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Abstract

Effective network congestion control strategies are key to keeping the Internet
(or any large computer network) operational. Network congestion control has
been dominated by hand-crafted heuristics for decades. Recently, Reinforcement
Learning (RL) has emerged as an alternative to automatically optimize such control
strategies. Research so far has primarily considered RL interfaces which block
the sender while an agent considers its next action. This is largely an artifact of
building on top of frameworks designed for RL in games (e.g. OpenAI Gym).
However, this does not translate to real-world networking environments, where a
network sender waiting on a policy without sending data is costly for throughput.
We instead propose to formulate congestion control with an asynchronous RL agent
that handles delayed actions. We present MVFST-RL, a scalable framework for
congestion control in the QUIC transport protocol that leverages state-of-the-art
in asynchronous RL training with off-policy correction. We analyze modeling
improvements to mitigate the deviation from Markovian dynamics, and evaluate
our method on emulated networks from the Pantheon benchmark platform. The
source code is publicly available at https://github.com/facebookresearch/mvfst-rl.

1 Introduction

Congestion control is one of the key components of any large computer network, most notably the
Internet, and is crucial to enable operation at scale.1 The goal of a congestion control algorithm is to
dynamically regulate the rate of data being sent at each node to maximize total throughput and mini-
mize queuing delay and packet loss. The vast majority of network strategies still rely on hand-crafted
heuristics that are reactive rather than predictive. An early method, called Remy [14], demonstrated
that offline-learned congestion control can be competitive with conventional methods. More recently,
RL-based approaches have been proposed and show promise in simulated environments [6, 13].

Despite the above advances, to our knowledge, no RL method has been transferred to real-world
production systems. One of the biggest drawbacks of RL congestion control from a deployment
perspective is that policy lookup takes orders of magnitude longer compared to hand-crafted methods.
Moreover, networking servers often have limited resources to run a machine learning model, thus
requiring inference to be offloaded to dedicated servers and further delaying action updates. Current
RL congestion control environments follow the synchronous RL paradigm (e.g. using the OpenAI

1It is estimated that 150,000 PB of data were sent per month over the Internet in 2018 (https://www.
statista.com/statistics/499431/global-ip-data-traffic-forecast/).
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Gym [2] interface), where model execution blocks the environment (network sender). This makes it
infeasible for deployment where a sender waiting on a synchronous RL agent for congestion control,
even for a few milliseconds, negatively impacts throughput (Figure 1).

Figure 1: Cumulative bytes sent during
60 seconds over AWS California to Mex-
ico emulator. RL agents which block
the sender for 25ms and 50ms waiting
on the policy transmit 1.1% and 11.4%
fewer bytes, respectively, compared to
the non-blocking agent. All agents take
actions at 100ms intervals.

In this paper we introduce MVFST-RL, a training frame-
work that addresses these issues with a non-blocking RL
agent for congestion control. For training in the pres-
ence of asynchronous interaction between the environment
and the learner (owing to the inability of the environment
to wait for gradient updates), we leverage IMPALA [3]
which uses importance-sampling for off-policy correction.
MVFST-RL is built on MVFST2, a C++ implementation of
the QUIC transport protocol used in Facebook production
networks, allowing seamless transfer to deployment. To
emulate real-world network traffic in RL environments
for training, we build upon Pantheon [15] which obvi-
ates the need for hand-written traffic patterns and network
topologies. We evaluate training with delayed actions and
present our results on the Pantheon test-bed.

2 Related Work

A few different studies have applied RL to congestion
control in varying ways. Iroko [13] takes the approach
of a centralized policy to regulate sending rates of all the
nodes in a network topology. While this is applicable for
small to medium sized networks, it is intractable for large or Internet-scale networks. Iroko also
requires manually specifying network topologies and traffic generators, making it difficult to emulate
real-world network conditions. PCC-RL [6] implements congestion control as an environment in
OpenAI Gym [2], with a blocking RL agent. Park’s [8] congestion control environment based on
CCP [10] is closest to MVFST-RL in design with Remote Procedure Calls (RPC) for environment–
agent communication, but it effectively takes a synchronous approach with its short step-time of
10ms, constraining to only very small models.

3 Congestion Control as MDP with Delayed Actions

Consider a Markov Decision Process (MDP) [12] formulated as 〈S,A, T,R〉 where S is a set of states,
A is a set of actions,R is the reward obtained, and T (s′|s, a) is the state-transition probability function.
Unrolling over time, we have the trajectory (st, at, rt, st+1, at+1, rt+1, ...). Casting congestion
control as an MDP, the state space includes network statistics gathered from acknowledgement packets
(ACKs) from the receiver such as round-trip time (RTT), queuing delay, packets sent, acknowledged
and lost. The action is an update to the congestion window size, cwnd, which is the number of
unacknowledged packets that are allowed to be in flight. Large cwnd leads to high throughput, but
also increased delay due to queuing at intermediate buffers and network congestion. Our choice of
action spaceA is a discrete set of updates to cwnd: {cwnd, cwnd/2, cwnd−10, cwnd+10, cwnd×2}
(Appendix A.2). The reward is generally a function of measured throughput and delay, aiming to
strike a trade-off.

When an agent acts asynchronously on the environment at fixed time-intervals, the action at is applied
after a delay of δ such that t < t+ δ < t+ 1, where δ is the policy lookup time. The environment
meanwhile would have transmitted further data based on the old action at−1 during the interval
[t, t+ δ]. The next state st+1 therefore depends not just on st and at, but also on at−1. To incorporate
this into the MDP, the state space can be augmented with the last action taken. In addition to this,
given that our action space is relative to the previous actions taken, we find that a longer history of
actions in the environment state helps learning. Therefore, we augment our state space with an action
history of generic length k, which we treat as a hyperparameter, and obtain our augmented state

2https://github.com/facebookincubator/mvfst
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space Ŝ = S ×Ak. At time t, the augmented state ŝt is (st, at−1, ..., at−k). With this formalism, we
define our environment state and reward function below.

Environment State: Our choice of state vector contains a summary of network statistics gathered
over a 100ms window along with a history of actions taken. From each ACK within the window, we
gather 20 features such as the latest and minimum RTT, queuing delay, bytes sent, bytes acknowledged,
and bytes lost and re-transmitted. The complete set of features are listed in Appendix A.1. To
normalize the features, the time fields are measured in milliseconds and scaled by 10−3 and byte
fields are in KB. We follow Copa’s [1] strategy of computing RTTStanding to reduce noise in delay
measurements. For each feature, we calculate sum, mean, standard deviation, min and max within a
window, and concatenate them with k one-hot vectors of past actions along with the cwnd on applying
those actions. This results in a state vector of size 100 + k × (|A|+ 1), where A is the action space
defined earlier.

Reward: Our reward is simply t − β d where t and d are the average throughput in MB/sec and
the maximum delay in milliseconds, respectively, during the 100ms window, and the parameter β
trades-off between the two. We experimented with logarithmic scales, such as Copa’s [1] optimization
function of log t− β log d, but we found it difficult to attain higher throughput such as 100 Mbps on
faster networks when trained jointly with bad network scenarios such as cellular connections with
0.5 Mbps throughput.

In the following sections, we describe a framework for asynchronous RL training of congestion
control with delayed actions and provide experimental analysis of the MDP with the augmented state
space.

4 Introducing MVFST-RL

Framework: MVFST-RL follows an environment-driven design with an asynchronous RL agent. It
integrates three components: (1) MVFST, Facebook’s implementation of the QUIC transport protocol
used in production servers, (2) TorchBeast3[7], a PyTorch [11] implementation of IMPALA [3] for
fast, asynchronous, parallel RL training, and (3) Pantheon [15] network emulators calibrated with
Bayesian Optimization [9] to match real-world network conditions. The RL congestion controller
accumulates network statistics from ACKs over a fixed time-window, say 100ms, and sends a state
update asynchronously to an RL agent in a separate thread. Once the agent executes the policy, the
action to update cwnd is applied asynchronously to the transport layer (Figure 2a).

IMPALA was originally designed to overcome scaling limitations during training of batched Actor-
Critic methods, where parallel actors act for T steps each to gather trajectories (sequences of
st, at, rt, st+1), and then wait for a gradient update on the policy by the learner. IMPALA relaxes this
restriction, and with an off-policy correction algorithm called V-trace, it allows actors to continue with
trajectories while the learner asynchronously updates the policy. Although the original motivation
was higher training throughput, the decoupled actor-learner algorithm and off-policy correction is
well-suited for MVFST-RL, allowing the actors corresponding to network senders to not block on
gradient updates, as doing so would change the dynamics of the underlying network.

Figure 2b illustrates the training architecture. Each actor corresponds to a separate Pantheon instance
in a sender–receiver setup with a randomly chosen emulated network scenario. The senders run
the QUIC protocol with RL congestion controller and communicate state updates via RPC to the
actors. The actors execute the model for the next action, and once a full trajectory is obtained, they
communicate it to the learner for a gradient update. All communications are asynchronous and do not
block the network sender. After training, the model can be exported with TorchScript and executed in
C++ on the network host without the need for RPC.

Model: Our model trunk is a two-layer fully-connected neural network with 512 layers each and
ReLU non-linearity. The extracted features and the reward are fed into a single-layer LSTM [5]. For
correctness during training, along with a trajectory of T steps, an actor also communicates the LSTM
hidden state at the beginning of the trajectory to the learner. Finally, the LSTM output is fed into two
heads – a policy head with |A| outputs, and another head for the policy gradient baseline.

3https://github.com/facebookresearch/torchbeast
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(a) Asynchronous RL agent–sender interaction (b) Training architecture

Figure 2: (a) States are sent to the agent every 100ms and policy lookup takes 30ms. In the
synchronous paradigm, packets could not be sent during the 30ms sections between st and at. (b)
TorchBeast maintains one actor per Pantheon environment, with RPC for state and action updates.
The key difference from IMPALA is that, in addition to the actor–learner interaction, the environment–
actor interaction is also asynchronous and the environment steps are not blocked by the forward-pass.

5 Experiments

Training: Our training setup consists of 40 parallel actors, each corresponding to a randomly chosen
calibrated network emulator. We train episodically with each Pantheon sender–receiver instance
running for 30 seconds, with the episodic trajectory used as a rollout for training. Episodic training
provides the opportunity to learn dynamics similar to TCP Slow-Start, where the behavior of the
algorithm during startup is sufficiently different from steady state. Following hyperparameter sweeps,
we set the initial learning rate to 10−5 with RMSProp [4] and the trade-off parameter β in reward to
0.2. All experiments are run for a total of 106 steps.

Results: Figure 3a shows the test performance on a Pantheon emulator calibrated against Nepal to
AWS India. MVFST-RL achieves competitive performance with higher throughput and similar delays
compared to traditional methods like Cubic, Copa and NewReno, as well as better performance
over learned methods like TaoVA. Compared to rl-random, a baseline agent that picks a random
action over the same action space A at each step, our model consistently performs better. We also
test against a network emulator unseen during training where it outperforms most other methods
(Figure 3b).

One challenge we faced is generalization when training jointly over networks with widely different
ranges of throughput and delay, causing rewards to be scaled very differently among the actors.
We experimented with reward-clipping strategies as well as reward functions with logarithmic
components as in Copa [1], but they result in policies that struggle to achieve high throughput when
trained jointly with low throughput networks. This suggests that further research into reward shaping
and multi-task learning strategies might be warranted.

Ablations: We examine the impact of the length of the action history in the augmented state space.
Figure 3c plots the total reward obtained per episode, over the course of training, for varying values
of the action history length k. While models with k = 0 or 1 struggle to learn, optimal performance
is attained with k = 10 with diminishing returns beyond that. We also run the same experiment
without LSTM and find the performance to be significantly worse, especially for larger values of k
(Figures 3d and 3e). The results show that the MDP with the augmented state space performs better
with delayed actions, and validate the need for a recurrent policy in such a setting.

6 Conclusion and Future Work

RL is a promising direction for improving real-world systems. Yet, it is challenging to deploy RL in
datacenters due to performance and resource constraints, especially when evaluated against hand-
written heuristics. We take the first steps towards moving away from blocking RL agents for systems
problems and introduce a framework for learning asynchronous RL policies in the face of delayed
actions. When applied to congestion control, our initial results show promise in the MDP with aug-
mented state space. One challenge we face is learning a joint policy for a range of network scenarios
when reward scales vary wildly due to differences inherent in the environment. We believe this is an
interesting direction for further research on reward normalization strategies across environments. We
hope to evaluate our trained congestion control agents in production networks in the future by lever-
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(d) Without LSTM
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Figure 3: Experimental Results. (a) and (b): Average throughput and 95th percentile delay when
tested against calibrated Pantheon emulators. rl-random refers to a baseline agent that picks a
random action over the same action space as mvfst-rl at each step. Mean of three 30-second runs.
(c) – (e): Training rewards with and without LSTM for varying values of action history length k.
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aging MVFST-RL’s efficient implementation and tight integration with the QUIC transport protocol.
MVFST-RL has been open-sourced and is available at https://github.com/facebookresearch/mvfst-rl.
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A Appendix

A.1 State Space

We design our state space to contain aggregate network statistics obtained from ACKs within each 100ms
window (the environment step-time) and an action history of length k. An optimal value of k is chosen by
hyperparameter sweeps to be 20. When an ACK or a packet loss notification arrives, we gather the following 20
network statistics:

Feature Description

1 lrtt Latest round-trip time (RTT) in milliseconds (ms)
2 rtt_min Minimum RTT (in ms) over a 10 second window
3 srtt Smoothed RTT (in ms)
4 rtt_standing Min RTT (in ms) over window of size srtt/2 [1]
5 rtt_var Variance in RTT (in ms) as observed by the network protocol
6 delay Queuing delay measured as rtt_standing− rtt_min
7 cwnd_bytes Congestion window in bytes calculated as cwnd ∗MSS
8 inflight_bytes Number of bytes sent but unacknowledged (cannot exceed cwnd_bytes)
9 writable_bytes Number of writable bytes measured as cwnd_bytes− inflight_bytes

10 sent_bytes Number of bytes sent since last ACK
11 received_bytes Number of bytes received since last ACK
12 rtx_bytes Number of bytes re-transmitted since last ACK
13 acked_bytes Number of bytes acknowledged in this ACK
14 lost_bytes Number of bytes lost in this loss notification
15 throughput Instantaneous throughput measured as cwnd_bytes/rtt_standing
16 rtx_count Number of packets re-transmitted since last ACK
17 timeout_based_rtx_count Number of re-transmissions due to Probe Timeout (PTO) since last ACK
18 pto_count Number of times packet loss timer fired before receiving an ACK
19 total_pto_count Total number of times packet loss timer fired since last ACK
20 persistent_congestion Flag indicating whether persistent congestion is detected by the protocol

As a way of normalization, the time-based features (features 1–6) are scaled by 10−3 and byte-based ones
(features 7–14) are scaled by 10−4. Since there could be varying number of ACKs within any 100ms time
window corresponding to an environment step, we obtain a fixed-size state vector by computing aggregate
statistics from all ACKs within a window. This is achieved by computing sum, mean, standard deviation, min
and max over each of the 20 features and flattening the resulting 100 features into a single vector. For features
1–9, it doesn’t make sense to compute sums and we set those entries to zero in the state vector.

The history at time u, u < t, is encoded as a one-hot vector of the action au along with the congestion window
as a result of that action cwndu. To the aggregate features, we concatenate a history of length k, resulting in our
final state vector of length 100 + k × (|A|+ 1), where |A| is the size of the action space. In our experiments,
k = 20 and |A| = 5, resulting in a state vector of length 220.

A.2 Action Space

While there are various possible choices for the action space A, we chose the simplest set of discrete updates
common in conventional congestion control methods:

A = {cwnd, cwnd/2, cwnd− 10, cwnd + 10, cwnd× 2}

where cwnd is the congestion window in units of Maximum Segment Size (MSS). The network environment
starts with an initial cwnd of 10, and bounded updates are applied according to the policy as follows:

cwndt+1 = clip(update(cwndt, at, A), 2, 2000)

where at is the action according to the policy at time t and is an index into the action space A,
update(cwndt, at, A) is a function that updates the current congestion window according to at, and the
function clip(x, low, high) = min(max(x, low), high) bounds the congestion window to reasonable limits.

MVFST-RL supports configuring the action space to any discrete set of updates easily via a simple format. The
above mentioned action space can be configured as "0,/2,-10,+10,*2".
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