the way in which these mechanisms drive climate change impacts in always 

intrinsically linked to demography. Temperatures above physiological limits, alongside 

changes in behaviour such as habitat use or timing of activity, species interactions, and 

shifts in species range at high temperatures, impact population persistence through 

effects on survival and recruitment. This means that demographic impacts at high 

temperatures determine the likelihood of species persistence under future climate 

change. Demographic change is also particularly important to predict as population 

declines are often what is used to assign threat status to species (Keith et al., 2014). 

Climate change can impact demography through impacting rates of survival, 

recruitment and the timing of life history events. Key demographic parameters that have 

been found to be impacted by climatic conditions include fecundity (Stoleson and 

Beissinger, 1999; Sillett et al., 2000; Møller et al., 2010), survival to adulthood (Griffin 

et al., 2011; Cunningham et al., 2015; Woodroffe et al., 2017; Jenouvrier et al., 2018), 

recruitment (where the cause, birth rate vs survival to adulthood, was not determined) 

(Koons et al., 2012; Bogstad et al., 2013), adult survival (Anctil et al., 2014; Meager 

and Limpus, 2014; Turbill and Prior, 2016; Jones et al., 2018), timing of breeding 

(McNutt et al., In Review.; Hill et al., 2000; Weiwei et al., 2012; Plard et al., 2014), and 

dispersal (Smith, 1974; Walls et al., 2005; Figuerola, 2007).  

One of the most commonly observed impacts of climate on demographic traits is 

falls in recruitment, which has been observed in plants (Doak and Morris, 2010), birds 

(Bogstad et al., 2013), reptiles (Schwanz et al., 2010), amphibians (Blaustein et al., 

2001) and mammals (Koons et al., 2012). Behavioural shifts can be the mechanism by 

which recruitment falls at high temperatures. For example, in the Southern fiscal, high 

temperatures lead to changes in foraging behaviour which lower foraging success 

(Cunningham et al., 2015). Lower foraging success in turn leads to lower chick 

provisioning which can impact not just the weight of chicks but their survival (du 

Plessis et al., 2012). Changes in phenology can also have an impact on recruitment, 

particularly when the timing of breeding in one species falls out of synchrony with the 

timing of breeding in its primary food species (Miller-Rushing et al., 2010). Another 
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mechanism by which climate change may impact recruitment, particularly in species 

with temperature dependant sex determination, is by changing the sex ratio of 

populations, leading to a decrease in breeding individuals, which can lead to reductions 

in fecundity within the population (Janzen, 1994).  

Adult mortality has also been found to be higher at high temperatures (D’Allaire 

et al., 1996; J.A. Welbergen et al., 2008; McKechnie et al., 2010) and rainfall 

(McDonough and Loughry, 1997; Dudley et al., 2001; Rittenhouse et al., 2009) in a 

variety of species. The impact of weather on adult mortality can be through deaths 

caused by extreme weather events (White et al., 2015), relationships between weather 

and biophysical limits (Kearney et al., 2008), or through behavioural changes leading to 

greater human-caused deaths, such as the increase in roadkill observed at higher 

temperatures (Farmer and Brooks, 2012). In addition to impacts of weather on adult 

survival, conditions early in life can have subsequent effects on adult phenotype and 

fitness, and therefore even when the impacts of weather on offspring are sub-lethal, they 

can still impact demographic traits as adults (Nord and Nilsson, 2016).  

Whilst numerous studies have established correlations between weather and 

demographic variables, examining multiple demographic impacts is key to determining 

population level effects. A negative impact of weather on one aspect of demography is 

not enough to determine the impact of shifts in climate at a population level, however. 

This is because negative impacts on one aspect of demography can be countered by 

opposing impacts in other aspects, leading to neutral or even positive impacts of 

climatic shifts (Adahl et al., 2006; Doak and Morris, 2010; Dybala et al., 2013), for 

example Doak and Morris found that decreasing probabilities of propagules at the 

Southern edge of species’ ranges was balanced out by increasing growth rates and 

increased fruit production in a number of tundra plant species (Doak and Morris, 2010). 

Despite this, the incorporation of multiple impacts of weather on demography into 

population scale models is uncommon (Mitchell et al., 2010; Diez et al., 2014; Merow 

et al., 2014; Buckley et al., 2015; McCauley et al., 2017), and cases where this has 

occurred have mostly focused on plants (Doak and Morris, 2010; Tye et al., 2018) and 

birds (Dybala et al., 2013; Precheur et al., 2016; Velarde and Ezcurra, 2018). 

Quantifying the demographics impact of climate change, and the identifying the 

mechanisms driving such impacts, is particularly important for species that have little 

potential to shift their range in the face of rising temperatures (Stanton et al., 2015), or 
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for evolutionary adaptation in situ as the climate warms (Parmesan, 2006). Many large 

mammals fall into both these categories, and projecting demographic impacts in time 

and space will be key in directing future conservation interventions, both in terms of 

where they are targeted and what actions are taken (Hetem et al., 2014; Fuller et al., 

2016). Predicting demographic trends in these species will help to guide conservation 

planning aimed at ensuring these species persistence into the future. 

1.2. Study species 

1.2.1.  The African Wild Dog 

The African wild dog, Lycaon pictus, is a highly social, co-operatively breeding 

carnivore species that historically lived throughout most of sub-Saharan Africa (Creel 

and Creel, 2002). The majority of wild dog diet is made up of mammals, with impala 

(Aepyceros melampus) being an important food source across most study sites, and 

species ranging from hares (Lepus spp), to baboons (Papio spp), to wildebeest 

(Connonchaetes taurinus) found in their diet (Creel and Creel, 1996; Lawes et al., 1999; 

Creel and Creel, 2002). The composition of wild dog diets varies greatly by site; for 

example in Laikipia, Kenya wild dog diets consist of on average 80% dikdik 

(Woodroffe et al., 2007), whereas in Selous, Zimbabwe wildebeest have been found to 

be the predominant food source, and in Savé valley impala make up 74% of wild dogs’ 

diets (Pole et al., 2004) . Hunting strategy also varies by location and prey type, with 

wild dogs in more open areas utilising long distance chases to catch and kill prey, while 

in areas of closed vegetation where wild dogs drive smaller prey from the undergrowth 

and engage in individual, short, chases (Hubel et al., 2016). 

Wild dog packs typically consist of a breeding pair, the alpha male and female, 

and up to 28 subordinate individuals, alongside dependant offspring (Creel and Creel, 

2002). Subordinate individuals usually do not breed themselves but are essential for 

pack survival, assisting in pup care, foraging and pack defence (Creel and Creel, 2002). 

When the alpha female breeds she is unable to hunt when heavily pregnant, and pack-

mates are needed to kill for her, as well as to feed her when she is at the den for the first 

few weeks after the pups are born (Malcolm and Marten, 1982; Creel and Creel, 2002). 

Once the pups are three weeks old the other pack members also provision them with 

food while they are confined to the den for an average of three months (Malcolm and 

Marten, 1982). In these three months an individual is left at the den to defend the pups 
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against predators each time the rest of the pack leaves the den to hunt (Malcolm and 

Marten, 1982). These helping behaviours are essential to pup survival (Creel and Creel, 

1995; Courchamp and Macdonald, 2001; Courchamp et al., 2002), and therefore 

population persistence and growth. Breeding occurs seasonally every 12 months away 

from the equator, and aseasonally close the equator (McNutt et al., In Review), with 

dogs in Laikipia, Kenya, breeding on average every 11 months (Woodroffe et al., 2017) 

Dispersal plays an important role in African wild dog demography and is 

essential for maintaining gene flow both within and between populations (Leigh et al., 

2012). Pack persistence is closely linked to dispersal as packs only persist as long as 

their founding members survive, and dispersal is the mechanism through which new 

packs are formed (Woodroffe, et al., In Review a). Single sex dispersal groups are 

formed (McNutt, 1996) with an average size of three individuals (Woodroffe, et al., In 

Review). These groups can either leave a stable pack, or can be formed when an alpha 

in the pack dies (Woodroffe, et al., In Review). African wild dog packs range widely, 

with territories of 800km2 or more, and dispersing individuals can cover thousands of 

kilometres searching for a dispersal group of the opposite sex (Woodroffe, et al., In 

Review b; Masenga et al., 2016).   

The African wild dog has often previously been used to explore Allee effects, 

particularly with regards to decreased individual fitness at smaller pack sizes. Larger 

packs produce larger litters (Creel et al., 2004; Rasmussen et al., 2008; Woodroffe et al., 

2017), and hunting success (Creel and Creel, 2002), prey size and energy intake per km 

travelled depend on pack size (Courchamp et al., 2002; Creel, 1997, Fanshawe and 

FitzGibbon, 1993) . Subordinate individuals are also essential in fending off 

kleptoparasites from stealing food once the kill has been made (Fanshawe and 

FitzGibbon, 1993; Courchamp and Macdonald, 2001). This results in larger packs 

fending off hyaenas from kills with greater levels of success than smaller packs, 

although in the largest groups these effects can be outweighed by having to share with 

more individuals (Carbone et al., 2005). A number of studies have found no decrease in 

mortality at higher pack sizes (Somers et al., 2008; Angulo et al., 2018). The apparent 

lower fitness at higher pack sizes has raised concerns of a group level alee effect, 

whereby small packs fail to persist and die out (Courchamp et al., 2000). 

It was previously assumed that larger packs produced larger dispersal groups, 

which then went on to form new large packs (Courchamp et al., 2000). The converse, 
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whereby small packs produced small dispersal groups, which went on to form small 

packs, was also assumed to be true (Courchamp et al., 2000). It was assumed that small 

pack sizes lead to unstable population dynamics where packs went extinct quickly, and 

there was a high turn-over in the population (Courchamp et al., 2000). Empirical studies 

however found no evidence of this pack level Allee effect (Somers et al., 2008; 

Woodroffe, 2011), however, and a more recent model of wild dog population dynamics 

predicts that dispersal behaviour should decouple pack and population sizes, preventing 

a group level Allee effect (Lerch et al., 2018). More recently, a study of wild dogs in 

Laikipia, Kenya, found that large packs produce more  groups, as opposed to larger 

ones, and that the size of the new packs formed by the dispersal groups was not 

correlated with the size of the original pack from which the founding members of the 

new pack dispersed (Woodroffe et al., In Review a). This likely explains the lack of 

group level Allee effects observed in the species. 

Lions and hyaenas are the main competitors of African wild dogs, and the 

literature suggests both can exert a supressing force on wild dog populations. Lions kill 

wild dogs, although they rarely eat them, and also steal their kills (Creel and Creel, 

1996). In some areas of wild dog range, lions are the greatest cause of death in wild 

dogs, causing up to 47% of adult deaths (Webster et al., 2012). Wild dogs nearly always 

move away from simulated lion calls, and have rarely been observed to stand their 

ground against lions attempting to steal a kill, potentially as a result of the threat posed 

by lions (Creel and Creel, 1996; Mills and Gorman, 1997; Webster et al., 2012; Jackson 

et al., 2014). Wild dog populations in some areas have been observed to negatively 

correlated with lion numbers, most likely as a result of direct killing by lions, as well as, 

to a lesser extent,  kleptoparasitism (Webster et al., 2012). Wild dogs den in more 

rugged areas when lions are present, likely to avoid lion predation on their offspring 

(Jackson et al., 2014). 

Although spotted hyaenas only account for around 4% of adult wild dog deaths, 

and around 7% of juvenile deaths (Woodroffe and Ginsberg, 1999; Woodroffe, et al., 

2007), they are the most common kleptoparasites of the species, and have even been 

recorded following wild dogs before the wild dogs have made a kill. Wild dogs can lose 

up to 50% of kills made out in the open to kleptoparasitism, and observed presence of 

hyaenas at wild dog kills can be as high as 86% (Fanshawe and FitzGibbon, 1993). This 

can have a large impact on wild dog behaviour, meaning they have to hunt in areas with 

lower risk of kleptoparasitism, as well as for an extended period of time if their kills are 
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stolen (Carbone et al., 1997). Such kleptoparasitism may have an impact on 

populations, as a result of the high energetic costs. When kleptoparasitism impacts on 

wild dogs was modelled, it was suggested that a loss of 25% of kills could require 

spending 12 hours a day spent hunting as opposed to the observed 3.5 hours (Gorman et 

al., 1998).  

The African wild dog is classified as endangered by the IUCN Red List, today 

inhabiting just 7% of its historic range, with fewer than 700 packs (equivalent to 700 

breeding pairs) left in the wild (Woodroffe and Sillero-Zubiri, 2012). The species is 

threatened by habitat loss, disease and human-wildlife conflict. Any impacts of climate 

change are only likely to intensify already existing threats to the species. In order to 

preserve wild dogs it is essential that areas are identified for conservation priority which 

account for the shifting climate throughout the species range. 

African wild dogs have been found to play a role in driving impala distribution, 

which has subsequent impacts on vegetation cover (Ford et al., 2014). Other predator 

species have been found to have similar ecological impacts across a wide variety of 

ecosystems and therefore are important candidates for climate change impact studies, as 

their persistence and distribution can drive ecosystem-wide processes, and directly 

affect prey distribution and dynamics (Peers et al., 2018; Gaynor et al., 2019; Jorgensen 

et al., 2019). Through studying the impacts of climate change on African wild dog we 

can examine how temperature can impact the interaction between group and population 

level effects of temperature, particularly as this species has often been the focus of 

studies looking at group dynamics in social species (Courchamp et al., 2000; Lunt et al., 

2013; Angulo et al., 2018). Many large mammal species such as the African wild dog 

are both culturally important and comparatively well studied (Hetem et al., 2014), 

meaning they are ideal candidates for mechanistic models examining the impact of 

rising temperatures on their persistence and distribution.  

1.2.2. Study Methods for the African Wild Dog 

Wild dog movement and demography are commonly studied using either VHF - 

very high frequency - or GPS - geographic positioning system - collars. These collars 

are used to locate groups of wild dogs, allowing numbers of individuals, behaviour and 

breeding to be monitored. Radiocollared wild dogs are studied using radio-telemetry, 

where the animals are located on the ground or by aircraft. When tracked by aircraft the 
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wild dogs can then be found and observed from a vehicle on the ground, and behaviour 

and number of dogs in the packs are noted. GPS collars record location data at 

predetermined intervals, along with, in some cases, a measurement of activity and 

temperature. GPS fixes from collars have been found to be relatively accurate over a 

large number of studies (van Beest et al., 2012), including on wild dogs (Woodroffe, 

2011a), and good collars report 'dilution of precision' - a measure of the precision of the 

location- allowing the user to reject fixes with a lower level of precision. The locations 

can be used to establish home range size as well as movements, general ranging 

behaviour, and day range length, which is the sum of the distances travelled between 

each location. By locating and following the dogs at intervals during denning, pack size, 

as well as breeding behaviour, can be monitored, and GPS collars can be used to 

determine the start and end dates of the denning period through the movement patterns 

of the dogs as the consistently return to the den site  (Woodroffe, 2011a).  

In order to collar the animals they need to be anaesthetised, which could 

potentially entail a number of risks. General anaesthetic has the potential to cause health 

problems and even death, and in some species handling of animals has been known to 

cause rejection from social groups (Arnemo et al., 2006). This is particularly important 

to consider when a species is endangered, as a small fall in population numbers can 

have a large impact. Although in the past a number of concerns have been raised about 

survivorship of individuals after handling in wild dogs, evidence shows that this has no 

effect on mortality (Ginsberg et al., 1995; Woodroffe, 2001).  Other studies have 

indicated that not only does radiocollaring not result in higher mortality, it does not 

cause chronic stress or heightened aggression (Creel et al., 1997). Monitoring by a 

number of researchers has shown that whilst immobilisation takes place the pack 

usually remain nearby, and once the animal is released back into the group no 

aggression has been recorded towards that individual, which has been found with the 

pack for a number of weeks after the collar has been fitted (Woodroffe 2011a). 

Collaring wild dogs has enabled the collection of a wide array of data on 

behaviour, population dynamics, movements and territory use. Many GPS collars used 

today also have inbuilt temperature sensors, allowing relationships to be drawn between 

the behaviour of the dogs and the temperature of their surroundings. These have the 

advantage of providing a better resolution than using weather station data to establish 

temperatures, as well as recording the temperature of the animals’ immediate 

surroundings. On the other hand temperature readings can be affected by both ambient 
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temperature, sunlight levels, and the body heat of the animal (Markham and Altmann, 

2008). Collar data have been found to be more closely correlated with ambient 

temperature than body temperature in other species, such as moose (van Beest et al., 

2012). Many collars have a mortality sensor, which allows researchers to accurately 

determine when an animal has died much more accurately than through monitoring 

without GPS collars. 

2.2.3. Impacts of weather on the African wild dog 

2.2.3.1. Behaviour 

The behaviour of wild dogs has been found to be closely linked to temperature 

in a wide variety of locations throughout their current range. Daytime temperatures 

force wild dogs to remain inactive for most of the day, only hunting for four hours a day 

on average, around dawn and dusk (Hayward and Slotow, 2009; Woodroffe, 2011a) 

(Fig. 1.1). Studies have shown that up to 71% of wild dog activity occurs diurnally, with 

over 50% occurring between the hours of 06:00 until 08:00 and 18:00 to 20:00, with a 

period of almost complete inactivity between the hours of 12:00 and 14:00, when 

temperatures are highest (Hayward and Slotow, 2009).  

Figure 1.1 Daily activity patterns of African wild dogs in Laikipia, Kenya.  Solid lines show mean 

activity for each 5‐min time interval, for 10 GPS‐collared wild dogs tracked in 2011–2015; the 

dashed line shows mean temperature measured every 15 min at a weather station in the study area 

over 329 days in 2012. Activity can vary between 0 and 510. Shading denotes night‐time; lighter 

shading indicates the annual range in sunrise and sunset times (Woodroffe et al 2017). 
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Figure 1.2 Number of yearlings recruited in Botswana, Zimbabwe and Kenya sites against 

mean maximum temperature during denning (data from Woodroffe, et al  2017). Colours 

represent different pack sizes. 

 

Through long term study of wild dogs at an equatorial study site in Laikipia, 

Kenya, a link between the distance that pack members range and the daily maximum 

temperature has been established (Woodroffe, 2011a). At higher temperatures African 

wild dogs are less active in a 24 hour period, suggesting that high temperatures restrict 

the period which is a suitable temperature for wild dogs to engage in hunting behaviour 

(Woodroffe et al., 2017). It has been suggested, however, that African wild dogs may 

benefit from higher temperatures as their larger-bodied prey will be more negatively 

affected by the heat, leading to shorter chase times and less energy expenditure for 

hunting wild dogs (Creel et al,. 2016). Establishing whether African wild dogs becomes 

more active at night following hot days in an attempt to compensate for a loss in energy 

intake would shed light on the mechanism behind lower activity levels and distances 

travelled.  

2.2.3.2. Recruitment 

 Temperature-related changes in wild dog hunting behaviour are likely to 

have an impact on pup survival. During denning periods, pack members have to travel 

away from the den to find food, and being forced to return to the den early due to higher 

temperatures may mean that the pups are provisioned with less food at the den. It has 

been discovered through examining datasets from Kenya, along with two others in 

Botswana and Zimbabwe, that wild dogs’ reproductive success is linked to daily 

maximum temperatures (Woodroffe et al., 2017).  
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Away from the equator, in Zimbabwe and Botswana, temperatures vary more 

substantially with the seasons, and wild dogs raise pups during the coolest part of the 

year (McNutt et al., In Review). In Kenya, where breeding is aseasonal, higher 

temperatures during the denning period cause a longer period between one litter and the 

next within a pack (McNutt et al., In Review). In all three study sites, higher 

temperatures during the denning period resulted yearlings being produced (Fig. 1.2). 

These findings provide a clear link between wild dog reproductive success and high 

maximum temperatures (Woodroffe et al., 2017). Establishing the mechanism behind 

these correlations is essential in order to gain an in depth understanding of temperature 

impacts, which is likely to enable improved predictions of the effects of climate change 

on the species. Alongside this, projecting the impacts of this fall in recruitment under 

climate change can help shed light on the species’ persistence in the future, and indicate 

which areas may be more suitable for the species’ under future climatic regimes. 

A previous study of wild dog populations in South Africa, using similar 

methodology, found that higher levels of rainfall were associated with lower juvenile 

survival (Buettner et al., 2007). Due to the fact their hunting strategy has a high 

energetic cost, wild dogs often preferentially take prey that is in poor condition (Pole et 

al., 2004). Studies have shown mixed effects of rainfall on wild dog recruitment across 

sites, with some study sites showing increased pup survival when rainfall levels are 

higher, and others showing the reverse relationship (Buettner et al., 2007; Woodroffe et 

al., 2017). Further analysis is needed to establish rainfall effects throughout the wild 

dogs’ geographic range, as this would be a factor in where wild dogs can persist under 

climate change, especially in light of the expected rainfall shifts across the continent in 

the future.  

2.2.3.2. Adaptation 

Changes in climate often result in species shifting their geographic range in 

response to changes in temperature and rainfall (Walther et al., 2002). In the case of 

wild dogs their range is limited by the Sahara Desert to the North, where there is little 

water or prey. South of their current range, former habitat within South Africa is 

increasingly fragmented by clearance for agricultural use, with very few areas of 

suitable habitat remaining. Both areas of the Sahara and much of Southern Africa, 

although part of their historic range, became unsuitable for the species over 80 years 

ago (Woodroffe and Sillero-Zubiri, 2012).  
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It is likely that any range shift would result in increased contact with humans, 

putting the species at further risk of deliberate and accidental killing and disease, to 

which wild dogs are already vulnerable (Woodroffe et al., 2007). There may be scope 

for human-assisted range shifts, however many of the areas of suitable habitat where the 

species is absent are heavily fenced, which would impinge on the  species’ dispersal 

dynamics, and re-introductions of the species have had mixed results (Gusset et al., 

2007; Gusset et al., 2010). On top of this, the generation time of African wild dogs (5 

years) means that any evolutionary change is unlikely to be able to keep pace with 

future temperature rises (Hoffmann and Sgrò, 2011). 

Behavioural adaptation, through shifting to nocturnal hunting, is a key 

mechanism by which wild dogs could potentially avoid the heat, and therefore mitigate 

the impact of high temperatures. African wild dogs are less nocturnal than many other 

African predators, following a highly crepuscular activity pattern (Hayward and Slotow, 

2009). African wild dogs have been found to increase their nocturnal activity, however, 

in response to human pressures (Rasmussen and Macdonald, 2012) and when there are 

high levels of moonlight (Cozzi et al., 2012). To date, there has been no published work 

on the effects of daytime temperature on wild dog activity at night. As high daytime 

temperatures appear to limit time spent active by individuals during daylight hours 

(Woodroffe et al 2017), and therefore potentially hunting, however, high daytime 

temperatures could potentially prompt higher levels of nocturnal activity. Impacts of 

temperature on night-time activity and ranging behaviour are something that is in need 

of further investigation, particularly as existing data are already available. 

Wild dogs’ lower nocturnal activity in comparison with other African carnivores 

in wild dogs may be a result of two factors. Sight is thought to be the most important 

sense for wild dogs when hunting (Estes and Goddard, 1967), which, if correct, would 

suggest that hunting at night is limited by their visual capabilities. This may explain 

why wild dogs are more active at higher moonlight levels (Cozzi et al., 2012). Equally, 

the main competitor species of wild dogs, lions (Panthera leo) and spotted hyaenas 

(Crocuta crocuta), are nocturnal, and therefore crepuscular activity may be an 

adaptation to avoid overlap in time spent hunting between wild dogs and other more 

nocturnal species such as lions and hyaenas, which both kill wild dogs and steal their 

kills (Hayward and Slotow, 2009). Climate change is predicted to result in increased 

temperatures (Barros et al., 2014), further limiting the proportion of daylight hours 

when it is cool enough for wild dogs to hunt. It is unclear at present whether wild dogs 
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can hunt successfully enough at night to meet their energetic requirements, and 

therefore whether they could shift to nocturnal hunting in response to rising 

temperatures. As there is little potential for wild dogs to adapt to climate change 

through shifts in phenology, range or evolution, behavioural shifts such as increased 

nocturnality are likely to be key in determining whether they persist under rising 

temperatures. 

1.3. Research questions 

Using data from African wild dogs, in this thesis I investigate a number of key 

research questions. Chapter 2 of this thesis explores the extent to which African wild 

dogs can adapt to rising temperatures through switching their activity to nocturnal 

periods, as well as examining the relationship between other environmental and 

demographic variables, such as rainfall, moonlight and pack status, on timing of activity 

and distances travelled. I hypothesise that wild dogs will be less active and travel 

shorter distances in the day when temperatures are higher, and more active and travel 

longer distances on nights following hot days.  

Chapter 3 of this thesis investigates whether temperature and rainfall are 

associated with adult mortality in the African wild dog and examines the relationship 

between high temperatures and cause of death in the species. I also examine 

relationships between a number of demographic and environmental variables, including 

pack size, pack status, age and rainfall, on survival in the species. I hypothesise that 

wild dogs will have lower survival rates following periods of high temperature. 

Chapter 4 combines the impact of high temperature on recruitment and survival 

in the African wild dog population Laikipia, Kenya, into an individual based model. 

This model allows me to observe how the population responds to high temperatures, 

and allows me to project population impacts of future climate scenarios for the area. I 

hypothesise that the wild dog population will decrease in size, and be less likely to 

persist under higher temperatures and more extreme climate scenarios. 

In Chapter 5, I modify the individual based model from Chapter 4 into three 

demographic scenarios for the African wild dog, and use it to project how future climate 

change scenarios are likely to impact African wild dog populations across their range. I 

then use this to identify where in the species current, possible and recoverable range is 

mostly likely to be suitable for the species in the future, and use projected population 
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and range declines to predict future IUCN Red List status for the species. I hypothesise 

that predicted population declines will be worse under more extreme climate change 

scenarios, and that the area that is climatically suitable for the African wild dog will be 

predicted to shrink under future climate change scenarios. 

Chapter 2 of this thesis has been published in the journal Oecologia  (Rabaiotti and 

Woodroffe, 2019).  
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Plate 2: Male African wild dog with GPS collar, Laikipia, Kenya 
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Chapter 2 Coping with climate change: 

limited behavioural responses to hot 

weather in a tropical carnivore 

2.1. Abstract 

Climate change is widely accepted to be one of the greatest threats to species 

globally. Identifying the species most at risk is therefore a conservation priority. Some 

species have the capacity to adapt to rising temperatures through changing their 

phenology, behaviour, distribution, or physiology, and, therefore, may be more likely to 

persist under rising temperatures.  

Recent findings suggest that the African wild dog Lycaon pictus may be 

impacted by climate change, since reproductive success is consistently lower when pup-

rearing coincides with periods of high ambient temperature. We used GPS collars, 

combined with generalised linear mixed effects models, to assess wild dogs’ potential to 

adapt to high ambient temperatures through flexible timing of hunting behaviour. On 

days with higher maximum temperatures, wild dogs showed lower daytime activity and 

greater nocturnal activity, although nocturnal activity did not fully balance the decrease 

in daytime activity, particularly during the denning period. Increases in nocturnal 

activity were confined mainly to moonlit nights, and were seldom observed when packs 

were raising pups.  

Our findings suggest that nocturnal activity helps this cursorial hunter to cope 

with high daytime temperatures. However, wild dogs appear not to use this coping 

strategy when they are raising pups, suggesting that their resource needs may not be 

fulfilled during the pup-rearing period. Given that moonlight availability – which will 

not change as the climate changes – constrains wild dogs’ nocturnal activity, the species 

may have insufficient behavioural plasticity to mitigate increasing diurnal temperatures. 

These findings raise concerns about climate change impacts on this endangered species, 

and highlight the need for behaviour to be considered when assessing species’ 

vulnerability to climate change. 
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2.2. Introduction 

As the climate warms, declines in wildlife population sizes and species richness, 

coupled with shifts in species distribution, are predicted to occur worldwide, across a 

wide variety of flora and fauna (Walther et al., 2002; Bellard et al., 2012). A number of 

studies have shown that climate change is already having an impact across a range of 

species, including phenological shifts (Parmesan and Yohe, 2003), geographic range 

shifts and contractions (Parmesan, 2006; Tingley et al. 2012), and population and 

species extinctions (Parmesan, 1996; Beever, Brussard, and Berger, 2003; Pounds et al., 

2006, Sinervo et al. 2010). 

Behavioural plasticity has the potential to buffer climate change impacts on 

wildlife. Species as diverse as the koala Phascolarctos cinereus (Briscoe et al. 2014), 

Arabian oryx Oryx leucoryx  (Hetem et al. 2012), and Southern fiscal Lanius collaris 

(Cunningham et al. 2015) respond to high ambient temperatures by changing their 

behaviours. Such plasticity has the potential to mitigate climate change impacts (Martin 

et al. 2015). However, these thermoregulatory behaviours often come with a fitness 

cost, such as a decrease in foraging time, or reduced vigilance, which may impact 

survival and reproduction as the climate warms (Sinervo, B., et al. 2010; du Plessis et 

al. 2012; Cunningham et al. 2013, 2015; Turbill and Prior 2016). Species’ behavioural 

responses are therefore likely to be key in determining the extent to which a species is 

impacted by rising temperatures.  

Species can adapt to climate change in three ways: adaptation in time, whereby 

they shift their phenology, moving the timing of critical life events, such as breeding, in 

response to changing seasonality; adaptation in space, where species’ ranges shift to 

remain within appropriate climatic conditions; and adaptation in self, whereby 

individuals of a species alter their behaviour or physiology in response to changing 

temperatures (Foden et al. 2013, Pacifici et al., 2015). Such adaptation to climate 

change can either occur through evolutionary change, whereby traits are inherited 

through generations, or through phenotypic plasticity, whereby species’ traits are altered 

without altering their genes, often within the lifetime of an individual, in ways which 

mitigate climate change impacts. These traits can include species’ physical 

characteristics, geographic range, physiology or behaviours, as well as changes to 

species phenology. However, most studies and models of climate change vulnerability 

either look solely at the correlation between species occurrence and climatic variables, 
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ignoring the underlying mechanisms of climate change impacts (Kearney, Wintle and 

Porter, 2010; Pacifici et al., 2015), or else focus on physiological rather than 

behavioural traits (Bellard et al., 2012). Where models have incorporated behavioural 

thermoregulation, they have generally been focused on ectotherms (Kearney et al., 

2009; Huey et al., 2012). 

Ambient temperatures are predicted to rise significantly over the next 50 years, 

and Africa is projected to experience greater warming than the global average (IPCC, 

2014). African species may therefore face particularly high extinction risks under 

climate change. We therefore explored the role of behavioural plasticity in a species 

vulnerable to climate change, the African wild dog Lycaon pictus. 

The African wild dog is a highly social carnivore, with pack members 

cooperating to hunt, raise young, and defend resources (Creel and Creel, 2002). The 

species is globally endangered; the wild population numbers fewer than 700 packs, 

confined to just 7% of the species’ former range within sub-Saharan Africa (Woodroffe 

and Sillero-Zubiri, 2012). Being highly mobile, with a relatively flexible diet, the 

species has few of the traits typically associated with climate change vulnerability 

(Bellard et al., 2012; Pacifici et al., 2015). Indeed, it has been suggested that wild dogs 

may benefit from rising temperatures that may reduce the ability of large-bodied prey, 

for example wildebeest (Connochaetes taurinusto), to outrun smaller-bodied predators 

such as African wild dogs (Creel, et al., 2016). However, demographic evidence 

indicates consistently harmful effects of hot weather on wild dogs, with high ambient 

temperatures associated with lower recruitment across multiple populations (Woodroffe, 

Groom, and McNutt, 2017) . Wild dogs hunt less on hot days, and these demographic 

impacts may reflect consequently lower food intake (Woodroffe, Groom, and McNutt, 

2017).  

A primary opportunity for African wild dogs to adapt to rising temperatures is 

through a change in self. Shifting activity to night-time, which is cooler than daytime, 

has been suggested as one of the primary ways large mammals may mitigate the 

impacts of rising temperatures (Fuller et al., 2016). Wild dogs are crepuscular, hunting 

for one to two hours at dawn and dusk (Creel and Creel, 2002, Cozzi et al., 2012, 

Woodroffe, Groom and McNutt, 2017). However, nocturnal hunts also occur (Cozzi et 

al., 2012), especially on moonlit nights, and increasing the frequency of nocturnal 

hunting might allow wild dogs to exploit lower night-time temperatures, potentially 
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offsetting climate change impacts. Such a coping strategy might be especially important 

during the three-month period each year when pups are confined to a den and adults’ 

energy demands are highest (Woodroffe, Groom and McNutt 2017). 

We explored the potential for African wild dogs to cope with high daytime 

temperatures by increasing nocturnality. We predicted that wild dogs’ night-time 

activity and ranging distance would be greater (i) following hot days, (ii) on moonlit 

nights, and (iii) during the pup rearing (denning) period. 

2.3 Materials and Methods 

2.3.1. Study Area 

The study area covers Laikipia county in Northern Kenya (37°2’E, 0°6’N), and 

parts of neighbouring Samburu, Isiolo and Baringo counties. The habitat mainly 

comprises semi-arid bushland and savannah, with livestock farming and tourism as the 

primary land uses. Despite not being formally protected, as the majority of land is under 

private or community ownership, many landowners promote wildlife and tourism 

alongside pastoralism and ranching activities, leading to high levels of wildlife 

abundance and diversity. Mean annual rainfall is 590mm varying from around 400mm 

per year in the North East to over 900mm per year in the South West, with highly 

variable seasonality. Daily maximum temperatures range from 25-36°C with minimum 

temperatures falling between 12° and 17°C (Caylor K.K., Gitonga, J., Martins 2016). 

Wild dogs in this population feed primarily on dikdiks (Madoqua spp.) and impala 

(Aepyceros melampus; Woodroffe et al. 2007). 

2.3.2. Field Data Collection 

Data were collected between 2011 and 2016. We fitted GPS-collars (GPS-plus, 

Vectronic Aerospace GmbH, Berlin, Germany) to 15 wild dogs in 8 different packs; 

there was only one active GPS collar on each pack at any one time. Wild dogs were 

darted from a vehicle from a distance of 10-15 metres - further details of collar 

deployment methods are provided in Woodroffe (2011a). Individual wild dogs were 

GPS-collared for an average of 207 days (sd = 126); details of the monitoring dates and 

packs of individual study animals are shown in Online Resource 1. The collars 

contained accelerometers that recorded average acceleration in two (unspecified) 

dimensions every 5 minutes on a scale of 0 to 255. GPS collars were programmed to 
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record locations at specific times throughout the day and night. The programmed 

number of GPS locations per 24 hour (24h) period varied between individuals from 6 to 

13 (Online Resource 2). The GPS collars incorporated VHF beacons, and additional 

pack-members were also fitted with VHF collars to help locate the pack in case of GPS 

collar failure. We downloaded the data from GPS collars over a remote VHF link. We 

also made visual observations of wild dog behaviour throughout the study which 

corroborated the timing of periods of activity recorded by the collars. We identified 

denning dates, and dates when packs moved den sites, using GPS collar data, based on 

the distinctive movement pattern of repeatedly returning to the same location 

(Woodroffe, 2010). African wild dog packs switch den sites multiple times throughout a 

denning period – with an average of 5 den moves (s.d. 2.85) from birth until the last den 

is abandoned when pups are approximately 3 months old (Woodroffe, Groom and 

McNutt, 2017). Because den site changes repeatedly during the denning period, the 

number of days spent at each den site is not strongly correlated with pup age (Online 

Resource 3). 

2.3.3. Variables analysed 

We analysed two types of dependent variable: activity, and distance travelled. 

We calculated activity by summing accelerometer data for each 5min period from the 

two planes and then converting to percentages of the maximum value (510) to give a 

measure of activity from 0 to 100. Mean daytime activity was then calculated for the 

period between sunrise and sunset at the study site, and mean night-time activity was 

calculated for the period between sunset and sunrise (obtained from the US Naval 

Observatory (http://www.usno.navy.mil/). Mean activity across each 24h period 

between successive sunrises was also calculated. 

We calculated distance travelled using GPS-collar locations. To avoid the 

influence of differing numbers of GPS points (i.e. spatiotemporal resolution) on the 

measures of distance travelled, the same six time points were used across all 

individuals: 06:30, 08:00,13:00, 18:00, 19:30, and 01:00 (see Online Resource 2). We 

estimated distance travelled by calculating the distance between consecutive GPS 

locations, then summing the distances 06:30-08:00-13:00-18:00 to give daytime 

distance travelled, 18:00-19:30-01:00-06:30 to give night-time distance travelled, and 

06:30-08:00-13:00-18:00-19:30-01:00-06:30 to give 24h distance travelled (Online 

Resource 2). Periods when a GPS collar failed to record a location at one or more of the 

http://www.usno.navy.mil/
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selected time points were discarded; the probability of at least one missing location was 

greater for longer periods, hence more 24h periods were discarded than daytime or 

nightime periods, leading to a lower sample size of 24h periods (Online Resource 3).  

Typically, one pack member stays at the den guarding the pups while the rest of 

the pack hunts (Malcolm and Marten, 1982; Creel and Creel, 2002). To better represent 

the hunting behaviour of the pack during denning periods we excluded days when 

collared animals remained <200m from the den at times when the pack would normally 

hunt (06:30-08:00 or 18:00-19:00). Online Resource 3 shows the numbers of 

observations of activity and distance travelled analysed for each individual. 

We tested the hypothesis that wild dogs nocturnal activity and ranging distance 

was greater following hot days by comparing activiy and distances travelled with  dry 

bulb daily maximum air temperature (the highest temperature (in °C) within a 24h 

period). In models of nocturnal activity and distance travelled, maximum daily 

temperature referred to the preceding period of daylight. As heat stress is also effected 

by capacity for evaporative cooling, we also included total daily rainfall (mm) as an 

independent variable. Temperature and rainfall were measured at Mpala Research 

Centre (37° 2’ E, 0° 6’ N),  within the study area (Caylor K.K., Gitonga, J., Martins 

2016). We tested the hypothesis that wild dogs were more active and travelled further 

on moonlit nights by comparing activity and distances travelled with  levels of 

moonlight, which were estimated (from data at http://www.usno.navy.mil/) as the 

number of hours the moon was in the sky between sunset and sunrise (0-12h), 

multiplied by the proportion of the full moon that was illuminated (0-1) to give a 

combined moonlight variable measured in full-moon-hours (0-12; Online Resource 5). 

For example, a moonlight value of 12 would indicate a full moon for 12 hours between 

sunset and sunrise. The moonlight variable did not account for cloud cover as these data 

were not available, however we would expect cloud cover to be correlated with rainfall. 

We tested the hypothesis that wild dogs were more active and travelled further during 

the denning period by comparing activity and distances travelled with  reproductive 

status, was represented as denning/not denning. As behaviour during he denning period 

is impacted by days since occupying a particular den site and pup age (in days) 

(Woodroffe, Groom and McNutt 2017), these were included as independent variables in 

models of the denning period (Online Resource 4).   

http://www.usno.navy.mil/
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2.3.4. Statistical Analyses 

We used generalised linear mixed effects models to investigate the associations 

between independent variables (maximum daily temperature, daily rainfall, moonlight, 

pack reproductive status, days spent at a den site, and pup age) and dependent variables 

(activity, distance travelled). In addition to these fixed effects we also included 

individual identity as a random effect. One set of models considered both denning and 

not denning periods, and included daily rainfall, maximum daily temperature, 

moonlight, and denning (yes/no) as independent variables. A second set of models 

considered data only from the denning periods. These denning-specific models included 

daily rainfall, maximum daily temperature, moonlight, pup age, and the number of days 

since occupying the den site (Online Resource 4). We also examined two-way 

interactions where they were considered to be potentially ecologically relevant (Online 

Resource 4). 

Due to the distribution of the model residuals (Online Resource 6) gamma 

generalised linear mixed effects models were fitted to all datasets. Residuals were 

checked for normality and heterogeneity by eye using Q-Q plots (Online Resource 7). 

An information theoretic approach was used to select the top model set, comparing the 

corrected AIC (AICc) between models. As this approach yields several acceptable 

models, a model averaging approach was used to determine final estimates (Burnham 

and Anderson, 2002).  The relative importance of fixed effects was evaluated by 

averaging the top models using Akaike weights (ΔAIC ≤ 5). As some literature suggests 

that ΔAIC ≤ 2 (Harrison et al., 2018) should be used as a cut off we also report the 

number of models in the ΔAIC ≤ 2 set that each fixed effect was included in. Tables of 

the top models are presented in Online Resource 8. All independent variables were 

tested for intercorrelation and all Pearson’s correlations were found to be below r=0.25 

(Online Resource 9). We carried out all analyses in R version 3.3.2 (R Core Team 2018) 

and used the lme4 (Bates et al., 2015) package to fit models and model averaging was 

carried out using the package MuMIn (Barton, 2018) .  

2.3.5. Projections 

In order to examine how wild dog activity and distance travelled might change 

in the future under climate change we projected the models into the year 2070 under a 

variety of climate scenarios. We first defined the study area by drawing minimum 
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convex polygons around the GPS locations used to calculate the distance travelled data 

for each wild dog, and these minimum convex polygons were then merged to give a 

single (non-convex) polygon. Current estimates (representative of the years 1960-1990) 

and future projections (for the year 2070) of mean monthly maximum temperature (the 

monthly mean of daily maximum temperature) and total monthly rainfall for the study 

site, at a spatial resolution of 30 arc seconds, were taken from WorldClim 1.4 (Hijmans 

et al., 2005). For future projections the dataset from the HADGEM2 climate model was 

used for both the best case scenario (Representative Concentration Pathway 2.6) and 

worst case scenario (Representative Concentration Pathway 8.5) (IPCC, 2014) 

predictions. For both WorldClim estimates (the current estimates and the future 

projections), we calculated mean daily maximum temperature and mean daily rainfall 

by averaging the estimates for all 12 months of the year for each pixel and dividing total 

monthly rainfall by 30 to give a daily average. A diagram illustrating these calculations 

can be found in Online Resource 10.  

Estimated current mean daily maximum temperature for the study site from 

WorldClim estimates was significantly lower (mean 2.7°C lower) than the average daily 

maximum temperature taken from the weather station throughout the duration of this 

study (2011-2016), and estimated mean daily rainfall was higher (mean 0.4mm) than 

the average value from the weather station throughout the duration of this study (2011-

2016). These differences are likely due to the interpolation method used by WorldClim, 

based on poor weather station coverage across Africa (UNECA, 2011), as well as the 

fact that WorldClim estimates were calculated for the whole study site rather than the 

location of the weather station alone. As the WorldClim current estimates differed 

consistently from the measurements from the weather station in the study site, which 

were used to build our models, two predicted change variables were created by 

subtracting the WorldClim estimate of current temperature across the study site, at a 

resolution of 30°, from the projected future temperature across the study site, at a 

resolution of 30°. This procedure was then repeated for current and future rainfall. The 

average projected changes in temperature and precipitation were calculated by taking 

the mean across all pixels across the study site in the predicted change rasters. We then 

calculated the average activity and distances travelled under current temperature 

conditions using the mean values from the weather station on site, and calculated the 

values predicted by the model of denning and non-denning periods combined, and for 

the denning period only. To get future predictions of activity and distances travelled we 
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added the predicted change in temperature and precipitation, derived from the 

WorldClim estimates, to average temperature and precipitation from the weather station 

data, and used these values to calculate activity and distances travelled predicted by the 

models of denning and non-denning periods combined, and the non-denning period 

only, under the expected changes in temperature and precipitation. Current mean 

activity and distances travelled was then subtracted from future activity and distances 

travelled to get the predicted future change in the dependant variables between now and 

2070. Analyses were carried out using the rgdal (Bivand et al., 2017), raster (Hijmans, 

2017), sf (Pebesma, 2018), maptools (Bivand and Lewin-Koh, 2017) and rgeos (Bivand 

and Rundel, 2017) packages.  

2.4. Results 

Our analyses suggested that temperature, rainfall and denning status were all 

important predictors of African wild dog activity and distance travelled by day. During 

daylight hours, wild dogs were less active and travelled shorter distances on days when 

maximum daily temperatures were higher throughout both the denning and non-denning 

periods (Table 2.1, Fig. 2.1). Wild dogs also travelled less far when daily rainfall was 

higher during both denning and non-denning periods, but rainfall had a smaller effect, 

and was of lower importance, in the models of the denning period alone. An interaction 

between the effects of maximum temperature and rainfall was included in all top model 

sets, however the effect size was small, with the 95% confidence interval crossing zero 

in all cases other than the models for activity in the denning and non-denning periods 

combined. Rainfall appears to slightly lessen the impact of high temperatures on 

daytime activity and distances travelled, however this effect is less pronounced, or even 

reversed in the case of distance travelled, during the denning period (Table 2.1).  

  



 

 

 

  

Table 2.1: Variables associated with wild dog activity and distance travelled during daylight hours.  

Averaged estimated effects of predictor variables on the daily distance travelled, and average activity, of wild dogs during dawn and dusk, for the whole dataset and whilst 

wild dogs were denning, estimated using generalised linear mixed effects models.  As the residuals were gamma distributed an exponent of the values should be taken to 

obtain true estimates.  Relative importance of each parameter is shown along with the number of models in the Δ<2 and Δ<5 model sets that contain each variable (n,n). 
Maximum temperature = maximum daily temperature (°C) during the 24hr period (dawn-dawn) and Daily rainfall = rainfall over 24 hour period (mm).  Variables where no 

estimate is shown were dropped from the final model as likelihood ratio tests showed models including those variables did not differ significantly from the null model. 

Individual identity was included as a random variable.  

  Activity                                                               Distance travelled (km)  

Period Variable Estimate  95% CI 
Importance 

(Δ<2, Δ<5) 
Estimate  95% CI 

Importance 

(Δ<2, Δ<5) 

All 

Intercept 3.58  3.4 – 3.8 (1,3) 1.88 1.6 – 2.1 (4,5) 

Maximum temperature (°C) -0.035  -0.04 – -0.03 1.00 (1,3) -0.028  -0.04 – -0.02 1.00 (4,5) 

Daily rainfall (mm) -0.045 -0.06 – -0.03 1.00 (1,3) -0.012 -0.05 – 0.02 0.95 (4,4) 

Denning (Yes) 0.13  0.1 – 0.2 1.00 (1,3) 0.54  -0.1 – 1.01 1.00 (4,5) 

Maximum temperature * Daily rainfall 0.0022 0.001 – 0.003 0.97 (1,2) 0.001 -0.0002 – 0.004 0.38 (2,2) 

Maximum temperature * Denning (Yes) 0.000044 -0.01-0.1 0.27 (0,1) -0.028 -0.5 - -0.002 0.37 (2,2) 

Denning 

Intercept 3.62  3.2 – 3.9 (3,6) 2.47  1.7 – 3.3 (4,10) 

Maximum temperature (°C) -0.034 -0.05– -0.02 0.98 (3,6) -0.049  -0.08 – -0.02 0.8 (3,7) 

Daily rainfall (mm) -0.044 -0.1 – 0.01 0.85 (3,5) -0.012 -0.05 – 0.02 0.38 (1,6) 

Days at den 0.0016 -0.001 – 0.002 0.95 (3,6) 0.0059  -0.001– 0.01 1.00 (4,10) 

Pup Age 0.00051 -0.00009-0.001 0.78 (2,4) -0.0025 -0.003 - -0.001 0.60 (2,7) 

Maximum temperature *Days at den 0.0034 0.002 – 0.005 0.22 (1,2) 0.00075 0.0002 – 0.001 0.07 (0,2) 

Maximum temperature *Rainfall 0.00015 -0.00001 – 0.0003 0.48 (2,2) -0.0056 -0.01 – 0.001 0.10 (0,2) 



 

 

 

a) b) 

c) d) 

Figure 2.1 Relationships between African wild dog activity and maximum daytime temperature during (a) 

daylight hours outside the denning period (b) daylight hours inside the denning period (c) night-time hours 

outside the denning period and (d) night-time hours inside the denning period. Grey points represent the 

raw data, with the shaded curves representing the kernel density of the data in that 1°C temperature band. 

Black circles represent model estimates, with black horizontal lines indicating standard errors. The model 

outputs were calculated using mean vales for rainfall and moonlight. 

In line with hypothesis iii) wild dogs were more active and travelled further 

during the denning period (Table 2.1, Fig. 2.1). During the denning period, wild dogs 

were also more active and travelled longer distances when the pack had spent more days 

using a specific den site (Table 2.1). The interaction between days using a den site and 

maximum temperature was of low importance, included in 2 out of 6 of the top model 

sets, with a small positive interaction between maximum temperature and days spent at 

the den site. Pup age was included in the top model sets of activity and distance 

travelled during the denning period, and had a small negative effect on both.   
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2.4.2. Night-time activity and distance travelled 

Moonlight, temperature, rainfall and denning status were important predictors of 

wild dog activity and distances travelled by night. In line with hypothesis i) packs 

increased night-time activity and distance travelled following hot days outside the 

denning period, (Denning (No) in Table 2.2). Contrary to our predictions, however, wild 

dogs did not significantly increase their nocturnal activity and distances travelled 

following hot days when denning (Table 2.2). The lack of increase in activity and 

distances travelled following hot days is indicated by negative interactions between the 

effects of temperature and denning on both distance travelled and activity levels in the 

models of denning and non-denning periods combined. This pattern is also shown by 

the 95% confidence intervals in the models of activity during the denning period 

crossing zero, and the negative relationship between temperature and distances travelled 

during the denning period (Table 2.2).  Rainfall was of high importance for the denning 

and non-denning periods combined, being included in all top models for activity, and 3 

out of 4 top models for distance travelled. Rainfall was included in a much lower 

proportion of the top models in the denning period, and the effect sizes were smaller. 

African wild dogs were more active at night when rainfall was higher.  

 

As predicted in hypothesis ii) wild dogs were more active and travelled further 

when levels of moonlight were higher for denning and non-denning periods (Fig. 2.2, 

Table 2.2).  

 

In line with hypothesis iii) wild dogs were more active and travelled further 

during the denning period than outside it. Days at den and pup age were of relatively 

low importance as predictors of wild dog activity and distances travelled during 

denning, and the 95% confidence intervals associated with the effect sizes crossed zero 

in all cases. Within the models for activity in the denning period only, there was an 

interaction between the effects of maximum temperature and days spent at a particular 

den site included in the top model set, however this variable was included in just 1 of 

the top 8 models and the effect size was small (Table 2.2).  

 

 

 



 

 

 

 

Table 2.2: Variables associated with wild dog activity and distance travelled during night-time. 

Average estimated effects of predictor variables on the distance travelled and average activity of wild dogs from dusk to dawn, for the data as a whole and whilst the 

dogs were denning, estimated using generalised linear mixed effects models. As residuals were gamma distributed the exponent of the values should be taken to 

obtain true estimates. Relative importance of each parameter is shown along with the number of models in the Δ<2 and Δ<5 model sets that contain each variable 

(n,n). Shaded cells indicate variables that were not in any of the models with delta <5. Maximum temperature = maximum daily temperature (°C) during the 24hr 

period (dawn-dawn) and Daily rainfall = rainfall over 24 hour period (mm). Variables where no estimate is shown were dropped from the final model as likelihood 

ratio tests showed models including those variables did not differ significantly from the null model. Individual identity was included as a random variable. 

 Activity                           Distance travelled (km)  

Period Variable 
Estimate  95% CI 

Importance 

(Δ<2, Δ<5) 
Estimate  95% CI 

Importance 

(Δ<2, Δ<5) 

All 

Intercept 0.71  0.5 – 0.9 (2,3) 0.71 0.3 – 1.0 (3,5) 

Moonlight 0.039  0.03 – 0.05 1.00 (2,3) 0.019 0.02 – 0.04 1.00 (3,5) 

Maximum temperature (°C) 0.050 0.04 – 0.06 1.00 (2,3) 0.033 0.02 – 0.04 0.97 (3,5) 

Daily rainfall (mm) 0.051  0.01 - 0.08 1.00 (2,3) 0.016 -0.03 – 0.06 0.71 (2,4) 

Denning (Yes) 0.72  0.2 – 1.2 1.00 (2,3) 0.54  -0.4 – 1.6 1.00 (3,5) 

Denning (Yes)*Maximum temperature -0.031  -0.05 - -0.02 0.73 (1,2) -0.063 -0.09 - -0.03 0.53 (2,2) 

Rainfall * Maximum temperature -0.0026 -0.004 - -0.001 0.85 (2,2) -0.0018 -0.004 – 0.0005  0.26 (1,2) 

Denning 

Intercept 1.82 1.4-2.3 (2,8) 1.40  1.8  – 3.9 (6,10) 

Moonlight 0.039  0.03 – 0.05 1.00 (2,8) 0.0019 -0.01 - 0.01 0.31 (1,4) 

Maximum temperature (°C) 0.016  -0.3 - 0.004 0.57 (1,6) -0.013  -0.05 - -0.02  0.34 (2,5) 

Daily rainfall (mm) 0.0025 -0.023 – 0.028 0.29 (0,4) 0.00058 -0.04 – 0.04 0.20 (1,3) 

Days at den -0. 0094 -0.03 - 0.007 0.31 (0,4) 0.0015 -0.01 - 0.01 0.38 (2,3) 

Pup Age 0.00008 -0.0002 – 0.002 0.19 (0,2) -0.000015 -0.002 – 0.002 0.15 (1,1) 

Maximum temperature *Days at den 0.0014 0.0009 – 0.002 0.08 (0,1) 0.0028 0.001 – 0.004 0.01 (0) 

Maximum temperature *Rainfall -0.00095 -0.004 – 0.002  0.02 (0,0) -0.0023 -0.01 – 0.0018 <0.01 (0) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3. Activity and distance travelled over 24 hour periods 

Denning, rainfall, temperature and moonlight were key predictors of activity and 

distances travelled across the 24h period from dawn to dawn, for denning and non-

denning periods combined. Contrasting with hypothesis i) African wild dogs travelled 

less far and were less active on hot days both inside and outside the denning period. 

This negative effect of temperature, however, was greater inside the denning period than 

outside it, as indicated by the inclusion of a negative interaction between the effects of 

temperature and denning in the top models for both activity and distances travelled, and 

the importance of maximum temperature as a predictor of activity and distances 

travelled in the denning period (Table 2.3, Fig. 2.3). Despite being included in the top 

models, rainfall, days at the den site and pup age had little impact on activity and 

distances travelled, with confidence intervals for all estimates crossing zero. 

  

a) b) 

Figure 2.2 Relationship between daytime maximum temperature and subsequent night-time distances 

travelled by African wild dogs outside the denning period on nights with a low (0 h full moon equivalents) 

and b high (12-h full moon equivalents) levels of moonlight. Grey points represent the raw data, with the 

shaded curves representing the kernel density of the data in that 1 °C temperature band. Black circles 

represent model estimates, with black horizontal lines indicating the standard errors. The model outputs were 

calculated using mean daily rainfall 



 

 

 

Table 2.3: Variables associated with wild dog activity and distance travelled across a 24 hour period.  

Average estimated effects of predictor variables on the distance travelled and average activity of wild dogs across a 24 hour period (sunrise-sunrise) estimated using 

generalised linear mixed effects models. The residuals of the models were gamma distributed and therefore the exponent of the values should be taken to obtain true 

estimates.  Relative importance of each parameter is shown along with the number of models in the Δ<2 and Δ<5 model sets that contain each variable (n,n). Shaded 

cells indicate variables that were not in any of the models with delta <5.  Maximum temperature = maximum daily temperature (°C) during the 24hr period (dawn-

dawn) and Daily rainfall = rainfall over 24 hour period (mm).  Variables where no estimate is shown were dropped from the final model as likelihood ratio tests 

showed models including those variables did not differ significantly from the null model. Individual identity was included as a random variable. 

   Activity  Distance travelled (km)  

Period Variable Estimate  95% CI 
Importance  

(Δ<2, Δ<5) 
Estimate  

95% CI Importance 

(Δ<2, Δ<5) 

All 

Intercept 2.66  2.5 – 2.8 (3,5) 2.16 2.0 - 2.4 (4,12) 

Maximum temperature (°C) -0.0052 -0.009 - -0.002 0.95 (3,4) -0.0035 -0.008 - 0.007 0.69 (2,6) 

Daily rainfall (mm) 0.0059 -0.02 – 0.007 0.99 (3,5) 0.0061 -0.01 – 0.03 0.53 (2,6) 

Moonlight 0.0043  0.003 - 0.006 1.00 (3,5) 0.0072 0.003-0.01 0.87 (4,9) 

Denning (Yes) 0.37 0.1 – 0.6 1.00 (3,5) 0.63  -0.3 – 1.5 0.77 (3,8) 

Denning (Yes)* Maximum temperature -0.015 -0.02 - -0.009 0.66 (2,3) -0.061  -0.09 - -0.04 0.33 (2,2) 

Maximum temperature *Rainfall 0.00074 0.0003 – 0.001 0.43 (1,2) -0.00073 -0.002 – 0.0007 0.11 (1,1) 

Denning 

Intercept 2.90  2.6 – 3.2 (6,12) 2.71  2.0 – 3.4 (4,16) 

Moonlight 0.006 0.003 – 0.009 0.85 (6,9) 0.0042 0.007 – 0.01 0.25 (0,7) 

Maximum temperature (°C) -0.018 -0.03 - -0.007 0.78 (4,10) -0.038 -0.06 – -0.01 0.61 (2,10) 

Daily rainfall (mm) -0.00079 -0.02 – 0.01 0.92 (6,10) 0.0061 -0.03 – 0.04 0.13 (0,8) 

Days at den -0.0035  -0.01 – 0.005 0.96 (6,11) 0.0030  -0.005 - 0.01 0.62 (3,9) 

Pup Age 0.0036 -0.0002 – 0.0009 0.57 (4,7) -0.00021 -0.003 – 0.0003 0.33 (1,5) 

Maximum temperature* Days at den 0.00064 0.0005-0.0007 0.29 (2,2) 0.0017  0.0009 – 0.003 0.02 (0,0) 

Maximum temperature *Rainfall 0.0001 0.0003 – 0.002 0.14 (1,2) -0.0038 -0.01 – 0.002 0.01 (0,0) 



 

 

 

 

Across the denning and non-denning periods African wild dogs were more 

active, and travelled further, across a 24h period when moonlight levels were higher, in 

line with hypothesis ii). As predicted by hypothesis iii) African wild dogs were more 

active and travelled further during the denning period compared to outside the denning 

period across a 24h period (Table 2.3, Fig. 2.3). Top models for activity during the 

denning period included interactions between temperature and days spent at the den site, 

and temperature and rainfall. These were only included in 2 out of 12 top models, 

however, and had small positive effects. 

2.4.4. Projected changes in activity and distance travelled 

Climate change projections suggested that the study site was expected to warm 

by between 1.6 and 3.9 degrees, and to experience lower rainfall levels by 2070 (Online 

Resource 11, Online Resource 12). In the best case climate scenario, wild dogs were 

predicted to reduce 24h activity and distance travelled outside the denning period by 

1%, reducing daytime activity by 5% but increasing nocturnal activity by 7%, and 

reducing daytime distance travelled by 4%, while increasing distance travelled at night 

a) b) 

Figure 2.3 Relationship between total distance travelled across a 24 hour period from dawn to dawn and temperature 

a) outside and b) inside the denning period. Grey points represent the raw data, with the shaded curves representing 

the kernel density of the data in that 1°C temperature band. Black circles represent model estimates, with black 

horizontal lines indicating the standard errors. The model outputs were calculated for mean daily rainfall and 

moonlight.  
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by 6% (Table 2.4). During the denning period, however, the models predicted greater 

reductions in 24h activity and distance travelled. African wild dogs were predicted to 

decrease 24h activity and distances travelled by 4% and 8% respectively at average 

moonlight levels (Table 2.4).  

Greater impacts were predicted in the worst case climate scenario, with wild 

dogs projected to reduce activity and distances travelled across a 24h period by 2% 

outside the denning period, with a decrease in activity of 12% in the day and an increase 

of 18% at night. A decrease in daytime distances travelled of 10% was predicted, 

alongside a subsequent increase of 15% in night time distance travelled. Inside the 

denning period, when wild dogs have first started using a den site, they were predicted 

to be 8% less active and travel distances 14% lower across a 24h period than under 

current temperatures (Table 2.4).   

Table 2.4: Predicted differences in mean activity (0-100) and total distances travelled (km) during the 

day, by night, and across 24 hour from dawn to dawn between 2012-2016 and 2070 under the best and 

worst case climate scenarios. Percentage change is shown in brackets. Best case is IPCC representation 

concentration pathway 2.6 and worst case is representation concentration pathway 8.5.   

Time Period 
Best case Worst case 

Activity Distance (km) Activity Distance (km) 

Not Denning 

Day -0.71 (-5%) -0.17 (-4%) -1.00 (-12%) -0.24 (-10%) 

Night  0.74 (7%) 0.31 (6%) 1.15 (18%) 0.50 (15%) 

24 hours -0.12 (-1%) -0.04 (-1%) -0.18 (-2%) -0.05 (-1%) 

Denning 

0 days at den site 

Day -0.84 (-5%) -0.27 (-8%) -1.18 (-13%) -0.35 (-19%) 

Night  0.29 (3%) -0.05 (-2%) 0.43 (5%) -0.06 (-5%) 

24 hours -0.37 (-3%) -0.31 (-6%) -0.53 (-8%) -0.42 (-14%) 

Denning 

23 (Mean) days at 

den site 

Day  -0.86 (-5%) -0.35 (-7%) -1.23 (-12%) -0.47 (-13%) 

Night  0.30 (3%) 0.02 (1%) 0.46 (8%) 0.04 (2%) 

24 hours -0.35 (-3%) -0.34 (-6%) -0.51 (-7%) -0.46 (-14%) 

 

2.5. Discussion 

We found that African wild dog activity and distance travelled were strongly 

associated with ambient temperature, moonlight, and pack reproductive state. As 

predicted, our results showed that on days with high maximum ambient temperatures, 

wild dogs showed lower daytime activity and moved shorter distances than they did on 

cooler days. In line with our hypotheses, high daytime temperatures were also 

associated with increased nocturnality. Outside the denning period, this increase in 

activity at night was nearly sufficient to balance lowered daytime activity, resulting in 

only slight reduction in activity and distance travelled at higher temperatures over a 24h 

period. During the denning period, however, much more limited nocturnality meant that 
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packs did not compensate for lost hunting activity during the day, with 24h activity and 

distances travelled falling significantly when wild dogs had pups in the den.  

Our finding that nocturnal activity was lower during the denning period 

contrasted with our prediction, which was based on an expectation that a means of 

coping with high daytime temperatures would be especially important when energetic 

demands are highest. This difference between prediction and observation may reflect 

packs’ need to guard their pups at night, when predators, such as lions (Panthera leo), 

leopards (Panthera pardus), and hyaenas (Crocuta crocuta), are more active. Lower 

activity and distances travelled are likely to indicate that wild dogs are hunting less, 

which might in turn indicate lower food intake. Hence, a failure to compensate for lost 

hunting opportunities on hot days during the denning period may lead to decreased food 

intake for adults and pups alike, at a time when wild dogs face elevated energetic 

demands. This reduced food intake might therefore contribute to low pup survival at 

high ambient temperatures during the denning period. Similarly lower food intake in 

early life is likely to affect both the growth of the pups and their immune 

function(Moore et al., 2006), which may lead to higher mortality once they have left the 

den. Our findings therefore help to explain the lower survival of wild dogs pups raised 

at higher ambient temperatures (Woodroffe, Groom and McNutt, 2017). 

In contrast with our conclusions, Creel et al. (2016) suggested that high ambient 

temperatures might benefit wild dogs. They reported that wild dog hunts entailed 

shorter chases at higher temperatures, attributing this pattern to large-bodied prey 

overheating before their smaller-bodied predators. Chases, however, have been found to 

make up only around 8% of the distance covered by wild dogs in Northern Botswana 

(Hubel, Myatt, Jordan, Dewhirst, Tung, et al., 2016), a site where chase distances were 

significantly longer than those estimated for our study site (Woodroffe et al. 2007). The 

fact chases make up such a low percentage of distances covered by wild dogs would 

suggest that chases make up only a relatively small proportion of energy expenditure 

compared to searching for prey, similar to findings of studies into cheetah (Acinonyx 

jubatus) energetics (Scantlebury et al., 2014). If daytime hunting were more efficient on 

hotter days, as suggested by Creel et al (2016), there would be no need for the 

subsequently increased activity at night described here, and no reduction in reproductive 

success at high ambient temperatures, as described by Woodroffe et al. The difference 

between this study and that of Creel et al (2016) may also reflect differences in the size 

of prey species (10kg (main prey species dikdik and impala), Woodroffe et al. 2007, vs 



 

60 

 

88kg mean mass (main prey species wildebeest and impala), Creel et al. 2016) and the 

more open habitat found in Creel et al’s (2016) study site that could potentially facilitate 

longer chases.  

Wild dogs’ nocturnal activity and ranging behaviour was restricted by levels of 

moonlight (also see Pole 2000; Cozzi et al. 2012; Rasmussen and Macdonald 2012).  

Rasmussen and Macdonald (2012) suggested that wild dogs increased their night time 

activity in response to human presence, suggesting that packs might likewise be able to 

increase their nocturnality in response to high ambient temperatures. However, 

Rasmussen and Macdonald (2012) also found that nocturnality was also found to be 

restricted by low levels of moonlight. As nearly half of nights have moonlight levels of 

less than 25% full moon-night-equivalents (Online Resource 13), moonlight appears to 

be a major constraint on nocturnal wild dog activity.  

Wild dogs’ tendency to avoid hunting on moonless nights might reflect limited 

visual acuity at low light levels (Jacobs, 1993). Poor nocturnal vision would make both 

hunting and avoidance of competitors challenging, as wild dogs may be less able to 

detect lions and hyaenas during nights with less light, resulting in greater levels of 

kleptoparasitism and mortality. However, wild dogs’ nocturnality was also largely 

restricted to moonlit nights at a site with very low lion and hyaena numbers (Pole, 

2000), suggesting that wild dogs’ reliance on moonlight may be related to their own 

hunting ability at low light levels, rather than predator avoidance.  

Wild dogs were less active and travelled less far in the day, and travelled further 

at night, when the weather was wetter, likely due to sheltering from the rain. Interaction 

terms indicate that rainfall reduces the impact of high temperatures a small amount. The 

decreased response to high temperatures observed at higher rainfall levels might reflect 

the lower ambient temperatures observed directly after rain (Woodroffe, Groom and 

McNutt, 2017), greater cloud cover, or access to standing water facilitating heat loss, 

meaning that wild dogs’ activity is less restricted by high temperatures on days where it 

rains. This impact of rainfall on activity and distances travelled was far less marked in 

the denning period, which may reflect increased energetic demands on the dogs when 

they have pups to feed, forcing them to hunt even in sub-optimal weather.  

Future projections suggest that wild dogs will be less active and travel less far 

under future climate change, particularly in the denning period. Recent climate 

assessments have suggested that the best case scenario is unlikely, and therefore future 
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increases in temperature are likely to be higher than those used in our best case scenario 

predictions (Cox et al., 2018). This would mean that when wild dogs are denning 

average decreases in activity of greater than the 3% per 24h and decreases in distances 

travelled of greater than 6% per 24h, as predicted in the best case scenario, are likely by 

the year 2070. As demographic effects are already apparent at high temperatures under 

the current climate regime (Woodroffe et al. 2017), the impact of the consistently higher 

temperatures projected for 2070 on wild dog demography is likely to be marked. As 

African wild dogs’ hunting strategy relies on covering large distances in order to 

consume enough prey to maintain their energy balance (Hubel, Myatt, Jordan, Dewhirst, 

Tung, et al., 2016), they potentially have greater energy expenditure than many other 

species (Gorman et al., 1998). Reduced activity and distances travelled at high 

temperatures are likely to have an impact on food intake, and hence may exacerbate the 

impacts of temperature on recruitment already observed in the field (Woodroffe, Groom 

and McNutt, 2017). Outside the denning period, while 24h activity and distance 

travelled might change little, the shift from day-time to night-time hunting, with around 

5-10% of their activity shifting from day to night, might decrease wild dog hunting 

success as a result of a greater percentage of hunts occurring at low light levels, as well 

as putting wild dogs at greater risk of predation by lions and hyaenas.  

Our projections may under-estimate the impact of climate change, since they 

assume there are no restrictions on wild dogs’ ability to increase their nocturnal activity 

outside the denning period. However, wild dogs’ nocturnality was heavily constrained 

by the availability of moonlight. Projections were modelled at average moonlight levels, 

however there can be periods of up to 18 consecutive days where moonlight levels are 

lower than this. At high temperatures during these periods of low moonlight, wild dogs’ 

nocturnal activity will be even further limited, and this may impose further reductions in 

food intake for individuals across those periods. Although wild dogs might experience 

relatively high food intake during moonlit periods, they would be unable to maintain 

this intake through periods without moonlight, because they do not cache their food. 

Hence, low moonlight levels are likely to place them under more energetic stress in 

combination with hot weather, compared to periods of high levels of moonlight. This 

change could result in lowered food intake at higher temperatures when moonlight 

levels are low, which may have effects on adult condition, and even mortality. 

Our findings highlight the constraints to climate change adaptation in African 

wild dogs. There is little opportunity for wild dogs to adapt to rising temperatures in 
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space, since their distribution is already limited by habitat loss and human activity 

(Woodroffe and Sillero-Zubiri, 2012). For wild dog ranges to expand into new areas 

there would need to be an extensive programme of habitat restoration and translocations 

(Gusset et al., 2007). As they already breed at the coolest period of the year where this 

period is predictable (McNutt, Groom and Woodroffe, in review), there is no 

opportunity for shifts in the timing of breeding to compensate for rising temperatures. 

Previous studies have suggested that large mammals like the African wild dog are 

unlikely to be able to adapt to rising temperatures through evolutionary change, as their 

long generation times mean that climate change is likely to outpace the species’ rate of 

evolution (Fuller et al., 2016). Since wild dogs have little potential for adaptation in 

time and space, and are limited in their rate of evolutionary change by long generation 

times, this leaves behavioural adaptation as one of the most plausible forms of climate 

change adaptation. However our findings suggest that a shift to increased nocturnal 

hunting would be severely constrained in the African wild dog, because both moonlight 

and the need to guard pups during the denning period will remain fixed as temperatures 

rise. Consequently, wild dogs may not be behaviourally flexible enough to enable them 

to compensate sufficiently as temperatures continue to rise, contrasting with the pattern 

reported from other species, which have been observed shifting activity to cooler times 

and microclimates in response to higher temperatures (Hetem et al., 2012; Cunningham 

et al., 2015). These findings have clear implications for the future conservation of 

African wild dogs, as it may be necessary to focus conservation efforts on areas 

predicted to experience less warming in the future, for example the southernmost parts 

of Africa or high altitude areas, in order to protect the species from extinction.  

2.6. Wider Implications 

Behavioural plasticity is likely to be a key determinant of the severity of climate 

change impacts across a wide variety of species. Mammals have some of the most 

complex behaviours of any taxa, and behavioural plasticity is likely to play an important 

part in their responses to climate change (McCain and King 2014). Such flexibility may 

be particularly significant for crepuscular species, since, as temperatures rise, each day 

will include fewer hours when low ambient temperatures coincide with high light levels. 

Behaviour changes at higher temperatures is likely to be key in determining species’ 

climate change responses, and ultimately impacts of climate change on the species’ 
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viability in the future. It is vital that crepuscular species’ ability to become active at 

night is investigated in future research. 

The ability of species to shift their behaviour in response to high temperatures is 

likely to be an important determinant of the extent to which they can adapt to rising 

temperatures. However, thermoregulatory behaviours must be traded off against other 

behaviours, such as foraging (Cunningham et al. 2015), and have been found to impact 

reproduction in some species (Cunningham et al., 2013). In the African wild dog, the 

thermoregulatory behaviour of lower activity during the day on hot days, coupled with 

their constrained behavioural shift to nocturnality during the denning period, is likely to 

result in lower pup survival. It is important that such trade-offs are identified, and their 

effects on population dynamics and viability established, for other species. In order to 

identify these impacts, long-term, detailed, studies of species are essential. Behavioural 

shifts need to be incorporated into vulnerability assessments of species through 

including the behavioural plasticity of species into trait-based assessments where this 

information is available. For species with high conservation priority, mechanistic, 

species-specific assessments which incorporate detailed behavioural responses to 

climate change are likely to be most appropriate in informing future conservation 

actions.  
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Plate 3: Juvenile female African wild dog, Laikipia, Kenya. 
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Chapter 3 High temperatures and 

human pressures interact to influence 

mortality in an African carnivore 

3.1. Abstract 

The impacts of high ambient temperatures on mortality in humans and domestic 

animals are well understood. However much less is known about how hot weather 

affects mortality in wild animals. High ambient temperatures have been shown to 

impact African wild dogs’, Lycaon pictus, hunting activity and reproductive success, 

but whether high temperatures might be linked to increased rates of mortality is 

unknown. 

I analysed mortality patterns in wild dog populations under long term study in 

Kenya (0°N), Botswana (20°S) and Zimbabwe (20°S), to examine whether temperature 

impacted adult mortality. Causes of death varied markedly between sites, with most 

radio-collared wild dogs killed by predators or conspecifics (27%) or infectious disease 

(26%) in Kenya, snaring in Zimbabwe (40%) and unconfirmed causes in Botswana 

(60%). I found that high ambient temperatures were significantly associated with 

increased mortality at all three sites. Rainfall reduced the impact of high temperature at 

the highly seasonal sites in Botswana and Zimbabwe, but not at the less seasonal site in 

Kenya. At the Kenya study site, which had the highest human density, high ambient 

temperatures were associated with increased risks of wild dogs being killed by people, 

and by diseases linked to domestic dogs. In contrast, temperature was not associated 

with the risk of snare-related mortality at the Zimbabwe site, which had the second-

highest human density.  

These findings suggest that anthropogenic threats to this endangered species 

may be exacerbated by rising temperatures, with implications for species conservation. 

This evidence suggests that temperature-related mortality, including interactions 

between temperature and other anthropogenic threats, should be investigated in a greater 

number of species to understand and mitigate likely impacts of climate change. 



 

 

 

Graphical abstract 



 

 

 

3.2. Introduction 

Weather conditions have well-documented impacts on mortality in both humans 

and domestic animals. Mortality rates in humans have been found to increase  1-3% / °C 

above site-specific temperature thresholds across many parts of the globe (Hajat and 

Kosatky, 2010). Much of this increased mortality at high temperatures is attributed to 

increased risk cardiovascular, respiratory and cerebrovascular disease. However, death 

rates due to many other diseases have also been found to increase at high temperatures 

(Basu and Samet, 2002). High temperatures are also a strong predictor of human deaths 

due to drowning (Fralick et al., 2013), an example of how changes in human 

thermoregulatory behaviour can increase mortality risk.  

Increased mortality rates at higher temperatures have likewise been documented 

for domestic animals, including chickens (Warriss et al., 2005), cattle (Cox et al., 2016) 

and pigs (D’Allaire et al., 1996). As in humans, there is evidence that such increases in 

mortality for some species are caused by the interaction between heat stress and other 

forms of disease, as opposed to heat stress directly. Diseases such as cardiovascular 

diseases and obesity have been linked to high temperatures in livestock (D’Allaire et al. 

1996), however a causal link has not been established for most species (Cox et al. 

2016). It has been widely acknowledged that the negative impacts of high temperatures 

on both human and livestock, including mortality, are likely to be increased by the 

effects of climate change (Barros et al., 2014).  

Whilst correlations between mortality rates and temperature are well 

documented in humans and domestic animals, and some of the mechanisms driving the 

increase in human mortality in hot weather well understood, much less is known about 

how wild animal mortality rates might be impacted by high ambient temperatures. 

Extreme weather events, such as heat waves, regularly cause mass die offs in wild 

mammals and birds (Gordon et al. 1988; Welbergen et al. 2008; Jones et al. 2018). Less 

well studied, however, are the impacts of generally increasing average daily 

temperatures on mortality rates of wild species outside of such extreme weather events. 

A wide variety of species have been documented changing their behaviour in response 

to warmer temperatures (Hetem et al., 2012; Briscoe et al., 2014; Martin et al., 2015), 

and such changes may entail trade-offs between behavioural thermoregulation and 

selection of favoured or optimal habitats (Farmer and Brooks, 2012; Pigeon et al., 2016) 

or foraging success (Cunningham et al., 2015). This shift away from optimal behaviours 
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has been linked to lower recruitment in a number of species, including birds (Sillett et 

al., 2000; Cunningham et al., 2013; Nord and Nilsson, 2016), mammals (Koons et al., 

2012; Woodroffe et al., 2017), fish (Bogstad et al., 2013) and reptiles (Schwanz et al., 

2010). Changes in species behaviour in response to high temperatures have also been 

shown to impact adult mortality, particularly in cases where behavioural changes bring 

animals into closer contact with human threats, and experience higher mortality rates as 

a result (Shepard et al., 2008; Farmer and Brooks, 2012).  

Awareness of behavioural responses to temperature and their demographic 

consequences is important for understanding the impacts of climate change on species, 

and for designing conservation interventions accordingly. As climate change is seldom 

the only threat to endangered species, it may be possible to offset its effects by 

increasing survival or recruitment in other ways. Alternatively, it may be possible to 

concentrate conservation efforts on areas where populations are less likely to experience 

demographic impacts, that is, reduced recruitment or increased mortality. 

The African wild dog is a highly social species of canid that historically lived 

throughout much of sub-Saharan Africa, however today the species is restricted to just 

7% of its historic range (Woodroffe and Sillero-Zubiri 2012). The main threats to the 

species include habitat loss, accidental snaring, direct killing by people, and disease, 

which is often transferred from domestic dogs (Woodroffe and Sillero-Zubiri 2012, 

Prager et al. 2012). These threats vary between sites (Woodroffe, Davies-Mostert, et al., 

2007), but are all related to human expansion into wild dog habitat. Wild dogs’ social 

behaviour can put them at greater risk of human killings, as if the one of the dominant 

pair dies the pack will often splinter, meaning that the death on one individual in the 

pack can lead to the break-up of a back, and therefore prevent future breeding by that 

group (Woodroffe, et al., In Review). Sociality is important for African wild dog 

hunting, reproduction and defence against inter- and intraspecific competitors, and 

larger packs have consistently greater reproductive success (Creel et al., 2004; 

Rasmussen et al., 2008; Woodroffe et al., 2017). Larger pack size has been linked to 

lower adult survival,  from one study (Creel and Creel 2002), although concerns have 

been raised about the ability of this study to differentiate between death and dispersal 

(Woodroffe et al., In Review), and no such pack size effect on mortality has been found 

elsewhere (Angulo et al., 2013).     
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   High ambient temperatures have been shown to influence both African wild 

dog behaviour and reproductive success. Wild dogs are crepuscular, hunting at dawn 

and dusk when the ambient temperature is low, and avoiding the heat of the day by 

resting in the shade (Woodroffe et al., 2017). On hot days African wild dogs are less 

active and travel less far, restricting their morning and evening hunts to shorter time 

periods (Pomilia et al., 2015; Woodroffe et al., 2017; Rabaiotti and Woodroffe, 2019). 

They also move their timing of hunting so that it overlaps more with nocturnal periods, 

which may bring them into greater risk of contact with predators (Rabaiotti and 

Woodroffe 2019). African wild dog timing of breeding is linked to ambient 

temperature, with packs in seasonal areas breeding at the coolest time of year (McNutt 

et al. In Review), and those in aseasonal areas taking longer between each breeding 

attempt when temperatures during the denning period have been higher (Woodroffe et 

al., 2017). High temperatures during wild dog denning lead to lower pup survival 

(Woodroffe et al., 2017), and therefore a decrease in recruitment. This is likely a result 

of decreased food provisioning, and/or reduced pup guarding during periods of hot 

weather when adult food intake is low (Woodroffe et al., 2017).  

As high ambient temperatures affect the hunting behaviour of adult wild dogs, 

and the survival of their pups, and because high temperatures have been directly linked 

to increased mortality in humans and domestic animals, I predicted that high ambient 

temperatures would also be associated with reduced adult survival. I tested this 

hypothesis by investigating variables associated with adult mortality in African wild 

dogs at three sites, representing a range of environmental conditions. 

3.3. Methods 

3.3.1. Study sites 

In this study I analysed  three long term datasets on African wild dog mortality 

from three different sites – Laikipia, Kenya; the Okavango Delta, Botswana; and Savé 

Valley, Zimbabwe. All three study areas are semi-arid, savanna ecosystems. However 

there are significant differences between sites in human activities and climatic 

conditions. In particular, the Kenya study site has variable rainfall year-round and low 

levels of within-year temperature variation, whereas the Botswana and Zimbabwe sites 

consistently experience a cool dry season and a warm wet season each year (Woodroffe 

et al., 2017).  
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3.3.1.1. Kenya study site 

The Kenya study site (37° 2’ E, 0° 6’ N) covers Laikipia County, incorporating 

parts of neighbouring Samburu, Isiolo, and Baringo Counties. The area is a mix of 

privately owned cattle ranches and community land. Primary land uses are subsistence 

pastoralism, livestock ranching, and wildlife-based tourism. Daily maximum ambient 

temperatures are comparatively low to the other sites, with maxima 25 - 36°C and 

minima 12° - 17°C. Mean annual rainfall is 590mm, varying from around 400mm in the 

North East to > 900mm in the South West, with short, irregular wet and dry seasons 

(Franz et al., 2010). Lion density at the site is estimated at 5/100km2, and is considered 

depressed primarily due to conflict with livestock farmers (Woodroffe and Frank 2005). 

The mean human density across the study site is 42.6 people /km2 (O’Neill et al., In 

Review) 

3.3.1.2. Botswana study site 

The Botswana study site (23° 38’ E, 19° 30’ S, 960m ASL) includes sections of 

the Moremi Game Reserve as well as adjacent Wildlife Management Areas on the 

eastern side of the Okavango Delta. The area comprises of savanna woodland and 

seasonal floodplains. Mean annual rainfall is 430mm and maximum daily temperatures 

range from 22 degrees in the cool season, to 38 degrees in the hot season (Harcourt et 

al., 2001). Lion density across the Okavango Delta varies dependant on habitat but 

averages 5.8/100km2, with very low densities (<1/100km2) rising to 23.1 /100km2 in the 

floodplains where much of the study was done (Cozzi et al. 2013). Very few people live 

in Moremi and the surrounding areas, leading to average human densities of <1 person 

/km2 (Harcourt et al., 2001). 

3.3.1.3. Zimbabwe study area 

The Zimbabwe study site (32° 00’ E, 20° 05’ S, 550m ASL) is the Savé Valley 

Conservancy in the South-Eastern lowveld. The area is primarily woodland savanna 

covering low hills, interspersed with rocky outcrops. The Conservancy is bordered by a 

cattle fence and has very low occupancy with human densities of approximately 1 

person/km2 (Mbizah et al., 2012), however it is surrounded by mostly community lands 

with human densities of between 11 and 82 people per km2 (Lindsey et al., 2008). 
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3.3.2. Field Data Collection 

Only wild dogs fitted with either radio or GPS collars were included in the 

analyses in order to eliminate biases in mortality due to differences in detectability 

between collared and uncollared wild dogs. This approach also allowed accurate 

distinction between individuals that died and those which dispersed. 

At the Kenya study site 131 African wild dogs from 41 packs were monitored 

throughout their lifetimes between 2001 and 2016. Individuals were fitted with either 

Televilt GPS collars (GPS-Posrec, Televilt, Lindesberg, Sweden), Vectronics GPS 

collars (GPS Plus, Vectronic Aerospace GmbH, Berlin, Germany), or radio-collars 

(Telonics, Mesa AZ, USA). All three collar types included a mortality sensor 

programmed to emit a characteristic radio signal if completely stationary for ≥4h. At the 

Zimbabwe study site 58 wild dogs from 34 packs were monitored using radio collars 

(African Wildlife Tracking) between 2008 and 2017. Using radio-collars 34 wild dogs 

from 16 packs were monitored at the Botswana site between 1992 and 2004. At all three 

sites, packs were generally located regularly on a weekly to biweekly basis and the 

number of adults (defined as individuals older than 12 months) in the pack recorded. In 

addition to this, packs’ breeding status – denning or non-denning was recorded at all 

three sites. The dominance status, ie whether they were alpha or subdominant, was 

monitored, and alpha status was identified from the individual’s behaviour, namely: 

consistent close association with a specific individual of the opposite sex, co-ordinated 

scent marking and reproductive activity (Jordan et al., 2014).  

Any collared animal found dead was carefully examined with the aim of 

establishing a cause of death. At the Botswana site cause of death was only recorded in 

cases where the death was directly observed, or during disease outbreaks, and therefore 

the majority of causes of death were unconfirmed, although the vast majority are likely 

to be from natural causes. A combination of the decomposition of the body and date of 

first detection of mortality signals from the collar were used to estimate the date of 

death when not observed directly, and where this was not possible an estimated date of 

mortality was made based on the date midway between the last sighting and the 

discovery of the body or collar was used. If a body or collar was discovered more than 

30 days after the last sighting the animal was considered lost from the study due to the 

inaccuracy of the date of death. If any study animals were not observed in their resident 

pack for over one month, no mortality signal was detected, and no carcass was found, 
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they were recorded as being lost from the study the day after the date of the last 

observation. Lost animals were included in the analysis but were censored from the date 

of the last sighting of that individual. 

Environmental variables included in the analyses were temperature, rainfall, 

land use and moonlight. Data on daily dry-bulb maximum temperature and total daily 

rainfall were obtained from the nearest weather station at each site – within the study 

site in Kenya, 12km away for the Zimbabwe site and 30km away for the Botswana site 

(Woodroffe et al., 2017). At each site a rolling average of daily maximum temperature 

and a rolling total of daily rainfall were calculated. These rolling values were calculated 

over 90-day periods in Botswana and Zimbabwe, and over 30-day periods in Kenya, to 

account for the shorter and less variable seasons at this equatorial site. Since high 

ambient temperature is associated with low pup survival (Woodroffe et al., 2017) I 

hypothesised that it might also reduce adult survival. Rainfall has been shown to have a 

positive effect on pup survival at the Botswana study site and a negative effect on pup 

survival at the Zimbabwe and Kenya study site (Woodroffe et al., 2017) and therefore I 

predict impacts on adult survival in line with the impacts on pup survival at each site.   

Data on moonlight levels were obtained from the R package suncalc (Benoit and 

Achraf, 2019). African wild dogs are more active on moonlit nights (Cozzi et al., 2012; 

Rabaiotti and Woodroffe, 2019) therefore higher rates of death due to predation may be 

expected on brighter nights as both lions and hyaenas are most active at night and 

therefore the periods in which all three species are active would have greater overlap. 

 Packs in the Botswana and Zimbabwe study sites resided primarily in wildlife 

areas, whereas packs in Kenya could be classified into those residing primarily on 

community land (≥90% of recorded locations, Woodroffe (2011a)), and those residing 

primarily on private ranches (≥70% of locations, Woodroffe (2011a)). I predict that 

individuals on community land may be more likely to die compared with those residing 

predominantly on commercial land as livestock and human densities are higher and 

conflict (resulting in direct persecution) more likely (Woodroffe, et al., 2007). 

Individual characteristics included in the analyses were gender, age, dominance 

status, pack status (denning resident, non-denning resident, or dispersing), size of pack, 

and time since last litter. Wild dog age was known for many individuals at the Kenya 

and Zimbabwe sites, otherwise it was estimated from tooth wear when the dog was 

collared. Higher mortality has been observed in males (Owens, 2002) and older 
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individuals (Loison, et al., 1999; MacNulty et al., 2009) in a wide variety of species, 

however this hasn’t previously been noted in wild dogs.  Dominant status has been 

linked to higher stress and parasite load in chimps and socially breeding mammals and 

birds, as well as higher levels of conflict (Creel, 2005; Muehlenbein et al., 2010). I 

therefore anticipated that dominant individuals would have higher mortality. 

One study noted higher adult mortality at larger pack sizes (Creel et al 2002), 

however other studies found no effect (Angulo et al., 2013), and because of the social 

nature of the species it would be anticipated that survival would be greater at higher 

pack sizes. 

At the Kenya and Zimbabwe sites wild dogs were defined as dispersing if they 

left their pack for multiple days and did not return, otherwise they were defined as 

resident. Dispersal status of individuals was not known for the Botswana site, so 

mortality rates between dispersers and resident individuals were not compared. Wild 

dogs have lower survival when they are dispersing as they are more likely to encounter 

human threats and disease (Woodroffe et al., In Review). For all three sites the dates 

each pack was raising pups at the den were recorded, and dogs in packs which had pups 

in the den were classified as resident denning. I hypothesised that be more likely to die 

when they are denning due to greater energetic pressure and the fact they stay near the 

den site, putting them at risk from humans and predators (Woodroffe et al. 2007). In the 

Botswana and Zimbabwe sites the denning period is seasonal – with most denning 

attempts starting between May and July (Woodroffe et al., 2017). In Kenya African 

wild dogs breed aseasonally, on average every 11 months, and therefore time since the 

last litter that the individual was involved in raising was recorded. I hypothesised that 

individuals may be more likely to die soon after raising a litter of pups due to energetic 

stress (Woodroffe et al 2011a). 

3.3.3. Data analysis 

Causes of death were separated into four primary categories: 1) disease - which 

included any death where animals were observed to be sick prior to death, or other pack 

members were observed to show disease symptoms 2) human causes - deliberate killing 

(e.g. shooting) or accidental killing (e.g. road-kill or snaring) 3) natural causes – this 

category included injuries sustained while hunting, death by other predators, prey or 
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wild dogs and 4) unconfirmed – where the cause of death couldn’t be confidently 

established.  

Primary analyses evaluated associations between the candidate explanatory 

variables and mortality due to all causes. I also conducted secondary analyses 

considering associations between explanatory variables and specific causes of death that 

resulted in the mortality of more than ten individual wild dogs at a single site; for these 

secondary analyses, deaths due to other causes were censored. Causes of death where 

there were fewer than 10 deaths were not included the secondary analyses. Effects of 

the factors on adult mortality on a daily scale were assessed in mixed effects Cox 

proportional hazards models using the ‘coxme’ function in the ‘coxme’ R package 

(Therneau and Grambsch, 2000). Pack identity was included in the models as a random 

variable.  

For each analysis I dropped successive variables from the full model until only 

statistically significant effects remained. All independent variables were tested for 

autocorrelation and all were found to be correlated at values below 0.5. I carried out all 

analyses in R version 3.3.2 (R Core Team 2015). 

 

3.4. Results 

3.4.1. Causes of death 

The primary causes of death varied between the sites (Table 3.1). In Kenya, the 

leading causes of death were disease (26%) (Woodroffe and Donnelly, n.d.; Woodroffe 

et al., 2012) - and natural causes (35%). Most human caused deaths (84% of human 

caused deaths) were deliberate killings by people. By contrast, in Zimbabwe, the 

leading cause of death was accidental human caused deaths – specifically snaring 

(40%). At the Botswana site the majority of deaths were due to unconfirmed causes 

(60%) (Table 3.1).  
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Table 3.1: Causes of African wild dog mortality at each study site. Percentages of total deaths are 

indicated in brackets 

Site Category 

Number of deaths 

(percentage) Cause of death 

Number of deaths 

(percentage of total) 

Kenya Natural 27 (35) Predator or conspecific 21 (27) 

Injury or other 6 (5) 

Human 18 (23) Deliberate 16 (19) 

Accidental 3 (4) 

Disease 20 (26) Disease 20 (26) 

Unconfirmed 13 (17) Unconfirmed 13 (17) 

 All deaths 78 

Number censored 52 

Zimbabwe Natural 8 (32) Predator or conspecific 6 (24) 

Injury or other 2 (8) 

Human 10 (40) Deliberate 0 

Accidental 10 (40) 

Disease 1(4) Disease 1 (4) 

Unconfirmed 6 (24) Unconfirmed 6 (24) 

 All deaths 25 

Number censored 33 

Botswana Natural 3 (13) Predator or conspecific 2 (9) 

Injury or other 1 (4) 

Human 0 Deliberate 0 

Accidental 0 

Disease 6 (26) Disease 6 (26) 

Unconfirmed 14 (60) Unconfirmed 14 (60) 

 All deaths 23 

Number censored 11 

 

3.4.2. Factors influencing probability of survival 

High ambient temperature was associated with mortality to some extent at all 

three sites, however the impact varied across sites (Table 3.2).  

At the Kenya study site, African wild dogs had higher mortality (due to all 

causes) at higher temperatures, when they were in smaller packs and when they were 

dispersing rather than resident (whether denning or non-denning), and on community 

owned land (Table 3.2). Wild dogs at the Kenya site showed higher mortality from 

human causes and disease at higher temperatures (Table 3.3). Mortality from human 

causes was also higher at lower pack sizes, as was mortality from natural causes (Table 

3.3). There were higher death rates from unknown causes when wild dogs were 

dispersing. 

At the Botswana site there was a significant interaction between the effects of 

rainfall and temperature, with rainfall mediating the impacts of high temperature on 

mortality (Table 3.2). At the Botswana site wild dogs in larger packs had lower 

mortality rates.  
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At the Zimbabwe site mortality due to all causes was not significantly associated 

with any of the variables investigated. There was no significant correlation between 

deaths by snaring and either rainfall or temperature, however there was a negative 

interaction between the impacts of higher maximum temperatures and at higher levels of 

rainfall on mortality from non-human causes (Table 3.2 and 3.3). No variable had a 

significant effect on rates of mortality from human causes. 

 

 

Table 3.2: Results of survival analyses, considering all mortality causes. These models also include pack 

identity or dispersal group as a random variable. Hazard ratios of less than 1 indicate a reduction in the 

probability of death, and more than one indicate an increase in the probability of death occurring.  

Study site Variable Hazard Ratio SE p  

Kenya 

Pack size 0.91 ±0.03 0.003 

Mean daily maximum temperature (°C, 30 days) 1.24 ±0.09 0.01 

Land use – community land vs private ranch 2.26 ±0.31 0.01 

Status – denning vs resident-nondenning 0.71 ±0.4 0.3 

                dispersing  vs resident-nondenning 7.02 ±0.5 <0.001 

Botswana 

Pack size 0.86 ±0.09 0.05 

Mean daily maximum temperature (°C, 90 days) 1.51 ±0.19 0.03 

Mean daily total rainfall (mm, 90 days) 1.12 ±0.06 0.05 

Temperature * Rainfall 0.99 ±0.002 0.05 

Zimbabwe Denning 3.21 ±0.5 0.02 

Table 3.3: Results of survival analyses from Kenya and Zimbabwe broken down by cause of death. 

Site:  Kenya Zimbabwe 

Cause of death Variable Estimate SE p Estimate SE p 

Human Mean daily maximum 

temperature (°C, 30 days) 
1.54 ±0.1 0.003 

- - - 

Pack size 0.84 ±0.08 0.02 - - - 

Disease Mean daily maximum 

temperature (°C, 30 days) 
1.52 ±0.2 0.03 

- - - 

Natural Pack size 0.88 ±0.05 0.02 - - - 

Unconfirmed Pack Status 

(vs resident not denning) 

Dispersing 

103.75 ±1.3 <0.001 

- - - 

Denning 0.0000002 3813.18 1 - - - 

Non snaring Mean daily maximum 

temperature (°C, 90 days) 

- - - 
1.36 ±0.001 0.19  

Mean daily total rainfall 

(mm, 90 days) 

- - - 
1.04 ±0.004 0.04 

Temperature * Rainfall - - - 0.99 0.000002 0.05 
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3.4.3. Mortality rates 

Overall annual mortality rates differed across the three sites. The Botswana site 

had the lowest predicted mortality rate, with the second lowest mortality rate at the 

Kenya site, with the highest mortality rates observed at the Zimbabwe field site (Table 

3.4). 

 

Table 3.4: Estimated annual mortality rates by cause at average temperatures, rainfall levels and pack 

sizes, for an individual in a resident pack that is not denning. 

Site Cause Mortality rate 

Kenya All 0.18 

Natural 0.09 

Disease 0.09 

Human 0.06 

Unconfirmed 0.02 

Botswana All 0.15 

Zimbabwe All 0.23 

Non-human 0.19 

Human 0.10 

 

3.5. Discussion 

Our findings indicate that climatic variables and human activity interact to 

influence survival in the African wild dog. High ambient temperatures were associated 

with increased African wild dog mortality across all three sites, indicating that African 

wild dogs were more likely to die after a period of hot weather. This impact of 

temperature varied between sites, however there was a consistent interaction between 

temperature and rainfall across both Southern African sites. At the Kenya study site 

higher mortality at higher temperatures was driven by direct human killings and disease, 

which contrasted with Zimbabwe and Botswana, where African wild dogs had increased 

mortality at high temperatures due to non-human causes.  

Rainfall modified the impact of high temperatures at both the Zimbabwe and 

Botswana sites. The interaction between rainfall and temperature indicates that at 

seasonal sites high temperatures have the greatest impact when there has been lower 

levels of rainfall. The interaction does not appear to be driven by the fact denning 

occurs in the dry, cooler period as denning was not a significant factor impacting 

mortality.  
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The higher rates of mortality I observed at higher ambient temperatures do not 

appear to be driven by deaths caused directly by heat stroke, as most individuals did not 

die of these causes. Instead, as is found with human mortality at high temperatures, high 

temperatures appear to exacerbate the risk of mortality from other causes. Whereas the 

risk of mortality by natural causes remained the same in a month that was hotter on 

average at the Kenya site, overall monthly rates of mortality would rise by 4% per 

degree of temperature change as a result of increased risk from disease and direct killing 

by humans. At high temperatures African wild dogs are less active, and are assumed to 

hunt less (Rabaiotti and Woodroffe, 2019). This means that under prolonged periods of 

hot weather wild dogs are likely to be hungry, and under greater energetic stress. 

Malnourished animals have been found to have compromised immune systems (Losada-

Barragán et al., 2017), and are more likely to contract disease (Harvell et al., 2002) , and 

to die once they are infected (Kim et al., 2018), as a result. African wild dog behaviour 

changes at high temperatures, and they are likely to be hunting less in hot weather, 

leader to greater energetic stress (Rabaiotti and Woodroffe, 2019). Wild dogs have been 

shown to move their activity in response to human presence (Hayward and Slotow, 

2009). In hot weather wild dog activity is already greatly restricted, so high 

temperatures may restrict their ability to avoid humans. Weather has been shown to 

influence the number of predation incidents by both lions and leopards (Panthera 

pardus) (Patterson et al., 2004; Dar et al., 2009). Increased deaths at high temperatures 

may also reflect increased wild dog predation on livestock when it is hot. The greater 

energetic stress imposed by high temperatures, or the movement of prey species into 

less accessible areas may lead to a higher likelihood of targeting domestic animals as 

opposed to wild prey, leading to retaliatory killings.  

Rainfall appears to mitigate some of the impacts of high temperatures on 

African wild dog mortality, decreasing the risk of mortality by an estimated 1% per mm 

of rainfall at the Botswana site. In Botswana 51mm of rainfall has to fall over the 

previous 90 days to compensate for 1°C increase in temperature, and 36mm of rainfall 

has to fall over the previous 90 days in Zimbabwe. Rainfall levels are higher over the 

previous 90 days than the 51mm needed to compensate for 1°C of temperature change 

on 50% of days in Botswana, and rainfall levels above those needed to compensate for 

temperatures 5°C higher than average on 13% of days. In Zimbabwe rainfall levels are 

higher over the previous 90 days than the  31mm needed to compensate for a 1°C rise in 

temperature 58% of the time, however the hottest months are 5°C above average 
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temperatures, and there is only enough rainfall over the previous 90 days to compensate 

for this on 2% of days. Levels of rainfall that are sufficient to offset high temperatures 

more commonly occur in the wet, warmer, season at both sites, suggesting higher than 

average temperatures outside of these times pose a greater risk to African wild dog 

survival. This has implications for neighbouring areas with much lower rainfall levels, 

such as the Kalahari, where increased wild dog adult morality at high temperatures is 

unlikely to be buffered by rainfall. 

Rainfall has been shown to impact wild dog behaviour on a daily basis 

(Rabaiotti and Woodroffe, 2019)  – mitigating the impact of temperature through being 

associated with an increase in African wild dog activity and ranging on hot days, 

however the daily impact of rainfall did not appear to impact adult mortality across a 

monthly time-frame at the Kenya site. The lower impact of temperatures on mortality at 

high levels of rainfall may reflect the ability of wild dogs to cool off in standing water 

after periods of high rainfall, or the greater availability of shade for thermoregulation 

once there is more foliage on the vegetation. Temperatures at the Kenya site are never 

as high as in the wet, hot season at the Zimbabwe and Botswana sites, and therefore 

standing water may play less of an important role at the Kenya site.  

In contrast to previous findings (Creel and Creel, 2002; Angulo et al., 2013) 

none of the three sites had positive associations between pack size and mortality, with 

significant negative effects at two of the sites. At the third, Zimbabwe, one wild dog 

was killed by a lion in a very large pack of 28 individuals, which may be masking any 

pack size effects present. In Kenya higher mortality at lower pack sizes was due to the 

impact on deaths by natural causes and by intentional deaths due to humans, which 

would suggest that larger packs are better at avoiding death due to lions and other wild 

dogs, as well as direct persecution by people.  

A previous study from Tanzania found that greater pack size was detrimental to 

adult wild dog survival (Creel et al., 2004). Findings from the Botswana and Kenya 

study sites contrast with these previous findings, as adults had lower mortality in larger 

packs. The findings of the cause of death analyses for the Kenya study site indicated 

that larger pack sizes decreased mortality resulting from human impacts and natural 

causes. Larger packs are more likely to be able to defend against hyaenas and other 

packs of wild dogs, and may potentially make individual wild dogs a more difficult 

target for people looking to kill wild dogs in retaliation for livestock deaths. Large 
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packs may also be better able to support any injured members of their group. Defence 

against lions, hyaenas and other wild dogs is likely also the mechanism behind higher 

survival at higher pack sizes in Botswana – where there are no deaths from human 

causes and the majority of deaths are through natural causes. As I used only data from 

radio-collared animals I was able to distinguish between dispersals and deaths, which 

are easy to conflate when including uncollared dogs in the analysis. 

There was no significant effect of moonlight levels on mortality which suggests 

that wild dog deaths at higher temperatures may not be due to increased nocturnal 

activity as wild dogs are more active on nights with higher levels of moonlight (Cozzi et 

al., 2012; Rabaiotti and Woodroffe, 2019). Neither denning or time since denning had 

an impact on mortality rates which suggests that increased energetic pressures in the 

denning period don’t increase the chanced of adult mortality.  Dominance status, gender 

and age had no significant impact on mortality rates.  

Human activity had a clear impact on wild dog mortality. Rates of mortality 

varied in line with human density – the Zimbabwe and Kenya sites had higher human 

densities and higher rates of mortality due to human causes than the Botswana site. At 

the Kenya site, which was both outside protected areas and had the highest human 

density, wild dogs were more likely to die on community than commercial lands. 

Community land has higher grazing pressure, lower numbers of prey species, and 

higher domestic dog densities than commercial lands (Woodroffe et al., 2005), all of 

which are likely to have negative impact on African wild dogs living in the area. Human 

activity is also likely to contribute to the higher mortality of dispersing African wild 

dogs in the Kenya study site. This is because dispersing African wild dogs range outside 

of their home range, coming into contact with higher human densities (O’Neill et al In 

Review). Dispersing African wild dogs have previously been found to have higher rates 

of human caused deaths than resident wild dogs (Woodroffe et al, In Review b). I also 

found that African wild dogs were more likely to die from unconfirmed causes of death 

when dispersing – this is likely to reflect longer time taken to find dispersing wild dogs 

once they have died, making it more difficult to determine the cause of death.  

This paper highlights the importance of temperature for African wild dog 

survival – revealing evidence for increased mortality after periods of hot weather across 

all three sites. As the climate becomes warmer and Southern Africa becomes dryer, 

lessening the moderating effect of rainfall, African wild dog adult mortality rates are 
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likely to rise. This increase in adult mortality is in addition to predicted falls in 

recruitment as wild dog pup survival falls at higher temperatures (Woodroffe et al., 

2017). Both combined impacts are likely to have population level effects, and it will be 

important that these are examined if scientists are to understand the likely impact of 

rising temperatures on the species. 

It is clear that human activity and climatic variables interact to impact mortality 

in the African wild dog. While this is cause for concern, it also suggests that the 

relatively intractable threat from global climate change might be mitigated by 

addressing other threats. There is evidently potential for conservation measures to 

reduce deliberate killing of wild dogs, for example by reducing human wildlife conflict. 

There is evidently potential for conservation measures targeting human wildlife conflict 

to simultaneously mitigate the impacts of climate, particularly in sites where direct 

human killings are common causes of death such as in out Kenya study site (Woodroffe, 

et al., 2007; Gusset et al., 2008; Dickman, 2010). In areas where infectious disease is a 

major threat, vaccination programmes targeting either wild dogs or domestic dogs (Vial 

et al., 2006; Prager et al., 2011; Prager et al., 2012) may help reduce disease impacts, 

and, hence, climate impacts. On the other hand where deaths are mostly due to natural 

causes other solutions, such as water points, which can be used by wild dogs to assist in 

thermoregulation in hot weather, may be more appropriate. While African wild dogs 

have been found to show attraction to water points the driving mechanism, and relation 

to temperature, behind this is unclear (Ndaimani et al., 2016), and the use of standing 

water by wild dogs for thermoregulation needs investigating. It is clear that threats to 

African wild dogs vary greatly between sites, and therefore site-specific needs should be 

taken into consideration within conservation planning.  

Hot weather can increase mortality rates in wild animals, however little focus 

has been given to the impact of high temperatures on wild animal mortality in the 

literature. Spells of hot weather and rainfall variability are predicted to increase under 

climate change, with serious implications for the survival of temperature sensitive 

species. Thermoregulatory behaviour comes with trade-offs, which can not only impact 

reproduction but also adult survival. It is important that the species which respond to 

high temperatures by changing their behaviour in a way that reduces their fitness are 

identified as these species are likely to be at greater risk from rising temperatures. Many 

species, particularly large vertebrates, have had their ranges greatly restricted as a result 

of habitat loss. For wide-ranging species, such as the African wild dog, that have little 
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opportunity to shift with the climate due to extensive habitat loss, behavioural shifts will 

be key in how they respond to rising temperatures in the future. It is therefore important 

that conservationists understand the impact of these behavioural shifts in response to 

temperature on individual mortality. These mortality impacts are crucial in determining 

how populations will respond to climate change, and understanding these population 

responses is paramount if researchers are to accurately identifying climate impacts 

across species. 

Existing human-driven threats and climatic threats are likely to interact for a 

wide variety of species. The most obvious interaction is that between climate change 

and habitat loss, which restricts the ability of species to move to more favourable 

habitats as the climate warms. This paper also highlights, however, that other human 

pressures can interact with climatic conditions to influence demographic outcomes in an 

endangered species. For many species it may be that by reducing other human impacts 

through increasing connectivity and reducing human-wildlife conflict conservationists 

can simultaneously buffer the impacts of climate change. 
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Plate 4: Adult African wild dog with GPS collar, Mpala Ranch 
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Chapter 4 Dog days are over? Modelling 

population dynamics of a tropical 

carnivore under climate change. 

 

4.1. Abstract 

Demographic impacts of climate change are already being observed across 

multiple species. Few studies, however, consider the impacts of climate change on 

multiple aspects of demography when predicting where and how species may be 

impacted by climate change. This is despite the fact that the inclusion of demographic 

effects in climate change risk assessments can help target conservation efforts aimed at 

mitigating climate change risk, such as reintroductions and targeted habitat restoration. 

Using an individual based model incorporating demographic responses to ambient 

temperature in an endangered species, the African wild dog Lycaon pictus, I show that 

there is a threshold temperature above which populations of the species collapse. This 

impact of high temperatures is reduced by a larger population size; however populations 

of this kind are increasingly rare across the species’ range. The model highlights that 

detailed data-driven models can shed new light on population viability under climate 

change, and the importance of social dynamics in buffering climatic impacts in social 

species. Data-driven, individual-based, models incorporating climatic impacts can be 

used to direct interventions that may increase population viability in the future as 

climatic conditions become less favourable to species. 
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4.2. Introduction 

Climate change impacts on wildlife are increasingly being observed, however 

predicting how species are likely to be impacted still proves challenging despite the fact 

that climate change has been a causal factor in a number of contemporary extinctions of 

both populations (Cahill et al., 2012) and species (Waller et al., 2017). Shifts in 

temperature and rainfall as a result of climate change can lead to demographic impacts 

(McKechnie et al., 2010). One of the more conspicuous mechanisms by which climate 

change negatively impacts species mortality is through extreme weather conditions 

resulting in mass mortality events, where large numbers of a species die over a short 

time period. In recent years there are an increasing number of records of extreme 

climatic conditions leading to mass mortality through starvation (Jones et al., 2018), 

dehydration (Albright et al., 2017), and heatstroke (Welbergen et al., 2008; Hajat and 

Kosatky, 2010; McKechnie et al., 2010; White et al., 2015; O’Shea et al., 2016) in 

multiple species.  

Temperature and rainfall shifts can also produce demographic effects through 

less direct routes, however. Changes in habitat use at high temperatures can impact food 

provisioning for both adults and offspring (Yasue et al., 2003; van Beest et al., 2012), 

and engaging in thermoregulatory behaviours to stay cool can put species at higher risk 

of predation (Yasue et al., 2003) or interactions with people (Farmer and Brooks, 2012), 

impacting survival rates. Temperature can  also impact foraging time (Owen-Smith, 

1998; Rabaiotti and Woodroffe, 2019), leading to lower food intake which can impact 

both survival and reproduction (Cunningham et al., 2013; Cunningham et al., 2015). 

Impacts on vegetation can have repercussions on herbivore numbers (Masters et al., 

1998; Martin and Maron, 2012; Zhou et al., 2017), and lower prey species density as a 

result of changes to vegetation can subsequently impact predator recruitment and 

survival (Lawton et al., 1980; Soto et al., 2004; Møller et al., 2010). All these impacts of 

high temperature can lead to changes in both fecundity and mortality, which have 

implications for population growth rates and persistence. 

Two of the approaches most commonly used to assess species vulnerability to 

climate change are trait based assessments and correlative species distribution models 

(Thuiller, 2004; Pacifici et al., 2015). Trait based assessments use species traits such as 

fecundity, geographic range size and mobility to predict which species are most likely 

to be threatened by climate change. Range restricted, long-lived, slow moving species 
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with low fecundity are often highlighted as most at risk in trait based assessments  

(Foden et al., 2013). Correlative species distribution models, on the other hand, identify 

the climatic niche that a species inhabits, and identify areas predicted to have the same 

climatic properties under future emissions scenarios. Species distribution models also 

often highlight range restricted species with restricted movement capabilities as most 

under threat from climate change (Midgley et al., 2002; Pacifici et al., 2015).  

Both trait based assessments and correlative species distribution models fail to 

take into account the mechanisms which generate climate change impacts and therefore 

there have been increasing calls to build data driven models, often referred to as 

mechanistic models, as they take into account the causal process by which species are 

prevented from, or  facilitated in, persisting under certain climatic conditions (Guisan 

and Thuiller, 2005; Kearney and Porter, 2009; Austin and Van Niel, 2011; Urban et al., 

2016). A number of studies have highlighted the need for the inclusion of demographic 

impacts in such models (Buckley and Kingsolver, 2012; Ehrlén and Morris, 2015; 

Urban et al., 2016). 

Another approach to predicting climate change impacts are large scale, system-

based, global models. These approaches to modelling climate change impact are often 

parameterised on experimental data from lab organisms, particularly insect systems. As 

most insects are ectotherms, predator attack rate rises at higher temperatures (Logan et 

al., 2006), meaning that predators in these models are generally predicted to have a 

higher capture rate under climatic warming scenarios, and will benefit as long as prey 

numbers remain high. The assumption that attack rate increases at high temperatures is 

incorporated into models such as the Madingley model, which increasingly used to 

predict the impact of a variety of impacts of global change, including climate change, on 

biodiversity. In contrast to this, a number of endothermic animals, however, including 

some mammals (Owen-Smith, 1998; Hetem et al., 2012; Rabaiotti and Woodroffe, 

2019) and birds (du Plessis et al., 2012), activity levels have been shown to be lower at 

high temperatures, and behaviour often shifts in ways that can lead to lower predation 

rates on prey species (Rabaiotti et al., In Prep; Cunningham et al., 2015). These changes 

in predation rate can have demographic repercussions on both predators and prey 

(Cunningham et al., 2013; Woodroffe et al., 2017).  

A large body of work has looked at the correlative relationship between climate 

and various demographic traits in wildlife, including recruitment (Griffin et al., 2011; 
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Koons et al., 2012; Bogstad et al., 2013; Cunningham et al., 2015; Nord and Nilsson, 

2016), dispersal (Smith, 1974; Walls et al., 2005; Figuerola, 2007) and mortality (Anctil 

et al., 2014; Meager and Limpus, 2014; Turbill and Prior, 2016; Jones et al., 2018). Far 

fewer studies, however, have used these demographic impacts to model impacts on 

population trends and viability, despite the fact that climatic impacts on a single 

demographic variable can be counteracted by opposing changes in other demographic 

variables, leading to a neutral or even net positive impact of climatic changes (Adahl et 

al., 2006; Doak and Morris, 2010; Dybala et al., 2013).  Where studies have used 

projected climatic impacts on demography to model population level effects  (Mitchell 

et al., 2010; Diez et al., 2014; Merow et al., 2014; Buckley et al., 2015; McCauley et al., 

2017) the incorporation of the impact of climate on more than one demographic 

parameter is uncommon, and studies which have examined population level effects have 

mostly focused on birds (Dybala et al., 2013; Precheur et al., 2016; Velarde and 

Ezcurra, 2018) or plants (Doak and Morris, 2010).  

Effects of temperature on demography will be increasingly relevant to species 

conservation as temperatures rise, as population dynamics are often  more important 

than physiological limits in determining the ability of species to persist under rising 

temperatures (Sillett et al., 2000; Thompson and Ollason, 2001; Fordham et al., 2013). 

Models which integrate the effects of temperature on demography are likely to provide 

more accurate predictions of climatic impacts than those that look at the climatic niche 

of a species alone. Despite the potential of demographic models to highlight species 

threatened under climate change, demography is not often taken into account when 

predicting climate change impacts on species (Urban et al., 2016), and where 

demographic impacts have been observed these are rarely built into models which look 

at population trends (Bogstad et al., 2013; Meager and Limpus, 2014; Nord and Nilsson, 

2016). Studies also commonly focus on species where the impacts of temperature on 

demography are direct, for example reptile species in which offspring sex is determined 

by temperature (Hulin et al. 2009; Mitchell et al. 2010). Understanding these 

demographic effects is key in order to enact conservation actions which are aimed at 

reducing the impacts of climatic change on species (Correia et al., 2015). 

Most previous approaches to modelling the impacts of climate change on 

population dynamics have used matrix-based models, likely in part due to their focus on 

organisms with simple social systems, combined with the fact that much of the data was 

collected at broad time-scales as opposed to resulting from continuous monitoring over 
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time (Poloczanska et al., 2008; Doak and Morris, 2010; Merow et al., 2014; McCauley 

et al., 2017; Tye et al., 2018; Jenouvrier et al., 2018). Social behaviour has an important 

demographic impact in many species, however, and animals with complex social 

behaviours the incorporation of these group level dynamics is key in predicting 

population trends (Bateman et al., 2012; Bateman et al., 2013; Angulo et al., 2013). For 

animals with more complex social dynamics and behaviours, individual based models 

may be more appropriate as they are well suited to modelling climatic impacts due to 

their ability to capture the social dynamics of species (Deangelis and Grimm, 2014). 

Individual based models have been commonly used throughout the population 

modelling literature to model the impacts of environmental and social change in species 

(Grimm and Railsback, 2005), and are particularly useful when investigating 

demographic shifts that could potentially be mitigated by conservation or management 

interventions (Deangelis and Grimm, 2014). IBMs are especially suitable for modelling 

the demographics of wide ranging species under climatic shifts as the incorporation of 

spatial variables is relatively straightforward (Grimm and Railsback, 2005). Large 

mammals, which often have complex social dynamics and range over large distances, 

have been highlighted as a group of animals that may be under particular risk from 

climate change (Fuller et al., 2016). IBM’s are a good method of predicting future 

population trends on large mammals as there is sufficient data and complex social 

dynamics can be incorporated into future projections. 

One large mammal that has shown multiple demographic impacts of high 

temperature is the African wild dog (Lycaon pictus), a highly social canid that lives in 

packs of between 2 and 26 adults. African wild dogs are obligate co-operative breeders, 

with an alpha pair typically monopolising reproduction within each pack. Other, sub-

dominant, pack members assist in raising the pups through food provisioning and 

guarding the den, when other members of the pack are hunting. African wild dogs were 

historically found throughout most of sub-Saharan Africa, however today they are 

restricted to just 7% of their historic range, with the largest populations found in 

Sothern and Eastern Africa. African wild dog breed aseasonally near the equator and 

seasonally away from the equator, at the coolest time of year (McNutt, et al., In 

Review). Dispersal occurs in single sex groups, which leave their natal packs and search 

for groups of the opposite sex. If dispersers locate a group or single disperser of the 

opposite sex they then form a new pack and a new alpha pair is established (Woodroffe 

et al In Review b). When one of the alpha pair dies there are two possible outcomes: if 
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another founder of the same sex is present, it will then replace the dead alpha within the 

alpha pair; if no pack founders of the same sex are present the pack will split into two 

single sex dispersal groups (Woodroffe et al In Review a).  

Previous studies have shown that African wild dog reproduction and survival are 

all negatively impacted by high temperatures, with lower adult (Rabaiotti and 

Woodroffe 2019) and juvenile survival (Woodroffe et al., 2017) at high temperatures. A 

longer period of time between one breeding attempt and the next when temperatures are 

higher during the denning period (equivalent to the first three months of the litter’s life) 

has also been observed at a site with aseasonal breeding (Woodroffe et al., 2017).  

I used demographic data from the African wild dog to construct an IBM 

incorporating the relationship between temperature, survival, and reproduction in the 

species. I then used this model to explore the impact of high temperature on key 

demographic variables, in particular: pack size, pack longevity, survival rates, litter size 

and timing of breeding. By running the model under temperature regimes predicted 

under a range of emissions scenarios I was able to project the impact of future climate 

change on the population dynamics and extinction risk in the species. 

4.3. Materials and Methods 

4.3.1. Life History Data 

The parameters used in the study were obtained from long term demographic 

data collected by the Kenya Rangeland Wild Dog and Cheetah Project, in a study area 

which covers Laikipia County, Kenya, and parts of the neighbouring counties of 

Samburu, Isiolo, and Baringo. African wild dogs were monitored between the years 

2001 and 2017 using a combination of GPS collars, radio collars and visual observation 

(Woodroffe, 2011 a; Woodroffe, 2011 b). The number of adults (individuals that are 12 

months or older) and juveniles (individuals that are less than 12 months old) in each 

pack, litter sizes, births, deaths and dispersal events were recorded by researchers 

throughout the course of the project. Temperature data from a weather station within the 

study site (Caylor et al., 2017) were used to investigate how temperature correlated with 

recruitment, survival and dispersal.  
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4.3.2. Individual based model 

4.3.3.1. Purpose 

The purpose of this model is to understand how temperature impacts population 

dynamics and viability in the African wild dog.  

4.3.3.2. State variables and scales 

Four hierarchical levels make up the individual based model: Individual, 

territory, population and environment. Individuals are characterised by their dominance 

status – alpha or sub dominant, and their age – adult (a) or juvenile (j). Juveniles are 

defined as individuals between 3 and 12 months, juveniles older than 11 months 

become adults. Juvenile classification begins at three months as opposed to zero as this 

is the age at which pups start to move with the pack and can be reliably counted 

(Woodroffe, 2011b). Prior to this age, as dens are inaccessible, it is difficult to observe 

wild dogs without disturbance and hence to obtain reliable estimates of litter size. Adult 

and juvenile wild dogs are in separate age categories as temperature affects adult and 

juvenile mortality differently, with average maximum temperature during the first three 

months of life impacting juvenile survival, and average maximum temperature over the 

previous month impacting adult survival. Another reason for separating adult and 

juveniles into separate categories is that pack size is often defined as the number of 

adults in a pack, and pack size influences both adult survival and litter size. Due to the 

social dynamics of the species, where only the alpha pair breeds and the pack dynamics 

are influenced by alpha survival, alpha adults are built into the model as a separate 

dominance category. The model is female only therefore the alpha category contains a 

single individual, and no individuals move into this category unless the alpha has died. 

If the alpha dies either a randomly chosen subdominant individual from the same pack 

inherits alpha status or the whole pack disperses, known as a ‘pack break-up’. 

A territory can be occupied by one pack of wild dogs, which consist of one 

alpha female along with a number of sub dominant adults, and any juveniles born to that 

pack that have not yet reached 12 months of age. A territory is characterised by: its 

identity number, the size of the pack present, time since the pack formed, the size of the 

pack’s last litter and the timing of the packs last breeding attempt. If there are no 

individuals in the territory it is classified at ‘empty’ and can be occupied by a group of 

dispersers.  
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The population is composed of multiple territories and a number of social 

groups, referred to as ‘packs’. For the purposes of this analysis two different territory 

numbers are used: 30 territories, which is the maximum number of packs recorded at the 

Kenya study site, and nine territories, which is the median number of packs per 

population within the species’ remaining range throughout Africa (Woodroffe and 

Sillero-Zubiri, 2012). The population is characterised by its size (the number of 

individuals of all ages) and the number of packs. In addition there is a dispersal pool 

which comprises of individuals that have dispersed from their pack but have not formed 

a pack and settled in a territory. When the number of packs in the population is 0 the 

population is classed as extinct. 

Abiotic environment is the highest hierarchical level in the model. As African 

wild dog recruitment and survival is impacted by mean maximum temperature this is 

how the abiotic environment is characterised. Temperature, in degrees Celsius, is 

centred on the mean throughout, therefore the average temperature is represented by 0.  

4.3.3.3. Process overview and scheduling 

The model proceeds in monthly time steps. Within each time-step six phases 

occur in the following order: mortality, dispersal, aging, recruitment, inheritance of 

dominance status or pack break up, re-colonisation of vacant territories. 

4.3.3.4. Design concepts 

4.3.3.4.1. Emergence 

Pack and population level dynamics emerge from individual behaviour in the 

model, along with the timing of breeding. Individual’s lifecycles and behaviours are 

defined by empirical rules describing aging, as well as mortality and dispersal 

probabilities. Adaptation and fitness seeking are not explicitly modelled. They should 

be captured by the model, however, particularly through the rules describing dispersal, 

as the higher probability of dispersing at higher pack sizes is likely driven by likelihood 

of reproduction, and therefore individual fitness. 

4.3.3.4.2. Sensing 

Individuals are assumed to know their dominance status, age class (juvenile or 

adult) and pack size in order to inform their dispersal probability. They are also 

assumed to know the mortality status of the alpha, which informs their ability to change 

dominance status, and informs whether the pack breaks up. 
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4.3.3.4.3. Interactions 

The interactions modelled explicitly in the models are: adult survival and 

juvenile survival decrease at higher temperatures, the time between one breeding event 

and the next is longer at higher temperatures, adult survival increases with pack size, 

litter size increases with pack size, dispersal probability increases with pack size, the 

timing between one breeding attempt and the next increases with litter size and juvenile 

survival increases with litter size. Interactions implicitly modelled are litter size and 

dispersal probability fall with temperature. 

4.3.3.4.4. Stochasticity 

Temperature is drawn from a normal distribution to mimic the stochastic 

variation in temperature observed in the field. In order to determine death a random 

number is drawn from a uniform distribution between 1 and 0 and if the number was 

higher than the probability of survival the individual died, if it was lower the individual 

survived. The same was done for dispersal, but with dispersal probability as opposed to 

survival probability. To determine the fate of the pack after the alpha died a random 

number was drawn from a uniform distribution between 0 and 100 and if the number is 

less than or equal to 40 alpha status was inherited by a subdominant pack member, over 

40 and all subdominant individuals left the territory and entered the dispersal pool. 40% 

probability was used as this is the percentage of pack break-up (as opposed to pack 

inheritance) observed in the field. 

4.3.3.4.5. Observation 

For the purposes of model testing each individual is observed process by 

process. For model analysis only pack and population level variables are recorded, 

namely: pack size, inter-birth interval, litter size, pack longevity, number of dispersers 

(the total number of individuals in the dispersal pool in any one time-step), number of 

packs, population size and time to extinction. 

4.3.3.4.6. Initialisation 

Each territory is initially occupied by one alpha female and a number of 

subdominants, determined by selecting a number from a Poisson distribution with a 

lambda of 3 (the mean number of subdominant females in a pack from the field data). 

The time until the first breeding attempt was determined by selecting a random number 

from a uniform distribution of whole numbers between 1 and 11 (the mean inter-birth-

interval (in months) from the field data). The initial litter size is set to 4 female pups, 
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and from then on is determined by the litter size submodel. The model is then run for 

100 months at a mean (centred) temperature of 0, after which the evaluation of the first 

run starts. 

4.3.3.4.7. Inputs 

Temperature is selected from a normal distribution with a mean of 0, 

representing the mean daily maximum temperature over a period of 30 days, with 

variance (Ω) matching temperature variance from the weather station at the study site.  

𝑇𝑡~ 𝑁(0, Ω) 

 

 4.3.3.5. Submodels 

The basic equation population size, that is, the number of African wild dogs in 

packs in the model (dispersers were excluded from population size estimates) at the next 

time step (𝑁𝑡) is a function of the number of territories (𝐻), the number of individuals 

present in each pack in the previous time step( 𝑁𝑖,𝑡−1); the number of deaths in the 

Table 4.1: Symbols used in the models. Temperature refers to mean maximum temperature throughout. 

Symbol Variable 

H Number of territories in the model 

𝑁𝑡 Total number of adults (alpha and subdominant) at time t 

𝑁𝑖,𝑡 Number of adults (alpha and subdominant) in a pack at time t 

𝑁𝐷,𝑡 Total number of dispersing individuals at time t 

𝑁𝑖𝐷,𝑡 Number of dispersing individuals in a dispersal group at time t 

𝑁𝑖𝑑,𝑡 Number of deaths in a pack at time t 

𝑁𝑖𝑏,𝑡 Number of births at time t 

α, β, γ, δ, 

ε, 𝜁, θ, λ, 

μ, ξ, σ, φ, 

ω, Ω 

Constants. Further details in Table 4.2. 

𝑟𝑖 Inter birth interval for a pack 

𝑙𝑖,𝑡 Litter size for a pack at time t 

𝑙𝑖,𝑟−1 Litter size of a pack in the previous breeding event 

𝑇𝑡 Temperature at time t 

𝑇𝑖,𝑟−1 
Mean temperature in the denning period prior to the previous breeding event calculated as 

(
(𝑇𝑡−2+ 𝑇𝑡−1 + 𝑇𝑡)

3
) at time b-1 

𝑆𝑗,𝑡 Juvenile survival probability at time t 

𝑆𝑎,𝑡 Adult survival probability at time t 

𝑃𝐷,𝑡 Probability of dispersal at time t 

𝑃𝑝,𝑡 Probability that a dispersal group will occupy an empty territory at time t 

x,y Random numbers drawn from a uniform distribution between 1 and 0 
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current time step (𝑁𝑖𝑑,𝑡); the number of dispersals from that pack in the current time step 

(𝑁𝑖𝐷,𝑡); and the number of births in that time step  (𝑁𝑖𝑏,𝑡): 

𝑁𝑡 = ∑[𝑁𝑖,𝑡−1

𝐻

𝑖=1

− 𝑁𝑖𝑑,𝑡 − 𝑁𝑖𝐷,𝑡 + 𝑁𝑖𝑏,𝑡] 

If a pack goes extinct (𝑁𝑖,𝑡−1 = 0) then if there is a group of dispersing 

individuals (ND) in the dispersal pool they can join the population and form a new pack.  

 

Model parameters (Table 4.1) were derived from empirical data and functions 

determining the parameters within the individual based model took the same form as the 

model from which the estimates were derived, either Cox proportional hazard, in the 

case of adult survival (𝑆𝑎) and probability of dispersal (𝑃𝐷), or generalised linear 

models, in the case of juvenile survival (𝑆𝑗), litter size (l) and timing of breeding (b). 

The function to determine litter size took the form of a Poisson distribution as it was 

conducted on count data, the function to determine juvenile survival took the form of a 

binomial distribution and the function to determine timing of breeding took the form of 

a Gaussian distribution. 

4.3.3.5.1. Births 

Number of births (𝑁𝑏) was dependent on the timing of the next breeding attempt 

(𝑇𝑟𝑖): 

𝑁𝑏 = {
𝑙𝑖, 𝑖𝑓 𝑡 =  𝑡𝑟𝑖−1 + 𝑟𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The timing of the each breeding attempt was dependent on the temperature 

during the previous denning period of that pack (𝑇𝑖,𝑟−1) and the previous litter size of 

that pack (𝑝𝑖,𝑟−1), where 𝑟𝑖−1 is the timestep when the last litter was born. Temperature 

during the first three months of life (𝑇𝑖,𝑟−1) was calculated from the temperature over 

the three months prior to the juveniles emerging from the den. 

(
𝑇𝑡−2 +  𝑇𝑡−1 +  𝑇𝑡

3
) 

The inter birth interval was defined by a function of the temperature (𝑇𝑖,𝑟−1) and 

litter size (𝑙𝑖,𝑟−1) of the previous denning period: 
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𝑟𝑖 =  𝛼 + 𝛽𝑇𝑖,𝑟−1 + 𝛾𝑙𝑖,𝑟−1 

α, β and γ are constants defined by the generalized linear model run for inter 

birth interval. 

The estimate for inter birth interval (𝑟𝑖) was rounded to the nearest whole 

number to give the number of months between one breeding attempt and the next. 

The number of pups at three months of age (𝑙𝑖,𝑡) was determined by the number 

of adults in the pack at that timestep (𝑁𝑖,𝑡). The formula used to calculate the litter size 

is below, and symbol definitions can be found in Table 4.1:  

𝑙𝑖,𝑡 = 𝑒𝛿+ 𝑁𝑖,𝑡 

δ and ε are constants defined by the generalised linear model ran on litter size. 

The resulting number was then rounded up to the nearest individual to give a whole 

number. 

4.3.3.5.2. Number of deaths 

Number of deaths (𝑁𝑑) was dependent on the survival probability in both adults 

(𝑆𝑎) and juveniles (𝑆𝑗), characterised together as S: 

𝑁𝑑 = ∑ [{
1   𝑖𝑓 𝑦~𝑈(0,1) < 𝑆
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 ] 

𝑁𝑎𝑖,𝑡−1

𝑖=1

 

The probability of an individual juvenile’s survival at each time-step (𝑆𝑗,𝑡) was 

dependent on the size of that individuals birth litter at the time they permanently left the 

den (𝑙𝑖,𝑟−1) and the mean daily maximum temperature over the denning period 

following the birth of that individual (𝑇𝑖,𝑟−1). As the data from which the survival rate 

was estimated only contained the number of pups at 3 and 12 months of age, the 9th root 

was taken to obtain monthly survival rates.  

𝑆𝑗,𝑡 =  (
𝜁 + 𝜃𝑇𝑖,𝑟−1 + 𝜆𝑙𝑖,𝑟−1

1 + 𝜁 + 𝜃𝑇𝑖,𝑟−1 + 𝜆𝑙𝑖,𝑟−1
)

1
9

 

𝜁 , θ and λ are constants defined by the generalised linear model ran for juvenile 

survival (Table 4.2). 
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The probability of adult wild dog survival, including both alpha and 

subdominant survival, during that time-step (𝑆𝑎,𝑡) was dependent on pack size 

(𝑁𝑖,𝑡) and temperature (𝑇𝑡) in that timestep. The formula used to calculate the 

probability of survival for each individual adult is below (Table 4.1, 4.2): 

𝑆𝑎,𝑡 = 𝜇(𝑒ξ𝑇𝑡+σ𝑁𝑖,𝑡) 

µ, ξ and σ are constants defined by the Cox proportional hazards model on adult 

survival (Table 4.2). 

4.3.3.5.3. Dispersal 

Within the model only subdominant adults could disperse, as this is what is 

observed in the field. Number of dispersers (𝑁𝐷) was dependent on the probability of 

dispersal (𝑃𝐷): 

∑ [{
1   𝑖𝑓 𝑥~𝑈(0,1) < 𝑃𝐷

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 ]  

𝑁𝑎𝑖,𝑡−1

𝑖=1

 

Dispersal probability at each time step (𝑃𝐷,𝑡) was dependent on pack size in that 

timestep (𝑁𝑖,𝑡). The formula for individual dispersal probability is shown below, and 

symbol definitions can be found in Table 4.1: 

𝑃𝐷,𝑡 = φ(𝑒ω𝑁𝑖,𝑡) 

φ and ω are constants defined by the Cox proportional hazards model for 

dispersal. 

Once an individual dispersed it entered a dispersal pool, where it remained for 

two time steps before being lost to the population. Individuals in the model were lost to 

the population after two months as data from the study site indicates that wild dogs are 

dispersing for an average of 19.4 days. This is likely to be an underestimate, however, 

as the parameters are based on models of animals fitted with tracking collars only, but 

uncollared members of dispersal groups were discovered in new packs after 

significantly longer time periods (Woodroffe et al In Review b).  Individuals also 

dispersed if the pack breaks up after alpha death. When this happened all juveniles in 

the pack died. 
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4.3.3.5.4. Territory inheritance 

If any of the packs within the model broke up, leaving an empty territory, a 

dispersal group could then occupy that territory, starting a new pack. Each individual 

has an equal probability of occupying a territory and therefore larger dispersal groups 

have a higher chance of occupying an empty territory. The formula for the probability 

that a dispersal group would occupy an empty territory (𝑃𝑝) is shown below, and symbol 

definitions can be found in Table 4.1: 

𝑃𝑝,𝑡 = 𝑁𝑖𝐷,𝑡 (
1

𝑁𝐷,𝑡
) 

4.3.3.6. Full model 

The above parameters were combined into an individual based model; the 

formula for the number of individuals of all age classes within packs in the model is 

shown below: 

𝑁𝑡 =  ∑ [𝑁𝑖,𝑡−1 −  ∑ [{
1   𝑖𝑓 𝑥~𝑈(0,1) < 𝑃𝑑

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 ] −

𝑁𝑎𝑖,𝑡−1

𝑖=1
𝐻
𝑖=1

 ∑ [{
1   𝑖𝑓 𝑦~𝑈(0,1) < 𝑆
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 ] +  {
𝑙𝑖   𝑖𝑓 𝑡 = 𝑡𝑟𝑖−1 + 𝑟𝑖
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  ] 
𝑁𝑖,𝑡−1

𝑖=1     

 

4.3.3. Model parameterisation 

In order to parameterise dispersal, recruitment and survival within the individual 

based model I re-analysed the data from Woodroffe et al (2017), Woodroffe et al (In 

Review a) and Chapter 3 of this thesis. These re-analyses enabled us to estimate each of 

the vital rates on a monthly time-step and meant that estimates could be obtained which 

accounted for variables other than temperature that influenced survival and recruitment 

which were not included in the IBM such as land use type and rainfall. I used the 

estimates from these reanalyses to model relationships between pack size (the number 

of adults in a pack), litter size, inter birth interval (the period between the birth of one 

litter and the next), juvenile survival, adult survival, probability of dispersal and 

temperature (outlined below). Adults were defined as individuals over 12 months and 

juveniles between 3 and 12 months. The models in Woodroffe et al (2017), Woodroffe 

et al (In Review a) and Chapter 3 showed correlation as opposed to causation, but for 

the purposes of the individual based model causation has been assumed. In line with the 
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methods in Woodroffe et al (2017) and Chapter 3 maximum daily temperature was used 

as the measure of temperature. Maximum daily temperature has been found to correlate 

with the number of hours in the day during which it is cool enough for wild dogs to 

hunt, and multiple measures of vital rates and behaviour (Woodroffe et al., 2017; 

Rabaiotti and Woodroffe, 2019).  

The relationships between temperature and inter birth interval, litter size, and 

juvenile survival, were estimated through running generalised linear models using the 

data from Woodroffe et al (2017). Woodroffe et al. (2017) found that larger packs 

consistently produced larger litters. In order to obtain the estimates used to parameterise 

litter size in the individual based model a Poisson distributed generalised linear model 

with litter size as the dependant variable, and pack size as the independent variable, was 

run. Temperature was not included in the model as it was not found to have a significant 

impact (Woodroffe et al., 2017). 

Woodroffe et al (2017) showed a positive relationship between temperature in 

the previous breeding period (the three months in which African wild dogs have pups in 

the den) and inter birth interval, and a positive relationship between previous litter size 

and inter birth interval. To estimate the parameters needed to determine timing of 

breeding I therefore ran a Gaussian distributed generalised linear model, with inter birth 

interval as the dependant variable, and previous litter size and temperature during the 

previous breeding period as independent variables. 

Litter size and temperature during the first three months of a wild dog’s life 

(equivalent to the three months following the previous breeding period) were found by 

Woodroffe et al (2017) to influence juvenile survival, with litter size having a positive 

relationship with survival from 3 to 12 months and high temperatures reducing survival 

from 3 to 12 months. To obtain estimates of juvenile survival to inform the individual 

based model I ran a binomial generalised linear model with juvenile survival from 3 to 

12 months as the dependant variable and temperature in the first three months of life 

and litter size as dependant variables. 

Adult survival and dispersal datasets were analysed on a monthly time-step, with 

the mean daily maximum temperature within each month of the year and the mean 

number of adults in a pack over each month of the year taken.  
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Chapter 3 found that high maximum temperature was associated with lower 

adult survival and large pack size was associated with increased adult survival. To 

obtain estimates for adult survival to parameterise the individual based model I ran a 

Cox proportional hazards model with survival as the dependent variable and 

temperature and pack size as the independent variables. 

Woodroffe et al (In Review a) found individual wild dogs had a higher dispersal 

probability at large pack sizes. To obtain estimates for dispersal probability I ran a Cox 

proportional hazards model with dispersal events as the independent variable and pack 

size as the dependant variable and these were then used to parameterise the individual 

based model.  

Cox proportion hazards models were carried out using the survival package 

(Therneau and Grambsch, 2000) and generalised linear models were carried out using 

the lme4 package (Bates et al., 2015) in R version 3.3.2 (R Core Team, 2015). 

4.3.4. Elasticity analysis 

I performed an elasticity analysis to determine how robust the model was to 

uncertainty within the estimates that were obtained from the field data. I independently 

increased each of the parameters (Table 4.2) in the formulae for inter-birth interval, 

litter size, juvenile survival, adult survival and dispersal probability, as well as the mean 

and variance of the distribution from which temperature was drawn, by 1%, meaning 

positive values were multiplied by 1.01 and negative values by 0.99 respectively 

(Coulson et al. 2011). After each increase I re-ran the model for 100,000 months, before 

altering the next parameter. In order to test the impact of number of packs on extinction 

probability the model was also run with 8 and 10 packs.  By independently perturbing 

each parameter I aimed to determine which parameters contributed the most to the 

demography of the African wild dog, by observing changes in the parameters of interest 

(pack size, inter-birth interval, litter size, pack longevity, number of dispersers, number 

of packs, population size and time to extinction). 
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I also ran the model 

under warming of 0.5-5.5 

degrees at 0.5 degree 

intervals, for the model 

constructed with 9 and 30 

packs, to investigate the effect 

of increased mean 

temperature on the population. 

The model was run at for 10 

generation to estimate the 

population extinction risk 

within 10 generations. It was 

also run for 100,000 time 

steps to estimate time to extinction. 

4.3.5. Future projections 

 In order to explore the effect of rising temperature on the population of 

African wild dogs I ran the model under four future emissions scenarios, for 10 

generations, for both 9 and 30 territories. Rasters of current temperature estimates 

(1975-2013) and future predictions (from the HADGEM-2-ES climate models) of 

temperature for 2050 and 2070 across the study site were obtained at a resolution of 30 

arc seconds from the WorldClim climatic dataset (Hijmans et al., 2005). Raster layers 

for all four emissions scenarios – representative concentration pathways (RCPs) 2.6, 

4.5, 6.0 and 8.5 – were obtained for the years 2050 and 2070. I defined the study area by 

drawing minimum convex polygons around locations obtained from GPS-collared 

individuals monitored by the Kenya Rangelands Wild Dog and Cheetah Project, and 

then merged them to generate a single concave polygon. I then obtained predicted future 

change in temperature for each pixel across the study site by subtracting the current 

estimate of mean maximum daily average temperature across 12 months for each pixel 

from the corresponding future predicted mean maximum daily average temperature in 

2070 across 12 months. This series of calculations gave a layer comprising predicted 

change in temperature between current temperature estimates and future temperature 

predictions for 2070 for each pixel. This subtraction was repeated for all four 

representative concentration pathway predictions for 2070. The mean across each layer 

 

 

 

 

Table 4.2: Coefficients in the individual based model that were 

varied in the elasticity analysis, alongside the parameter value 

used in the model. 

Variable Coefficient Symbol Value 

IBI Intercept α 8.6404 

Impact of temperature β 0.9156 

Impact of litter size γ 0.5198 

Litter 

size 

Intercept δ 0.9622 

Impact of pack size ε 0.0457 

Juvenile 

survival 

Intercept 𝜁 -0.8528 

Impact of temperature θ -0.5542 

Impact of litter size λ 0.4413 

Adult 

survival 

Intercept μ 0.0294 

Impact of temperature ξ 0.1702 

Impact of pack size σ -0.1654 

Dispersal Intercept φ 0.0064 

Impact of pack size ω 0.10594 
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of temperature change were then taken to give average predicted change in annual 

temperature in the study site for each RCP.  

In order to predict future population trends under climate change the model was 

run for 600 time-steps, equivalent to ten generations, under all four representative 

concentration pathways for predicted change in temperature between current estimates 

and 2070. The model was also run using the estimates plus and minus the standard error 

from the models of the impact of temperature on juvenile survival, adult survival and 

inter-birth interval to obtain a high and a low prediction of the impact of temperature 

under each emissions scenario.  

4.3.6. Model Validation 

In order to validate the model, I estimated litter size, packs size and inter birth 

interval for the hottest and coolest 36 months for which I had data on all three variables 

(2002-2009) using the model constructed with nine territories. To do so I used cross 

validation, removing three years from the field data and used the remaining data to re-

calculate the model parameters. The model was then run 1000 times across 100,000 

time steps using the recalculated parameters and the temperature drawn from a normal 

distribution with a mean of the mean daily maximum temperature during the three years 

that were removed. I then tested whether the observed mean pack size, litter size and 

inter birth interval in the removed months fell within the standard error of the mean 

from the model outputs. A period of 36 months was chosen as it was a long enough time 

period to include at least two inter-birth intervals and breeding attempts. Model outputs 

were also visually compared with the empirical data to assess fit. 

4.4. Results 

4.4.1. Parameter Values   

The outputs of the model were realistic. 

Despite not being explicitly modelled within the 

IBM mean dispersal group size, mean packs size 

at formation and mean pack longevity predicted 

by the model were in line with values observed in 

the field (Table 4.3, Fig. 4.1). The number of 

packs remained high, indicating that empty 

territories were filled quickly (Table 4.3).  

 

 

Table 4.3: Mean population and pack 

parameters predicted by the model at 

mean temperatures across 1000 model 

runs of 100,000 time steps with 9 

territories 

Parameter Value 

Pack size 5.40 

Pack size on formation 3.62 

Litter size 3.92 

Inter birth interval (months) 10.95 

Pack longevity (years) 4.37 

Dispersal group size 3.23 

Population size 72.44 

Number of packs 8.95 
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4.4.2. Model Validation 

The model fit the field data adequately, with the predicted distributions of pack 

size, inter birth interval, dispersal group size and the size of the pack at formation 

approximately matching the distribution of the data (Fig. 4.1). Short lived packs were 

over-represented in the model predictions, and the distribution of litter sizes was 

narrower (Fig. 4.1), due to the fact the model was single sex and the number of pups 

having to be rounded to the nearest whole number.  

a) b)

c) 

f) 

d

e)

Figure 4.1 Density of model predictions and empirical data for a) pack longevity (years), b) pack size, c) inter-

birth-interval, d) litter size, e) dispersal group size and f) size of packs when they are first formed. The 

empiracle data for litter size, pack size  and starting pack size was divided by two to reflect the fact the mode 

lwas single sex. The empiracle data on dispersal group size was the number of females in th dispersal groups. 
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Cross validation of the hottest and coolest years produced predictions that were 

relatively consistent with the pack sizes, inter birth intervals and litter sizes observed in 

the field (Fig. 4.2), with standard errors overlapping between the field data and 

predicted values for all cases other than inter birth interval and pack size in the hottest 

years.  

 

 

 

4.4.3. Elasticity analysis 

All model variables were insensitive to 1% changes of the parameters in the 

model. Pack size and litter size were most elastic to dispersal parameters – both the 

intercept and the slope of the effect of pack size on dispersal probability, as well as the 

intercept for inter birth interval (Fig. 4.3). Pack longevity was most sensitive to adult 

survival due to the link between adult survival, alpha survival and pack break up (Fig. 

Figure 4.2 Observed and predicted values of inter birth interval, litter 

size and pack size. Error bars represent the 95% confidence interval. 
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Figure 4.3:  Elasticity of a) pack size, b) litter size, c) inter-birth interval, d) pack longevity (months), e) 

number of packs and f) population size to a 1% change in model parameters, and an increase and decrease 

in pack size by 1. Ten denotes ten packs in the model and eight denotes eight packs.  

a) b) 

c) 
d) 

e) f) 

4.2). The number of packs was most elastic to dispersal parameters and the intercept of 

inter birth interval (Fig. 4.3). Changing the number of packs in the model by 1 had no 

impact on extinction risk, and neither did a 1% change in any of the other parameters.  
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4.4.4. Impacts of high temperatures 

The model predicts that litter size and pack size are expected to be lower at 

higher temperatures, and there are fewer packs present on average. Individual packs are 

also predicted to persist for fewer years at high temperatures (Fig. 4.4). At higher 

temperatures the average predicted population size is lower (Fig. 4.4). Extinction risk 

within 10 generations for a carrying capacity of 9 packs (i.e. an area equivalent to 9 

territories) remains at zero until mean temperatures are on average 2.5°C higher (Fig. 

4.5) and when temperatures are 4.5 degrees hotter than current average temperatures 

extinction risk is 1 (Fig. 4.5). In the model of 30 territories extinction risk remains 0 at 

3.5°C and is 100% and 5.5°C (Fig. 4.5). Once extinction risk is greater than one there is 

a large difference in extinction risk between model runs of temperatures 0.5°C apart for 

both models run with both 9 and 30 territories (Fig. 4.5). 

4.4.5. Future projections 

Temperatures across the study site were predicted to rise between 1.6°C and 

3.9°C by 2070, in the best (RCP 2.6) and worst (RCP 8.5) case scenarios, respectively. 

RCP 4.5 was predicted to cause 2.5°C of warming by 2070 and RCP 6.0 was predicted 

to cause 2.9°C warming by 2070.  

When the model was run under the mean temperature increase for the best case 

emissions scenario (1.6°C warming) there was little change in population persistence 

over 10 generations for an area encompassing 30 territories, including when the model 

was parameterised using the high standard error measures for the impact of temperature 

on survival and inter birth interval (Fig. 4.4). Under the model runs which used the 

estimates (as opposed to plus or minus the standard error) the predicted inter birth 

interval was one month longer, at 12 months, under the best case scenario and mean 

pack longevity fell from 5.4 to 3 years (Fig. 4.4). Predicted pack size was 1.5 adult 

females lower on average, at 4 dogs as opposed to the 5.7 predicted by the model under 

current climatic conditions (Fig. 4.4). Lower pack size led to a predicted lower mean 

population size of 115 individuals as oppose to 175 under current climatic conditions. 

Number of packs, however, remained high with 30 packs present at the end of the 

model in the vast majority of runs (Fig. 4.4). There was little difference in litter size 

between predictions at current temperatures and those under the best case climate 

scenario (Fig. 4.4).  
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a) 

b)

c) 

d)

Figure 4.4: The impact of temperature increase (°C) on a) mean litter size, pack age and pack size over 10 

generations, b) mean Inter birth interval over 10 generations,  c) number of packs remaining 10 generations and 

d) population size after 10 generations. Curves are splines through predictions made for 0.5 degree intervals of 

increase in temperature. Points indicate the predictedions of the model under the predicted rise in temperature 

under four representative concentration pathways, which are marked with a dashed line. Bars represent model 

predictions based on model runs parameterised using the high and low standard error for the impact of 

temperature on survival and inter birth interval. 

 Litter size 

 Pack size 

Pack age 
(years) 

4.5 6.0 

4.5 6.0 

4.5 6.0 

4.5 6.0 
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 Under RCP 6.0 (2.5°C warming) pack size, pack longevity and litter size were 

predicted to be smaller than under the best case scenario (Fig. 4.4). Under the model 

runs which used the predicted inter birth interval was 1.5 months longer, at 12.5 

months, and mean pack longevity fell from 5.4 to 2 years (Fig. 4.4). Predicted pack size 

was 2.5 adult females lower on average, at 3 dogs as opposed to the 5.7 individuals 

predicted by the model under current climatic conditions (Fig. 4.4). Lower pack size led 

to a predicted lower mean population size of 80 dogs. Number of packs, however, 

continued to be high with 30 packs present at the end of the model in the vast majority 

of runs (Fig. 4.4). Predicted litter sizes were 3.5 as opposed to 4 predicted under current 

climatic conditions (Fig. 4.4).  

The temperature increases predicted under RCP 4.5 (2.8°C) predicted inter birth 

interval was 2 months longer, at 13 months, and mean pack longevity fell from 5.4 to 

1.8 years (Fig. 4.4). Predicted pack size was half the size predicted under current 

climatic conditions at 2.7 dogs (Fig. 4.4). Lower pack size led to a predicted lower mean 

population size of 75 individuals, 100 fewer than predicted under current climatic 

conditions. Predicted number of packs present in the model, remained high but dropped 

below 30 to 29 (Fig. 4.4). Predicted litter sizes were 3.4 as opposed to 4 predicted under 

current climatic conditions (Fig. 4.4).  

Under RCP 8.5 (3.9°C warming), predicted inter birth interval was 3 months 

longer, at 14 months, and mean pack longevity fell from 5.4 to 0.9 years (Fig. 4.4). 

Predicted pack size was less than half the size predicted under current climatic 

conditions at 2 dogs (Fig. 4.4). Predicted average number of packs present in the model 

fell to 25 (Fig. 4.4). Lower pack size and number of packs led to a predicted lower mean 

population size of fewer than 50 individuals, less than a third of the numbers predicted 

under current climatic conditions. Predicted litter sizes were 3.2 as opposed to 4 

predicted under current climatic conditions (Fig. 4.4).  
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Under RCP 2.6 the model predicted an extinction risk of 0 within 10 generations 

for populations made up of both 9 and 30 territories. Whilst extinction risk was 

predicted to be above 0 at RCP 4.5 and 6.0 with 9 territories, other than in the model 

where the low standard error was used, predicted extinction risk remained at 0 with 30 

territories in the model (Fig. 4.5).  Under RCP 8.5, with 30 territories in the model the 

predicted extinction risk was11.5% under RCP 8.5 with the high standard error 

parameters predicting an extinction risk of 93%, and the model parameterised using the 

low standard error values predicting an extinction risk of 0% (Fig. 4.5). With 9 

territories present, with the model parameterised on the low standard error models 

predicting an extinction risk of 35% and 100% when the high standard error parameters 

were used (Fig. 4.5). 

 

 

 

 

Figure 4.5: The impact of temperature increase (°C) on extinction risk over 10 generations with 9 and 30 

oacks in the population. Lines join predictions made for 0.5 degree intervals of increase in temperature. 

Points indicate the predictedions of the model under the predicted rise in temperature under four 

representative concentration pathways, which are marked with a dashed line. Bars represent model 

predictions based on model runs parameterised using the high and low standard error for the impact of 

temperature on survival and inter birth interval. 

6.0 4.5 
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Figure 4.6: The impact of temperature increase (°C) on the number of generations until the population 

goes extinct, for the model run 9 and 30 packs.  

RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6 

 

 

 

Even over 100,000 time-steps extinction risk remained low until temperatures 

were 4.5°C higher with 30 territories present in the model, and 3.5°C higher with 9 

territories present in the model (Table 4.4). Time to extinction was greater for the model 

with 30 packs compared to 9 packs across all increases in temperature, and became 

increasingly smaller over an increase of 0.5°C once temperatures were above 2°C in the 

model of 9 territories and 3°C in the model of 30 territories (Fig. 4.6). The model of 9 

territories predicts comparatively rapid extinction for all RCPs other than 2.6, wheras 

the model of 30 territories only predicted this at RCP 8.5 (Fig. 4.6). 

Table 4.4: Extinction risks and time to extinction over 100,000 time-steps at mean maximum 

temperatures between 0 and 5.5°C higher than current mean maximum temperatures, for the model 

run with 9 and 30 territories. Time to extinction was calculated from model runs where the 

population went extinct only. 

Number of territories: 9 30 

Mean daily maximum 

temperature increase 

(°C) 

Extinction 

risk 

Mean time to 

extinction 

(generations) 

Extinction 

risk 

Mean time to 

extinction 

(generations) 

0-2  0 - 0 - 

2.5  0.08 85 0 - 

3  0.86 59 0.08 1316 

3.5 1 12 0.61 284 

4  1 11 0.99 130 

4.5 1 8 1 19 

5 1 7 1 10 

5.5 1 6 1 8 
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4.5. Discussion 

Ambient temperature had widespread impacts on the outcomes of the individual 

based model, at both a pack and population level. Packs were predicted to be smaller, 

and to persist for less time, at higher temperatures through a combination of temperature 

impacts on survival and recruitment. At a population level, population size, defined as 

the number of individuals present in all packs in the model, was predicted to be lower at 

higher temperatures and extinction risk was predicted to be higher at temperature 

increases of 2.5°C or greater. Whilst a high number of territories within a population 

buffered the impacts of high temperatures, a 300% increase in carrying capacity of a 

population only increased temperature resilience by half a degree, and high 

temperatures resulted in smaller, shorter lived packs, and population declines, even 

when pack numbers were high. 

Climate change impact predictions which rely solely on species traits or 

correlations between distribution and climate are likely to underestimate threats to 

species facing demographic climate change impacts (Sinclair et al., 2010; Urban et al., 

2016). The underestimation of these threats is likely to be particularly acute for highly 

mobile species which have in recent history become highly range restricted due to 

human activities, but have wide climatic niches.  In contrast with my model results, 

trait-based assessments would be expected to classify wild dogs as relatively 

invulnerable to climate change because of the fact they have high reproductive rates 

(potentially facilitating recover from perturbation), they are highly mobile (potentially 

allowing them to shift their geographic range to newly-suitable habitat unaided) and 

historically lived across a wide range of climatic conditions (expected to indicate 

flexibility to cope with a range of climatic conditions) (Foden et al., 2013; Urban et al., 

2016). My model incorporating the demographic impacts of temperature indicates the 

impact of rising temperatures on population viability is likely to be more severe than 

has previously been assumed. My model shows that impacts of high ambient 

temperatures on reproduction (Woodroffe et al., 2017) and survival (Chapter 3) can 

combine to threaten population viability.  

Our IBM predicts that African wild dog populations are likely to be sensitive to 

climatic conditions, with the empirically observed impacts of high temperatures on 

adult survival, juvenile survival and timing of breeding predicted to reduce population 

sizes and ultimately to increase population extinction risk. In my model, lower adult and 



 

115 

 

juvenile survival at high temperatures, combined with a longer period between one 

breeding attempt and the next, was together predicted to reduce the size of each pack in 

the population. Pack size effects, presumed to be generated by cooperative behaviour, 

amplified the effects of high temperature: lower adult and juvenile survival at high 

temperatures lead to smaller packs, which produce fewer pups and also experience still-

lower adult survival. Moreover, smaller packs produced fewer dispersal groups, 

reducing the chance of any empty territory becoming occupied. When the population 

was simulated under 4.5°C of warming, the population eventually became extinct 100% 

of the time, even with 30 territories in the model. Even at 2.5°C of warming however, 

extinction risk within 10 generations was higher than under current temperatures, and 

was predicted to be over 50% at 3.5 degrees warming when there were 9 territories 

available to the population, consistant with the median population size across the 

speceis’ range. 

When these finding are applied to the temperature increases that African wild 

dogs are projected to experience in the Kenya study site by 2070, it becomes clear that 

climate change is likely to have negative impacts on this population. Even under the 

best case scenario the IBM predicts population changes, with smaller, shorter-lived 

packs, and a consequent fall in population size. Under the middle scenarios, RCP 4.5 

and RCP 6.0, the predicted number of packs present in the population at any one time is 

predicted to be lower, the population size was greatly reduced and when the population 

was modelled with 9 territories the extinction risk is predicted to be higher than under 

the current temperature regime within 10 generations. In the worst case scenario for 9 

territories the population died out within 10 generations in 95% of simulations and 

mean populations sizes across 10 generations were just 12% of those predicted under 

current temperatures. Even with 30 packs in the model extinction risk was significantly 

higher within 10 generations under the worst case emissions scenario, and 92% after 

100,000 time-steps. 

With 30 territories in the model extinction risk was greater than 0 at 3.5 °C, 1°C 

higher than with 9 territories in the model. When the model was run for a longer time 

period, however, the difference between the temperatures at which extinction risk was 

above 0 was only 0.5°C. Nontheless, the higher temperature at which extinction risk 

rises and the longer time to extinction with 30 packs in the model indicate that 

increasing the size or connectivity of populations may have a buffering effect on the 

impacts of high temperature on wild dog populations. Only four remaining populations 
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of wild dogs contain 30 packs or more, however (Woodroffe and Sillero-Zubiri, 2012), 

as the Kenya population has been reduced to a much lower number of packs since a 

disease outbreak in 2017. 

Our results show that most population characteristics were insensitive to the 

demographic parameters in the model, which is unsurprising due to the feedback 

between recruitment, mortality, pack size, and dispersal, meaning that group level 

parameters change relatively little under small shifts in other demographic parameters, 

as an increase in recruitment leads to an increase in dispersal, and a decrease in survival 

leads to a decrease in dispersal, offsetting the impacts of survival and recruitment on 

group size. Population size was most sensitive to recruitment parameters, particularly 

those informing the inter birth interval, as a smaller inter birth interval means 

recruitment keeps packs larger, and also parameters informing dispersal probability, 

likely due to the fact dispersers which did not occupy a territory only survived for 2 

months in the model. Number of packs in the population was equally sensitive to adult 

survival and recruitment. An increase or decrease in the number of packs in the model 

by 1 did not impact extinction risk, suggesting that populations can remain stable with 

one greater or fewer packs. 

The IBM predictions fit the data adequately, even for demographic variables for 

which the model was not parameterised, such as dispersal group size. The variance of 

litter size was lower than in the empirical data, due to the fact that litter size was not 

stochastic, and simply a whole number dependant on pack size. There were a greater 

number of small, shorter-lived packs predicted by the model than were found in the 

data. This difference is likely due to an element of survival or reproduction in the first 

year of a packs existence that is not captured in the model. Cross validation showed that 

the model made predictions within one standard error of the observed data for the mean 

pack size, litter size and inter birth interval in most cases, however in the hottest years 

the mean inter birth interval was lower and the mean pack size higher than predicted. As 

I had limited observation time during which all three parameters were available it means 

that the time period used for validation, 3 years, was quite short, and therefore sensitive 

to stochastic events unrelated to temperature.  

As my model was female only, the impacts on populations may be conservative, 

as the presence of male dispersers for the females to start a pack with was assumed. In 

reality, a suitable group of males may not be present in the population, or may be 
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relatives of the group of females, and therefore a dispersal group may be unable to form 

a pack. Inbreeding avoidance is very strong in wild dogs, and packs will generally not 

breed if there are no unrelated individuals of the opposite sex present. The model also 

ignores the impact that the death of the alpha male may have on a pack; packs within a 

real population would be expected to break up when the alpha male dies if there were no 

suitable males to take over. This means that the modelled population is likely to be 

more stable than real populations of the African wild dog. There were no population 

density parameters in the model, and the population density had a maximum density of 

the number of territories within the population. There have been few studies into how 

population density impacts the number of packs that can be supported in a population in 

African wild dogs populations, however previous work has found that increases in 

population density lead to greater range overlap as opposed to reduction in the size of 

territories (Woodroffe, 2011a). This has the potential to impact the species’ dispersal 

behaviour and pack formation.  

This model highlights the potential of individual based demographic models to 

identify environmental conditions under which population viability is reduced. This 

approach could then be combined with projections of future climate to determine areas 

where the species is most likely to persist under climate change. By identifying areas 

where a species has the highest and lowest population viability under future climatic 

conditions models such as this can be used to target conservation interventions, for 

example areas where increasing adult or juvenile survival rates would improve 

population viability in the species. As the model was parameterised using data from a 

single population, the results may not be as representative of other populations, 

particularly as in most of the species’ range breeding is seasonal, with inter birth 

interval fixed at approximately 12 months (McNutt et al., In Review). For species with 

multiple long term study sites, as is often the case for both charismatic megafauna and 

economically important species, it would be possible to parameterise simple individual 

based models using data from different sites. 

These results demonstrate how long term field data can be used to predict 

population level effects of environmental change on species, revealing where species 

are most likely to undergo the largest and smallest impacts, and where they are most 

likely to persist under future environmental conditions. It can also be used to identify 

how much environmental change a species is resilient to, determining “tipping points” 

after which populations are likely to go extinct. The findings of this study have 
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implications for how researchers predict climate change impacts on species, and 

highlight the extent to which relatively simple mechanistic population models can be 

used to predict the impacts of climate change on population viability. My findings also 

raise further concerns about declines in long term field based studies across 

conservation biology as a whole (Hughes et al., 2017) as, without long term monitoring 

across a range of weather conditions, mechanistic predictions are not possible. In cases 

where long term field data are available mechanistic individual based population models 

can shed new light on climate change threats and enable predictions of future population 

trends of species. 
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Plate 5: Juvenile African wild dog, Mpala Ranch. 
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Chapter 5 Emissions scenario determines 

extinction risk for an endangered species, 

the African wild dog 

5.1. Abstract 

Previous studies have shown that climate change is likely to have a negative 

demographic impact on the African wild dog, Lycaon pictus. Here, I use an Individual-

Based Model, parameterised for three demographic scenarios, to make spatially-explicit 

predictions of the impact of climate change on population sizes and extinction risk 

throughout the species’ range. Wild dog populations were simulated for the year 2060 

under four representative concentration pathways of global carbon emissions. 

Simulations predict declines over all of both the historic and current range of the 

species. Areas in the current, possible and recoverable range which are predicted to 

undergo the smallest population declines were concentrated in East Africa, whereas the 

areas predicted to undergo the largest future declines were in Southern African, 

specifically Botswana, South Africa, Namibia and Angola. Quantitative differences in 

the predictions from each demographic scenario suggest that other threats, such as 

human-wildlife conflict and domestic dog disease, likely plays a role in determining the 

climatic threat to populations. These findings have implications for conservation 

planning for the African wild dog, as well as how the risk of climate change to species 

can inform estimation of threat status for the IUCN Red List. 

  



 

 

 

Graphical abstract 



 

 

 

5.2. Introduction 

Climate change, long acknowledged as a future threat to species, is rapidly 

becoming a current threat, with the extinction of species such as the Bramble Cay 

melomys, Melomys rubicola (Waller et al., 2017), and the golden toad, Incilius 

periglenes (Pounds and Crump, 1994), heralded as the early signs of an increasing trend 

in climate-caused extinctions. The scale of climate change impacts on biodiversity have 

been predicted to overtake those of land use change by 2070 (Newbold, 2018). Climate 

change differs from many other species threats, including land use change, in that even 

well enforced protected areas provide little protection, unless those areas are specifically 

placed to mitigate the effects of climate change. On top of this, climate change is a 

threat which is both gradual and difficult to reverse, occurring over time scales that do 

not lend themselves to evaluation under established extinction risk assessments 

(Thomas et al., 2004; Thuiller et al., 2005). Identifying which species are most at risk 

from climate change, and the most suitable areas for species persistence into the future, 

are essential for informing future conservation interventions if they are to be successful 

in preventing climate-driven species extinctions (Correia et al., 2015). 

A myriad of methods for assessing climate change risk to species have emerged 

within the scientific literature. These aim to identify which species are at risk from 

climate change, as well as where species are most likely to persist under future climatic 

conditions. One of the most established of these methods is correlative ecological niche 

models, which identify which areas will have a suitable climate for species under future 

climate projections. Whilst these models are convenient in cases where there is a need 

for assessment of species where data are limited (Pearson and Dawson, 2003), or when 

ecologists aim to assess multiple species relatively rapidly (Sinclair et al., 2010), 

multiple drawbacks of this methodology have been raised (Green et al., 2008; Kearney 

and Porter, 2009). Models including the mechanism by which species are impacted by 

climate change have increasingly been found to outperform correlative models both in 

terms of sensitivity and when tested on simulated datasets (Yates et al., 2000; Pagel and 

Schurr, 2012; Zurell et al., 2016), and as a result there have been increasing calls for the 

incorporation of these mechanisms into models predicting climate change risk 

(McMahon et al., 2011; Urban et al., 2016). The mechanisms recommended for 

inclusion include, but are not limited to, dispersal ability, species interactions, 

evolution, environment, physiology and demography (Urban et al., 2016).  By explicitly 
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incorporating such traits, models assessing climate impact can better predict which sites 

will be more or less suitable under future climatic conditions, and can potentially take 

into account resilience of both species and ecosystems to climatic impacts through 

demography, physiology, species interactions or adaptation – either through phenotypic 

changes or evolutionary shifts.  

Demographic impacts on species are of particular importance as they present the 

most direct way in which threats impact extinction risk. Demographic impacts of 

climate change have been recorded for a myriad of species, including impacts on 

recruitment, survival and dispersal (Doak and Morris, 2010; Dybala et al., 2013; Merow 

et al., 2014; McCauley et al., 2017; Velarde and Ezcurra, 2018). Studies are 

increasingly combining impacts on these different vital rates into population models 

which predict population persistence under future climatic conditions. These models 

rarely have a spatial element (Keith et al., 2008), however, despite the fact that the 

inclusion of both spatial and demographic factors has been found to be important in 

determining population extinction risk under climate change (Pearson et al., 2014). 

Where studies of the impact of climate change on population trends do include a spatial 

component they are rarely spatially explicit, and where they are they are often applied to 

a single population (Keith et al., 2008; Anderson et al., 2009), meaning that population 

trends and extinctions risk are estimated for a specific population only, rather than for 

the species as a whole.  

The IUCN Red List is the most widely used method for assessing the threat 

status of species worldwide. It categorises species based on the size of the area they 

inhabit, population trends and extinction risk (Mace et al., 2008). The IUCN Red List 

criteria have been found to be an effective method for assessing the extent of threats to 

species and have been shown to be useful in identifying specific threats (Hayward, 

2011; Harris et al., 2012).  There have been a number of concerns raised, however, that 

the criteria may not be well placed to assess extinction risk resulting from climate 

change due to the fact that impacts of climate change are both pervasive and gradual, 

meaning that identifying the risks may come at a point where it is too late to implement 

effective conservation interventions (Thomas et al., 2004; Thuiller et al., 2005; 

Akçakaya et al., 2006). Species with short generation times were thought to be 

particularly likely to be assessed as having a lower risk from climate change than their 

true risk (Akçakaya et al., 2006). Despite these issues, and biases in which species are 

assessed as being threatened by climate change (Trull et al., 2018), the IUCN Red List 
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has still been used to rank the ‘importance’ of threats to species, leading to claims that 

‘only 19% of  threatened or near threatened species face threats from climate change’ 

(Maxwell et al., 2016).  

A number of studies have found that the Red List criteria do in fact, counter to 

concerns, provide sufficient warning of extinction risk resulting from climate change, 

allowing conservation actions to be identified and implemented (Keith et al., 2014). 

Work establishing the criteria’s ability to predict extinction risk in time to implement 

action is still sparse, however, and has focused on single, small-bodied species with 

short generation times, where conservation actions such as captive breeding 

programmes are likely to be relatively swift to implement (Keith et al., 2014; Stanton et 

al., 2015). Stanton et al (2015) highlighted that although the Red List should provide 

decades of warning of climate induced extinctions, conservation interventions should be 

implemented once a species is listed as Vulnerable, as 50% of modelled species became 

extinct within 20 years of being classified as Critically Endangered. The proposal that 

conservation interventions need to be implemented once a species is listed as 

Vulnerable would mean that establishing climate change threats to species already 

classified as threatened is likely to be particularly important. 

The African wild dog (Lycaon pictus) is a social carnivore currently listed as 

Endangered on the IUCN Red List (Woodroffe and Sillero-Zubiri, 2012). Once found 

throughout most of Sub-Saharan Africa, today it is restricted to just 7% of its historic 

range, with less than half of their current range falling within protected areas 

(Woodroffe and Sillero-Zubiri, 2012). Although the main threats to the species have 

previously come from habitat loss, disease and deliberate and accidental killing by 

people (Woodroffe and Sillero-Zubiri, 2012), recent findings have highlighted 

demographic impacts of high temperatures, which suggest that climate change might 

also threaten species persistence (Woodroffe et al., 2017). African wild dog recruitment 

is lower when air temperatures are higher (Woodroffe et al., 2017) and adult survival 

has also been shown to fall after spells of hot weather (Chapter 3). When the effects of 

ambient temperature on vital rates at one site in Laikipia, Kenya, were simulated using 

an individual based model, profound demographic effects were predicted, with 

population size expected to fall and extinction risk to rise at high temperatures (Chapter 

4). However, assessing the potential impacts of climate change on the entire species 

requires expanding this modelling effort to account for geographical variation in both 

demography and climate. 
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In this chapter, I use the individual based model used in Chapter 4 to project the 

effects of future climate change on wild dog populations throughout the species’ 

geographic range. I represent varying levels of other human impacts by simulating three 

different demographic scenarios, and varying levels of global carbon emissions by 

simulating four Representative Concentration Pathways (RCPs). Finally, I use the 

findings to predict changes in population size and extinction risk in the species’ current 

range under future climate change, comparing my findings with the IUCN red list 

criteria. 

 

5.3. Materials and Methods 

5.3.1. Model Structure 

The model took the form of a single sex, individual based model (IBM) based on 

the one described in Chapter 4. The model consisted of nine territories, reflecting the 

median number of wild dog packs found in populations across the species’ current range 

(Woodroffe and Sillero-Zubiri, 2012). Each territory could contain one wild dog pack, 

consisting of a single dominant female, plus subdominant adult females and juvenile 

females. Individuals in the model were characterised by their age and dominance status. 

Juveniles were aged 3 to 12 months and adults were over 12 months of age. Individuals 

were not included prior to 3 months of age, as measuring litter size at birth is 

challenging when dens are difficult to access (Woodroffe et al., 2017).  Number of pups 

leaving the den at three months of age was therefore used where most models would use 

births in the model. Individuals were characterised as either dominant or subdominant, 

and only a single individual was dominant in each pack at any time step.  

Unlike in the model outlined in Chapter 4, the timing between one breeding 

attempt and the next was fixed at 12 months, and occurred seasonally as, in the majority 

of the African wild dog’s range, breeding occurs seasonally at the coolest time of year 

(McNutt et al., In Review). Sub models for recruitment and adult survival within the 

IBM were parameterised based on data from three sites, to represent three demographic 

scenarios. 
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5.3.2. Demographic scenarios 

The model was modified to give three demographic scenarios, representing 

different levels of human impact. Each demographic scenario was then evaluated using 

predicted temperature data across the entire historic range of the species. The 

demographic parameters for the population models were obtained from datasets 

covering African wild dog recruitment, mortality and dispersal, and were used to create 

three demographic scenarios based on three field sites. Recruitment data, i.e., data on 

litter size and juvenile survival, for sites in Kenya, Botswana and Zimbabwe were 

obtained from Woodroffe et al (2017). Across all three sites, juvenile survival was 

higher at higher litter sizes and litter size was higher at higher pack sizes (Woodroffe et 

al., 2017). Adult mortality and pack size data for the same three sites were obtained 

from Chapter 3 of this thesis. Data on dispersal were obtained from Woodroffe et al (in 

Review a), however this data was only available for the Kenya site, meaning that the 

dispersal dynamics in all three demographic scenarios followed those in Chapter 4, with 

higher dispersal probabilities at higher pack sizes. All models were run on a monthly 

time step. 

5.3.2.1. Demographic Scenario 1 

Demographic Scenario 1 was based on data from the Kenya study site. As 

outlined in Chapter 4, because temperature over a 30 day period was found to influence 

adult survival at the Kenya site, temperature was drawn from a normal distribution with 

a mean of the mean maximum temperature for that month (𝑇𝑛).  

𝑇𝑡~ 𝑁(𝑇𝑛, Ω) 

Unlike in the model outlined in Chapter 4, which was based on an aseasonal site, 

seasonality was simulated in the model by drawing the mean temperature from a vector 

which cycled between the hottest and coldest months, determined by the difference 

between the hottest and coldest moths, referred to in this paper as the seasonality. The 

mean temperature in each time step (𝑇𝑛) was therefore determined by the month (n), the 

mean annual temperature(𝑇𝑐) (which was centred on the mean, and so always 0 under 

current climatic conditions) and the seasonality (𝑇𝑣), which was the temperature 

difference between the hottest month and the coldest. 

𝑇𝑛 =   𝑇𝑐 + 
𝑚𝑛

6
 𝑇𝑣, 𝑛 = 1, … , 12,  
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where {𝑚𝑛}𝑛=1
12 = {0,1,2,6,2,1,0, −1, −2, −6, −2, −1} 

Adult survival, as in Chapter 4, was lower when the temperature in that time 

step was higher, and higher at larger pack sizes. Pups permanently left the den at three 

months of age, and this occurred in the month following the denning period, and 

therefore juveniles were defines as individuals between 3 and 12 months of age. 

Denning season temperature was determined by the mean of the temperature in previous 

three months, as in Chapter 4. Also in line with the model outlined in Chapter 4, 

denning season temperature negatively impacted juvenile survival (Table 5.1). 

5.3.2.2. Demographic Scenario 2 

Demographic Scenario 2 was based on data from the Botswana study site. The 

structure of the Botswana demographic scenario only differed from scenario 2 in the 

scale at which temperature impacted adult survival. Temperature in the Botswana 

scenario was determined in the same way as in the Kenya demographic scenario, 

however adult survival in the Botswana demographic model was impacted by the mean 

daily maximum temperature over the current and previous two time steps, the 

equivalent of temperature over 90 as opposed to 30 days. Adult survival was lower 

when the mean temperature across the three months was higher, and, as with the Kenya 

demographic scenario, higher at higher pack sizes (Table 5.1), but constants were 

changed in line with the datasets from the Botswana site.  

5.3.2.2. Demographic Scenario 3 

Demographic Scenario 3 was based on data from the Zimbabwe study site. At 

the Zimbabwe site, adult mortality was not associated with ambient temperature and so, 

for the Zimbabwe scenario, I modelled adult mortality as a constant probability, and 

temperature was determined simply by drawing a random number from a normal 

distribution with a mean of the difference between current and future temperatures in 

the denning period (𝑇𝑤) . Large litter size at three months was associated with low 

ambient temperatures during the denning period in Zimbabwe, and so the litter size sub 

model included both denning season temperature, defined as the mean temperature of 

the three months prior to birth, and pack size. Juvenile survival was dependant on litter 

size only (Table 5.1). Constants were changed in line with the datasets from the 

Zimbabwe site. 
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5.3.3. African wild dog range 

The historic, current, recoverable and possible range of the African wild dog was 

obtained from the Range Wide Conservation Program for Cheetah and African Wild 

Dog’s (RWCP) estimates, which were determined by the RWCP to assess population 

declines and persistence in the species range (IUCN/SSC, 2008; IUCN/SSC, 2012; 

IUCN/SSC, 2016). The historic range is where the species is believed to have lived 

before wide-spread human caused extirpations and is the area across which the models 

were ran. The current range is where the species has been verified to still live today, the 

possible range is where experts have determined that the species may still be living but 

it has not been verified, and recoverable range is where experts have determined to be 

suitable for the recovery of the species. 

 

Table 5.1: Population variables and their influence on other population variables in the three scenarios 

based on data from Kenya,  Botswana, and Zimbabwe 

 Contributing variables (direction) 

Demographic 

Scenario: 

1: Kenya 2: Botswana 3: Zimbabwe 

Temperature Mean  maximum 

temperature over 

1 month 

Mean maximum 

temperature over 3 

months 

Mean maximum 

temperature over 3 

months 

Litter Size Pack size (+) Pack size (+) Pack size (+) 

Temperature during 

the first three months 

of life (-) 

Juvenile survival Litter size (+) 

Temperature 

during the first 

three months of 

life (-) 

Litter size (+) 

Temperature during 

the first three months 

of life (-) 

Litter size (+) 

 

Adult survival Pack size (+) 

Temperature (-) 

Pack size (+) 

Temperature (-) 

- 

Inter birth 

interval 

Fixed at 12 

months 

Fixed at 12 months Fixed at 12 months 

Dispersal Pack size (+) Pack size Pack size (+) 
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5.3.4. Climate change projections 

5.3.4.1. Data on current climate conditions 

I evaluated two commonly used global climate datasets, CHELSA (Karger et al., 

2017) and WorldClim (Hijmans et al., 2005), against meteorological data from the three 

sites for which the demographic scenarios were parameterised. The CHELSA dataset 

was chosen over WorldClim as its estimates of current temperature conditions matched 

the meteorological data across the three study sites more closely (Fig. 1). The CHELSA 

dataset includes mean daily maximum temperatures for each month of the year, 

averaged across the years 1979-2013, and interpolated across the globe at a resolution of 

30 arc seconds. Rasters of current mean maximum temperatures for each month of the 

year were extracted from the CHELSA dataset to cover the historic range for the 

African wild dog (IUCN/SSC, 2008; IUCN/SSC, 2012; IUCN/SSC, 2016) using the 

raster package (Hijmans, 2017) in R version 3.3.2 (R Core Team, 2016), which was 

used for manipulating spatial data and spatial calculations throughout.  

 

Figure 5.1: The difference in the mean annual daily maximum temperature and the seasonality 

between data from the weather stations at the study sites and the CHELSA and WorldClim current 

temperature estimates. Seasonality was defined as the difference between the mean daily maximum 

temperature in the hottest and coldest month.  
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5.3.4.2. Projections of future climate 

Rasters of projected mean maximum temperatures for 2061-2080 across the 

historic range of the African wild dog were also extracted from the CHELSA dataset. 

The layers extracted were predicted future mean daily maximum temperature for each 

of the 12 months of the year. Predictions from the HADGEM-2-ES climate model were 

chosen as these predictions are commonly used in mechanistic species distribution 

models under climate change (McQuillan and Rice, 2015; Gouveia et al., 2016; 

Courtois et al., 2016; Fourcade, 2016; Gül et al., 2018). All four available representative 

concentration pathways (RCPs), 2.6, 4.5, 6.0 and 8.5, were used as I wished to obtain 

results for all potential future policy angles which will impact future global 

temperatures.  

5.3.4.3. Change in temperature 

Models were run on the difference between current temperatures and future 

projections as I assumed adaptation of African wild dogs to local temperature regimes. I 

created a series of rasters representing the projected temperature change between the 

present time and 2061-2080, by subtracting, for each raster square across the species’ 

historic range, and each month of the year, the estimated mean daily maximum 

temperature under current conditions, from the projected mean daily maximum 

temperature in the same month under future conditions. This process was repeated for 

each of the RCPs, to give an array of 48 rasters, corresponding to 12 months and four 

RCP scenarios. I used the 12 temperature change layers representing change for each 

month of the year to calculate the mean annual temperature variable (𝑇𝑐) for input to the 

demographic model, giving four temperature change layers, one for each RCP.  

In addition to these monthly rasters, I generated another array of rasters 

corresponding to projected temperature changes during the denning season. First, a 

layer was created to represent current denning-season temperatures, by averaging the 

mean daily maximum temperatures for the three coolest months of the year (June, July 

and August for the Southern hemisphere, and November, December and January for the 

Northern hemisphere). This process was then repeated for the predicted temperature 

datasets for each of the four RCPs. The current denning-period temperature layer was 

then subtracted from each of the four future denning-period temperature layers, to give 

four layers of predicted change in denning season temperature (𝑇𝑤) under the four 

different RCPs. 
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Each of the 8 rasters, the four of 𝑇𝑐  and the four of 𝑇𝑤, were then resampled to 

give a pixel size of 9000km2. 

5.3.4.4. Projected annual range in maximum temperature 

Projected annual range in maximum temperature (𝑇𝑣,) was defined as the 

difference in temperature between the months with the highest and lowest mean daily 

maximum temperature. I first generated raster layers representing the highest and lowest 

monthly mean maximum daily temperatures in the year for 2061-2080. The coldest 

layer was then subtracted from the hottest layer to produce the future 𝑇𝑣 raster. This 

layer was then re-sampled to give a pixel size of 9000km2. The values in this layer were 

then rounded to the nearest 0.5C as the model was relatively insensitive to changes in 

seasonality lower than this, and to reduce the number of model runs needed for each 

temperature value (Fig. 5.2). 

I used these temperature change layers to calculate 𝑇𝑣  for input to the 

demographic model.  

5.3.5. Projecting the demographic impacts of climate change 

I explored geographical variation in climate change impacts on wild dog 

populations by running the demographic model for an array of values for 𝑇𝑐  and 𝑇𝑣. 

Figure 5.2 Predicted extinction risk and population size values at 0 

an 0.5 °C Tv. 
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This array was chosen to represent the temperature variation projected to occur across 

the species’ historical range. To identify the temperature values to include in the array, 

the minimum and maximum values of 𝑇𝑐, 𝑇𝑤  and 𝑇𝑣,  were extracted from all 16 raster 

layers representing 𝑇𝑐 , 𝑇𝑤,  and 𝑇𝑣,  under four future climate change scenarios. These 

minimum and maximum values were then used to create a matrix representing 

combinations of projected changes in 𝑇𝑐 and 𝑇𝑣, at 0.1°C and 0.5°C intervals 

respectively, spanning the range of observed values, and a vector of all possible values 

of 𝑇𝑤, at 0.1°C intervals. 

For each set of relevant temperature values, I ran the model 1000 times, for 600 

time steps, equivalent to 10 generations. As in Chapter 4 the model was burnt in for 100 

time-steps at an average temperature of 0°C (denoting no change in temperature from 

present day). The models for Demographic Scenarios 1 and 2 were run for each 

combination of change in 𝑇𝑐 and 𝑇𝑣. As the only environmental variable needed for 

Demographic Scenario 3 was temperature in the denning period, the model for this 

scenario was run for each predicted value of 𝑇𝑤. All three demographic scenarios were 

run for values representing the historic range as the driver of demographic impacts were 

unknown, and each site not only varied in climate but also in human pressure and lion 

density, among other variables. By running all three scenarios for temperatures 

representing the historic range this enabled us to project the full range of future 

population responses to rising temperature for each location within the historic range, 

regardless of future changes in human and predation pressure. 

Population size was extracted from all models at the start of the model, and after 

120, 180, and 600 time steps, equivalent to two, three, and ten generations (Woodroffe 

and Sillero-Zubiri, 2012). Extinction risk, defined as the proportion of runs in which the 

population went extinct, was calculated for 180, 300 and 600 time steps, equivalent to 

three, five and ten generations (Woodroffe and Sillero-Zubiri, 2012). The numbers of 

generations after which the data were extracted was chosen to be in line with those 

needed for comparison with the IUCN Red List category criteria (Woodroffe and 

Sillero-Zubiri, 2012). A generation was considered to be 5 years long in line with the 

IUCN Red List assessment for the species (Woodroffe and Sillero-Zubiri 2012) 

For each set of input variables (𝑇𝑐 and 𝑇𝑣), the mean starting and remaining 

population sizes across the 1000 runs at those values was taken and converted to 
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percentage remaining population. The proportion of times the simulated populations 

went extinct was converted to an extinction risk on a scale of 0 to 1. 

These model outputs were then used to generate maps of projected population 

decline and extinction risk, by matching the input variables in the model (Tc and Tv for 

Demographic Scenarios 1 and 2, Tw for Demographic Scenario 3) with the values of the 

raster pixels for the layers across the species’ historical range. The resulting layers of 

percentage population remaining at two, three and ten generations and extinction risk at 

three, five and ten generations were then clipped to the current, possible and recoverable 

range of the species. Mean values of predicted remaining population were taken across 

each polygon in the current, recoverable and potential ranges to give predicted 

population declines in these areas. As in the model in Chapter 4, wild dogs could 

disperse between territories, however they could not disperse between populations, 

represented by a single raster square in the generated maps. 

5.3.6. Comparison with Red list criteria 

The species is currently classified as Endangered, based on the size of the global 

population and the size of the largest subpopulation (Woodroffe and Sillero-Zubiri, 

2012). Based on this information a number of criteria do not apply, and therefore the 

relevant Red List criteria are: A, which considers declines in population size, Area of 

Occupancy or Extent of Occurrence, over 3 generations; C, for the Endangered category 

only, which considers the number of mature individuals combined with population 

declines over 2 generations; and E, which considers modelled extinction risk over 3 and 

5 generations. 

The currencies used in IUCN Red List species assessments are global population 

decline, global extinction risk, area of occupancy and extent of occurrence. I calculated 

predicted global population decline across the current species range by summing the 

starting population sizes from all the pixels within the species’ resident range, and 

likewise summing the ending population sizes, then dividing one by the other, for each 

of four emissions scenarios and all three demographic scenarios. I calculated global 

extinction risk for the species by taking the lowest extinction risk predicted for any 

pixel in the species’ current range, for each of the four emissions scenarios and each of 

the three demographic scenarios. 
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Area of occupancy is the size of the geographic area that the species occupies. 

To calculate this measure, I used the maps of extinction risk to calculate the total 

geographic area covered by pixels in which extinction risk (over three and five 

generations) was estimated to be lower than 0.5. The percentage decline in area of 

occupancy was calculated by expressing future predicted species range as a percentage 

of current species range. This calculation was performed for all 12 climate and 

demographic scenarios. 

The extent of occurrence is defined as a standardised measure of the area within 

which all occurrences of a species exist (IUCN, 2019). To calculate predictions for 

future extent of occurrence I drew a minimum convex polygon around all pixels where 

extinction risk was estimated to be below 0.5 and calculated the area of this polygon.  

I used these estimates to predict the Red List threat category for the African wild 

dog for the climatic conditions predicted for the year 2060. My assessment is not, 

therefore, equivalent to a formal IUCN Red List assessment, which would use 

population trends over future generations starting in the present day. Moreover, threats 

other than temperature, such as predicted future land use change and future human 

population trends, were not taken into account within my informal assessment. 

Nevertheless, the assessment has heuristic value in quantifying the extinction risk to the 

species using a widely-recognised set of criteria, and in evaluating how well those 

criteria perform in evaluating climate change impacts.  

5.4. Results 

5.4.1. Population trends and persistence 

5.4.1.1. Demographic scenarios and emissions scenarios 

Population sizes were predicted to decline across the species range under all four 

emissions scenarios in all three demographic scenarios (Fig. 5.3 and 5.4, Appendix 2.1). 

As expected, declines projected under the best case emissions scenario, RCP 2.5, were 

the smallest, and declines projected under the worst case pathway, RCP 8.5, were the 

largest, under all four demographic scenarios (Fig 5.3).  

In Demographic Scenario 1, which was based on data from the site in Kenya, 

outside protected areas, all areas of the current range were predicted to have declines of 

between 10 and 20%, with the majority of pixels projected to have future population 
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declines of around 30% (Fig 5.4, Appendix 2.1). The middle emissions scenarios, RCPs 

4.5 and 6.0, had a wide distribution in predicted population declines, with declines of 

between 45% and 95% under RCP 4.5 and declines of between 30% and 90% under 

RCP 6.0 (Fig 5.4, Appendix 2.1). Projections of temperature increase by 2060 are 

greater under RCP 4.5 than 6.0 as emission under RCP 4.5 are above those of RCP 6.0 

until the year 2060 (Barros et al., 2014). The projections under the worst case scenario 

in Demographic Scenario 1 showed extensive declines of up to 100%, with most areas 

of the historic and current ranges showing declines of 90% or more (Fig 5.4, Appendix 

2.1). 

 

Figure 5.3: mean predicted percentage remaining population across the historic range of the 

African wild dog after 10 generations under the climatic conditions predicted for RCP 2.6, 4.5, 

6.0 and 8.5 across all three demographic scenarios. Current confirmed range is marked in red. 

RCP 2.6 RCP 4.5 

RCP 6.0 RCP 8.0 
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In Demographic Scenario 2, which was based on data from the site with the 

lowest human impact (in Botswana), population declines were projected to be lower 

than those in Demographic Scenarios 1 and 3. In Demographic Scenario 2 under the 

RCP 2.5 emissions scenario population declines of between 10 and 40% were projected 

across the range, with median population decline of 24% (Fig 5.4). The middle 

emissions scenarios, RCP 4.5 and 6.0, gave similar projections, with declines of 

between 55 and 75%, however the median percentage declines were around 5% higher 

under RCP 4.5 (Fig 5.4). In Demographic Scenario 2.under the worst case emissions 

scenario, RCP 8.5, population declines of between 45 and 85% were projected, but all 

populations were predicted to persist even under RCP 8.5, with as population declines 

of under 100% were predicted across the historic range (Fig 5.3, Fig 5.4).  

Declines projected under Demographic Scenario 3 were similar in magnitude to 

projections under Demographic Scenario 1. Larger declines across the current range of 

between 10 and 55% were projected under the best case emissions scenario, however, 

with most areas in the species current range projected to experience declines of around 

45% (Fig 5.4, Appendix 2.1). Under the middle emissions scenarios declines of between 

40 and 95% were predicted. The distribution of the declines under RCP 4.5 showed 

projected declines around 63% and 80% were most common within the current range, 

and declines of around 60% were most common under RCP 6.0. Under the worst case 

emissions scenario, RCP 8.5, most declines in the current range were around 95%. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Predicted percentage remaining population across the current of the African wild dog after 10 
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3 

2 

Figure 5.5: Predicted local extinction risks within the historic 

range of the African wild dog after 10 generations under the 

climatic conditions predicted for RCP 8.5 in Demographic 

Scenarios 1, 2 and 3. Current confirmed range is marked in red 

1 

 Although marked 

population declines were predicted 

throughout the species range under 

most scenarios, predicted 

extinction risks were low other 

than in the worst case emissions 

scenario (Fig. 5.5, Appendix 2.2). 

Demographic Scenario 1 predicted 

an extinction risk of 100% across 

large areas in the North and South 

of the historic range, including 

across multiple sites in the current 

species range (Fig. 5.5). Under 

RCP 8.5 44% of the current range 

was predicted to have an 

extinction risk of over 50%. In 

Demographic Scenario 2, 

extinction risk remained relatively 

low with the highest extinction 

risk of a single pixel predicted to 

be 15% even under the worst case 

emissions scenario.  In 

Demographic Scenario 3, 

extinction risks of up to 95% were 

predicted within the historic range 

and extinction risks of between 10 

and 75% were predicted across the 

current range. 20% of the current 

range was predicted to have an 

extinction risk of over 50% (Figure 

5.5, Appendix 2.2). 
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5.4.2. 5.4.2. Projected population declines in the current, possible 

and recoverable range 

  

Figure 5.6: Map of population declines in the resident, recoverable and possible ranges of the African wild 

dog. Shading indicates mean predicted remaining population across  all demographic scenarios and 

emissions scenarios. Outline colour indicates range type. 

Resident 

Recoverable 

Possible 

Range type 
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Figure 5.7: Scatter plot of the estimated size of each extant wild dog population according to the 2012 IUCN 

Red List assessment vs the predicted mean future population declines across demographic scenarios and 

climate change pathways.  

5.4.2.1. Projected population declines with the species’ current range 

There are currently 54 wild dog populations within the species current range 

(IUCN/SSC, 2008; IUCN/SSC, 2012; IUCN/SSC, 2016). Of these, 48 (89%) were 

predicted to undergo mean declines of over 50% across all representative concentration 

pathways and demographic scenarios, with 52 (96%) predicted to undergo declines of 

this magnitude in Demographic Scenario 1, 11 (20%) in Demographic Scenario 2 and 

52 (96%) in Demographic Scenario 3 when a mean was taken across all emissions 

scenarios. The populations predicted to have the largest declines are all located in 

Southern Africa, with all eight of the populations with predicted declines of over 65% 

located in the Southern part of the continent, specifically in Botswana, Zambia, 

Namibia, Angola and Botswana (Fig 5.6). The largest remaining population of African 

wild dogs, that is, the resident population in the Grater KAZA landscape at the nexus of 

northern Botswana, Western Zimbabwe, NE Namibia, SW Zambia and SE Angola, was 

predicted to experience a decline of 67% and the second biggest population, found in 

the Selous-Niassa area of southern Tanzania and northern Mozambique, was predicted 

to experience a decline of 57% (Fig 5.7). The combined wild dog population inhabiting 

the eight populations predicted to experience the greatest declines at the time of the 

IUCN Red lists previous assessment in 2012 was 1832, comprising 24% of the global 

total at that time. 
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The populations in the confirmed current range predicted to experience the 

smallest declines were mostly in East Africa, particularly Kenya, with some towards the 

East coast of Africa as far south as KwaZulu-Natal in South Africa (Fig. 5.6). Of the 

eight populations predicted to have mean population declines of 50% or less, six were in 

Kenya, The number of individuals in these populations at the time of the IUCN Red 

lists previous assessment in 2012 was 640, representing 8% of the estimated global 

population. However, the impact of temperature on the inter-birth interval was not 

included in the models, and would lead to larger predicted declines at sites with 

aseasonal breeding. These populations include Tsavo, Samburu-Laikipia, the Serengeti-

Mara and potentially populations in the south of Ethiopia and South Sudan. When the 

model for Demographic Scenario 1 was run for the average temperature change across 

these sites with IBI included, greater population declines were predicted under all four 

emissions scenarios, particularly in the worst case scenario where predicted population 

declines were 20% higher than in the model when this variable wasn’t included (Table 

5.2). There was also a large difference in predicted extinction risk in the worst case 

emissions scenario (Table 5.2). 

Table 5.2 Mean percentage population declines predicted by the model with and without the inclusion of 

temperature effects on IBI. 

 Without IBI With IBI 

Emissions 

scenario 

Extinction risk Projected population 

decline 

Extinction risk Projected population 

decline 

2.6 0 2% 0 3% 

4.5 0.002 8% 0.005 13% 

6.0 0 6% 0.001 10% 

8.5 0.29 63% 0.76 83% 

5.4.2.1. Potential for wild dog persistence within possible range 

The patterns of projected declines among populations which might remain, 

currently undetected, in the possible range (IUCN/SSC, 2008; IUCN/SSC, 2012; 

IUCN/SSC, 2016) followed those predicted in the current range, with greater declines in 

Southern Africa and lesser declines in Eastern Africa and along the coasts. Six of 58 

(10%) possible remaining populations of wild dogs were predicted to experience 

declines of over 65%, if indeed these populations are still extant (Fig 5.6). Of these six, 

the majority were in Southern Africa, with three in Angola, one in Botswana, and one in 

Zambia, as well as a large area of potential range in Algeria (Fig. 5.6). If populations 

were assumed to be persisting, undetected, in all of the areas currently designated as 
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“possible range”, only two populations were predicted to undergo declines of less than 

50% in the future, namely Rahole in Kenya and Morene-Borana in Ethiopia (Fig 5.6).  

5.4.2.1. Potential for wild dog restoration within the Recoverable range 

Of 36 areas designated as recoverable range (IUCN/SSC, 2008; IUCN/SSC, 

2012; IUCN/SSC, 2016), the areas predicted to be the least suitable for African wild 

dogs under future climatic conditions were located in Southern and West Africa. Three 

sites currently considered potentially suitable for wild dog recovery are predicted to 

undergo declines of 65% of greater, should wild dogs become re-established in those 

areas; of these, two were located in Zambia and one in Mali (Fig 5.6). The Serengeti-

Mara ecosystem and the Bili-Garambara range which spans the northern region of the 

Democratic Republic of the Congo were also predicted to undergo declines of 65% or 

more if wild dogs still persist there (Fig. 5.6). The areas predicted to undergo the 

smallest declines should wild dogs become re-established there were along the East 

coast of the continent, with two of the four recoverable ranges predicted have mean 

declines of 50% or less on the coast of South Africa – namely a small population in 

Zululand and the Greater Fish River, and in East African, namely The Kenyan border 

near Mkomazi in Kenya and Saadani in Tanzania (Fig 5.6). 

5.4.3. Assessment using Red List criteria 

The two currencies used to assess Criterion A of the IUCN Red list were 

population declines and area of occupancy declines over 3 generations. Only 

Demographic Scenario 1 under predicted future climatic conditions in the RCP 8.5 

pathway reached the threshold for vulnerable when using the decline in area of 

occupancy as the criterion for assessment. All other declines in area of occupancy were 

too small to qualify under any of the three categories.  

When decline in population numbers was used as the measure of likely 

extinction risk, however, 11 out of the 12 scenarios showed population declines in line 

with an IUCN Red List category of Vulnerable or higher, with the exception being 

Demographic Scenario 2 under the best case emissions scenario, RCP 2.5 (Table 5.2). 

Under RCP 4.5 and 6.0 the population declines predicted for Demographic Scenario 2 

met the criteria for classification as Vulnerable under criterion A, and under 

Demographic Scenarios 1 and 3 they met the criteria for classification as Endangered. 

Under the climatic conditions predicted under RCP 8.5, the model predicted population 
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declines sufficient to meet the criteria for classification as Endangered under 

Demographic Scenario 2, and sufficient to meet the criteria for classification as  

Critically Endangered in Demographic Scenarios 1 and 3 (Table 5.2). 

  

 Only the criteria for Endangered status could be assessed for Criterion C as 

there are more than 250 individuals of the African wild dog remaining in the wild, 

meaning that the species was not suitable for assessment as critically endangered. The 

models of Demographic Scenarios 1 and 3 predicted population declines meeting the 

criteria for a species to be categorised as Endangered under RCPs 4.5, 6.0 and 8.5, with 

Demographic Scenario 1 also predicting declines in line with classification as 

Endangered under RCP 2.6. Demographic Scenario 2 did not predict declines in line 

with the endangered category under any emissions scenario, however (Table 5.3). 

Table 5.3:  Assessment against red list criterion A2, if applied to the current global population in 

the year 2060 – projected population decline across the current range in three generations 

Demographic 

Scenario 

Emissions scenario Projected population 

decline (%) 

Red List Status 

1 (Kenya) 2.6 30.23 V 

 4.5 63.93 EN 

 6.0 59.63 EN 

 8.5 94.53 CR 

2 (Botswana) 2.6 21.85 - 
 4.5 40.40 V 

 6.0 38.15 V 

 8.5 59.01 EN 

3 (Zimbabwe) 2.6 32.30 V 

 4.5 64.79 EN 

 6.0 59.45 EN 

 8.5 90.49 CR 

Table 5.4:  Assessment against red list criterion C2, if applied to the current global in the year 2060  

– percentage population decline across the current range in two generations. 

Demographic Scenario Emissions 

scenario 

Projected population 

decline (%) 

Endangered 

1 (Kenya) 2.6 24.77 Yes 

 4.5 52.28 Yes 

 6.0 49.09 Yes 

 8.5 78.08 Yes 

2 (Botswana) 2.6 0.00 No 

 4.5 1.00 No 

 6.0 2.00 No 
 8.5 5.10 No 

3 (Zimbabwe) 2.6 19.26 No 

 4.5 42.68 Yes 

 6.0 39.66 Yes 

 8.5 57.57 Yes 
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 As the model under all demographic scenarios predicted an extinction risk 

above 0.5 for at least one subpopulation of the current range under all RCPs none of the 

predictions met the required standard for classification under Criterion E. 

5.5. Discussion 

My model predicted global population decline of the African wild dog under all 

four emissions scenarios, in all three demographic scenarios. The regions expected to 

experience the greatest population declines include Southern Africa, particularly around 

the Kalahari Desert. The emissions scenario had a strong impact on the magnitude of 

the projected declines, determining both population persistence and extinction risk 

across much of the current range. Unlike previous studies, which found little impact of 

emissions scenario on threat status (Keith et al., 2014; Stanton et al., 2015), the 

emissions scenario determined the predicted future IUCN Red List category. For 

example, when assessed in 2060 under Red List criterion A under Demographic 

Scenarios 1 and 3, the global population would be classified as Vulnerable under the 

best case emissions scenario but Critically Endangered under the worst case emissions 

scenario. This finding indicates that the future global policy on climate change is likely 

to have a significant impact on the likelihood of species persistence in the African wild 

dog. 

The level of predicted population declines across all three demographic 

scenarios was dependant on representative concentration pathway, with greater declines 

predicted for emissions scenarios representing higher emissions scenarios. The mean 

population declines across both the current and historic ranges of the African wild dog 

was over 20% lower in the best case emissions scenario compared to the middle 

emissions scenarios. The worst case emissions scenario resulted in catastrophic declines 

across all demographic scenarios, with declines of up to 100% in Demographic 

Scenarios 1 and over 90% in Demographic Scenario 3, resulting in high extinction 

predicted extinction risk across much of the current and historic range 

Projected declines varied between the three demographic scenarios. 

Demographic Scenario 2, based on data from the Botswana study population, which had 

the lowest human impact, was associated with smaller predicted declines in population 

size than were Demographic Scenarios 1 and 3, based on data from Kenya and 

Zimbabwe, which are sites experiencing higher human impact. Under RCP 8.5 in 
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Demographic Scenarios 1 and 3, population extinctions were predicted across large 

parts of the species range. Extinction risk under Demographic Scenario 1 remained low, 

however, with a maximum extinction risk of 15% in any 9,000km2 grid cell. It is 

conceivable that the lesser population declines and lower extinction risks predicted 

under Demographic Scenario 2 might reflect local adaptation to high temperatures at the 

Botswana study site from which the demographic parameters were estimated. In 

contrast the Kenya study site (on which Demographic Scenario 1 was based), is an 

aseasonal site where the temperature is more consistent and local adaptation to high 

temperature might be less likely. The Zimbabwe site that informed the Demographic 

Scenario 3 is also seasonal, however, and experiences peak temperatures even higher 

than those at the Botswana site (Woodroffe et al., 2017), which would suggest that the 

lower human impacts or higher connectivity at the site are what reduces the impact of 

temperature on populations.  

The Zimbabwe population is smaller, has greater human pressure and higher 

lion density than the Botswana site (Woodroffe et al., 2017). The fact that high 

temperatures impact the number of pups living to 3 months, unlike the other two sites 

where it impacts pup survival from 3-12 months, may be due to a separate mechanism 

by which recruitment is impacted by high temperatures, or the fact that this site has the 

highest denning season temperatures (Woodroffe et al., 2017). The site characteristic 

which drives the early loss of pups, combined with higher baseline adult mortality than 

the other two sites, is likely to be what is driving higher predicted declines in 

Demographic Scenario 3 when compared to Demographic Scenario 2.  

The finding that the demographic scenario based on parameters from the site 

with the highest connectivity and lowest human impacts is associated with smaller 

impacts of rising temperatures suggests that lower human pressures may be beneficial to 

African wild dog resilience in the face of climate change. Where other studies have 

found that protected areas may not prevent population declines in mammals resulting 

from climate change (Geldmann et al., 2013; Spooner et al., 2018), these findings 

suggest that areas with lower human impact may play a role in protecting the African 

wild dog from climate change-induced population declines. The Botswana population 

on which from which the Demographic Scenario 2 parameters were estimated is also 

large with high connectivity, containing around 24% of the worlds remaining African 

wild dogs (KAZA TFCA, 2019). As human population increases across Africa and 

habitat fragmentation may reduce the ability of wild dog populations to cope with rising 
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temperatures. These findings provide further evidence (O’Neill et al, In Review) that 

improving connectivity between remaining populations of African wild dogs is an 

important conservation intervention, which is likely to increase the species resilience. 

The scenario was parameterised on data from individuals inhabiting the centre of the 

greater KAZA landscape, however, where there is particularly low human impact and 

little interaction with humans or livestock. This demographic scenario may be 

optimistic for other parts of the population even within the Greater KAZA landscape, 

and areas with this low level of human impact which are suitable habitat for the African 

wild dog exist in very few parts of Africa (Woodroffe and Sillero-Zubiri, 2012). 

The areas of the current range predicted to face the greatest population declines 

were in Southern African, in particular Angola, Botswana, Namibia and South Africa. 

This finding has important implications for the persistence of the species, as Botswana 

currently supports almost a quarter of the remaining wild dog population (KAZA 

TFCA, 2019). KAZA is home to the largest remaining population of African wild dogs 

but is predicted to one of the areas hardest hit, with declines predicted for that 

subpopulation of between 30% (Demographic Scenario 2, RCP 2.5) and 100% 

(Demographic Scenario 1, RCP 8.5), with average declines of over 65% across all 

demographic and climatic scenarios. 90% of current wild dog populations reside in 

areas predicted to experience mean population declines of over 65% in the future, and 

28% of the remaining wild dog population lives in areas predicted to have mean 

population declines of over 90% in the future. My findings in Chapter 3 indicated, 

however, that large populations may have a small amount of buffering from climate 

induced population declines, so the connectivity in the Greater KAZA region (Marsden 

et al., 2012) may somewhat dampen the predicted impacts.  

Areas predicted to experience the smallest declines were mostly located in East 

Africa, in particular Kenya, Ethiopia and Tanzania. Demographic Scenario 1, which 

showed the greatest magnitude of declines, was parameterised on a study site in this 

region, however, and therefore may be the most appropriate scenario for the region. 

Most of the sites in the region, unlike the Kenya site the model was parameterised on, 

are protected areas, however, so human threats are likely to be lower, which would 

mean temperature impacts are likely to be lower. This model is likely to be somewhat 

conservative in some areas of East Africa, specifically those between around 7°N and 

7°S where populations breed aseasonally. When impacts of temperature on inter-birth 

interval were included predictions of population declines in the region the predicted 
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population declines were closer to those predicted for Southern Africa, meaning that 

those populations in East Africa that have aseasonal breeding may be hit harder despite 

lower levels of projected climate change. This highlights the importance of taking into 

account localised adaptation when predicting climatic impacts on species.  

If wild dogs continue to inhabit the areas designated as possible range 

(IUCN/SSC, 2008; IUCN/SSC, 2012; IUCN/SSC, 2016), the potential populations in 

Kenya and Ethiopia were predicted to undergo the smallest declines. This finding 

suggests that the species may have a greater chance of persisting in these areas under 

future climatic conditions, especially populations in Ethiopia with seasonal breeding. 

These regions should be prioritised for surveys aimed at identifying potentially 

important wild dog populations which are not currently being conserved or monitored. 

On the other hand, South Africa, Zambia, Angola and Algeria appear to present lower 

priorities for identifying remaining populations, based on climate change risk. 

If wild dogs were assumed to have been re-introduced to the sites identified by 

experts as potentially recoverable range, the populations in East Africa and coastal areas 

were predicted to be impacted by climate change to a much lesser extent than those 

elsewhere, suggesting that recovery opportunities may exist in this region. The majority 

of the recoverable range of the species that was predicted to have the smallest 

population declines as a result of climate change, should populations be assumed to 

have been reintroduced to these areas, were in East Africa and along the Eastern coast 

of the continent, so these areas should be considered a potential priority for future 

reintroductions, however there are not large areas of recoverable range in these regions. 

The emissions scenario determined which IUCN Red List category the species 

was predicted to be placed in under future climatic conditions. Population reductions 

predicted under the best case emissions scenario (RCP 2.6) met the criteria for 

Endangered status under assessment for criteria A2 and C2 only for Demographic 

Scenario 1. Under the middle emissions scenarios, however, the predicted future IUCN 

Red List threat status was as Endangered under criteria A2 and C2 in Demographic 

Scenarios 1 and 2. Under the worst case emissions scenario (RCP 8.5), the predicted 

IUCN Red list category was Critically Endangered for the Demographic Scenarios 1 

and 3 under Criterion A2. Whereas other studies have found that RCP has little 

influence on the likelihood of population persistence and threat status of species 
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(Raxworthy et al., 2008), the level of carbon emission is predicted to play a key role in 

determining the threat status in the African wild dog.  

My model predicted that RCP 8.5 would be expected to lead to extreme 

population declines under all three demographic scenarios, and multiple population 

extinctions in the species under two out of three demographic scenarios. It is clear that 

temperature increases at this level would have very significant impacts on the suitable 

range remaining for the species. Even under the middle two RCP scenarios, population 

declines of 40% or higher are predicted across most of the species range within three 

generations. 

The predictions made by these models are conservative, for three reasons. First, 

they assume a stable temperature from now until 2060 before a change in temperature in 

line with future predictions. In reality, the temperatures will rise slowly, and whilst 

declines will happen earlier, they will also happen more gradually, which means the 

declines related to climate change may not meet the IUCN Red List criteria, which are 

assessed over just three generations. This further highlights challenges in using the 

IUCN Red List criteria for assessing climate change threat, and means that threat level 

is unlikely to change early enough to allow time for successful conservation actions to 

be carried out. Second, the predictions of extinction risk and population declines do not 

take into account changes in weather variables other than temperature. Specifically, they 

assume that rainfall patterns will remain unchanged, when in fact many of these areas 

are expected to experience changes in rainfall patterns under future climate change 

predictions. Southern Africa, where I predict the greatest temperature impacts, is also 

predicted to experience lower rainfall (Niang et al., 2014), potentially exacerbating the 

impacts I predict. Third, my model ignores future land use change and increases in 

human population density. Currently, the biggest threat to African wild dogs is habitat 

loss, and therefore for lands outside very large protected areas it is likely that human 

activity, and not climate change will be the primary threat to those populations. These 

three factors mean that my estimates of threat level and extinction risk are likely to be 

conservative. Combining these models with future predictions of land use change would 

help shed further light on the likely future extinction risk of remaining populations, and 

would likely show greater population declines. 

The model implicitly assumes localised adaptation to temperature conditions, by 

using current temperatures as the base temperature and only taking into account future 
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increases. Whilst localised adaptation has been widely studied in pathogens (Laine, 

2008; Sternberg and Thomas, 2014; Mariette et al., 2016), and considered several 

species of invertebrates (Declerck et al., 2001; Valladares et al., 2014; Roy et al., 2015) 

and plants (Souther and Mcgraw, 2011; Bocedi et al., 2013), little work has been done 

on this phenomenon in mammals (Bocedi et al., 2013). Whilst adaptation of African 

wild dogs to local climate conditions would be expected, particularly as temperature 

variability at seasonal sites is far greater than that in aseasonal sites, levels of adaptation 

may be lower than assumed by the model. Localised adaptation should be investigated 

further as it has implications for species re-introductions – wild dogs taken from East 

Africa might be unlikely to survive if translocated to Southern Africa, for example. 

Likewise, wild dogs reintroduced to the East African recoverable areas might be less 

well adapted to East African temperature regimes if transplanted from Southern Africa. 

The threat from climate change differs from many other threats in that climate 

change affects species across their range, regardless of the level of other, more 

localised, human impacts. A wild dog pack living deep inside a larger, well-maintained 

protected area might be unaffected by anthropogenic killing, domestic dog disease, or 

habitat degradation. But it would nevertheless suffer the human impacts caused by 

climate change. This paper presents predictions of the impacts of climate change in 

isolation from other threats such as habitat destruction, and therefore the results 

presented provide a conservative estimate of future population declines, based on the 

current occupied range remaining stable. For species that have undergone extensive 

range contraction, such as the African wild dog, models of demographic effects in their 

current range are likely to be crucial for establishing where the species is most likely to 

persist in the future, and to establish where conservation efforts should be focused to 

ensure species survival.  
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 Plate 6: Uncollared adult African wild dog, Laikipia, Kenya 
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Chapter 6 Discussion 

6.1. General discussion 

In this thesis, I explored how rising temperatures under future climate change 

are likely to impact African wild dog populations and examined the species’ potential 

for behavioural adaptation to high temperatures through shifting their timing of activity. 

In this final chapter I will summarise my findings and discuss their wider relevance to 

the fields of global change ecology and conservation science. 

In Chapter 2, I demonstrated that African wild dogs are unlikely to be able to 

compensate fully for high temperatures by shifting their timing of hunting and 

becoming more active at night. Nocturnal hunting was constrained by moonlight, which 

will not become more available as the climate changes. Failure to compensate for high 

daytime temperatures by hunting at night was particularly marked during the denning 

period, when the adults have pups to guard and feed. The inability of African wild dogs 

to compensate for high temperatures during the denning period likely explains the 

observed fall in recruitment following hotter denning periods. 

In Chapter 3, I demonstrated that African wild dogs have lower adult survival at 

high temperatures across 3 sites. The impact of high temperatures varied between sites 

and was related to the level of human pressure and seasonality. The principal cause of 

death in Zimbabwe was snaring, and mortality due to this cause was not associated with 

ambient temperature. Mortality from non-human causes was higher when ambient 

temperatures were high at the sites in Botswana and Zimbabwe. In contrast, in Kenya 

the principal causes of death were infectious disease and direct human killings, and 

mortality due to these causes was higher at high ambient temperatures.  

In Chapter 4, I used an Individual-Based Model to examine the effects of high 

temperatures on African wild dog population dynamics in Laikipia, Kenya, and to 

predict the effects of future climate change. The model predicted that pack sizes, 

number of packs in the population and litter sizes would all fall at high ambient 

temperatures. This fall in population size was associated with a large increase in 

extinction risk once temperature increases were above a certain threshold. The worst 

case emissions scenario had very high rates of extinction for population sizes comprised 

of both 9 and 30 territories, however extinction risks were lower with 30 territories in 
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the model, particularly over 10 generations, and the larger populations went extinct at 

temperatures half a degree higher than populations made up of 9 territories (the median 

population size for the species (Woodroffe and Sillero-Zubiri, 2012)). The emissions 

scenario impacted the extinction risk in both population sizes, with worse emissions 

scenarios resulting in larger predicted population declines and shorter times to 

extinction. 

In Chapter 5, I identified the geographic areas most likely to remain suitable for 

African wild dogs under future climate change scenarios. Three population models, 

representing different patterns of seasonality and human pressures, were run under four 

different future emissions scenarios. I found that individual based models can be used to 

identify where populations of a species are most and least likely to persist under 

predicted future climatic conditions. These models highlighted that remaining 

populations in Southern Africa are likely to experience the greatest population declines, 

however the demographic model parameterised on the largest population of wild dogs 

in this region showed the smallest declines. Emissions scenario determines predicted 

future IUCN Red List status in the species.   

These results have specific implications for the conservation of the African wild 

dogs under future climate regimes, as well as more general implications for the 

assessment of climate change threat and the identification of conservation measures 

most likely to mitigate climate change impacts. 

6.2. Implications for methods used to assess climate 

change threats to species 

Models predicting the impact of climate change on species have predominantly 

taken two approaches. Firstly, characterising the species’ climatic niche, and using it to 

predict which areas will be suitable for that species in the future, and secondly using a 

broad-brush, often trait-based, multi-species approach, where the characteristics of that 

species are used to estimate its level of climate change risk. Models which build in the 

mechanism by which high temperatures impact species inevitably perform better 

(Kearney and Porter, 2009), and can shed new light on species threats from climate 

change that would not be highlighted by trait-based or correlative models (Urban et al., 

2016). There is a trade-off, however, between how much a model is tailored to an 

individual population or species, and the applicability of the results.  
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The challenge when building data-driven, mechanistic models of species under 

climate change is that they require large amounts of data (Kearney and Porter, 2009). In 

order to disentangle how climatic variation impacts species the dataset needs to either 

be sufficiently long-term or to cover an area with sufficient climatic variation. Similarly, 

it is important the entire life-cycle of the species is understood, including social 

structure, survival and reproduction rates, and dispersal (Adahl et al., 2006; Pagel and 

Schurr, 2012; Tye et al., 2018). Long term data-sets are of particular importance in 

obtaining these data, as variation of habitat in time is often less than that in space.  This 

means that there are often other environmental conditions that can obscure climatic 

effects in cases where climatic variation in space is used to predict changes over time. 

Long term field data will play a key role in building more mechanistic climate models, 

and it is therefore important that existing long term projects continue to be funded 

(Hughes et al., 2017). 

For many species, much data on their life-cycle, dispersal and even distribution 

is not available as collecting datasets of enough detail require large amounts of both 

time and money. However extensive datasets already exist for many species of 

economic importance, such as species targeted for harvest, as well as of cultural 

importance for ecologists historically, such as large mammals and European birds and 

insects. It is important that both conservation organisations and those involved with the 

economic utilisation of species assess which species have datasets available, and 

identify priority species for which data driven mechanistic models should be built. This 

will help identify gaps in the data, both in existing datasets, and for species identified as 

being of particular economic, cultural or ecological importance – such as keystone 

species or fish stocks. Focus should be on both filling these gaps and identifying 

existing underutilised datasets which can be used to inform mechanistic models under 

climate change.  

This work also highlights challenges in assessing species threat from climate 

change. Where population models often assess trends on a scale of 10 generations or 

more the method by which species threat status is assigned utilises a timescale of two or 

three generations. With climate change this presents a unique challenge, as the impacts 

are ubiquitous and non-reversible, so when future impacts are predicted it is more 

difficult to implement actions to prevent them. For species that can’t be bred in captivity 

and then re-released this can present a particular challenge, as conservation measures 

for these species are often more costly and take longer to implement, and they cannot be 
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removed from unfavourable habitats in the wild. On top of this, declines factored into 

the IUCN Red List must be predicted to happen over the next 2-5 generations. While 

climate changes more slowly than this for most species, the slow pace of climate change 

relative to species generation times does not make climate change any more avoidable 

or easier to reverse. Unlike other threats, climate can be represented in global 

circulation models and used to predict local changes in weather patterns within species 

ranges decades into the future. That other threats are less predictable should not mean 

that climate change threats are side-lined in the process of red listing. Whilst it is 

possible to interpolate climatic changes between now and 2060, it adds another layer of 

uncertainty, and will likely under-represent the threat posed to the species. The ability to 

factor in expected declines would assist in assigning to species to a more practical threat 

status, whereby money and resources can be allocated accordingly.  

Evolution is likely to be an important way in which many species adapt to 

changing climatic conditions. While large mammals are unlikely to evolve at a pace fast 

enough to keep track with climate change, the same is not true for other species, and 

evolution is likely to be in important factor in how many species adapt. Shifts in species 

traits, whether through plasticity or evolution, are an important way in which species 

may persist despite changes in their environment. The ability of species to adapt to 

climatic conditions through both plasticity and evolution should be investigated and 

incorporated into models of species responses to climate change where possible.  

Similarly, where known, species physiology can play an important role in 

thermoregulation, and subsequently fitness at different temperatures. Getting a detailed 

understanding of the physiology of species under high temperatures is very challenging 

however, as it often requires relatively intrusive work, particularly when compared to 

demographic modelling. The use of captive animals in this work will be key for many 

species. Linking behavioural changes to energetic outputs and species physiology would 

provide a more detailed picture of the true mechanism behind species responses to 

climatic conditions. Coupling species physiology to models of demographic impacts in 

mechanistic models under climate change is important if we are to build truly 

mechanistic models and obtain a complete picture of how and why species respond to 

rising temperatures. Models of this kind can also help pinpoint conservation measures 

that may relieve physiological stress on species at high temperatures, such as increasing 

microclimate availability. 
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This thesis focuses solely on direct impacts of climate on a single species, 

however many impacts of climate will be indirect, through changes to vegetation 

structure, or changes in species interactions resulting from demographic or behavioural 

impacts on predators or prey. Many of the large scale multi-species models make 

assumptions about species interactions based around a single system – for example the 

Madingley model assumes predation rate increases as temperatures increase as this is 

what happens in insect systems (Newbold, 2018). This is the opposite of what is 

suggested by this work, however, where energy expenditure and time spent hunting fell 

at higher temperatures.  

 Species interactions have been previously found to drive climate change 

responses in some species, and the majority of extinctions where climate was implicated 

as a factor have involved species interactions. Whilst obtaining data on many species 

can prove challenging, it is important that these kinds of interactions are investigated, as 

incorporating them into climate change impact models is likely to improve their 

accuracy. There are a number of research stations globally where work is done on 

numerous species, and even ecosystems, and in these cases the data can be used to 

produce multi-species, or potentially even ecosystem scale models, which include 

species interactions.  

6.3. Implications for conservation and future 

conservation research 

Climate change, unlike many other threats to species, is ubiquitous, affecting 

species regardless of their location inside or outside a protected area. Whilst habitat loss 

is undoubtedly the greatest threat faced by species globally, species which have already 

lost much of their habitat, leaving them confined mostly to protected areas, climate 

change prevents a unique conservation challenge. This is because these species cannot 

move to areas that are more suitable climatically, and, unlike many other threats, 

climate change will still impact species inside protected areas. Even for species with 

currently stable populations, in pristine habitat, with few human threats, climate change 

may make that habitat increasingly less suitable in the years to come. For species which 

require large areas in which to survive, and are difficult to both breed in captivity and 

translocate, climate change poses a particularly acute problem. Many such species are 

large mammals, which, due to their comparatively long generation times, are unlikely to 
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be capable of evolutionary change at a fast enough pace to adapt to rising temperatures. 

That means it is crucial that climate change risk to these species is assessed and 

incorporated into future conservation strategies. 

This thesis began by examining whether wild dogs can adapt their behaviour to 

compensate for high temperatures by hunting more at night, when temperatures are 

cooler. Whilst there is some flexibility in the timing of their hunting behaviour there is 

clearly a mechanism through which wild dogs are prevented from hunting at night, 

particularly during the denning period. Identifying why wild dogs are not leaving the 

den to hunt at night, despite the fact they are under much higher energetic pressures, 

may enable conservation scientists to implement measures that can help support 

populations in periods of hot weather, preventing the fall in recruitment that was found 

to drive population declines at high temperatures in later chapters of this thesis. 

Identifying shifts in the timing of activity at high temperatures in other species could 

help identify how they are likely to respond to climate change and therefore indicate 

where conservation interventions should be targeted. 

I only investigated one possible mechanism by which wild dogs might adapt to 

higher temperatures. Whilst changes to wild dog phenology are not likely to prevent 

climate change impacts, as in most areas they already breed at the coolest time of year 

(Woodroffe et al., 2017), and most colonisation of areas outside their current range 

would likely require human managed re-introductions, there are a variety of other 

changes in behaviour and physiology by which wild dogs may be able to adapt. These 

include, but are not limited to: changes in habitat use; prey preferences; pelage 

properties, including colour and thickness; and changes to their physiology to encourage 

more efficient heat loss. Their ability of these ‘shifts in self’ to keep pace with climate 

change is unclear however; changes due to phenotypic plasticity may occur rapidly, but 

evolutionary change is likely to happen too slowly to protect the species from the 

impacts of climate change. Identifying other mechanisms by which the species may 

avoid demographic effects of high temperature may enable better predictions of the 

species’ response to climate change, as well as potentially identifying targeted 

conservation actions that may help mitigate the effects of high temperatures on African 

wild dogs.  

The negative impact of high temperatures on adult survival shown in Chapter 3 

suggest that the impact of high temperatures on African wild dog fitness through 
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reduced activity across a 24h period translate to demographic impacts even outside the 

denning period. Where high temperatures have the greatest impact on mortality, it 

appears to specifically increase deaths due to disease and direct killing by humans. 

These are two major threats to the species throughout its range (Woodroffe and Sillero-

Zubiri, 2012) and these findings suggest that implementing conservation measures to 

reduce these threats could simultaneously reduce the impact of high temperatures. 

Measures such as vaccination of wild dogs or domestic dogs can potentially reduce the 

risk of disease and hence lower African wild dog mortality (Prager et al., 2011) . 

Similarly, programmes which aim to help people reduce predation of livestock by 

African wild dogs may bring down the number of direct killings (Woodroffe et al., 

2005) and likewise reduce the impacts of climate change on adult mortality. It appears, 

however, from the findings in Chapter 4, that the temperature impacts on wild dog 

recruitment play a greater role in driving demographic impacts than those on adult 

survival.  

The combined impact of temperature on adult survival and recruitment on the 

population African wild dogs in Laikipia, Kenya are predicted to cause not only 

population declines, but also potentially the extinction of the population. Whilst 

extinction risk after 10 generations remained relatively low under all potential future 

emissions scenarios for the population of wild dogs that was made up of 30 packs, the 

highest number of packs recorded in the region, the smaller population of 9 packs, the 

median across the species’ range, had an extinction risk of 10% under the second worst 

case scenario, and 88% in 10 generations under the worst case scenario. This is 

significant as the population is now much smaller than 9 packs after a disease outbreak 

in 2017 reduced the population to a single surviving pack. Large population declines 

were predicted over 10 generations in the simulated population of 9 packs compared 

with 30 packs at both starting population sizes across all four emissions scenarios, and 

even over longer time scales the population of 30 packs persisted under temperatures 

half a degree greater than the population of 9 packs. These findings have implications 

for how the population of wild dogs in Laikipia is managed, as well as the management 

of wild dog populations more widely. Population of 30 packs or more only exist in 4 

areas with in the wild dog’s current range (Woodroffe and Sillero-Zubiri, 2012).  The 

fact population size impacts extinction risk highlights the importance of connectivity in 

mitigating the impacts of climate change on the species. Efforts to connect existing 

isolated ranges will become increasingly important as the climate warms, however these 
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will become increasingly difficult as population growth across the continent continues. 

It is key that measures which will help lessen the impacts of high temperatures on wild 

dogs are established, for example reductions in disease levels. 

By using the demographic model to simulate three demographic scenarios, and 

running it in space under future emissions scenarios in Chapter 5, I was able to highlight 

areas where climate change was likely to have the smallest and greatest impact. Most of 

the areas predicted to undergo the greatest population declines under climate change 

were in Southern Africa, particularly concentrated around Botswana, Namibia, South 

Africa and Angola. This finding is cause for great concern, because the largest 

remaining wild dog population currently inhabits the Kavango-Zambezi Trans-Frontier 

Conservation Area (KAZA) spanning northern Botswana, eastern Namibia, Western 

Zimbabwe, South-West Zambia and South-East Angola. This population is unique in its 

size, extent, and genetic connectivity (Marsden et al., 2012) and any threat to this 

population is a threat to the entire species. The demographic scenario based on data 

from this area however, and therefore the most appropriate to use for future predictions, 

showed a much smaller decline in population size relative to the other demographic 

scenarios. The connectivity of the population and the lack of human pressures will 

buffer this population, however for surrounding, smaller, populations, such as those in 

and around the Kalahari, the future looks bleak. 

Most of the areas predicted to face a smaller risk from climate change were 

along the East coast of Africa, particularly in East Africa, as well as a small number of 

sites towards the West coast. Most of these populations are small, however, and the 

demographic scenario based on East Africa showed severe declines in population 

numbers, and this was worsened by the inclusion of seasonal breeding in the model. 

This shows the need to be cautious when using models of this kind to direct 

conservation efforts and ensure localises adaptations are taken into account.  

There are a number of implications of these predicted climate change impacts 

for conservation. Firstly, they can help guide where conservation efforts are focused. In 

Chapter 5, I identified several areas suspected to support resident wild dog populations, 

in regions expected to suffer smaller impacts of climate change than some of the known 

resident range. Surveys of these areas (such as Rahole and Morene-Borana) are a 

priority for conservation action. Areas identified as recoverable for the African wild dog 

that are predicted to be most climatically suitable in the future should be targeted for 
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reintroductions – particularly in West Africa, where smaller declines were predicted and 

there is seasonal breeding. Finally, these maps can help target conservation actions to 

areas where the species are most likely to persist under climate change. It may be that 

the future on the species will rely on extensive habitat restoration outside of areas 

currently identified as recoverable. This has happened in areas of their current range, 

such as Savé Valley, which until the 1990s was primarily used for cattle ranching. 

Integrating such projections with the assessment of other risks is key, and measures 

which alleviate more than one risk, such as increasing the connectivity of populations, 

should be prioritised over other conservation measures. 

I predict that future climate change will have an impact on the African wild 

dog’s threat status according to the IUCN Red list. Other papers assessing the suitability 

of the Red List for predicting risk of extinction from climate change have highlighted 

the importance of bringing in conservation measures once the species is listed as 

Vulnerable. As the African wild dog is already listed as Endangered I would highly 

recommend that conservation interventions, or, at the very least, research into which 

interventions help mitigate temperature impacts, starts as soon as possible. Without 

appropriate conservation action the species is likely to be under serious threat of 

extinction. 

Whilst models predicted a significant fall in population size under all emissions 

scenarios throughout the species range, higher emission pathways produced larger 

population decline predictions. I predict that the amount of greenhouse gasses emitted 

will be key in determining the threat posed by climate change to the African wild dog, 

and that RCP 8.5 will cause catastrophic declines in this species. Beyond focused 

conservation actions, political action, or inaction, on climate change has the potential to 

determine the African wild dog’s fate. The greater our efforts to curb carbon emissions, 

the more likely we are to guarantee the survival of African wild dogs into the future. 
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Appendices 

Appendix 1 

Appendix 1.1. Monitoring periods for GPS-collared African wild 

dogs at our Kenya study site. 

Monitoring started when GPS-collars were fitted, and ended when the collar was removed, the 

battery expired, or contact was lost. Two dogs – WDF120 and WDF126 changed packs during 

monitoring, moving to the Truant pack on the 29/09/14 and the Toucan pack on the 29/03/15 

respectively. 

   GPS-collar monitoring  

ID Pack 1 Sex start end Number of days 

WDM91 Tui’s M 27 Jul 13 01-Aug-14 370 

WDF96 Loisaba F 15 Mar 12 31-Jan-13 322 

WDM97 Rat M 27 Apr 11 27-May-11 30 

WDF105 Loisaba F 14 Sep 11 25-Nov-11 72 

WDF109 Lebai F 07 Apr 11 12-Aug-11 127 

WDM111 Loisaba M 02 Mar 12 10-Jun-12 100 

WDM112 Tui’s M 8 Mar 12 08-Dec-12 275 

WDM118 Bahati M 24 Jul 13 25-Jan-14 185 

WDM119 Loisaba M 3 Aug 13 30-Sep-14 423 

WDF120 Tui’s F 31 Jul 14 28-Nov-14 120 

WDF123 Crocodile F 23 Apr 14 23-Jan-15 275 

WDF126 Katu F 1 Aug 14 03-May-15 275 

WDF130 Ol Pejeta F 27 Aug 14 14-Dec-14 109 

WDM131 Crocodile M 24 Apr 15 13-Jun-15 50 

WDM132 Bahati M 25 Apr 15 21-Jun-15 57 
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Appendix 1.2. Times of GPS fixes of each wild dog GPS-collar used in the study 

X denotes a GPS fix that was included in the distance analyses. ○ denotes a GPS fix that was discarded from the dataset. Day was considered to be 6:00 

or 6:30 to 18:00. Night was considered to be 18:00 to 06:30. Dogs not used in the night analysis due to having too few nocturnal GPS fixes are 

highlighted in grey. 

WD 

01:0

0 

02:1

5 

03:3

0 

05:0

0 

06:0

0 

06:3

0 

07:0

0 

07:3

0 

08:0

0 

10:0

0 

13:0

0 

16:0

0 

18:0

0 

18:3

0 

19:3

0 

20:0

0 

20:4

5 

22:0

0 23:30 

WDM91 X  ○   X ○  X  X ○ X  X   ○  

WDF96 X     X ○ ○ X  X ○ X ○ X     

WDM97 X     X   X  X ○ X  X     

WDF105 X     X ○ ○ X  X  X ○ X     

WDF109 X     X   X  X  X  X     

WDM11

1 X     X ○ ○ X  X  X ○ X     

WDM11

2 X     X ○ ○ X  X  X ○ X     

WDM11

8 X  ○   X ○  X  X  X  X   ○  

WDM11

9 X  ○   X ○  X  X  X  X   ○  

WDF120 X  ○   X ○  X  X  X  X   ○  

WDF123 X     X ○ ○ X  X  X ○ X     

WDF126 X  ○   X ○  X  X  X  X   ○  

WDF130 X  ○   X ○  X  X  X  X   ○  

WDM13

1 X ○ ○ ○  X ○  X  X  X  X  ○ ○ ○ 

WDM13

2 X ○ ○ ○  X ○  X  X  X  X  ○ ○ ○ 
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Appendix 1.3. Number of days and nights of data included in the 

analyses per GPS-collared wild dog 

 

 

 

  

Individual 

identity 

Daytime 

activity 

Daytime 

distance 

travelled 

Night-time 

activity 

Night-time 

distance 

travelled 

24 hour 

activity 

24 hour 

distance 

travelled 

WDM91 332 269 333 277 332 244 

WDF96 260 195 261 200 260 152 

WDM97 30 22 23 21 23 18 

WDF105 71 56 72 54 71 34 

WDF109 127 79 127 85 122 57 

WDM111 4 92 5 87 4 49 

WDM112 274 187 275 187 274 133 

WDM118 13 166 13 164 13 145 

WDM119 349 275 349 274 348 233 

WDF120 120 98 121 91 120 66 

WDF123 273 131 273 139 273 74 

WDF126 273 273 273 252 273 212 

WDF130 148 134 148 131 148 120 

WDM131 108 70 109 59 108 35 

WDM132 50 36 50 37 50 23 

Total 2432 2089 2432 2058 2419 1595 
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Appendix 1.4. Reasons for including explanatory variables and 

expected outcomes. 

+ indicates an expected increase in activity and distance travelled and – indicates an expected 

decrease. 

Variable Reason Expected outcome 

  Day Night 

Daily maximum 

temperature 

Maximum temperature was chosen as it 

has been found to be the ecologically 

relevant temperature variable impacting 

wild dog behaviour in a number of 

other studies which have also included 

other variables such as average daily 

temperature (Woodroffe et al 2011a, 

Woodroffe, Groom and McNutt 2017). 

Woodroffe, Groom and McNutt (2017) 

found that high daily maximum 

temperatures during the denning period 

were associated with low pup survival. 

- + 

Daily rainfall Woodroffe, Groom and McNutt (2017) 

found that rainfall had an effect on pup 

survival. We wanted to investigate if 

this was a result of impacts on adult 

behavior. 

Due to inconsistent effects of rainfall on 

pup survival we were unsure of how 

rainfall would impact wild dog behavior. 

Level of moonlight Cozzi et al (2012) found a positive 

relationship between night-time wild 

dog activity and levels of moonlight. 

Including this variable allowed us to 

investigate whether constraints of 

moonlight levels prevent wild dogs 

from hunting at night. 

NA + 

Denning Woodroffe, Groom and McNutt (2017) 

found that wild dogs have greater 

energy demands when they are denning, 

and travelled further during a 24 hour 

period. 

+ + 

Age of pups As pups grow they require more food 

and therefore greater energy 

expenditure by the adults. 

+ + 

Days at den site During the denning period the pack 

typically moves its den site a number of 

times in response to threats and prey 

depletion around the area of the den. 

Ford et al found that as wild dogs spend 

time at a den site prey becomes locally 

depleted (Ford et al., 2015), which 

forces them to travel further for food 

(Woodroffe, Groom and McNutt, 

2017). 

+ + 

Daily maximum 

temperature * 

Daily rainfall 

Rainfall often mediates the impacts of 

high temperatures. + - 

Daily maximum 

temperature * 

Denning 

To test if responses differ significantly 

inside compared to outside the denning 

period 

Unknown Unknown 

Daily maximum 

temperature * 

Days at den site 

Dogs may need to increase their activity 

on hot days as prey becomes locally 

depleted at a den site.  

+ + 
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Appendix 1.5. Diagram and description of moonlight 

calculations. 

Circles indicate the moon, ↑ indicates moonrise, ↓ indicates moonset. Numbers 

correspond to scenarios in the below table.  

 

 

 

 

  

Scenario 

number Scenario 
Calculation  for 

hours of moonlight 

Calculation to 

give final 

moonlight value 

1 Moon rises and sets the day before.   0 moonlight. Multiply by 

percentage 

illumination of the 

moon that night 

2 Moon rises the previous day and sets during the night. moonset - sunset 

3 Moon rises and sets during the night moonset - moonrise 

4 Moon rises at night and sets the next day sunrise 2 - moonrise 

Sunrise 1 

Day Night 

1 1 2 2 3 3 4 

Day 

Sunrise 2 Sunset 

4 
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Appendix 1.6. Histograms of residuals 

 

Night-time activity (denning and non-

denning) 

Daytime activity (denning and nondenning) 

 

 

Day-time activity (denning) Night-time activity (denning) 

  

24 hour activity  (denning and non-denning) 24 hour activity (denning) 
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Night-time range (denning and non-

denning) 

Daytime range (denning and nondenning) 

  

Day-time range (denning) Night-time range (denning) 

 
 

24 hour range  (denning and non-denning) 24 hour range (denning) 
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Appendix 1.7. Q-Q plots of model residuals 

 

Night-time activity (denning and non-denning) Daytime activity (denning and nondenning) 

 
 

Day-time activity (denning) Night-time activity (denning) 

  

24 hour activity  (denning and non-denning) 24 hour activity (denning) 
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Night-time range (denning and non-denning) Daytime range (denning and nondenning) 

 

 

Day-time range (denning) Night-time range (denning) 

 

 

24 hour range  (denning and non-denning) 24 hour range (denning) 
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Appendix 1.8. Table of top models 

 

  

Table OR8.1: list of models for  daylight hours where delta < 5. 

1= Maximum temperature     2= Rainfall     3=Denning (Yes)     

4=Maximum temperature*Rainfall 5=Maximum temperature*Denning (Yes)      6=Days at den     

7=Pup age    8=Days at den*Maximum temperature  

Dependent variable Time period Independent variables AICc  Delta 

Activity 

All 

1 2 3 4 14709.12  0.00 

1 2 3 4 5 14711.14  2.01 

1 2 3  14713.71  4.58 

Denning 

1 2 4 6 7 3281.10 0.00 

1 2 6 7 3281.92 0.82 

1 2 4 6 7 8 3283.09 1.99 

1 6   3283.82 2.73 

1 2 6 7 8 3283.83 2.74 

1 2 6 3285.14 4.04 

Distance travelled 

All 

1 2 3 9679.18  0.00 

1 2 3 5 9680.09 0.91 

1 2 3 4 9680.12 0.93 

1 2 3 4 5 9680.87 1.69 

1 3   9683.28 4.10 

Denning 

1 6 7 1592.40 0.00 

1 6   1592.82 0.43 

6 7   1594.30 1.90 

1 2 6  1594.35 1.96 

1 2 6 7 1594.44 2.04 

1 2 4 6 7 1595.08 2.68 

6  1595.61 3.21 

1 2 6 7 8 1595.97 3.58 

2 6 7 1595.99 3.60 

1 2 4 6 7 8 1596.64 4.24 



 

173 

 

  

Table OR8.2: list of models for night-time hours where delta < 5.  

1= Maximum temperature     2= Rainfall     3=Denning (Yes)     

4=Maximum temperature*Rainfall 5=Maximum temperature*Denning (Yes)      6=Days at den     

7=Pup age    8=Days at den*Maximum temperature 9=Moonlight 

Dependent variable Time period Independent variables AICc  Delta 

Activity 

All 

1 2 3 4 5 9 13401.64  0.00 

1 2 3 4 9 13403.49 1.85 

1 2 3 5 9 13404.91 3.27 

Denning 

9  2571.20 0.00 

1 9 2571.56 0.36 

6 9 2573.24 2.04 

1 2 9 2573.62 2.42 

1 2 5 6 9 2574.63 3.43 

1  6 7 9 2575.01 3.80 

1 2 7 9 2575.05 3.85 

1 2 6 9 2575.68 4.48 

Distance travelled 

All 

1 2 3 5 9 10733.09  0.00 

1 3 9 10733.51 0.42 

1 2 3 4 5 9 10734.28 1.20 

1 2 3 9 10735.28 2.20 

1 2 3 4 9 10736.23 3.14 

Denning 

6  1555.51 0.00 

1 1556.16 0.65 

9 1556.29 0.79 

7 1556.30 0.79 

2 1556.30 0.80 

1 6 1556.46 1.96 

6 9 1556.55 2.05 

1 9 1556.19 2.68 

1 2 9 1556.25 4.75 

1 2 1556.29 4.78 
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Table OR8.3: list of models for the 24 hour period where delta < 5.  

1= Maximum temperature     2= Rainfall     3=Denning (Yes)     

4=Maximum temperature*Rainfall 5=Maximum temperature*Denning (Yes)      6=Days at den     

7=Pup age    8=Days at den*Maximum temperature 9=Moonlight 

Dependent variable Time period Independent variables AICc  Delta 

Activity 

All 

1 2 3 5 9 12312.72 0.00 

1 2 3 4 5 9 12312.97 0.25 

1 2 3 9 12314.25 1.52 

1 2 3 4 9 12314.82 2.09 

2 3 5 9  12316.82 4.10 

Denning 

1 2 6 7 8 9 2747.22 0.00 

1 2 6 9 2747.64 0.42 

2 6 9 2747.81 0.59 

1 2 4 6 7 8 9 2748.70 1.48 

1 2 6 7 9 2749.07 1.85 

2 6 7 9 2749.10 1.88 

1 2 6  2749.29 2.08 

1 2 4 6 7 9 2750.27 3.05 

1 6 9 2750.94 3.72 

1 2 6 7 2750.98 3.77 

1 6 2751.04 3.82 

1 2 7 9 2751.84 4.63 

Distance travelled 

All 

1 2 3 5 9 9416.02 0.00 

3 9  9416.91 0.89 

9   9417.38 1.36 

1 2 3 4 5 9 9417.82 1.80 

2 3 9 9418.19 2.16 

3 9  9418.55 2.53 

3  9419.01 2.99 

1 9 9419.34 3.31 

1 2 3 9 9419.91 3.89 

1 3 9420.50 4.48 

1 2 9 9420.65 4.62 

2  9420.92 4.89 

Denning 

1 6 1308.19 0.00 

6  1308.25 0.06 

1  1308.33 0.13 

6 7 1308.52 0.32 

1 2 6 1310.20 2.01 

7  1310.25 2.06 

1 9 1310.29 2.09 

1 2 1310.33 2.13 

1 6 7 9 1310.43 2.24 

2  1310.67 2.48 

1 2 6 7 1310.74 2.55 

9  1311.03 2.83 

1 2 6 9 1312.12 3.93 

1 2 9 1312.29 4.10 

1 2 6 7 9 1312.56 4.36 

2 6 9 1312.57 3.37 
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Appendix 1.9. Table of correlations between explanatory 

variables 

 

Variable 1 Variable 2 Correlation 

Days at den Pup age 0.23 

Days at den Maximum temperature -0.12 

Days at den Rainfall -0.06 

Days at den Moonlight 0.02 

Pup age Maximum temperature 0.04 

Pup age Rainfall -0.16 

Pup age Moonlight -0.13 

Maximum temperature Rainfall -0.14 

Maximum temperature Moonlight -0.07 

Rainfall Moonlight 0.02 
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Appendix 1.10. Diagrams showing the calculations performed on 

the Worldclim temperature and rainfall data 

Diagrams showing the calculations performed on the Worldclim temperature and 

rainfall data to obtain the values that were entered to obtain future projections of activity 

and distances travelled. Numbers used are examples and do not reflect the data. 
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Appendix 1.11. Predicted differences in precipitation temperature 

Predicted minimum, mean and maximum differences in daily total precipitation and 

mean maximum temperature across the study site in the best (RCP 2.6) and worst case 

(RCP 8.5)  HADGEM2 emissions scenarios from Worldclim 1.4 between 2010 and 

2070. 

  Minimum Mean Maximum 

Temperature (°C

) 

Best case -0.6 1.6 3.3 

Worst case 1.8 3.9 5.9 

Rainfall (mm) 
Best case -0.6 -0.2 0.2 

Worst case -0.7 -0.5 0.1 

 

Appendix 1.12 

Study area maps showing projected change in mean maximum temperature (°C) and 

average total daily precipitation (mm) between 2010 and 2070 for the best 

(Representative Concentration Pathway 2.6) and worst (Representative Concentration 

Pathway 8.5) case IPCC scenarios: a) predicted change in temperature under RCP 2.6; 

b) predicted change in temperature under RCP 8.5; c) predicted change in precipitation 

under RCP 2.6; d) predicted change in precipitation under RCP 8.5. RCP 2.6 indicates 

the best case IPCC scenario, and RCP 8.5 the worst case. Predicted future temperatures 

are from the HADGEM2 climate model. 
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Appendix 1.13. Histogram of moonlight 

Histogram of moonlight showing a high proportion of nights have low levels of 

moonlight 

 

 

  



 

180 

 

Appendix 2 

Appendix 2.1 Maps of remaining population 

On all maps current range is denoted by a red outline, recoverable range by a purple 

outline and possible range by a blue outline. Scale denotes predicted percentage 

remining population after 10 generations. 

2.1.1 Demographic scenario 1 RCP 2.6 
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2.1.2 Demographic scenario 1 RCP 4.5 
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2.1.3 Demographic scenario 1 RCP 6.0 
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2.1.4 Demographic scenario 1 RCP 8.5 
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2.1.5 Demographic scenario 2 RCP 2.6 
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2.1.6 Demographic scenario 2 RCP 4.5 
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2.1.7 Demographic scenario 2 RCP 6.0 
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2.1.8 Demographic scenario 2 RCP 8.5 
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2.1.9 Demographic scenario 3 RCP 2.6 
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2.1.10 Demographic scenario 3 RCP 4.5 
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2.1.11 Demographic scenario 3 RCP 6.0 
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2.1.12 Demographic scenario 3 RCP 8.5 
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Appendix 2.2 Maps of extinction risk 

On all maps current range is denoted by a red outline, recoverable range by a purple 

outline and possible range by a blue outline. Scale denotes probability of extinction. 

2.2.1 Demographic scenario 1 RCP 2.6 
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2.2.2 Demographic scenario 1 RCP 4.5 
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2.2.3 Demographic scenario 1 RCP 6.0 
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2.2.4 Demographic scenario 1 RCP 8.5 
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2.2.5 Demographic scenario 2 RCP 2.6 
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2.2.6 Demographic scenario 2 RCP 4.5 
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2.2.7 Demographic scenario 2 RCP 6.0 
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2.2.8 Demographic scenario 2 RCP 8.5 
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2.2.9 Demographic scenario 3 RCP 2.6 

  



 

201 

 

 

2.2.10 Demographic scenario 3 RCP 4.5 
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2.2.11 Demographic scenario 3 RCP 6.0 
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2.2.12 Demographic scenario 3 RCP 8.5 
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Appendix 2.3 Tables of means and standard deviations of 

remaining population and extinction risks 

2.3.1 Table of means of remaining population 

Demographic scenario RCP Mean population remaining 

(%) 

Standard deviation (%) 

1 2.6 68 6 

4.5 26 8 

6.0 31 11 

8.5 2 4 

2 2.6 75 3 

4.5 53 4 

6.0 56 5 

8.5 29 10 

3 2.6 64 5 

4.5 27 8 

6.0 33 11 

8.5 3 4 

 

2.3.2 Table of means of extinction risk 

Demographic scenario RCP Mean extinction risk (%) Standard deviation 

1 2.6 0 0 

4.5 0 0 

6.0 0 0 

8.5 6 4 

2 2.6 0 0 

4.5 0 0 

6.0 0 0 

8.5 39 38 

3 2.6 0 0 

4.5 5 6 

6.0 3 4 

8.5 36 14 
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