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Unemployment Cycles†

By Jan Eeckhout and Ilse Lindenlaub*

The labor market by itself can create cyclical outcomes, even in 
the absence of exogenous shocks. We propose a theory in which the 
search behavior of the employed has profound aggregate impli-
cations for the unemployed. There is a strategic complementarity 
between active on-the-job search and vacancy posting by firms, 
which leads to multiple equilibria: in the presence of sorting, active 
on-the-job search improves the quality of the pool of searchers. This 
encourages vacancy posting, which in turn makes costly on-the-
job search more attractive—a self-fulfilling equilibrium. The model 
provides a rationale for the Jobless Recovery, the outward shift of 
the Beveridge curve during the boom and for pro-cyclical frictional 
wage dispersion. Central to the model’s mechanism is the fact that 
the employed crowd out the unemployed when on-the-job search 
picks up during recovery. We also illustrate this mechanism in a 
stylized calibration exercise. (JEL E24, E32, J63, J64)

Business cycles have a wide variety of origins, ranging from financial crises, over 
oil price shocks, to productivity spurts and slowdowns. Often, of all economic 

agents, workers are those affected most dramatically, mainly through unemploy-
ment. For long, researchers—most notably Diamond (1982)—have asked whether 
frictional markets can generate cyclical outcomes, even in the absence of any exog-
enous shocks or changes in fundamentals. But so far, there has been no compelling 
mechanism where the labor market by itself can generate cycles and that fits the 
facts. In this paper, we propose a simple theory that generates self-fulfilling unem-
ployment fluctuations and that can account for several key labor market facts: our 
model provides a simple rationale for large fluctuations in unemployment, vacancies 
and job-to-job flows, for the Jobless Recovery (the fact that it takes a long time for 
unemployment to drop even after vacancies and productivity have recovered), for 
the outward shift of the Beveridge curve during recovery, and for the evolution of 
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frictional wage dispersion over the business cycle. These business cycle aspects of 
the labor market cannot be rationalized in the standard random search model of the 
labor market.

The main contribution of this paper is to develop a theoretical mechanism that 
can explain these phenomena, where the main driving force is the search behavior 
of the employed. Singling out the employed to explain unemployment may seem 
counterintuitive. But with a share of over 90 percent of the labor force, any minor 
change in the behavior of the employed, who vie for job openings side by side with 
the unemployed in the same labor market, has profound aggregate implications for 
unemployment. Even if they search much less intensively than the unemployed, 
simply because of their size, on average, almost half of the new jobs are filled by 
workers who were employed already. Most importantly, we document that there is 
a large cyclical variation in the composition of searchers, ranging from 32 percent 
of employed workers in the recession to 48 percent in the boom, mostly due to the 
change in the search behavior of the employed over the business cycle. This varia-
tion in the composition of searching workers is a novel finding; our work suggests it 
is important for the cyclical dynamics of unemployment.

We contribute to the literature by spelling out a model that features a strategic 
complementarity between on-the-job search (OJS) and vacancy creation, giving rise 
to multiple equilibria. In their search decision, workers trade off the matching rate 
against the cost of searching. In turn, in their vacancy posting decision, firms take 
into consideration both the expected quality (or productivity) as well as duration of 
the job. When workers actively search on the job, there are two opposing effects on 
the firm’s value of a job. First, in the presence of sorting, searchers tend to move to 
jobs with higher match quality, and with active search, the relative number of on-the-
job searchers compared to unemployed searchers is higher (which we refer to as a 
composition externality in the pool of searchers), pushing the value of a job up. But at 
the same time, under active search, the expected duration of a job is shorter, pushing 
the value of a job down. It is precisely the interplay between the composition exter-
nality and the different duration of a job that is at the root of the multiplicity.

With active OJS, the favorable change in the composition of searchers (and thus 
higher expected match quality) dominates the shorter job duration, which creates 
incentives for vacancy posting. More vacancies in turn create incentives for work-
ers to actively search on the job since it is easier to find one. Active job search 
has become self-fulfilling. This high churning outcome corresponds to an economic 
boom with active on-the-job search, high employment-to-employment (EE) transi-
tions, little mismatch, abundant job creation, low unemployment, and high aggre-
gate output. But there is also another equilibrium, the recession, where workers do 
not actively search on the job, where the pool of searchers has relatively few on-the-
job searchers and the expected productivity of a job is low. For firms, the shorter 
duration of jobs formed with on-the-job searchers here dominates the impact of the 
composition externality. As a result, firms have little incentives to post vacancies. 
This generates a low matching rate for workers that does not compensate the cost 
of search. Again, this low search intensity is self-fulfilling. It leads to low worker 
turnover and high mismatch, low aggregate output and high unemployment. In 
the recession, workers experience grim job prospects and hang on to their existing  
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jobs, even if mismatched. Firms take solace in the long duration of jobs, even if 
they are of low productivity.

This purely endogenous labor market mechanism is new in the literature. The 
underlying strategic complementarity between vacancy posting and OJS intensity 
builds on three features: (i) endogenous OJS, (ii) sorting (job ladder) with mis-
match, and (iii) endogenous vacancy creation. These ingredients give rise to two 
closely related composition shifts that generate the necessary feedback effects for 
self-fulfilling equilibria: the composition of employed workers across the job ladder 
and the composition of searchers. First, under active OJS, the job ladder is more 
“fluid,” so more workers transit from mismatched jobs at the bottom to better jobs 
at the top of the job ladder. This means that—counterintuitively at first sight—the 
share of employed workers who search on the job is smaller during the boom, sim-
ply because less workers are stuck at the bottom of the ladder. Second, however, the 
likelihood for a vacant job to draw an on-the-job searcher rather than an unemployed 
searcher is higher under active OJS because the fewer employed workers who search 
do so more intensely. Endogenous OJS intensity thus affects the efficiency units of 
searchers. Based on efficiency units, the pool of searchers shifts toward on-the-job 
searchers during a boom (referred earlier to as the composition externality). Both 
composition shifts are absent in any standard random search models, which is why 
they do not generate endogenous fluctuations. We will provide direct empirical evi-
dence for these cyclical composition changes later in this paper.

While we derive most of our analytical results focusing on steady state equi-
libria, we also find parameter regions where multiple dynamic equilibria exist. In 
these situations, based on the local behavior of the model’s dynamic system, both 
steady states are saddle foci. For the global dynamics, this implies that both the 
active and passive job search equilibrium are stable manifolds on which, for a given 
belief about aggregate OJS behavior, the economy converges on oscillating paths 
to the corresponding steady state. There exist initial conditions for which there are 
multiple dynamic equilibrium paths converging to two different steady states. To 
which steady state the economy will converge depends on the agents’ beliefs about 
whether aggregate OJS is active or passive.

While the contribution of this paper is predominantly theoretical in that we 
identify a new mechanism behind fluctuations that originates exclusively in the 
labor market, we also numerically illustrate this mechanism: we calibrate the model 
to the US economy during the Great Recession and show that it is quantitatively 
consistent with large cyclical fluctuations in labor market outcomes, as well as 
with the jobless recovery, the shift in the Beveridge curve during the recovery, and 
pro-cyclical frictional wage dispersion. We now discuss each in turn.

First, even in the absence of any exogenous shocks (for instance, to productivity 
and to financial markets), our model can be made consistent with large cyclical 
variations in unemployment and vacancies (Figure 1, panel A) as well as EE transi-
tions (Figure 1, panel B) in the data. In our model, these fluctuations stem from the 
labor market itself but are more difficult to generate in the standard random search 
model with shocks to fundamentals (see Shimer 2005).

The second labor market feature the model can account for is the 
Jobless  Recovery. Even after productivity has picked up following the  
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recession,  unemployment has remained high. It took until 2016, seven years 
after the end of the Great Recession, for unemployment to be back at 5 percent. 
Here, we identify a new underlying channel where the employed searchers are 
crowding out the unemployed ones during the recovery. At the end of a recession, 
as beliefs switch to an active OJS regime and firms add many vacancies, the 
composition of the pool of searchers changes. Overall, job creation picks up, but 
jobs go disproportionately to the on-the-job searchers (who are abundant after 
the recession), and not to the unemployed. All the renewed activity thus initially 
translates in better jobs for the employed, but not in improved prospects for the 
unemployed.

Third, the model is consistent with the observed cyclical variation in frictional 
wage dispersion. We use our model’s implied mean-min wage ratio (originally 
developed in Hornstein, Krusell, and Violante 2011) to assess frictional wage 
dispersion in the data. First, we show that this measure of wage dispersion is 
highly pro-cyclical—a finding we believe is new in the literature. We then show 
that our model matches these observed patterns. Contrary to the phenomenon of 
jobless recovery, the primary force here is not the fluctuation in the composition 
of searchers but the change in the composition of employed workers across the 
job ladder. In the boom with active OJS, the job ladder is much more “fluid” with 
many workers moving into the upper rungs, fueling wage dispersion. In contrast, 
in the recession with low search intensity of employed workers, many of them are 
stuck in bad jobs—the job ladder fails—and frictional wage dispersion is low. This 
composition shift of employed workers across the job ladder is more important for 
pro-cyclical wage dispersion than the movements in wages themselves.

Finally, while these findings mainly rely on steady state comparisons of our 
calibrated economy, we exploit the equilibrium dynamics, where we assess the 
response to a positive (unexpected and permanent) expectations shock that pushes 
the economy out of the recession. Following this expectations shock while the 
economy is in the recession, we study the transition path to the boom steady state, 
and show that our model can trigger an outward shift of the Beveridge curve. 
Recently, there has been a renewed interest in the Beveridge curve because of a 

Figure 1. Employment-to-Employment Flows and the Beveridge Curve
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sizable outward shift following the Great Recession (see Figure 1, panel A).1 An 
outward shift is often interpreted as a decrease in matching efficiency: to main-
tain a given level of unemployment, a larger number of vacancies needs to be 
posted. A deterioration of labor market efficiency during the recovery is puzzling. 
One would expect to the contrary that part of the recovery is due to improved 
matching. We argue that the shift of the Beveridge curve is not due to a decline 
in matching efficiency but rather due to a shift in the effective market tightness. 
While the Beveridge curve relates to the ordinary market tightness, i.e., the ratio 
of vacancies to unemployed, the effective market tightness is given by the ratio of 
vacancies to all searchers, including in the denominator not only the unemployed 
but also on-the-job searchers. The fact that OJS picks up during recovery leads, for 
a given number of vacancies, to a decrease in the effective labor market tightness. 
Job offers start going disproportionally to employed searchers, crowding out the 
unemployed workers and resulting in lower job finding probabilities for them. For 
a given vacancy rate, there are more unemployed workers, and the Beveridge curve 
shifts. This phenomenon is closely related to the Jobless Recovery we discussed 
earlier. Responsible for the shifting Beveridge curve is therefore a large difference 
across equilibria in the endogenous argument of the matching function—i.e., the 
effective market tightness—and not in the exogenous matching technology.

To validate our mechanism further, we end by providing direct evidence for two 
features that underlie the model’s endogenous fluctuations and that are responsible 
for generating our main results: (i) pro-cyclical search intensity of on-the-job 
searchers and (ii) cyclical composition shifts in both the pool of searchers and the 
pool of employed workers across the job ladder.

Related Literature.—We are intellectually indebted to several earlier contribu-
tions and ideas that have shaped our thinking on this topic. A pioneer of self-fulfilling 
employment fluctuations is Diamond (1982).2 His model features multiplicity 
due to a thick market externality from increasing returns to scale in the matching 
technology: the more people search, the higher the probability of trading. While 
our source of multiplicity is similar since it also stems from endogenous behavior 
affecting the matching function, we do not rely on increasing returns to matching, 
a counterfactual feature of the matching technology (Pissarides and Petrongolo 
2001). Like Diamond (1982), our model has Keynesian elements in the sense that 
beliefs can generate business cycles. In contrast, most literature on the cyclical 
implications of labor search theory is neoclassical (fluctuations are driven entirely 
by productivity shocks).

The source of multiplicity in our model is also related to Burdett and Coles  
(1997). Their driving force is not Diamond’s (1982) market size externality, 
but rather a selection externality that affects the steady state distribution of  

1 The outward shift is substantial. For example, with a 2.2 percent job opening rate, the unemployment rate at 
the end of 2008 was less than 7 percent while with the same vacancy creation rate, the unemployment rate at the 
end of 2010 was 9.5 percent. Most people (including the NBER) would argue that 2010 was a solid recovery, yet 
unemployment was higher.

2 Diamond and Fudenberg (1989) further analyzes the non-stationary rational-expectations equilibrium of this 
model.
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heterogenous types. If high types believe other high types are not selective and also 
accept matches with low types, the equilibrium distribution of searchers will have 
a low fraction of high types, and hence it pays off to be nonselective oneself. While 
the composition effects of active OJS in our model are somewhat similar to this 
selection externality, that model has quite different predictions: in Burdett and Coles 
(1997), it is difficult to map the two equilibria into boom and recession. In their 
selective equilibrium, mismatch is low and output is high (as in a boom), but unem-
ployment is high as well, whereas in the nonselective equilibrium, mismatch is high 
and output is low (as in the recession), but unemployment is low.

Kaplan and Menzio (2016) asks the archetypical Keynesian question whether 
externalities in the goods market can affect employment in the labor market. In their 
model, if unemployment is believed to be high, then demand for goods will be low 
and more workers search for low prices, both leading to less production and thereby 
to high unemployment.3 In an interesting approach that also features a demand 
externality, Schaal and Taschereau-Dumouchel (2015) has a model with multiple 
equilibria (without search) but focuses on equilibrium selection using global games. 
While this guarantees a unique equilibrium, it maintains the amplification through 
multiple steady states. Schaal and Taschereau-Dumouchel (2016) embeds this 
mechanism into a random search model and shows that it can quantitatively account 
for the volatility and persistence of labor market variables in the United States.

The difference between this literature and our model is that, rather than 
exogenous  demand externalities in the goods market, our feedback mechanism 
originates in the labor market itself: it is based on a strategic complementar-
ity between OJS and vacancy posting and consistent with the well documented 
pro-cyclicality  of EE flows in the data.4 Not only do we find that pro-cyclical 
on-the-job search can account for large labor market fluctuations, our mecha-
nism also rationalizes the jobless recovery, the shift in the Beveridge curve during 
recovery, and pro-cyclical fluctuations in frictional wage dispersion.

Self-fulfilling multiple equilibria in search models have been used beyond the 
labor market: Burdett, Imai, and Wright (2004) builds a marriage market model 
where multiplicity stems from the strategic interaction of partners’ on-the-match 
search within a match. Moen, Nenov, and Sniekers (2015) has a model of the hous-
ing market where multiplicity arises because homeowners who switch houses coor-
dinate whether to sell their current house before or after they buy the new house. 
These are interesting approaches but differ from our work in terms of mechanism 
and objectives.

Last, in his seminal paper, Shimer (2005) argues that in the standard 
Diamond-Mortensen-Pissarides (DMP) model of unemployment, productivity 
fluctuations cannot account for the fluctuations in unemployment and vacancies 

3 Howitt and McAfee (1992) addresses a similar question. See also Shleifer (1986) for a model with multiplicity 
and output fluctuations through the timing of bringing innovation to the market.

4 The only paper that also obtains fluctuations driven exclusively by the labor market is Golosov and Menzio 
(2015). The model features moral hazard where it is most efficient to provide incentives through firing during 
recessions. Interestingly, this requires decreasing, not increasing, returns  to  matching. Both their model and 
questions are different from ours.



VOL. 11 NO. 4� 181EECKHOUT AND LINDENLAUB: UNEMPLOYMENT CYCLES

observed in the data.5 Hall (2005) (wage stickiness) and Hagedorn and Manovskii 
(2008) (the high value of unemployment) have offered explanations to counter 
Shimer’s finding and can indeed create labor market volatility from small 
productivity shocks. We do not see our contribution in adding to this debate. But we 
note that our model generates considerable amplification by relying on endogenous 
reallocation of workers to jobs with higher match-specific productivity in the 
boom and without alluding to any shock in the fundamentals (like Total Factor 
Productivity).

The paper is organized as follows. Section I introduces the model. Section  II 
analyzes multiple steady state equilibria and Section III multiple dynamic 
equilibria.  Section IV contains a stylized quantitative exercise and provides 
additional empirical evidence for the model mechanism. Section V concludes.

I.  Environment

We build a model of random search where workers search both when 
unemployed  and employed. It features a stylized two-step job ladder: we 
assume  that  all jobs found out of unemployment have low match productivity, 
and  all jobs found out of an existing job have high match productivity. This 
stylized  setup aims to capture the main forces of search models with OJS and 
sorting in a tractable way: a worker who already has a job will only move to a 
new job if the new job is more productive. Therefore, the types of job matches 
out of unemployment are on average less productive than those that form when 
moving from an existing job, and as a consequence, firms prefer hiring employed 
workers.6

Agents and Technology.—Time is continuous, ​t  ∈  [0, ∞)​. There is a measure 
one of risk neutral workers in the economy. A worker is unemployed and searching 
for a job or employed, in which case she can choose to search actively or passively 
on the job. We assume that OJS only takes place in low-productivity jobs (see 
online Appendix I.2 for a model that relaxes this assumption but preserves the key 
mechanism).7 The flow utility from being unemployed is ​b​, and the flow utility of 
employment is equal to the wage, ​​w​ t​​​. The search cost when unemployed or under 
passive OJS is normalized to zero, and the search cost for active search when 
employed is ​k​, so costs of OJS increase in search intensity. Workers maximize the 

5 In a theory of rest-and-search unemployment, a variation of the DMP search model, Jovanovic (1987) shows 
that productivity fluctuations also generate pro-cyclical search behavior (in addition to pro-cyclical productivity 
and countercyclical unemployment) as here, but without the amplification from equilibrium multiplicity that we 
highlight.

6 We discuss this assumption that firms prefer hiring employed over unemployed workers in more detail in the 
Remarks on the Assumptions section, but already want to note that there are many plausible micro-foundations for 
it: for example, productivity of employed workers is higher due to human capital accumulation on the job/learning 
by doing; or unemployed workers are less productive due to skill loss during unemployment; or employed workers 
are better able to direct their search and thus sort more effectively; or the differential search intensity by workers 
at lower versus higher rungs of the job ladder leads to differential match duration, making firms prefer employed 
over unemployed workers.

7 The implicit assumption is that search costs in high-productivity jobs are too high relative to the gains, so that 
no more search occurs to increase the wage further after one round of OJS. 
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value of employment: they search actively if the gain from active search exceeds 
the cost. Otherwise, they search passively at no cost.

There is a large measure of potential jobs (or firms). Firms can open a  
job/vacancy by paying a flow cost ​c​. If they stay inactive, their payoff is zero. 
Firms  are risk neutral and maximize the discounted sum of profits. Denote the 
measure of job openings by ​​v​ t​​​. All jobs are ex ante identical, but ex post heteroge-
neous in their job productivity ​y​. We assume the technology is given by ​f (y)  =  py​, 
where ​p​ is aggregate and ​y  ∈  { ​ y _ ​, ​

_
 y​ }​ is match-specific productivity.8 When a job 

is filled by an unemployed worker, the productivity is ​​ y _ ​​ and when it is filled by a 
formerly employed worker the productivity is ​​

_
 y​​, with ​​ y _ ​  < ​

_
 y​​.9 This captures in a 

stylized way the economy’s job ladder: workers tend to be better matched after they 
switch jobs. This is reflected in the data by substantial wage gains after EE transi-
tions, even when controlling for the earnings growth experienced by similar workers 
(Moscarini and Postel-Vinay 2018). We model this job ladder as improvements in 
the match-specific component of a worker-firm pair.

Denote the measure of the unemployed by ​​u​ t​​​, the measure of the employed  
in a low-productivity job ​​ y _ ​​ by ​​γ​t​​​, and the measure of the employed in high-produc-
tivity jobs ​​

_
 y​​ by ​​ξ​t​​​. Since the measure of workers is equal to one, feasibility requires 

that ​​u​ t​​ + ​γ​t​​ + ​ξ​t​​  =  1​.

Market Frictions and Search.—Meetings between jobs and workers are  
stochastic and are modeled by means of a standard matching function ​m(​v​ t​​, ​s​ t​​ )​,  
where ​m​ is strictly increasing and concave in both arguments and has constant 
returns to scale. Matching function ​m​ takes as inputs the measure of vacancies, ​​v​ t​​​, 
and the measure of searchers, denoted by ​​s​ t​​​ (including employed and unemployed). 
Therefore, the matching rate for a worker is ​m(​θ​t​​)​, where ​​θ​t​​  = ​ v​ t​​ / ​s​ t​​​, and that of 
a firm is ​q(​θ​t​​)  =  m(​θ​t​​) / ​θ​t​​​. Job separation is exogenous and constant over time, 
occurring at Poisson rate ​​δ​t​​  =  δ​.

Employed workers always engage in passive search at no cost (some job oppor-
tunities arrive without search effort), which leads to a match at rate ​​λ​0​​ m(​θ​t​​ )​, 
where ​​λ​0​​  >  0​ is the search intensity of passive on-the-job searchers relative to the 
search intensity during unemployment, which is normalized to one. They can also 
engage in active search at intensity ​​λ​0​​ + ​λ​1​​​ (with ​​λ​1​​  >  0​) by incurring the search 
cost ​k​.10 In return, they get a higher chance of a match, ​(​λ​0​​ + ​λ​1​​)m(​θ​t​​)​. The total 
number of searchers is expressed in “efficiency units” weighted by search intensity 
so the effective measure of workers searching for a job, ​​s​ t​​​, is given by ​​u​ t​​ + ​λ​0​​ ​γ​t​​​ 
if all employed workers in ​​ y _ ​​-jobs search passively and by ​​u​  t​​ + (​λ​0​​ + ​λ​1​​) ​γ​t​​​ if all 
employed workers in ​​ y _ ​​-jobs search actively. Thus, ​​λ​0​​​ and ​​λ​1​​​ reflect the efficiency 
of the matching technology on the job. The resulting market tightness is a function 

8 Later in this paper, we assume in addition that cost ​k​ and unemployment benefits ​b​ are proportional to ​p​ (con-
sistent with Chodorow-Reich and Karabarbounis 2016 that the value of unemployment is pro-cyclical).

9 If the surplus of a low-type match is positive (an assumption we make), it is optimal for the firm to accept this 
match even if that surplus is lower than the surplus of a high-type match.

10 An alternative way of modeling this would be through continuous search intensity, where workers choose an 
interior nonzero search intensity under a convex cost. This could also give rise to multiple equilibria with a high 
and a low intensity of OJS. Unfortunately, we cannot solve that case analytically. Observe that our cost is a step 
function and hence convex.
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of the total measure of searchers: when all workers actively search on the job, the 
market tightness is given by ​​θ​t​​  = ​ v​ t​​/(​u ​t​​ + (​λ​0​​ + ​λ​1​​)​γ​t​​ )​, and when they only search 
passively on the job, it is given by ​​θ​t​​  = ​ v​ t​​/(​u​  t​​ + ​λ​0​​​γ​t​​)​. Notice that we distinguish 
the effective market tightness ​​θ​t​​  = ​ v​ t​​/​s​ t​​​ that takes into account all effective job 
searchers from the conventional market tightness, here denoted by ​​Θ​t​​  = ​ v​ t​​ /​u​  t​​​, 
which only takes into account the unemployed searchers.

Individual Decision Problems and Bellman Equations.—We denote the value 
of a vacant job by ​​V​ t​​​, of a filled job by ​​J​ t​​​, of an unemployed worker by ​​U​ t​​​, and of 
an employed worker by ​​E​  t​​​. When we denote the value of a job for an employed 
worker, we use the notation ​​​ E ¯ ​​t​​​ ​​(​​E 

–
 ​​t​​)​​ to indicate that she is employed in a low  

(high) productivity job. Likewise, ​​​ J _ ​​t​​​ ​​(​​J 
–
​​ t​​)​​ denotes the value of a low (high) pro-

ductivity job that is filled with a worker coming out of unemployment (out of a 
low-productivity job). Denote by ​​ω​t​​  ∈  [ 0, 1 ]​ the decision by the individual worker 
whether to actively search on the job and by ​​Ω​t​​  ∈  [ 0, 1]​ the behavior of all workers 
in a symmetric strategy equilibrium (boldface indicates from now on the behavior 
of the aggregate economy). Even though we also show under which conditions a 
mixed strategy equilibrium with interior ​​ω​t​​​ and ​​Ω​t​​​ exists, we focus for the most 
part on pure strategies. That is, all agents in low-productivity jobs either do search 
actively or they do not, hence ​​Ω​t​​  ∈  { 0, 1}​ and ​​ω​t​​  ∈  { 0, 1 }​, where 1 (or 1) indicates 
active and 0 (or 0) passive search. Throughout we assume that individual search 
behavior ​​ω​t​​​ is private information, so a firm cannot make the wage contingent on 
search effort. For the remainder, we also use the notation ​λ(​ω​t​​ )  = ​ λ​0​​ + ​ω​t​​ ​λ​1​​​ for 
the individual search intensity and ​λ(​Ω​t​​ )  = ​ λ​0​​ + ​Ω​t​​ ​λ​1​​​ for the aggregate search 
intensity. Moreover, we make explicit that tightness is a function of search  
behavior as ​​θ​t​​(​Ω​t​​)  = ​ v​ t​​ / ​s​ t​​ (​Ω​t​​)  = ​ v​ t​​ /(​u​ t​​ + λ(​Ω​t​​ ) ​γ​t​​)​ and similarly for 
searchers ​​s​  t​​ (​Ω​t​​​) and wages ​​w​ t​​ (​Ω​t ​​)​, which we discuss in detail later in this paper. 
Note that all values and other endogenous variables are functions of search behav-
ior as well, but for the most part, we suppress this dependence.

Workers: We can write the values of a worker as follows:

(1)	​ r​U​ t​​  =  pb + m(​θ​t​​ (​Ω​t​​ ))(​​ E _ ​​ t​​ − ​U​ t​​ ) + ​​U ˙ ​​t​​​,

(2)	​ r ​​ E _ ​​t​​  = ​ ​ w _ ​​t​​ (​Ω​t​​) − ​ω​t​​ pk + λ(​ω​t​​ )m(​θ​t​​(​Ω​t ​​))​(​​E 
–
 ​​t​​ − ​​ E _ ​​t​​)​ − δ ​(​​ E _ ​​t​​ − ​U​ t ​​)​ + ​​​ E _ ​​t​​ ˙ ​​,

(3)	 ​r​​E 
–
 ​​t​​  = ​ ​w – ​​t​​ (​Ω​t​​) − δ ​(​​E 

–
 ​​t​​ − ​U​ t​​)​ + ​​​E 

–
 ​​t​​ ˙ ​​,

where ​​​U ˙ ​​t​​​ is the time derivative of ​​U​ t​​​ (and similarly for ​​​​ E _ ​​t​​ ˙ ​​ and ​​​​E 
–
 ​​t​​ ˙ ​​).

Importantly, individual search decisions, ​​ω​t​​​, affect only the value of the employed 
in low-productivity jobs, ​​​ E _ ​​t​​​, namely through the cost of job search ​k​ and the 
increased rate of finding a job by ​​λ​1​​​. Aggregate search behavior from the population 
at large, ​​Ω​t​​​, enters the values through two channels: it affects the job finding 
probabilities of workers through market tightness, ​​θ​t​​ (​Ω​t​​)​, and thereby the value of 
the employed in a low-productivity job as well as the value of the unemployed. It 
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also affects wages, ​​w​ t​​ (​Ω​t​​)​, which depend on the belief of whether workers search 
actively on the job or not.

Firms: The value of a vacancy to a firm is given by

(4)	​ r​V​ t​​  =  − c + q(​θ​t​​ (​Ω​t​​ ))​[​  ​u​  t​​ _____ 
​s​ t​​(​Ω​t​​ )

 ​ ​​ J _ ​​ t​​ + ​ 
λ(​Ω​t​​ )​γ​t​​ _______ 
​s​ t​​(​Ω​t​​ )

 ​ ​​J 
–
​​ t​​ − ​V​ t​​]​ + ​​V​ t​​ ˙ ​​,

reflecting the expected value of filling a vacancy (either with an unemployed 
worker, which occurs at rate ​qu / s​, or with an employed searcher which occurs 
at rate ​qλγ/s​, net of vacancy posting cost ​c​. Because we assume free entry and 
a large measure of potential entrants, the value of a vacancy ​​V​ t​​​ will be driven to 
zero in equilibrium. Observe that the measure of vacancies adjusts instantaneously: 
Whenever ​​V​ t​​​ is positive, vacancies are created frictionlessly to set the expected profits  
back to zero.

The values of a filled low and high-productivity job to the firm are given by

(5)	​ r​​ J 
¯
 ​​ t​​  =  p​ y _ ​ − ​​ w 

¯
 ​​ t​​ (​Ω​t​​ ) − ​[λ(​Ω​t​​ )m(​θ​t​​ (​Ω​t​​ )) + δ ]​​(​​ J _ ​​t​​ − ​V​ t​​)​ + ​​​ J _ ​​t​​ ˙ ​​,

(6)	​ r​​J 
–
​​  t​​  =  p​y –​ − ​​w ––​​t​​(​Ω​t​​) − δ ​(​​J 

–
​​t​​ − ​V​ t​​)​ + ​​​J 

–
​​  t​​ ˙ ​.​

The flow value of a high-type job in (6) is output net of wages. Once it is 
filled, the job lasts until there is exogenous separation at rate ​δ​. The low-type 
job in (5) similarly generates a flow value of ​p​ y _ ​ − ​ w _ ​​ and separates exoge-
nously at rate ​δ​, but in addition faces separation from OJS, which happens at  
rate ​λm​.

Wage Setting.—Wages are determined as in the sequential auction framework 
by Postel-Vinay and Robin (2002) (see also Dey and Flinn 2005). Employment 
contracts stipulate a fixed wage over time that the employer commits to and that 
can be renegotiated only if both parties agree. Firms can fire workers and workers 
are free to quit at will. As a result, when workers receive outside offers, wages 
may be renegotiated: current and outside employers Bertrand-compete for the 
worker. The worker goes to the match that generates a higher total match value 
and receives a wage such that her continuation value equals the match value with 
the least productive of the two competing firms (i.e., the match value of her out-
side option). If no outside offer arrives, wages remain unchanged. If the worker 
is hired out of unemployment, wages are such that she receives the option value  
of unemployment.

A firm hiring an unemployed worker will thus offer a 
wage ​​​ w _ ​​t​​​ that makes her indifferent between accepting the job and remaining 
unemployed, ​​​ E _ ​​t​​  = ​ U​ t​​​ . Likewise,  the firm offers a wage ​​​w ––​​t​​​ to an employed 
worker  such that she is indifferent  between joining the new firm with 
high-productivity job ​​y –​​ and staying at the old firm in low-productivity job ​​ y _ ​​.  
Hence, the new firm pays the worker the highest wage that the previous 
firm could have paid, pinned down by ​​​ J _ ​​ t​​  = ​ V​ t​​​ in the previous firm. This 
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matching of outside offers yields the following wages in low and high 
productivity jobs:

(7)	​​​  w _ ​​ t​​ (​Ω​t​​ )  =  p​[b​(​ 
r + λ(​Ω​t​​ )m(​θ​t​​ (​Ω​t​​ )) + δ   ___________________  

r + δ ​ )​ − ​ 
λ(​Ω​t​​ )m(​θ​t​​ (​Ω​t​​ ))  _____________ 

r + δ ​  ​ y _ ​ + ​Ω​t​​ k]​​,

(8)	​​​ w ––​​t​​ (​Ω​t​​ )  =  p​ y 
¯
 ​.​

Observe that wages reflect the population-wide behavior of on-the-job searchers ​​Ω​t​​​ 
and not the individual-level search behavior ​​ω​t​​​. That is, the wage reflects the firm’s 
belief about the workers’ search behavior but cannot condition on the actual (unob-
served) search behavior of the particular worker that is hired. Note that ​​​   w ​​t​​​(​Ω​t​​)​​ is a 
constant and thus time invariant even out of steady state.

Labor Market Dynamics.—At any point in time, the laws of motion for unem-
ployment and employment across the job ladder satisfy

(9)	​ 1  = ​ u​ t​​ + ​γ​t​​ + ​ξ​t​​​,

(10)	​​​ γ​t​​ ˙ ​  = ​ u​ t​​ m​(​θ​t​​​(​Ω​t​​)​)​ − ​γ​t​​ ​[ δ + λ​(​Ω​t​​)​m​(​θ​t​​​(​Ω​t​​)​)​]​​,

(11)	​​​ ξ ˙ ​​t​​  = ​ γ​t​​ λ​(​Ω​t​​)​m​(​θ​t​​​(​Ω​t​​)​)​ − ​ξ​t ​​ δ​.

Equation (9) ensures feasibility: the measure of workers consists of unemployed ​​u​ t​​​, 
on-the-job searchers who work in low-productivity jobs ​​γ​t​​​, and workers who obtained 
their high-productivity job through OJS ​​ξ​t​​​ and is equal to the measure of the entire 
worker population. In equation (10), the change in the stock of on-the-job searchers 
equals the difference between the flow into low-productivity jobs from unemploy-
ment and the flow out of low-productivity jobs, which consists of separations at 
rate ​δ​ and the outflow due to OJS at rate ​λm​. Finally, the change in the stock of 
workers in high-productivity jobs equals the difference between in- and outflow 
from high-productivity jobs, given by equation (11).

Definition of Equilibrium.—We can now define equilibrium.

DEFINITION 1: For a given sequence ​​{​Ω​t​​}​t≥0​​​, a Perfect Foresight Equilibrium is a 

path ​​​{​U​ t​​, ​​ E _ ​​t​​, ​​E 
–
 ​​t​​, ​V​ t​​, ​​ J _ ​​t​​, ​​J 

–
​​  t​​, ​θ​t​​, ​u​  t​​, ​γ​t​​, ​ξ​t​​, ​​ w _ ​​t​​, ​​

_
 w​​t​​, ​ω​t​​,}​​t≥0​​​ such that for all ​t  ∈  [ 0, ∞)​:

	 (i )	​​ U​ t​​, ​​ E _ ​​t​​, ​​E 
–
 ​​t​​, ​V​ t​​, ​​ J _ ​​t​​, ​​J 

–
​​  t​​​ satisfy the Bellman equations (1)– (6);

	 (ii )	 Given ​​{​Ω​t​​}​t≥0​​​, ​​ω​t​​  = ​ Ω​t​​​ maximizes ​​​ E _ ​​t​​​;

	 (iii )	 There is free entry of firms: ​​V​ t​​  =  0​;

	 (iv )	 Wages: ​​​ w _ ​​t​​​ is such that ​​​ E _ ​​t​​  = ​ U​ t​​​ and given by (7); ​​​
_

 w​​t​​​ is such that ​​​ J _ ​​t​​  = ​ V​ t​​​ and 
given by (8);
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	 (v)	​​ u​  t​​, ​γ​t​​, ​ξ​t​​​ satisfy the laws of motion (9)–(11);

	 (vi )	​​ lim​t→∞​​ ​θ​t​​​ is finite, and initial conditions ​​u​  0​​, ​γ​0​​, ​ξ​0​​​ are given.

Note that in this equilibrium definition, we assume that the sequence ​​{​Ω​t​​}​t≥0​​​ is 
deterministic and that the agents never anticipate a deviation from this deterministic 
path of aggregate OJS, i.e., the agents have perfect foresight.

II.  Steady State Equilibrium

We first focus on steady state equilibrium where we assume that beliefs about the 
profitability of OJS and thus search behavior is constant over time, that is ​​Ω​t​​  =  Ω​ 
for all ​t  ∈  [ 0, ∞)​. We solve the system of equilibrium equations, where we set time 
derivatives to zero and drop time subscripts. First, we solve for wages, ​​ w 

¯
 ​​ in (7) and ​​_

 w​​ in (8), then we pin down ​θ​ from free entry where firms take wages and search 
behavior as given. Finally, for given ​θ​, we determine the stocks ​u, γ​, and ​ξ​ from 
the steady state flow-balance equations. This guarantees that all but requirement 
(ii) from Definition 1 are satisfied. In what follows, we therefore analyze condi-
tions under which requirement (ii) is also satisfied, i.e., under which there is no 
profitable deviation in individual on-the-job search behavior ​ω​ from the aggregate 
search behavior ​Ω​. At the same time, we establish under which conditions both 
steady states coexist.

A. Multiplicity

We construct two candidate steady state equilibria in which either no employed 
worker in a low-productivity job searches actively, ​Ω  =  0​, or all workers search 
actively in such jobs, ​Ω  =  1​. For a steady state to exist, it is sufficient to check that 
one-shot deviations by a firm or a worker are not profitable. To exclude the firms’ 
one-shot deviations is straightforward since firms only have a participation decision 
to make, and in the presence of free entry, this yields zero profits (if they do not 
participate they also make zero profits). Note that, in our current setup, we have 
restricted the contract space to constant wages until the arrival of an outside offer, 
as is customary in this literature. In online Appendix II, we show that even if firms 
can offer a wage contract with back-loading, they nonetheless do not want to deviate 
from constant wages under natural parameter restrictions and there continue to be 
multiple steady state equilibria.

On the worker side, it is sufficient to check one-shot deviations from the 
worker’s strategy in the low-productivity job. The value of unemployment is 
pinned down by the exogenous flow benefits ​b​. As a result, the value of unemploy-
ment ​U​ is independent of the worker’s search intensity ​ω​. Likewise, the worker’s 
value of being employed in a high-productivity job ​​E 

–
 ​​ is independent of search 

behavior since there is no search decision at the top rung of the job ladder. This 
implies that ​U​ and ​​E 

–
 ​​ are independent of the search decision ​ω​, and we can directly 

check the deviations of those who are employed in low-productivity jobs and who 
obtain ​​ E _ ​​.
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To evaluate deviations by an individual worker, we introduce the following 
notation. If a worker in a low-productivity job deviates from the search behavior 
of all others for an instant ​dt​ and then reverts to the equilibrium behavior ​Ω​, we 
denote his value by ​​ E _ ​ (ω |  Ω​) with ​ω  ≠  Ω​. This captures the notion of the one-shot 
deviation principle, or equivalently Bellman optimality. In turn, the value of a worker 
who does not deviate is ​​ E _ ​ (ω | Ω)​, where ​ω  =  Ω​.

We now check two possible deviations and derive conditions under which those 
deviations are not individually rational: (i) when all workers in low-productivity 
jobs are actively searching on the job, there is no deviation by a single agent to stop 
active search if

	​​  E ¯ ​(1 | 1)  ≥ ​  E ¯ ​ (0 | 1)  ⇔ ​ m​​ −1​​(​ 
k (r + δ ) __________ 

​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​  ≤  θ(1);​

(ii) when no worker is actively searching on the job, there is no deviation of a single 
agent to start active search if

	​​  E ¯ ​ (0 | 0)  ≥ ​  E ¯ ​ (1 | 0)  ⇔  θ(0)  ≤ ​ m​​ −1​​(​ 
k(r + δ ) __________ 

​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​.​

These two no-deviation conditions give rise to the following result.

LEMMA 1: There exist multiple steady state equilibria if and only if

	​ θ(0)  ≤ ​ m​​ −1​​(​ 
k(r + δ ) __________ 

​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​  ≤  θ (1).​

All proofs are in Appendix A. Under the condition that the market tightness is 
not too extreme, there exist two pure strategy steady state equilibria, one where all 
workers in low-productivity jobs search actively and one where no one searches 
actively. We show in the Appendix that whenever the two pure strategy equilibria 
exist, there is also a mixed strategy equilibrium where every agent searches actively 
on the job with probability ​ω  =  Ω  ∈  (0, 1)​, i.e., in every interval of time ​dt​ workers 
randomize between the choice of search effort (see Appendix AC for the formal 
statement).11 This is illustrated in Figure 2 (panel A), where we plot the mutual 
best responses of workers’ search effort and firms’ vacancy posting (reflected by 
labor market tightness). The workers’ best response to tightness is an increasing 
step function, and the firms’ best response of tightness to workers’ search effort is 
an increasing function as well, indicating the strategic complementarity between 
search effort and vacancy posting. The intersections at ​Ω  =  0​ and ​Ω  =  1​ mark 
the pure strategy steady state equilibria while the interior intersection indicates the 
mixed strategy steady state. In what follows, we focus attention on the two pure 
strategy steady states.

11 Given a continuum of agents, this mixed strategy equilibrium is equivalent to purification where a fraction 
chooses the pure strategy ​ω  =  1​ and the remainder chooses 0.
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Of course, tightness ​θ(Ω)​ is an endogenous object. We now provide a necessary 
and sufficient condition for multiplicity in terms of the primitives of the model.

PROPOSITION 1 (Aggregate Productivity and Multiplicity): There are multiple 
steady state equilibria if and only if aggregate productivity ​p​ is such that  
​p  ∈  [ ​p​ l​​, ​p​ h​​ ]​. The interval ​[ ​p​ l​​, ​p​ h​​ ]​ is nonempty for an open set of parameters  
​(​λ​0​​, ​λ​1​​, ​ y 

¯
 ​, ​y –​, k, c, b, r, δ )​.

See Appendix A for the exact expressions for the productivity bounds ​[ ​p​ l​​, ​p​ h​​ ]​, 
which are complicated functions of the model’s remaining parameters. This result 
rewrites the necessary and sufficient condition for multiple steady state equilibria 
from Lemma 1 as a condition on the exogenous productivity parameter ​p​ that 
needs to lie in a certain interval (which we show is not empty). The intuition is 
straightforward: if aggregate productivity is too high, ​p  > ​ p​ h​​​, then all workers 
in low-productivity jobs want to search actively to take advantage of jobs with 
high match-specific component whose productivity ​​y –​​ is now augmented by 
high aggregate productivity ​p​. The passive-search equilibrium breaks down, 
and the active-search equilibrium is unique. The opposite occurs if produc-
tivity is too low, ​p  < ​ p​ l​​​. In Figure 2 (panel B), we illustrate the multiplicity 
region by plotting equilibrium tightness ​θ​ as a function of aggregate produc-
tivity ​p​. Market tightness is always increasing in productivity, both with and 
without active OJS, but for any given value of ​p​, ​θ​ is higher with active OJS. 
The solid ​θ​-segment indicates the productivity range for which a certain steady 
state exists. If ​p  ∈  [ ​p​ l​​, ​p​ h​​ ]​, then both steady states exist, corresponding to the  
condition in Lemma 1 that ​θ (0)  ≤ ​ m​​ −1​​(​(k (r + δ ))​/​(​λ​1​​( ​ y 

¯
 ​ − b))​)​  ≤  θ (1)​ (see 

the y-axis of Figure 2, panel B).
This condition for multiplicity can also be expressed in terms of any of the 

exogenous variables other than ​p​. We want to highlight one more of these conditions, 
which shows that the existence of multiple equilibria is closely related to the gains 
from sorting, i.e., to the difference ​​

_
 y​ − ​ y _ ​​.

Figure 2. Multiple Steady State Equilibria
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PROPOSITION 2 (Gains from Sorting and Multiplicity): There are multiple 
steady state equilibria if and only if ​​y –​  ∈ ​ [​​y –​​l​​( ​ y  _ ​), ​​y –​​h​​(​ y _ ​)]​​ for each ​​ y _ ​​. The interval  
​​[​​y –​​l​​( ​ y _ ​), ​​y –​​h​​( ​ y _ ​)]​​ is nonempty for an open set of parameters (​​λ​0​​, ​λ​1​​, ​ y _ ​, p, k, c, b, r, δ )​.

For sufficiently low-productivity gains from sorting, or equivalently low gains 
from OJS (measured by ​​y –​ − ​ y _ ​​), there is a unique equilibrium with no active OJS. In 
this case, the costs of OJS given by the direct search cost ​k​ incurred by the worker 
and the indirect search cost incurred by the firm due to shorter expected duration of 
a job outweigh the productivity gains from OJS. Hence, firms post few vacancies, 
and the dominant strategy is not to search actively.

At the other extreme, when productivity gains from OJS are sufficiently large, 
then the gains from OJS swamp its costs. Then the dominant strategy of employed 
workers is to search actively and firms’ vacancy posting is high.

Our results in this section illustrate the mechanism that gives rise to the 
strategic complementarity between worker and firm behavior and hence to multi-
plicity when aggregate productivity and the gains from sorting are not too extreme. 
Firms trade off the expected quality or productivity of a job (which can vary endog-
enously due to the composition externality) against job duration. And workers trade 
off the matching rate against the cost of searching. With active OJS, there is more 
sorting, the composition of the pool of searchers improves, and the value of a job to 
any firm is higher, which creates incentives for vacancy posting. More vacancies in 
turn create incentives for workers to actively search on the job since it is easier to 
find a job. This gives rise to a steady state equilibrium with active search. There is 
also an equilibrium where workers do not actively search on the job, where the pool 
of searchers has relatively few on-the-job searchers and is of relatively low match 
quality. For firms, the shorter duration of jobs filled under OJS then dominates the 
impact of the composition externality, and as a result, they post few vacancies. This 
indeed leads workers to not search actively.

Remarks on the Assumptions.—Before analyzing the equilibrium properties, we 
discuss some of our main assumptions and their role for the multiplicity of steady 
state equilibria.

First, for tractability, we assume in our baseline model that there is a two-step 
job ladder, where on-the-job searchers receive a deterministic match-specific 
productivity upgrade. This assumption is consistent with the evidence that 
unemployed workers accept lower quality job offers (Faberman et al. 2017) and 
that there is substantial wage growth as workers climb up the job ladder (see, for 
example, Faberman and Justiniano 2015; Haltiwanger, Hyatt, and McEntarfer 2015; 
and Gertler, Huckfeldt, and Trigari 2016), which is pro-cyclical (Haltiwanger et 
al. 2018). This is supporting evidence that our simplified job ladder is not a poor 
approximation. It could be rationalized by several micro-foundations (e.g., human 
capital accumulation/learning by doing, adverse selection and differential sorting/
directed search of employed and unemployed workers), but exploring them in 
depth would require an entirely different model and goes beyond the scope of this 
paper. Instead, we analyze in the online Appendix the most natural generalization 
of our model, which is to dispense with the reduced-form job ladder and introduce 
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stochastic productivity upgrades, where both unemployed and employed workers 
receive them with the same probability and also can search for an unrestricted 
number of rounds (online Appendix I.1).12

What transpires from this exercise is that a similar strategic complementarity 
between OJS and vacancy posting generates multiple steady state equilibria in 
more general environments. This shows that the multiplicity is not only due to 
the specific job ladder we assume but roots more deeply in the interplay between 
the composition externality and job duration. Even though overall job duration 
is lower under active search, the potential productivity gain and the fact that a 
match is of longer duration when formed with an employed compared to an unem-
ployed searcher, make on-the-job searchers for firms attractive. Like in our base-
line model, this triggers a strategic complementarity between search intensity and 
vacancy posting. Thus, our simple model inherits all the important features of the 
more general setup but has the benefit of being considerably more tractable (in the 
generalized model, there are ​​2​​ 4​  =  16​ potential equilibria, depending on various 
choices of search intensity at different parts of the job ladder). Later in this paper, 
we make the deliberate choice to bring our baseline model to the data instead of 
the generalized one, since it would be very difficult to estimate that model while 
ensuring both the existence of two particular equilibria (eight no-deviation condi-
tions have to be satisfied, instead of two in our baseline model) while excluding the 
possibility that any of the other 14 equilibria coexists.

Second, we assume in our baseline model that productivity is match specific. 
Online Appendix I.3 shows that multiplicity of equilibria does not hinge on this 
assumption either. There, we introduce permanent ex ante productivity differences 
of firms, i.e., firms can either open a low- or a high-productive vacancy. Employed 
and unemployed workers meet both types of vacancies with the same probabilities.

Third, we assume that unemployed workers (as opposed to employed workers) 
do not choose their search intensity endogenously for three reasons: (i) the empir-
ical studies on how search intensity of the unemployed varies over the cycle are 
inconclusive. There is evidence on both (slightly) countercyclical search inten-
sity (Mukoyama, Patterson, and Şahin 2018) and pro-cyclical search intensity 
(Schwartz 2014). (ii) Note that our results would go through if we interpreted the 
OJS intensity relative to the unemployed search intensity, and this is in fact the 
interpretation we should adopt based on our empirical evidence mentioned later in 
this paper.13 (iii) In our model, even if we introduced endogenous search intensity 

12 This extension is similar to Postel-Vinay and Robin (2002) (but with two job types) where heterogenous 
job offers randomly arrive to both employed and unemployed workers (see also models of sorting with OJS and a 
continuum of types that are computationally solved by Lise and Robin (2017) and Lamadon et al. (2013)). In this 
model, there are many more candidate equilibria (namely ​​2​​ 4​  =  16​), depending on various choices of search inten-
sity at different parts of the job ladder. In principle, one needs to check no-deviation conditions for each of these 
candidate equilibria. We pick two specific equilibria out of the 16 candidate ones and show that they can coexist for 
certain parameter values. We also analyze a second extension, which is even closer to the baseline model, where we 
allow for more than one round of OJS while keeping our deterministic productivity upgrades (online Appendix I.2).

13 If the unemployed searched with intensity ​​λ​u​​  ≠  1​, then the flow from unemployment to employment would 
read ​UE  =  ​λ​u​​ um​. Therefore, the search intensity of the employed (implied by the UE and EE flows) would 
read: ​λ  =  ​ EE _ UE ​ ​ u _ γ ​ ​λ​u​​​. Since later in this paper we use ​​ EE _ UE ​ ​ u _ γ ​​ to compute a measure of search intensity of the employed, 
what we effectively obtain is a measure of search intensity of the employed ​λ​ relative to the search intensity of the 
unemployed ​​λ​u​​​, and we will show in Section IVD that this relative measure is higher in booms than in recessions.



VOL. 11 NO. 4� 191EECKHOUT AND LINDENLAUB: UNEMPLOYMENT CYCLES

of the unemployed, they would always (independent of the business cycle) choose 
a unique level of search intensity. This is due to the sequential auction wage setting 
without worker bargaining power where the value of unemployment is constant and 
so are the gains from search during unemployment.

Fourth, we do not include the flows of those Not in the Labor Force (NiLF) 
because the countercyclicality of their search effort is unlikely to be a confounding 
factor to our mechanism.14

Fifth, we assume that both employed and unemployed workers randomly search 
for jobs in a single labor market. For our mechanism to work, there cannot be 
completely segregated labor markets since in that case the discussed composition 
externality would be shut down (but completely segregated/directed search markets 
would be a questionable assumption as well).

Sixth, our mechanism that generates multiplicity does not hinge on the 
contractual  setting with fixed wages. It is known that in the presence of endoge-
nous OJS, commitment to a fixed wage can be improved upon with a time-vary-
ing contract (see, for example, Lentz 2014). We show in online Appendix  II 
that even if firms can deviate from a fixed wage to a simple contract with 
back-loading, there is multiplicity.

Last, we assume that separations are constant in the model. This is clearly not 
borne out in the data, see Fujita and Ramey (2009). However, our focus is on how 
the interaction between search intensity of the employed and vacancy creation by 
firms can generate multiplicity, which is why we make the simplifying assumption 
of exogenous and constant separations.

B. Properties

In the standard random search model without OJS (e.g., Pissarides 2000), the 
steady state allocation is at the intersection of the Beveridge curve (BC), i.e., the 
flow-balance condition of unemployment,

(BC)	​ u  = ​   δ ___________  δ + m(θ (Ω)) ​​​,​

and the free-entry condition in the ​(u, v​)-space. Here, however, since 
matching probabilities are a function of the effective market tightness  
​θ  =  v / (u + λγ )  =  v / s​, the Beveridge curve also depends on the stock of 
on-the-job searchers ​γ​, given by flow-balance condition (10), which we label 
the ​γ​-Curve or (γ C):

(γ C)	​ γ  = ​ 
δm(θ(Ω))  _____________________________   [ δ + m(θ(Ω))][δ + λ(Ω)m(θ(Ω))] ​​.

14 While these flows are sizable, the cyclical properties of the search intensity of those NiLF is the opposite of 
that of the employed: countercyclical. In Appendix CA, Figure 13 (panel B), we report a measure of their search 
intensity.
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To find the steady states in our model, we therefore plot the equilibrium system 
of three equations, given by free entry (4) with ​V  =  0​, (BC) and (γ C), in terms 
of ​u, v​, and ​γ​, where ​v​ is a transformation of ​θ​: ​v  =  θ(u + λγ)​. Both (BC) and 
(γ C) give vacancies ​v​ as a function of ​(u, γ )​. For the sake of clarity, we combine 
these equations in Figure 3 and plot their intersection (BC)  ∩  (γ C), which gives ​v​ 
as a function of searchers ​s  =  u + λγ​ and thus is the effective Beveridge curve that 
takes all searchers into account:

(​​BC​​ s​​ )	​ s  =  u + λ(Ω)γ  = ​  
δ(δ + λ(Ω)m(θ(Ω))) + δλ(Ω)m(θ(Ω))    ________________________________   (δ + m(θ(Ω)))(δ + λ(Ω)m(θ(Ω)))  ​​.

Note that ​(B​C​​ s​ )​ has similar properties as ​(BC)​ (it is downward sloping and convex).
The intersection between effective Beveridge curve ​(B​C​​ s​ )​ and free-entry 

condition (4) (with ​V  = ​ V  ˙ ​  =  0​) marks the steady state for a given ​Ω​. In Figure 3, 
we plot both the steady state equilibrium for active OJS (​Ω  =  1​, blue circle) and 
for passive OJS (​Ω  =  0​, red circle) but omit the one in mixed strategies for clarity. 
Our next result compares the properties of the multiple steady states whenever they 
coexist.

PROPOSITION 3 (Properties of Steady States): Let there be multiple steady state 
equilibria. Then:

	 (i )	 Conventional market tightness is higher with active OJS: ​Θ(1)  ≥  Θ(0)​;

Figure 3. Pure Strategy Steady States at the Intersection of Free-Entry Plane and Beveridge 
Curve ​(BC​​​​ s​)​
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	 (ii )	 Unemployment is lower with active OJS: ​u(1)  ≤  u(0)​;

	 (iii )	 The measure of vacancies is higher with active OJS: ​v(1)  ≥  v(0)​;

	 (iv )	 EE flows, defined as ​EE  =  λγ m​, are higher with active OJS: 
​EE(1)  ≥  EE(0)​;

	 (v )	 The share of on-the-job searchers in all searchers increases with active 

OJS: ​​ 
λ(1)γ (1) ______ 

s(1)  ​  ≥ ​  
λ(0)γ (0) ______ 

s(0)  ​​ ;

	 (vi )	 The share of on-the-job searchers in employed workers decreases with active 

OJS: ​​ 
γ (1) ______ 

1 − u(1) ​  ≤ ​  
γ (0) ______ 

1 − u(0) ​​ ;

	(vii )	 The mean-min wage ratio, ​Mm  = ​ 
​  γ ____ 1 − u ​ ​ w _ ​ + ​  ξ 

 ____  1 − u ​ ​_ w​
  ____________ ​ w _ ​ ​ ,​ increases with active OJS 

( for ​k​ sufficiently small);

	(viii )	​ BC(1)​ is shifted outward relative to ​BC(0)​;

	 (ix )	​ B​C​​ s​ (1)​ is shifted outward relative to ​B​C​​ s​(0)​ (given ​λ(1)  ≤  1​).

Many of the features of this proposition can be observed in Figure 4. It plots the 
conventional Beveridge curve (BC) that relates vacancies ​v​ to unemployment ​u​ with 
the standard market tightness ​Θ  =  v / u​, for both equilibria. (Plotting the effec-
tive Beveridge curve (​B​C​​ s​​ ) in ​(s, v)​ space looks qualitatively identical.) Similar to 
Lemma 1 that was stated in terms of effective market tightness, if conventional mar-
ket tightness under active OJS is high enough (intersecting with the bold part of the 
blue Beveridge curve), then this equilibrium exists. In turn, if market tightness under 
passive OJS is low enough (intersecting with the bold part of the red Beveridge 
curve), then the equilibrium with low search intensity exists. Thus, when multi-
ple steady states exist, not only ​θ(1)  ≥  θ(0)​ (Lemma 1) but also ​Θ(1)  ≥  Θ(0)​ 
(part (i) in Proposition 3).

Vacancies are higher under active search (iii): there are relatively more effec-
tive on-the-job searchers who generate a high-productivity match (v), meaning that 
the pool of searchers is of better quality. This increases firms’ incentives to open 
vacancies and also leads to larger EE flows under active search (iv). Despite the 
lower match efficiency, unemployment is lower under active OJS (ii). This follows 
immediately from the flow equation for unemployment (BC) and the fact that under 
multiplicity ​θ(1)  ≥  θ(0)​ (from Lemma 1): the matching rate increases while job 
separation is unchanged.

The conventional Beveridge curve shifts out under active OJS (viii). There are 
more vacant jobs under active OJS, pushing up the matching rate, but at the same 
time, on-the-job searchers crowd out the unemployed. Hence, the match efficiency 
per unemployed worker is lower. Note that (​B​C​​ s​)​ in the ​(s, v)​-space also shifts out 
under active OJS (ix): since the pool of searchers is of higher quality, the same 
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measure of searchers encourages more vacancy posting, leading to a larger measure 
of vacancies.

Last, the distribution of workers across the job ladder changes with active OJS: 
less workers are stuck at the lowest rung of the ladder (vi), which is also the main 
force behind the increase in frictional wage dispersion (vii), as measured by the 
mean-min wage ratio (i.e., the ratio between the average wage and the lowest 
accepted wage or simply, ​Mm​).

III.  Dynamic Equilibrium

So far we have focussed on steady state equilibrium, showing when it is unique 
and when there are multiple equilibria. We now turn to the analysis of dynamic equi-
libria. We first ask whether, starting at initial values outside a certain steady state, 
there exists a path that leads to that steady state. Second, we want to understand 
whether multiple dynamic equilibria exist. More specifically, we are interested in 
whether, starting from the equilibrium with passive (active) OJS, an unanticipated 
permanent switch in agents’ beliefs about other workers’ OJS behavior puts the 
economy on a path to the steady state with active (passive) search.

We reduce the model’s dynamic system to three equations and three unknowns, 
the two state variables ​​u​ t​​​ and ​​γ​t​​​, as well as the choice variable ​​θ​t​​​ (see Appendix AG 
for the derivations):

(12)   ​​​   u​ t​​ ˙ ​  =  δ (1 − ​u​ t​​ ) − ​u​  t​​ m(​θ​t​​)​,

(13)   ​​​   γ​t​​ ˙ ​  = ​ u ​t​​ m(​θ​t​​) − (δ + ​λ​t​​ m(​θ​t​​)) ​γ​t​​​,

Figure 4. Multiplicity in the Beveridge Curve Diagram: The Conventional (BC) and Tightness ​Θ  = ​  v _ u ​​
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(14)   ​​   ​θ​t​​ ˙ ​  = ​  
m(​θ​t​​ )​u​ t​​  ___________________  

c​(1 − ​ 
​θ​t ​​m′(​θ​t​​) ______ 
m(​θ​t​​)

 ​)​​(u​  t​​ + ​λ​t​​ ​γ​t​​)
 ​ ​

	 ​  × ​[​ 
​λ​t​​ _ ​u​ t​​ ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​ t​​)​​(− ​​u ˙ ​​t​​ ​ 

​γ​t​​ _ ​u​ t​​ ​ + ​​γ​t​​ ˙ ​)​ − ​(p​ y _ ​ − ​​ w _ ​​t​​)​ 

 	   + ​(​  c ____ 
q(​θ​t​​ )

 ​ ​ ​u​  t​​ + ​λ​t​​ ​γ​t​​ _ ​u ​t​​ ​  − ​ 
​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​ ​​ J 

–
​​  t​​)​(r + δ + ​λ​t​​ m(​θ​t​​))]​​,

where we suppress the dependence of the time-varying variables on ​​Ω​t​​​ to reduce 
notation. Note that our definition of equilibrium (Definition 1) applies as is, only that 
we have reduced the system of equilibrium equations to (12)–(14) (and we replaced 
the equation for ​​​​J ̇ ​ _​​ t​​​ by ​​​θ ˙ ​​  t​​​, see Appendix AG). In addition to (12)–(14), an equilibrium 
must satisfy individual rationality of searchers (requirement (ii) of Definition 1, i.e., 
there is no profitable one-shot deviation from the economy-wide search strategy) 
and the transversality condition (requirement (vi) of Definition 1).

A. Local and Global Analysis

We start with the local analysis of the solution to (12)–(14) around each steady 
state. We then proceed to the global analysis, focusing on the solution of (12)–(14) 
away from each steady state.

Local Analysis.—We start the local analysis by considering the linearized system 
of (12)–(14) around a given steady state,

(15)	​​

⎡

 ⎢ 

⎣

​ 

​​u​ t​​ ˙ ​​​

​ ​​γ​t​​ ˙ ​​ 

​​​​θ​t​​ ˙ ​

 ​​​

⎤

 ⎥ 

⎦

​  = ​

⎡

 ⎢ 

⎣

​ 

​ 
∂ ​​u​ t​​ ˙ ​

 ___ ∂ ​u​ t​​
 ​ ​| ​

x(Ω)
​​ 

​ 

​ 
∂ ​​u​ t​​ ˙ ​

 ___ ∂ ​γ​t​​
 ​ ​| ​

x(Ω)
​​

​ 

​ 
∂ ​​u​ t​​ ˙ ​

 ___ ∂ ​θ​t​​
 ​ ​| ​

x(Ω)
​​

​   ​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​u​ t​​
 ​ ​| ​

x(Ω)
​​​  ​ 

∂ ​​γ​t​​ ˙ ​
 ___ ∂ ​γ​t​​
 ​ ​| ​

x(Ω)
​​​  ​ 

∂ ​​γ​t​​ ˙ ​
 ___ ∂ ​θ​t​​
 ​ ​| ​

x(Ω)
​​​   

​​ 
∂ ​​θ​t​​ ˙ ​

 ___ ∂ ​u​ t​​
 ​ | ​

x(Ω)
​​

​ 

​ 
∂ ​​θ​t​​ ˙ ​

 ___ ∂ ​γ​t​​
 ​ ​| ​

x(Ω)
​​

​ 

​ 
∂ ​​θ​t​​ ˙ ​

 ___ ∂ ​θ​t​​
 ​ ​| ​

x(Ω)
​​

 ​

⎤

 ⎥ 

⎦

​ ​

⎡

 ⎢ 

⎣

​ 

​u​ t​​ − u(Ω)

​ ​​γ​t​​ − γ (Ω)​ 

​​θ​t​​ − θ(Ω)

 ​​

⎤

 ⎥ 

⎦

​​ ,

where all time-dependent variables are functions of search effort ​​Ω​t​​  =  { 0, 1}​ 
but we again omit this argument to economize on notation. The  partial 
derivatives are evaluated at the steady state under consideration (indicated by 
vector ​x(Ω)  ≡  (u(Ω), γ (Ω), θ(Ω))​ where ​Ω  =  { 0, 1}​ carries no time subscript to 
indicate ‘steady state’), with ​​​u​ t​​ ˙ ​  = ​​ γ​t​​ ˙ ​  = ​​ θ​t​​ ˙ ​  =  0​. The eigenvalues of the Jacobian in 
(15) determine the stability of system (12)–(14) around the steady state.15 Since an 
analytical solution for the eigenvalues of this three-dimensional linearized system is 

15 This follows from the Hartman-Grobman Theorem (e.g., Hartman 1960) and the topological equivalence of 
two linear systems with the same (nonzero) eigenvalue structure.
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infeasible, we approach the problem numerically. We find that for typical parameter 
ranges, both the boom and the recession steady state are characterized by one posi-
tive real and two complex eigenvalues, with the real part of the complex eigenvalues 
being negative. As a result, each of the steady states is a stable saddle focus.

Following the Local Stable Manifold Theorem (e.g., Theorem 2.1 in Kuznetsov 
2013), this implies that the dynamics around each steady state ​x(Ω)​, ​Ω  =  {0, 1}​ 
are characterized by a local stable manifold of dimension two, which we denote 
by ​​W​ loc​ 

s  ​(x(Ω))​ and an unstable manifold of dimension one, denoted by ​​W​ loc​ 
u  ​(x(Ω))​. 

For any values of ​​u​ t​​​ and ​​γ​t​​​ in the neighborhood of steady state ​𝐱(Ω)​, the choice 
variable ​​θ​t​​​ will adjust (or ‘jump’) in order to bring the economy onto stable 
manifold ​​W​ loc​ 

s  ​(x(Ω))​. On that manifold, the economy will then converge to steady 
state ​x(Ω)​. In turn, for any initial values outside the stable manifold, the system 
diverges. Thus, for any initial values near steady state ​x(Ω)​, a dynamic equilib-
rium exists since (i) system (12)–(14) is satisfied, (ii) ​​θ​t​​​ is finite so the transver-
sality condition is satisfied, and (iii) the workers’ no-deviation condition holds 
(by Lemma 1 and a continuity argument). Moreover, since the number of negative 
eigenvalues is equal to the number of predetermined state variables, ​​u​ t​​​ and ​​γ​t​​​, this 
solution is unique (Acemoglu 2008, Theorem 7.18).

Global Analysis.—We now analyze the solutions of dynamical system (12)–(14) 
away from the steady states. The global behavior of the dynamical system depends 
on the shape of the stable manifolds associated with the steady states. Since we 
typically find that the two steady states under consideration have one positive real 
eigenvalue and a pair of complex eigenvalues with negative real part, there exists in 
those cases for each steady state a two-dimensional stable manifold, ​​W​​ s​(x(Ω))​, and 
a one-dimensional unstable manifold, ​​W​​ u​(x(Ω))​, defined by

	​​ W​​ s​(x (Ω))  = ​ {​x​0​​ : ​ lim​ 
t→∞​​ ​ϕ​t​​ (​x​0​​)  =  x(Ω)}​​,

	​​ W​​ u​(x(Ω))  = ​ {​x​0​​ : ​  lim​ 
t→−∞​​ ​ϕ​t​​(​x​0​​)  =  x(Ω)}​​,

where ​​ϕ​t​​​ denotes the nonlinear dynamic system (12)–(14), and where initial val-
ues ​​x​0​​​ are not necessarily in the neighborhood of the steady state.16 Hence, tra-
jectories on the stable (unstable) manifold converge to the steady state in forward 
(backward) time. Knowledge of these manifolds is crucial to understand the global 
dynamics. It is well-known however that, generally, global stable and unstable man-
ifolds cannot be found analytically—even for systems that are less complicated and 
of lower dimensions than ours.

We thus continue to proceed numerically: we construct the manifolds from 
local knowledge, that is from information near a fixed point ​x(Ω)​, using backward 
integration (Brunner and Strulik 2002). This method approximates the global stable 

16 One commonly uses the Local Stable Manifold Theorem to establish the existence of local stable manifolds 
and then obtains the existence of global stable manifolds simply by taking unions of backward and forward iterates 
of local stable and unstable manifolds.
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manifold by choosing a set of starting points from a circle around the steady state. 
This circle lies in a plane spanned by the corresponding stable eigenvectors of linear 
system (15).17 We then evolve the dynamical system (12)–(14) backward in time, 
that is

	​​ W​​ s​(x(Ω))  ≈  {​ϕ​t​​(x(Ω) + ϵ(cos(ρ) ​v​1​​ + sin(ρ) ​v​2​​)) ∀ t  <  0} 

	 where  0  <  ρ  <  2π  and  ϵ small,​

where ​​v​1​​​ and ​​v​2​​​ are the eigenvectors corresponding to the negative eigenvalues 
and where the specific functional form is chosen to generate a circular structure of 
starting values around the steady state.

We display the resulting shape of the two stable manifolds, corresponding to the 
steady state with active OJS (boom, blue) and the one with passive OJS (recession, 
red), in Figure 5. Figure 5 (panel A) shows the manifolds in the three-dimensional 
space, and Figure 5 (panel B) shows them in the two-dimensional space of state 
variables ​(u, γ )​.18 Since both steady states are stable saddle foci here, on either 
of the two stable manifolds, the economy converges in an oscillating way to the 
corresponding steady state.

But in order to understand whether these stable manifolds are indeed perfect 
foresight equilibria, we need to check that out-of steady state there is no profitable 
one-shot deviation by workers. We thus need to establish an analogue of Lemma 1 
away from steady state. It turns out that in our environment with sequential auction 
bargaining, the same condition as in steady state guarantees that there is no 
profitable deviation outside of steady state, only that this condition needs to hold 
along the entire path.

17 This guarantees that we start constructing the stable manifold from points that lie on it. It is otherwise hard to 
find numerically due to its zero measure.

18 In the figures, there appear to be intersections of the paths from a given manifold, but these paths are in fact 
at different depths of the page.

Figure 5. Stable Manifolds of Boom (Blue) and Recession (Red) Equilibrium
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LEMMA 2: There exists no profitable one-shot deviation from a dynamic  
equilibrium when ​​{​Ω​t​​ }​t≥0​​  =  {0}​, if and only if for all ​t  ∈  [ 0, ∞)​,

	​​ θ​t​​ (0)  ≤ ​ m​​ −1​​(​ 
k(r + δ ) _________ 

​λ​1​​​(​ y _ ​ − b)​
 ​)​.​

Likewise, there exists no profitable one-shot deviation from a dynamic equilibrium 
when ​​{​Ω​t​​ }​t≥0​​  =  { 1 }​, if and only if for all ​t  ∈  [ 0, ∞)​,

	​​ θ​t​​ (1)  ≥ ​ m​​ −1​​(​ 
k(r + δ ) _________ 

​λ​1​​​(​ y _ ​ − b)​
 ​)​.​

This was the last step in establishing a dynamic Perfect Foresight Equilibrium: 
Starting away from steady state at some ​​x​0​​  ∈ ​ W​​ s​(x(Ω))​ and for a given sequence 
of beliefs, ​​{​ Ω​t​​ }​t≥0​​  =  { 0 }​ or ​​{ ​Ω​t​​ }​t≥0​​  =  { 1 }​ (where { 0 } or { 1 } indicate a sequence 
of constant beliefs about other workers’ OJS behavior, which is either passive or 
active), there exists a path such that the economy reaches steady state ​x(Ω)​ if and 
only if the condition of Lemma 2 holds. This path satisfies (i) system (12)–(14), 
(ii)  the transversality condition, and (iii) the no-deviation condition by workers 
and thus constitutes an equilibrium.19 In turn, for any ​​x​0​​  ∉ ​ W​​ s​(x(Ω))​ market  
tightness ​​θ​t​​​ diverges to plus or minus infinity, violating transversality and thus such 
a trajectory does not constitute an equilibrium. We now turn to multiplicity.

B. Multiplicity

The previous section discusses the existence of a dynamic equilibrium for a given 
path of beliefs. We now investigate when there is multiplicity of dynamic equilib-
ria. Figure 5 shows that for a given path of constant beliefs, either ​​{​Ω​t​​ }​t≥0​​  =  { 0 }​ 
or ​​{​Ω​t​​ }​t≥0​​  =  {1}​, and a range of starting values outside of steady state there is 
a path on the stable manifold to the steady state that corresponds to ​​{​Ω​t​​ }​t≥0​​​. 
Importantly, it also shows that the two stable manifolds have considerable overlap 
in the space of state variables ​u​ and ​γ​. As can be seen in Figure 5 (panel B), there 
exists an upper bound ​​u –​​, and both lower and upper bounds, ​​γ 

¯
 ​​ and ​​γ – ​​, such that if  

​​u​ 0​​  ∈  (0, ​u –​ )​ and ​​γ​0​​  ∈ ​ (​γ 
¯

 ​, ​γ – ​)​​, two distinct dynamic paths lead to two different steady 
states: one  dynamic equilibrium path along the stable manifold converges to the 
boom steady state ​x(1)​, and another dynamic equilibrium path along the other sta-
ble manifold converges to the recession steady state ​x(0)​. Which path is selected 
depends on the workers’ beliefs about aggregate OJS behavior.

Along those distinct paths, (i) the dynamic system (12)–(14) holds, (ii) the trans-
versality condition is satisfied, and (iii) no worker has a profitable one-shot deviation 

19 It is impossible to analytically pin down Lemma 2 in terms of primitives. However, we can say the following: 
(i) if ​t​ is large enough, then ​|​θ​t​​(0) − ​θ​ t​ 

⁎​(0) |  <  ϵ​, ​ϵ​ small, and the passive OJS equilibrium exists under the  
conditions from Proposition 1. (ii) If ​t​ is large enough, then ​|​θ​t​​ (1) − ​θ​ t​ 

⁎​(1)|  <  ϵ​, ​ϵ​ small, and the active OJS 
equilibrium exists under the conditions from Proposition 1, where ⁎ indicates steady state.
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in search effort, provided that market tightness along the paths of passive (active) 
OJS is bounded from above (below), that is for all ​t  ∈  [ 0, ∞)​,

	​​ θ​t​​ (0)  ≤ ​ m​​ −1​​(​ 
k(r + δ )

 _________ 
​λ​1​​​(​ y 

¯
 ​ − b)​

 ​)​  ≤ ​ θ​t​​ (1)​,

which follows from Lemma 2.
It follows that if the model has multiple steady states, we can find parameters 

and initial conditions, ​​u​ 0​​  ∈  (0, ​u –​ )​ and ​​γ​0​​  ∈ ​ (​γ 
¯

 ​, ​γ – ​)​​, for which our model admits 
multiple dynamic Perfect Foresight Equilibria. They are given by the two stable 
manifolds ​​W​​ s​(x (0))​ and ​​W​​ s​(x (1))​. These equilibria differ with respect to agents’ 
beliefs about OJS behavior. Hence, the equilibrium dynamics of our model  
economy are determined not only by fundamentals (i.e., technology and preferences) 
but, crucially, also by agents’ expectations. Note that so far we have not addressed 
the issue of equilibrium selection. That is, we took the path of beliefs/search 
strategies, ​​{​Ω​t​​ }​t≥0​​​, as given. We will return to this issue and how agents’ beliefs 
about the profitability of OJS change in our quantitative illustration later in this 
paper.

IV.  Quantitative Illustration

We now undertake a stylized quantitative exercise. First, we calibrate the model 
to the US economy during the Great Recession. We compare boom and recession 
steady states in terms of worker flows, worker composition, and wage inequality. 
We also perform a simple exercise on the jobless recovery. Second, we study the 
dynamic equilibrium path of the economy in response to an unanticipated expec-
tations shock that makes agents more optimistic and construct the Beveridge curve 
during the recovery. Finally, to give further support for our mechanism, we provide 
direct evidence for its main underlying forces.

A. Calibration

We calibrate our model to quarterly US data from the Great Recession. The main 
data source for worker flows and unemployment rates is the Current Population 
Survey (CPS), where we aggregate the monthly series up to quarterly frequency. For 
vacancies, we use the JOLTS data from the Bureau of Labor Statistics. We provide 
details on the data, variables, and quarterly aggregation in Appendix B.

We first need to parameterize the matching function and choose the telegraph 
matching function:

(16)	​ m(θ )  =  ϕ ​  αθ _ αθ + 1
 ​ ,​

where ​ϕ​ is the overall matching efficiency and ​α​ is a parameter that determines 
the curvature of the matching technology. We use this matching function for two 
reasons. First, as a special case of a CES function, it has many desirable features of 
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a matching function. Second, with the level parameter ​ϕ​ and the shape parameter ​α​, 
we can closely approximate the matching functions used in the literature (e.g., that 
in Shimer 2005).

We set the parameters ​(r, b, δ, p, ​ y 
¯
 ​ )​ outside the model, see Table 1. Our model 

features a constant separation rate ​δ​ across boom and recession, which we set equal 
to the average observed quarterly separations over time. Moreover, since our model 
can generate multiple equilibria in the absence of any productivity changes, we 
normalize aggregate productivity ​p​ to one. We set ​b​ to about 70 percent of average 
labor productivity—an intermediate value considering the calibrations in the 
literature.

We calibrate the remaining parameters using our model. They relate to active 
and passive OJS intensity (​​λ​0​​, ​λ​1​​​), the parameters of the matching function (​α, ϕ​), 
the vacancy cost ​c​ and the cost of OJS ​k​, as well as match productivity in highly 
productive jobs ​​y –​​. We target business cycle moments from the Great Recession, i.e., 
moments from the previous boom (corresponding to the steady state equilibrium 
with active OJS, ​Ω  =  1​) and the trough of the recession (​Ω  =  0​). We date the 
peak prior to the Great Recession at 2007:IV and the trough at 2009:III (where the 
EE rate was at its lowest).

We choose moments as targets that strongly vary with the parameters we seek 
to calibrate. Central to our calibration strategy is to target EE transition rates in 
both boom and recession, since we would like to explain business cycle fluctua-
tions through differences in OJS. To align data and model, the targeted EE tran-
sition rates in the data are those that are associated with a wage increase.20 The 
observed EE flows across recession and boom identify the search intensities, ​​λ​0​​​ 
and ​​λ​1​​​. We target unemployment rates in boom and recession as they are closely 
related to the matching probabilities of workers, thereby pinning down the param-
eters of the matching function ​(α, ϕ)​. We also target the vacancy rate in boom and 
recession. They determine both the vacancy cost ​c​ and productivity ​​y –​​ through the 

20 The raw quarterly flows at peak and trough of the Great Recession are higher than those in Table 2, 
namely ​EE(0)  =  0.0424​ and ​EE(1)  =  0.0573​. Consistent with the model, we want to capture only those flows 
that coincide with an increase in match productivity. See Appendix BE for how we computed the flows associated 
with moves up the job ladder.

Table 1—Exogenously Set Parameters

Value Parameter description Notes

​r​ 0.0113 Discount rate Standard

​​ y _ ​​ 1 Match-specific productivity first job Normalization

​b​ 0.91 Opportunity cost of employment 69 percent of average labor  
  productivity

​δ​ 0.052 Job separation rate Average quarterly separation rate  
  across peak and trough

​p​ 1 Aggregate productivity Aggregate productivity shifter;  
  here normalized
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free-entry condition. Finally, we target wage dispersion in the boom as it identifies 
search cost ​k​.

We use General Method of Moments to calibrate our model.21 Targeted moments 
(data and model) and estimated parameter values are in Tables 2 and 3.

We match the EE flows in boom and recession, which is the main aspect of our 
mechanism. Observed unemployment rates and wage dispersion are matched rea-
sonably well while the model overpredicts the level of vacancies (but it accounts 
for the difference between boom and recession). Our model of multiple equilibria 
can thus be made consistent with the observed differences in unemployment and 
vacancies over the cycle without necessitating large (or any) aggregate productivity 
shocks.

The calibrated parameters suggest that on-the-job searchers are more than 
twice as actively searching in boom (​​λ​0​​ + ​λ​1​​  =  0.23​) compared to recession 
(​​λ​0​​  =  0.098​).22 The curvature of the matching technology ​α​ is estimated to be 
nearly linear, and matching efficiency ​ϕ​ is 2.4. Notice that the matching efficiency 
is estimated to be higher than what is suggested by the literature. This stems from 
using a different tightness measure ​v / s​ (which is smaller than the conventional 

21 We do not match the targeted moments exactly—despite an equal number of moments and  
parameters— because we impose parameter restrictions that ensure a solution with multiple equilibria is feasible.

22 The search intensity of (active) on-the-job searchers, ​​λ​0​​ + ​λ​1​​  =  0.23​, is considerably lower than the search 
intensity of unemployed workers, which was normalized to 1, in line with evidence by Faberman et al. (2017).

Table 2—Targeted Moments

Data Model

EE (1) 0.0351 0.0382

EE (0) 0.0223 0.0223

u (𝟏) 0.0491 0.0601

u (0) 0.0949 0.0976

v (1) 0.0300 0.0455

v (0) 0.0176 0.0302

​​ 
​
_

 w​(1) ____ 
​ w _ ​(1) ​​   

1.4176 1.3600

Note: See Appendix B for construction of variables.

Table 3—Calibrated Parameters

Estimate Parameter description

​​λ​0​​​ 0.0981 Passive OJS intensity

​​λ​1​​​ 0.1307 Active OJS intensity

α 1.1537 Curvature matching function

ϕ 2.4697 Overall matching efficiency

c 10.2208 Vacancy-posting cost

​​y –​​ 1.6855 Match-specific productivity second job

k 0.0897 Search cost
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one, ​v / u,​ since it takes into account all searchers ​s​, not just the unemployed ​u​). 
The costs of OJS are estimated to be about 9 percent of the first job’s flow output.  
The match-productivity difference between the two job types is relatively large  
(​​
_
 y​  =  1.69​). Finally, the estimated cost of posting a vacancy ​c​, which reflects the 

overall resources that a firm spends on hiring, are comparably high.23

Our calibrated economy admits multiple steady state equilibria, where labor mar-
ket tightness across steady states satisfies ​θ(0)  < ​ m​​ −1​​(​(k(r + δ  ))​/​(​λ​1​​(​ y 

¯
 ​ − b))​)​ 

<  θ (1)​ (see Lemma 1 or, equivalently, Proposition 1), where aggregate productivity  
​p  =  1  ∈ ​ [​p​ l​​, ​p​ h​​]​​ and where ​​p​ l​​​ and ​​p​ h​​​ are computed based on our calibration.

B. The Economy across Steady States

We now use the calibrated economy for a stylized exercise that analyzes differ-
ences in equilibrium outcomes across steady states, the cyclicality of frictional wage 
inequality, and the jobless recovery.

Comparison of Labor Market Outcomes across Boom and Recession.—We start 
with a comparison of the two steady states, focussing on labor market moments 
that we did not target in our calibration (see Table 4). Comparing labor market 
tightness ​θ​ (note that this statistic is not only based on ​v, u​ but also on ​λγ​, which is 
not targeted) and matching probability ​m(θ )​ across boom and recession shows that 
the model generates sizable fluctuations: the model accounts for about 84 percent 
of the observed decrease in labor market tightness and almost matches the observed 
38 percent drop in workers’ matching probability during the Great Recession.

Our model also captures subtle changes in the composition of searchers, as well 
as of workers across different rungs in the job ladder: in the data, the proportion of 
on-the-job searchers in overall searchers, ​λγ / s​, declined by 32 percent during the 
last recession, indicating that the quality of the pool of searchers deteriorated. In the 
model, it declined by 26.5 percent, capturing 83 percent of the observed drop. This 
shift in the composition of searchers over the cycle is at the heart of the mechanism 
underlying multiplicity and—as we show later in this paper—is also crucial for gen-
erating the phenomenon of jobless recovery. Our model also predicts that there is a 
significant change in the distribution of workers across the job ladder over the cycle: 
going into the recession, there is a large increase in the proportion of employed 
workers on the lowest rung, ​γ / (1 − u)​. This shift toward workers at the bottom of 
the job ladder also occurs in the data, though it is quantitatively smaller. The com-
position shift of employed workers across different parts of the job ladder will be 
crucial for generating pro-cyclical wage dispersion later in this paper.

These cyclical changes in labor market variables are obtained through multiple 
equilibria alone and without alluding to any decline in aggregate productivity ​p​, 
which is held fixed here. This suggests that differences in the intensity with which 

23 This estimate is in line with a growing literature that argues hiring costs are substantial and, depending on 
the worker type, can take up more than an annual wage. For evidence, see, for instance, Blatter, Muehlemann, and 
Schenker (2012) and Dube, Freeman, and Reich (2010) and the references therein.



VOL. 11 NO. 4� 203EECKHOUT AND LINDENLAUB: UNEMPLOYMENT CYCLES

workers search on the job in boom versus recession can have a sizable impact on the 
labor market.

Finally, because the theory is ambiguous regarding welfare, we use the calibrated 
model to check whether the two steady state equilibria can be Pareto-ranked. Indeed, 
the aggregate output net of search costs, ​Y(Ω)​, is 8 percent larger in the boom than 
in the recession: ​Y(1)  =  0.96​ versus ​Y(0)  =  0.89​.

Frictional Wage Dispersion.—Hornstein, Krusell, and Violante (2011) argues 
that frictional wage dispersion in standard search models is limited. They use the 
“mean-min ratio” (​Mm​) to quantify frictional wage dispersion and find that in 
a model without OJS, this ratio equals 1.05, that is, the average accepted wage 
is only 5 percent higher than the lowest wage a worker will accept. They also 
point out that the wage dispersion in a model with OJS is considerably larger, 
namely around 1.25, which is close to what we find later in this paper when using 
the ​Mm​-ratio suggested by our model.24 However, we do not want to focus on the 
level of frictional wage dispersion. Instead, we want to assess the implications of 
our model for the cyclicality of frictional wage dispersion.

In our job ladder model, the mean-min ratio is given by

	​ Mm  ≡ ​  
​ 

γ _ 1 − u ​ ​ w _ ​ + ​(1 − ​ 
γ _ 1 − u ​)​​

_
 w​
  ____________________ ​ w _ ​  ​  = ​  

γ _ 
1 − u

 ​ + ​(1 − ​ 
γ _ 

1 − u
 ​)​ ​ ​

_
 w​ __ ​ w _ ​ ​​​,​

where we have suppressed the dependence of all variables on ​Ω​. Table 5 reports 
this statistic in the data and the model. We find that this measure of frictional wage 
dispersion is highly pro-cyclical: in the data, it is around 5 percent higher in the 
boom than in the recession (compare columns 1 and 2). In our model, this measure 

24 Moreover, they show that models with sequential auction wage setting can generate even larger Mm ratios.

Table 4—Non-targeted Moments

Data Model

θ(1) 0.3209 0.4252

θ(0) 0.1252 0.2096

​m(θ (1))​ 0.7881 0.8128

​m(θ (0))​ 0.4903 0.4810

​​ 
λ(1)γ (1) ______ 

s(1) ​​
0.4755 0.4387

​​ 
λ(0)γ (0) ______ 

s(0) ​ ​ 0.3240 0.3224

​​ 
γ (1) ______ 

1 − u(1) ​​
0.1533 0.2185

​​ 
γ (0) ______ 

1 − u(0) ​​
0.2497 0.5242

Note: See Appendix B for how ​m​, ​θ​, ​γ​, ​λγ​, and ​s​ are measured in the data.
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is even more pro-cyclical with an increase of 17 percent. While the model overesti-
mates the increase in frictional wage dispersion compared to the data, note that both 
in data and model 60–70 percent of the increase in wage dispersion during the boom 
is due to a composition shift of employed workers across the job ladder, captured by 
a change in ​γ / ​(1 − u)​​. In contrast, pure wage dispersion itself, ​​

_
 w​ / ​ w _ ​​, is relatively 

stable over the cycle. To see this, in column (3), we keep the distribution of workers 
across the job ladder at its recession level ​​ 

γ ____ 1 − u ​ (0)​. In this case, frictional wage 
dispersion increases by less than half as much as when the composition of workers 
changes (1.6 percent instead of 5 percent in the data; 7 percent instead of 17 percent 
in the model).

In sum, most of the observed decline in frictional wage dispersion during the 
Great Recession is due to the contraction of the job ladder, which leads to a large 
increase of workers in lower paying jobs. Our model provides an explanation for why 
the job ladder is contracting, namely the drop in workers’ search effort and firms’ 
response to it and thus gives a rationale for pro-cyclical frictional wage dispersion.

Jobless Recovery.—We now illustrate how the cyclical change in the composition 
of searchers can provide an explanation for the phenomenon of jobless recovery. 
We illustrate this point through a simple exercise that highlights the impact of the 
recovery on unemployment.

Consider an economy in the recession steady state, where all employed 
workers in low-productivity jobs exert low search effort. We investigate the 
impact of an unexpected change in workers’ beliefs, such that all those workers 
start searching actively for another job. On impact, the stocks ​u​ and ​γ​ do not 
adjust, but there is an immediate response in the search activity ​λ​. Thus, there is 
a sudden increase in the measure of active searchers from ​s(0)  =  u(0) + ​λ​0​​γ (0)​ 
to ​​s​​ R​  =  u(0) + ​(λ​0​​ + ​λ​1​​) γ (0)​, where the superscript ​R​ stands for “Recovery.” This 
leads to a crowding out of unemployed workers: conditional on forming a match, the 
probability that it is with an unemployed worker is now lower since more are search-
ing on the job. The fraction of hires out of unemployment (denoted by ​κ​) decreases:

	​ κ(0)  ≡ ​  
u(0) ___________  

u(0) + ​λ​0​​γ (0) ​  > ​  
u(0)  _________________  

u(0) + ​(​λ​0​​ + ​λ​1​​)​γ (0) ​  ≡ ​ κ​​ R​.​

Table 5—Frictional Wage Dispersion in Boom and Recession

Recession ​Ω  =  0​ Boom ​Ω  =  1​ Boom ​Ω  =  1​ with ​​ 
γ _ 1 − u ​ (0)​

(1) (2) (3)

Mm data 1.29 1.35 1.31
(+5%) (+1.6%)

Mm model 1.09 1.28 1.17
(+17%) (+7%)

Notes: In parentheses, the percentage difference is shown between recession ​Ω  =  0​ and boom ​
Ω  =  1​ . In column 3, we leave the composition of employed workers, ​γ / (1 − u)​, unchanged 
at the recession level.
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Based on our calibrated model, Table 6 summarizes the changes in these 
conditional matching rates and also in the unconditional ones between trough and 
recovery. As the recovery starts and conditional on match formation, the probability 
that the match is formed with an unemployed worker declines from ​κ (0)  =  0.68​ 
to ​​κ​​ R​  =  0.47​ (​Δκ​ of ​− 30​ percent, see column 1 of Table 6). Thus, the conditional 
likelihood that an unemployed worker is selected over an employed worker signifi-
cantly drops. This is what we refer to as crowding out during the recovery. It stems 
from the composition externality that employed searchers impose on unemployed 
ones.

Certainly, what matters for job seekers is not just the conditional likelihood of 
being drawn. It is also important how fast the overall matching is. Under the belief 
that employed workers actively search for another job, the matching rate for firms 
goes up during recovery. In response, new vacancies are created (firms instanta-
neously adjust by posting vacancies so that profits are driven to zero again) and 
market tightness ​θ​ adjusts, as does the matching rate of workers, ​m (θ )​. Based on 
our calibration, for unemployed workers, the negative composition effect dominates 
the positive effect of the overall matching rate: the matching rate for an unemployed 
worker drops from ​κ(0) m(θ(0))  =  0.33​ in the recession to ​​κ​​ R​ m​(​θ​​ R​)​  =  0.24​ in 
the recovery (where ​​θ​​ R​​ is the market tightness during the recovery with unadjusted 
stocks but adjusted vacancies and search intensity)—a drop of 27 percent. The impli-
cation is that the unemployment rate initially increases during recovery, ​​u  ˙ ​  >  0​, 
since the separation rate ​δ​ is unchanged. In turn, the matching rate of employed 
workers increases by 70 percent, going from ​(1 − κ(0))m(θ(0))  =  0.155​ in the 
recession to ​(1 − ​κ​​ R​)m(​θ​​ R​)  =  0.264​ in the recovery.

Our exercise suggests that the main force behind these shifts are changes in the 
conditional meeting rates ​κ​ and ​1 − κ​ and thus in the composition externality that 
kicks in during recovery. To highlight this point, column 2 reports the changes 
in matching rates if only vacancies had adjusted during the recovery but with 
the composition of the pool of searchers unchanged (i.e., no change in search 
intensity ​λ​). In this scenario, we would have observed the same increase in match-
ing rates for all workers during the recovery. This is what a conventional ran-
dom search model without multiplicity and composition externality would predict 
but it is clearly not supported by the data: Figure 11 (panel A) (Appendix CA) 
shows that the conditional matching probability of an unemployed worker ​κ​ is 
decreasing during recovery. This translates into a strong recovery of matching 

Table 6—Jobless Recovery (Model)

​λ​ unchanged
(1) (2)

Δκ −0.30 0

​Δ m (θ )​ 0.04 0.37

​Δκ m(θ )​ −0.27 0.37

​Δ(1 − κ)m (θ )​ 0.70 0.37

Note: Here, Δ shows the percent-change between recession and recovery.
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rates for the employed but at best stagnant matching rates for the unemployed 
(Figure 11, panel B, Appendix CA).25

Column 2 also suggests that neglecting the composition externality during 
recovery overestimates the increase of matching rate, ​m,​ after the crisis. This hints 
at the importance of taking the effective market tightness ​θ  =  v / s​ into account 
in order to understand the jobless recovery. Since we observe vacancies and  
unemployment, we can readily construct the conventional market tightness  
​Θ  =  v / u​. We want to compare ​Θ​ to our effective market tightness ​θ​, which we 
obtain from the data as ​θ  =  v / (u + λγ)  =  v / (u + EE / m(θ ))​. Figure 6 (panel A) 
plots both ​θ​ and ​Θ​. There is not only less fluctuation in ​θ​ than in ​Θ​, but in particular 
after the crisis, the recovery of ​θ​ is much slower than that indicated by ​Θ​. This is 
because, contrary to the conventional tightness ​Θ​, the effective market tightness ​θ​ 
reflects the increase in the measure of on-the-job searchers. The implications for 
fluctuations in matching rates follow immediately (Figure 6, panel  B): while 
the matching rate based on the conventional tightness measure ​m(Θ)​ shows 
a fast recovery, the matching rate ​m(θ )​ recovers much more slowly, fueling the 
jobless recovery.26

All this indicates that at impact, the recovery out of the recession looks even 
bleaker for the unemployed than the recession itself. Due to crowding out and 
stagnant matching probabilities, rather than a decline, we see an increase in the 
unemployment rate immediately after the recession ends.

25 Note that we cannot replicate the exact exercise from Table 6 in the data, since we do not have a 
model-independent measure of search intensity ​λ​.

26 This model of unemployment cycles possibly helps understand the labor dynamics of the last recession, in 
particular the jobless recovery. Prior to the 1990s, however, recoveries were not jobless. We propose two ways 
to rationalize the absence of jobless recoveries with our model. Either the economy was not in the multiplicity 
region, which dampens the dynamics, or the collapse of the job ladder was milder in the sense that fewer employed 
searchers were stuck at the bottom of the job ladder during the recession and the crowding out of unemployed 
by employed searchers during recovery was less severe. Jobless recovery was milder/shorter. Of course, this is 
speculative and just highlights how our model could generate the absence of jobless recoveries.

Figure 6. Market Tightness and Matching Rates (Data)
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C. Dynamics in Response to an Expectations Shock

So far, we have focused on the comparison of multiple steady states (or of the 
recession steady state and the recovery at impact). We now investigate the transition 
dynamics, starting at the trough of the Great Recession and following the economy 
on its path to the boom steady state.

The transition dynamics are driven by the path of equilibrium beliefs ​​{ ​Ω​t​​ }​t≥0​​​. 
With slight abuse of notation, we will use ​​Ω​t​​​ to indicate both the workers’ belief 
about the economy’s OJS behavior as well as workers’ search strategy itself. In 
order to maintain a tight link between our theoretical results under steady state and 
this section, we assume that agents face an unanticipated expectations shock that 
makes them change their beliefs about the aggregate OJS behavior ​​Ω​t​​​. Thereby, 
this shock induces a shift in their individual search behavior ​​ω​t​​​. This approach 
requires no change to our current model, definition of equilibrium, or previous 
theoretical results.

We are aware that there may be more plausible ways to pin down the path of 
beliefs ​​{ ​Ω​t​​ }​t≥0​​​ than through unanticipated expectation shocks. We lay out the 
model with anticipated expectation shocks in online Appendix I.4 and show that the 
quantitative implications of the two models are similar.27

Here, we consider an economy in the recession steady state, with low search inten-
sity, ​​Ω​t​​  =  0​ where all variables are are stationary, ​​u  ˙ ​(0)  = ​ γ ˙ ​ (0)  = ​ θ ˙ ​ (0)  =  0​. We 
treat this as the initial equilibrium. We then introduce an unanticipated and perma-
nent expectations shock, where each agent believes that all other agents become 
optimistic and start active OJS, i.e., ​​Ω​t​​  =  1​ forever. This shock to workers’ beliefs 
makes firms immediately adjust their vacancy posting upward, which brings the 
economy from the recession steady state ​x(0)​, through a vertical jump onto the 
boom stable manifold ​​W​​ s​(x(1))​ as illustrated in Figure 7, panel A, where as pre-
viously mentioned, the vector x denotes ​x(Ω)  ≡  (u(Ω), γ (Ω), θ(Ω))​.28 Once on 
the boom manifold, the economy will transit along an oscillating path to the boom 
steady state ​x(1)​ in the direction of the black arrows.29 We thus focus on the transi-
tion dynamics of the recovery, i.e., from the recession steady state all the way to the 
boom steady state. We now investigate the Beveridge curve along this dynamic path.

Shift of Beveridge Curve.—Based on Proposition 3, our model predicts that the 
Beveridge curve associated with the active OJS steady state (boom) is shifted out-
ward compared to the Beveridge curve associated with the passive OJS steady state 

27 In the model with anticipated expectation shocks (similar to Kaplan and Menzio 2016), the agents understand 
that with a certain probability there is a shock to their expectations, inducing them to change their search behavior. 
Introducing anticipated expectations shocks requires a substantial change to the model and some necessary approx-
imation in the quantitative part, which is why we opted in the main text for the cleaner model with unanticipated 
shocks. Another way of pinning down ​​{​Ω​t ​​}​t≥0​​​ would be through a process of shocks to fundamentals (e.g., to ​p​) 
that drive the economy out of the parameter region that admits multiplicity and hence force the economy in each ​t​ 
into either ​​Ω​t​​  =  0​ or ​​Ω​t​​  =  1​.

28 This jump is feasible for the calibrated economy as the boom stable manifold “covers” the recession steady 
state in the ​(u, γ)​-space. The manifold in Figure 7, panel A, is computed through backward integration, based on 
the calibrated parameters.

29 The dynamic path is converging with oscillations, a feature consistent with the properties of the eigenvalues 
of the boom steady state, which indicate that it is a saddle focus.
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(recession). Those Beveridge curves are a hypothetical construct of which we only 
see one data point at a time (the equilibrium), much like a demand curve, whereas 
in the data we observe the transition dynamics. We therefore ask whether the tran-
sition path from the recession to the boom steady state can match the evolution 
of the empirically observed Beveridge curve. Figure 7, panel B, which plots the 
model transition path of ​θ​ and ​u​ from the recession to the boom steady state, indeed 
replicates such a shift.30 Coming out of the recession with high unemployment and 
low tightness, the Beveridge curve gets shifted outward immediately as recovery 
begins. It then follows a path of decreasing unemployment and increasing tightness 
and crawls back in toward a new steady state with active OJS. Thus, the multiplicity 
(inducing a jump from the recession onto the boom manifold after a belief switch) 
combined with the oscillating dynamics of the boom equilibrium captures the 
observed shift of the Beveridge curve fairly well. The transition takes 35 quarters or 
8.75 years.

The mechanism underlying the shift of the Beveridge curve stems from a change 
in the composition of searchers, which is key for firms who seek to hire (and 
closely related to the jobless recovery discussed earlier). Figure 14, panel A in 
Appendix CB shows that the composition of searchers drastically changes during 
the recovery where on-the-job searchers temporarily make up the largest group in 
the pool of searchers, measured by ​λγ / s​. This is the main driving force in firms’ 
sudden increase of job creation.31 Consistent with the shift in the composition of 
searchers, there is also a change in the composition of employed workers across the 

30 We choose to plot ​θ​ instead of ​v​ on the y-axis since ​θ​ is the jump variable in our dynamic equilibrium. Results 
in the ​u​-​v​ space look similar.

31 Sniekers (2018) also explains the dynamics of the Beveridge curve. He focuses on a limit cycle in a search 
model with demand externality, but without OJS and hence without the composition externality that drives our 
mechanism.

Figure 7. Equilibrium Dynamics: Transition Path from Recession to Boom Steady State
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job ladder: Figure 14, panel B (Appendix CB) shows an increase in the share of 
employed workers in high-productivity jobs ​ξ / (1 − u)​ in the transition to the boom 
steady state, indicating that the job ladder resumes its activity during recovery.

D. Direct Evidence for the Model Mechanism

There are two key features underlying the model mechanism: (i) pro-cyclical 
search intensity of employed workers. (ii) Composition changes in the pool of 
searchers as well as in the pool of employed workers over the cycle. Here, we aim 
to provide some direct evidence for them.

Pro-cyclical Search Intensity of the Employed.—First, there is direct evidence for 
pro-cyclical search intensity of on-the-job searchers by Carillo-Tudela et al. (2015), 
who use the Contingent Worker Supplement of the CPS.32

Second, a natural alternative source on search intensity is the American Time 
Use Survey (ATUS). As is well known, though, reported times for job search are 
extremely small in the ATUS. Therefore, and in line with the findings on search 
intensity of the unemployed (Mukoyama, Patterson, and Şahin 2018), we find 
that the cyclical pattern of search intensity of the employed is noisy and not very 
pronounced. In Figure 13, panel A in Appendix CA, we report the time spent 
searching by employed workers, first unconditionally, and then conditional on 
reporting nonzero search activity. The latter corresponds to the measure of search 
intensity in our model, and it is slightly pro-cyclical.

Finally, we make an attempt to compute our own measure of search intensity 
directly from the CPS data, where we proceed in two steps. First, we compute a 
measure of the stock ​​γ​t​​​ (which is not something we can read off the data directly). 
Second, we use ​​γ​t​​​ to disentangle ​​λ​t​​ ​γ​t​​​ (which we obtain from ​E​E​ t​​ / m(​θ​t​​ )  = ​ λ​t​​ ​γ​t​​​), 
thereby backing out search intensity ​​λ​t​​​.

For the first step, we rely on the dynamic flow equations. We first approximate 
the continuous time change in the stock of ​​γ​t​​​ by the discrete time differ-
ence where ​​​γ ˙ ​​t​​  = ​ γ​t+1​​ − ​γ​t​​​. We use the fact that the flows are given by  
​U​E​  t​​  =  m(​θ​t​​ ) ​u​  t​​​ and ​E​E ​t​​  = ​ λ​t​​ ​γ​t​​ m(​θ​t​​ )​ and assume that the exogenous separations 
come with equal proportions from all employed workers (whether they search or 
not, i.e., ​​δ​t​​  =  E​U​ t​​ /( 1 − ​u ​t​​​ )).33 We can then write the law of motion for ​​γ​t​​​, given by 
(10), in differences as

(17)	​​ γ​t+1​​  = ​ γ​t​​ ​ 
1 − ​u ​t​​ − E​U​ t​​  ___________ 

1 − ​u​  t​​
 ​  + U​E​  t​​ − E​E ​t​​.​

32 This evidence on the cyclicality of employed workers’ search behavior is however only suggestive because 
they have access to yearly data for some years only (1995, 1997, 1999, 2001, and 2005), which is too infrequent to 
capture the details of the business cycle. The data also do not cover the Great Recession.

33 In online Appendix III, we construct ​γ​ for different assumptions on the separation rate ​δ​ and find similar 
results.
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To obtain the stock ​​γ​t​​​ from this flow equation, we need an initial condition ​​γ​0​​​, 
which is in principle not given. We therefore pick the initial condition that corre-
sponds to the average ​​γ​t​​​ in the time series.34

Figure 8, panel A displays the HP de-trended time series of ​​γ​t​​​. In line with 
our calibrated model, the stock of on-the-job searchers is countercyclical (almost 
exactly coinciding with the unemployment rate in terms of cyclicality which we 
overlaid onto the figure), indicating that during downturns workers are increasingly 
stuck at the bottom of the job ladder. And once the boom is in full swing, ​​γ​t​​​ starts to 
decrease gradually. We believe this finding that the stock of on-the-job searchers is 
countercyclical is new.

In the second step, once we have obtained a time series for ​​γ​t​​​, we can infer the 
search intensity of on-the-job searchers using our framework. In fact, we know 
that ​E​E​ t​​  = ​ λ​t​​ m(​θ​t​​ ) ​γ​t​​​, as well as ​U​E​ t​​  =  m(​θ​t​​ ) ​u​  t ​​​. Therefore, search intensity is 
given by ​​λ​t​​  =  (E​E​  t​​ ​u​ t​​) / (U​E​  t​​ ​γ​t​​ )​. The implied de-trended series for ​​λ​t​​​ is pro-cyclical, 
running opposite to the unemployment rate (Figure 8, panel B): search intensity is 
above trend in the boom but then falls during the recession, reaching its minimum 
when unemployment peaks.

Note that (as mentioned in footnote 14), if contrary to our assumption the 
unemployed searched with intensity ​​λ​u​​  ≠  1​, then based on our flow equations we 
would obtain ​​λ​t​​ / ​λ​u, t​​  =  (E​E ​t​​ ​u​  t​​ ) / (U​E​  t​​ ​γ​t​​ )​. So by measuring the search intensity of 
the employed by ​(E​E​  t​​ ​u ​t​​ ) / (U​E​  t​​ ​γ​t ​​)​, we have effectively obtained a measure of search 
intensity of the employed, ​​λ​t​​​, relative to the search intensity of the unemployed, ​​λ​u, t​​​. 
Figure 8, panel B indicates that this relative measure is higher during booms than 
recessions.

Cyclicality of the Worker Composition.—There are two key composition changes 
in our model that are important for both the multiplicity and our results more 

34 To that end, we start from a grid of initial conditions ​​γ​0​​​ and compute the path ​​γ​t​​​ for each of them. From all 
these paths, each corresponding to an initial condition ​​γ​0​​​, we pick the path where ​​γ​0​​​ is equal to the average of all ​​γ​t​​​ 
in that path. We experimented with other ways of obtaining the initial conditions, but the results were similar.

Figure 8. Active On-the-Job Searchers and Search Intensity
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generally. First, the composition of searchers shifts over the cycle. During the boom, 
the share of employed searchers in overall searchers, ​λγ / s​, is relatively larger 
(while in the recession the unemployed searchers, ​u / s,​ gain importance, which are 
just the flip slide). We showed that this composition shift leads to crowding out 
of the unemployed during the economy’s recovery and thus gives rise to a jobless  
recovery. Figure 9, panel A shows that this composition shift in the pool of 
searchers also exists in the data. While the fraction of unemployed searchers is  
countercyclical, the fraction of employed searchers is highly pro-cyclical, being low 
in the recession and starting to rise during the recovery. This is direct evidence for 
the crowding out of unemployed searchers during an economy’s recovery.

Second, the composition of employed workers across the job ladder shifts over 
the cycle. During the boom, the share of employed workers in high rungs of the job 
ladder is relatively large (peaking at the end of the boom/beginning of recession), 
while in the recession the fraction of employed workers in the lowest rung grows. 
Figure 9, panel B plots the de-trended shares of employed workers in the lowest 
rung of the job ladder (note that employed workers in the highest rung, ​ξ / (1 − u),​ 
are just the flip side of ​γ / (1 − u)​). In line with the model, the share of workers who 
find themselves at the bottom of the job ladder is countercyclical, while the share of 
those at the top is pro-cyclical in the data.35

A similar mismatch-enhancing effect of recessions was also shown in Bowlus 
(1995); Lazear (2014); Gertler, Huckfeldt, and Trigari (2016); and Moscarini and 
Postel-Vinay (2016). It has been referred to as the sullying effect of recessions 
where workers get stuck in poor matches at the bottom of the job ladder (Barlevy 
2002). This is also supported by the fact that, as our model predicts, wage growth 
during the boom is higher (Faberman and Justiniano 2015). All this suggests that the 
recession negatively affects the composition of jobs, with a considerable bias toward 
low-productivity jobs.

35 To compute ​​γ​t​​ / (1 − ​u​ t​​ )​, we use the constructed ​​γ​t​​​ based on (17). Then, ​​ξ​t​​ / (1 − ​u​ t​​ )  =  (1 − ​u​ t​​ − ​γ​t​​ ) / (1 − ​u​ t​​ )​. 
Also, see Figure 5 in online Appendix III for the equivalent of Figure 9 but in terms of percentage point deviations 
from trend.

Figure 9. Composition of Searchers and Employed Workers
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Finally, these composition shifts of employed workers across the job ladder 
are also consistent with Mueller’s (2017) finding that during recessions, the pool 
of unemployed workers consists of relatively more high-wage workers and there-
fore is improving in quality. Figure 9, panel B shows that at the beginning of 
a recession, there are relatively more workers in high-paying jobs (​ξ / (1 − u)​ 
is above trend while ​γ / (1 − u)​ is below). Hence, given a constant separation 
rate for all employed workers, relatively more high-wage workers enter unem-
ployment during recessions (until the composition of employed workers flips 
at the end of the recession), which is why the quality of the unemployment  
pool improves.

V.  Conclusion

The main contribution of this paper is to develop a new theoretical mecha-
nism that explains unemployment cycles based on endogenous search intensity of 
employed job seekers. We argue that the labor market behavior of the employed 
can have profound implications for the unemployed. In particular, even in the 
absence of exogenous shocks, search behavior of employed workers by itself can 
create multiple equilibria and hence cyclical outcomes due to a strategic comple-
mentarity between active OJS and vacancy creation. Active OJS by the employed 
makes it more attractive for firms to post vacancies, which in turn makes OJS 
more attractive. Self-fulfilling beliefs can thus give rise to either an equilibrium 
with high OJS activity, which we interpret as a boom, or an equilibrium with low 
OJS activity, interpreted as a recession. We show that this model qualitatively 
accounts for the following features in a unified way: (i) the observed cyclicality 
of labor market outcomes, (ii) pro-cyclical frictional wage dispersion through a 
reallocation of workers from low to high-productivity jobs in the boom, (iii) a 
jobless recovery through a novel mechanism where the employed searchers crowd 
out the unemployed, and as a result, (iv) an outward shift of the Beveridge curve 
during the boom.

Given the stylized nature of the model, we propose a simple quantita-
tive exercise  to  illustrate this mechanism in US data: first, changes in beliefs 
about aggregate OJS behavior are consistent with large cyclical fluctuations in  
vacancies, unemployment, and job-to-job transitions, even without any change in 
aggregate productivity or other primitives. Second, the calibrated model generates 
pro-cyclical frictional wage dispersion—in line with the data. Third, if beliefs in 
the passive OJS equilibrium (recession) turn optimistic and employed workers 
start searching actively on the job, then they crowd out the unemployed searchers, 
giving rise to a jobless recovery. Last, the model’s transition dynamics from 
the steady state with passive OJS to the one with active OJS resemble a shift in 
the Beveridge curve.

In addition to this numerical illustration of our mechanism, we provide some 
direct empirical evidence for two key elements that underlie it: (i) pro-cyclical 
search intensity of on-the-job searchers and (ii) cyclical composition shifts 
in the pool of searchers, as well as in the pool of employed workers across the  
job ladder.
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Appendix A. Omitted Derivations and Proofs

A. Equilibrium Value Functions

Firms believe workers take an individual action ​​ω​t​​​ consistent with the equilib-
rium belief ​​Ω​t​​​, i.e., ​​ω​t​​  = ​ Ω​t​​​. Wage setting requires that ​​​ E _ ​​ t​​  = ​ U​ t​​​, which implies 
that ​​​​ E _ ​​t​​ ˙ ​  = ​​ U​ t​​ ˙ ​​ . Using this and solving for ​​U​ t​​​ in Bellman equation (1), implies

(18)	​​ U​ t​​  = ​  
pb

 _ r  ​ + ​ 
​​U​ t​​ ˙ ​

 __ r ​  →  U  = ​  
pb

 _ r  ​,​

which follows from the fact that the first term ​pb/r​ is a constant. Thus, this value is 
time invariant, ​​U​ t​​  =  U​, and we get ​​U ˙ ​  = ​​ E ˙ ​ _​  =  0​. We can thus solve for ​​​ E _ ​​ t​​​ in (2):

(19)	​​ ​ E ¯ ​​t​​  = ​  
​​ w 
¯

 ​​t​​(​Ω​t​​) − ​ω​t​​ pk + λ(​ω​t​​ )m (​θ​t​​(​Ω​t​​)) ​​E 
–
 ​​t​​   _____________________________   

r + λ(​ω​t ​​)m(​θ​t​​(​Ω​t​​))
  ​.​

Further, solving for ​​​E 
–
 ​​t​​​ in (3) implies

	​​ ​E 
–
 ​​t​​  = ​  

​​
_

 w​​t​​(​Ω​t​​ ) + δ ​ 
pb

 _ r ​ + ​​​E 
–
 ​​t​​ 

˙ ​
  ________________ 

r + δ  ​ .​

The equilibrium wage for the high-productivity job ​​​
_

 w​​t​​​ is pinned down by the 
sequential auction framework, setting ​​​ J 

¯
 ​​t​​  = ​ V​ t​​  =  0​ for the incumbent firm, for 

all ​t  ∈  [ 0, ∞)​. Since ​​V​ t​​  =  0​ by free entry, we also have ​​​V ̇ ​​t​​  =  0​, and this implies 
that the wage in the high-productivity job is time invariant and independent of the 
equilibrium ​​Ω​t​​​. Solving for the wage from ​​​ J _ ​​t​​  =  V  =  0​ implies

	​​​
_

 w​​t​​ (​Ω​t ​​)  = ​
_

 w​  =  p​ y 
¯
 ​.​

This further implies for the value of the worker in a high-productivity job that

	​​ E 
–
 ​  = ​  

p​ y 
¯
 ​ + δ ​ 

pb
 _ r ​ _ 

r + δ  ​,​

where ​​​​E 
–
 ​​t​​ 

˙ ​  =  0​ and thus drops since all other terms in ​​​E 
–
 ​​t​​​ are constants, which is 

why ​​​E 
–
 ​​t​​  = ​ E 

–
 ​​.

Similarly, the equilibrium wage for the low-productivity job ​​​ w _ ​​ t​​ (​Ω​t​​​) is pinned 
down by the sequential auction framework setting ​​​ E ¯ ​​t​​  =  U​. We use (18) and (19) to 
solve for ​​​ w 

¯
 ​​t​​ (​Ω​t​​)​:

(20) ​​ ​ w 
¯

 ​ ​t​​ (​Ω​t​​)  =  pb​(​ 
r + λ(​Ω​t​​)m(​θ​t​​ (​Ω​t​​)) + δ   ____________________  

r + δ ​ )​ − ​ 
λ(​Ω​t​​ )m(​θ​t​​  (​Ω​t​​ ))  _____________ 

r + δ  ​ p​ y 
¯
 ​ + ​Ω​t​​ pk.​
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Last, (5) and (6) can be written as (where we make use of ​​​​J 
–
​​t​​ 

˙ ​  =  0​)

	​​ J 
–
​  = ​ 

p​y –​ − ​
_

 w​
 ______ 

r + δ ​ ​,

	​​​  J 
¯
 ​​t​​  = ​ 

p​ y 
¯
 ​ − ​​ w 

¯
 ​​t​​ (​Ω​t​​) + ​​​ J 

¯
 ​​t​​ ˙ ​
  ____________________  

r + δ + λ (​Ω​t​​)m(​θ​t​​(​Ω​t​​))
 ​ .​

Finally, from free entry, ​​V​ t​​  =  0​ for all ​t​, and therefore (4) implies

	​ 0  =  − c + q(​θ​t​​ (​Ω​t​​))​[​  ​u​  t​​ ___________ 
​u​  t​​ + λ(​Ω​t​​) ​γ​t​​

 ​ ​​ J 
¯
 ​​t​​ + ​ 

λ(​Ω​t​​) ​γ​t​​ __________ 
​u​  t​​ + λ(​Ω​t​​)​γ​t​​

 ​ ​​J 
–
​​  t​​]​​.

Now using the fact that wages are set via sequential auctions, as well as the 
equilibrium wages, and substituting all explicit solutions for the values mentioned 
earlier, we can summarize the equilibrium Bellman equations as

(21)	​ U  = ​ 
pb

 _ r  ​​,

(22)	 ​​ E _ ​  = ​ 
pb

 _ r  ​​,

(23)	​​ E 
–
 ​  = ​ 

p​ y _ ​ + δ ​ 
pb

 _ r ​ ________ 
r + δ ​ ​,

(24) ​ 0  =  − c + q(​θ​t​​ (​Ω​t​​ ))​[​ 
​u​  t​​ ___________ 

​u​  t​​ + λ(​Ω​t​​) ​γ​t​​
 ​​(​ 

p​(​ y _ ​ − b)​
 ________ 

r + δ ​  − ​ 
pk ​Ω​t​​ − ​​​ J _ ​​t​​ ˙ ​

  _________________  
r + δ + λ(​Ω​t​​)m(​θ​t​​(​Ω​t​​))

 ​)​ 

� + ​ 
λ(​Ω​t​​) ​γ​t​​ ___________ 

​u​ t​​ + λ(​Ω​t​​) ​γ​t​​
 ​ ​ 
p​(​y –​ − ​ y _ ​)​

 ________ 
r + δ ​ ]​​,

(25)	​​​  J _ ​​t​​  = ​ 
p​(​ y _ ​ − b)​

 ________ 
r + δ ​  − ​ 

pk ​Ω​t​​ − ​​​ J _ ​​t​​ ˙ ​
  ____________________  

r + δ + λ(​Ω​t​​)m(​θ​t​​ (​Ω​t​​))
 ​​,

(26)	​​ J 
–
​  = ​ 

p​(​y –​ − ​ y _ ​)​
 ________ 

r + δ ​  .​

B. Proof of Lemma 1

We want to specify conditions under which (i) there is no profitable one-shot 
deviation from the passive-search steady state equilibrium; (ii) there is no profit-
able one-shot deviation from the active-search steady state equilibrium. We suppress 
time subscripts since we focus on steady states.

PROOF: 
	 (i)	 No deviation when no one searches: ​​ E ¯ ​ (0 | 0)  ≥ ​  E ¯ ​ (1 | 0)​.
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In this case, when no one actively searches on the job (​Ω  =  0​), a worker 
in a low-productivity job deviating during an interval ​dt​ chooses ​ω  =  1​ and 
gets a payoff:

	 ​​   E ¯ ​ (1 | 0)  = ​   1 _ 
1 + rdt

 ​​[dt( ​ w 
¯

 ​ (0) − pk) + (1 − δdt)dtλ(1)m(θ(0))​E 
–
 ​ 

	 + (1 − δdt)​(1 − dtλ(1)m(θ(0)))​​ E ¯ ​ (0 | 0) + δdtU]​​

where ​​E 
–
 ​  = ​ E 

–
 ​ (0 | 0)​ since that value is the same independent of the argument. 

There is no profitable deviation provided ​​ E _ ​ (0 | 0)  ≥ ​  E _ ​ (1 | 0)​ or

​​ E _ ​ (0 | 0)(1 + rdt)  ≥  dt(​ w _ ​(0) − pk) + dtλ(1)(1 − δdt)m (θ(0))​E 
–
 ​ 

	 + ​[1 − δdt − dtλ(1)m (θ(0)) + d​t​​ 2​δλ(1)m(θ(0))]​​ E _ ​ (0 | 0)

� + δdtU.​

After subtracting ​​ E ¯ ​ (0 | 0)​ from both sides, dividing by ​dt​ and taking the 
limit ​dt  →  0​, we obtain

�​ r​ E _ ​ (0 | 0)  ≥ ​  w 
¯

 ​ (0) − pk + λ(1)m (θ(0))​E 
–
 ​ + ​(−δ − λ(1)m(θ(0)))​​ E _ ​ (0 | 0) + δU.​

Substituting the equilibrium values for ​​ E _ ​ (0 | 0)​ (given by (22)), ​​E 
–
 ​​ (23),  

​U​ (21), and ​​ w 
¯

 ​ (0)​ (20), we obtain

	 (27)	​​ (​ y 
¯
 ​ − b)​[λ(1) − λ(0)] m(θ(0)) − k(r + δ )  ≤  0.​

	 (ii)	 No deviation when all search: ​​ E _ ​ (1 | 1)  ≥ ​  E _ ​ (0 | 1)​.
In this case, when all actively search on the job (​Ω  =  1​), a worker in a 

low-productivity job who deviates for an interval ​dt​ by choosing ​ω  =  0​ gets 
a payoff:

	​​  E _ ​ (0 | 1)  = ​   1 _ 
1 + rdt

 ​ ​[dt​ w 
¯

 ​ (1) + dtλ(0)(1 − δdt)m(θ(1))​E 
–
 ​ 

	 + (1 − δdt)​(1 − dtλ(0)m(θ(1)))​ ​ E ¯ ​ (1 | 1) + δdtU ]​.​

There is no profitable deviation provided ​​ E ¯ ​ (1 | 1)  ≥ ​  E ¯ ​ (0 | 1)​:

	​​  E _ ​(1 | 1)(1 + rdt)  ≥  dt​ w _ ​ (1) + dtλ(0)(1 − δdt)m (θ(1))​E 
–
 ​ 

	 + (1 − δdt − dtλ(0)m(θ(1))) 

	 + d​t​​ 2​δλ(0)m(θ(1)) ​ E _ ​(1 | 1) + δdtU.​
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After subtracting ​​ E ¯ ​ (1 | 1)​ from both sides, dividing by ​dt​ and taking the 
limit ​dt  →  0​, we obtain

	​ r​ E _ ​ (1 | 1)  ≥ ​  w 
¯

 ​ (1) + λ(0)m (θ(1))​E 
–
 ​ + ​(−δ − λ(0)m(θ(1)))​ ​ E _ ​ (1 | 1) + δU.​

Substituting the equilibrium values for ​​ E _ ​ (1 | 1)​ (given by (22)), ​​E 
–
 ​​ (23),  

​U​ (21), and ​​ w _ ​ (1)​ (20), we obtain

(28)	​​ (​ y 
¯
 ​ − b)​​[λ(1) − λ(0)]​m (θ(1)) − k(r + δ )  ≥  0.​

Combining (27) and (28) gives the condition in the Lemma. ∎

C. Steady State in Mixed Strategies

Denote by ​​ E _ ​ (ω | Ω)​ the value of playing ​ω​ for one instant ​dt​ while everyone else 
pursues strategy ​Ω​. This payoff is the same as the one-shot deviation payoff in 
Lemma 1.

For ​Ω  ∈  [ 0, 1]​, mixing requires that ​​ E _ ​ (0 | Ω)  = ​  E _ ​ (1 | Ω)​, where these value 
functions refer to a ​dt​-period play (after that instant the agents play ​ω  =  Ω​ again). 
If this condition is satisfied, then any mixed strategy ​ω​ (including ​Ω​) is optimal 
from a worker’s point of view. To see this, denote ​​ E ¯ ​ (0 | Ω)  = ​  E ¯ ​ (1 | Ω)  ≡ ​  E ¯ ​​. Then, 
any ​ω​ leaves the worker indifferent ​ω​ E ¯ ​ + (1 − ω)​ E ¯ ​  = ​  E ¯ ​​, i.e., there is an equilib-
rium in mixed strategies.

We now provide the details:

	​​  E ¯ ​ (1 | Ω)  = ​   1 _ 
1 + rdt

 ​​[dt​(​ w 
¯

 ​ (Ω) − pk)​ + (1 − δdt)dtλ(1)m (θ(Ω))​E 
–
 ​ 

	 + (1 − δdt)​(1 − dtλ(1)m(θ(Ω)))​​ E ¯ ​ (ω | Ω) + δdtU]​​,

	​​  E ¯ ​ (0 | Ω)  = ​   1 _ 
1 + rdt

 ​​[dt​ w 
¯

 ​ (Ω) + (1 − δdt)dtλ(0)m (θ(Ω))​E 
–
 ​ 

	 + (1 − δdt)​(1 − dtλ(0)m(θ (Ω)))​​ E ¯ ​ (ω | Ω) + δdtU]​​.

Set these values equal to each other and simplify (divide by ​dt​ and let ​dt  →  0​) to 
obtain

	​ λ(0) m(θ(Ω))​E 
–
 ​ − λ(0)m (θ(Ω))​ E _ ​(ω | Ω) 

	     =  − pk + λ(1)m(θ(Ω))​E 
–
 ​ − λ(1)m(θ(Ω))​ E _ ​ (ω | Ω)​.

Note that (as any equilibrium value of employment in the low-productivity job),  
​​ E _ ​(ω | Ω)  =  U  =  bp/r​. Using this, we obtain a necessary and sufficient condition 
for the mixing steady state to exist:

	​ θ(Ω)  = ​ m​​ −1​​(​ 
k(δ + r)

 _________ 
​λ​1​​​(​ y 

¯
 ​ − b)​

 ​)​​,
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where the RHS is the same constant as in the condition of Lemma 1. In sum, there 
coexist three steady states if and only if

	​ θ(0)  ≤  θ(Ω)  = ​ m​​ −1​​(​ 
k(δ + r)

 _________ 
​λ​1​​​(​ y 

¯
 ​ − b)​

 ​)​  ≤  θ(1).​

The mixing probability ​Ω​ can be found by plugging ​θ(Ω)  = ​ m​​ −1​​(​(k (δ + 
r))​/​(​λ​1​​(​ y 

¯
 ​ − b))​)​​ into the FE condition of the firm and solving for ​Ω​. We obtain the 

following result.

PROPOSITION A1 (�Existence of Mixed Strategy Steady State): If there exist both 
active and passive-search steady states, then there also exists a steady state in 
mixed strategies.

PROOF: 
We showed in Lemma 1 that the active OJS steady state exists if

(29)	​ E (1 | 1)  ≥  E (0 | 1).​

In turn, the passive OJS steady state exists if

(30)	​ E(0 | 0)  ≥  E(1 | 0).​

We provided conditions in terms of exogenous parameters such that both (29) and 
(30) hold. So, for ​Ω​ close to one,

(31)	​ E(1 | Ω)  ≥  E(0 | Ω)​

but not

(32)	​ E(0 | Ω)  >  E(1 | Ω).​

In turn, for ​Ω​ close to zero, (32) holds (with weak inequality) but not (31) (with strict 
inequality). Since ​E(1 | Ω) − E(0 | Ω)​ is continuous in ​Ω​, there exists an ​Ω  ∈  (0, 1)​, 
such that ​E(0 | Ω)  =  E(1 | Ω)​. ∎

D. Proof of Proposition 1

PROOF: 
We first derive necessary and sufficient bounds for aggregate productiv-

ity, ​p  ∈  [ ​p​ l​​, ​p​ h​​ ]​, in order for multiple steady states to exist.
Based on Lemma 1, the no-deviation conditions (27) and (28) at equality define 

the ​θ​-bounds for multiplicity,

	​​ θ​l​​  = ​ m​​ −1​​(​ 
k(δ + r) _________ 

​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​  = ​ θ​h​​​,
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where ​​θ​l​​​ is the lowest tightness that sustains the equilibrium with active OJS and ​​θ​h​​​ 
is the highest tightness that sustains the equilibrium with passive OJS.

To obtain these bounds in terms of productivity ​p​, we evaluate free-entry condition 
(24) in the steady state of active OJS at ​​θ​l​​​ to obtain a lower bound on aggregate 
productivity, denoted by ​​p​ l​​​:

  ​​p​ l​​  = ​ [c ​λ​1​​​(b − ​ y 
¯
 ​)​​(k​(λ​0​​ + ​λ​1​​) + ​λ​1​​​(− b + ​ y 

¯
 ​)​)​​(2δk(​λ​0​​ + ​λ​1​​) + 2k(​λ​0​​ + ​λ​1​​)r + δ ​λ​1​​​(− b + ​ y 

¯
 ​)​)​ ​m​​ −1​​(​ 

k(δ + r) 
 _________  

​λ​1​​​(− b + ​ y 
¯
 ​)​
 ​)​]​ / 

	 ​[k​(​b​​ 3​ δ ​λ​ 1​ 
2​ − ​k​​ 2​ ​​(λ​0​​ + ​λ​1​​)​​ 2​(δ + r )​y –​ + k ​λ​1​​​(λ​0​​ + ​λ​1​​)(δ + r)​(k − ​y –​)​​ y 

¯
 ​ − δk ​λ​0​​ ​λ​1​​ ​​ y 

¯
 ​​​ 2​ − δ ​λ​ 1​ 

2​ ​​ y 
¯
 ​​​ 3​  

	 − ​b​​ 2​ ​λ​1​​​(δk (2 ​λ​0​​ + ​λ​1​​) + k(​λ​0​​ + ​λ​1​​)r + 3δ​λ​1​​​ y 
¯
 ​)​ 

	 + b​(k​(λ​0​​ + ​λ​1​​)(δ + r )​(k​λ​0​​ + ​λ​1​​​y –​)​ + k ​λ​1​​​(δ(3​λ​0​​ + ​λ​1​​) + (​λ​0​​ + ​λ​1​​)r)​​ y 
¯
 ​ + 3δ​λ​ 1​ 

2​ ​​ y 
¯
 ​​​ 2​)​)​]​.​

And similarly, to obtain an upper bound on aggregate productivity, ​​p​ h​​​, (where we 
evaluate free-entry condition (24) under the passive OJS steady state at ​​θ​h​​​):

	​​ p​ h​​  = ​ 
c ​λ​1​​​(​ y 

¯
 ​ − b)​​(2δk​λ​0​​ + 2k​λ​0​​ r + δ ​λ​1​​​(​ y 

¯
 ​ − b)​)​ ​m​​ −1​​(​ 

k(δ + r) 
 ______ 

 ​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​
     ________________________________________________     

k​(​b​​ 2​δ​λ​1​​ − bk ​λ​0​​(δ + r) + k​λ​0​​(δ + r)​y –​ − 2bδ​λ​1​​​ y 
¯
 ​ + δ​λ​1​​ ​​ y 

¯
 ​​​ 2​)​

 ​.​

We still need to show that ​​p​ h​​  > ​ p​ l​​​ for an open set of remaining parameters ​​

(​λ​0​​, ​λ​1​​, ​ y 
¯
 ​, ​y –​, k, c, b, r, δ)​​. Solving ​​p​ h​​ − ​p​ l​​  >  0​ for ​​y –​​, we obtain a sufficient condition 

on ​​y –​​ under which ​​p​ h​​ − ​p​ l​​  >  0​:

​​y –​  >  K  ≔ ​ [2k​λ​0​​(​λ​0​​ + ​λ​1​​)​r​​ 2​ + ​δ​​ 2​​(2k​λ​0​​ + ​λ​1​​​(3​ y 
¯
 ​ − 2b)​)​​(k(​λ​0​​ + ​λ​1​​) + ​λ​1​​​(​ y 

¯
 ​ − b)​)​ 

	 + δr​(4​k​​ 2​​λ​0​​(​λ​0​​ + ​λ​1​​) − ​λ​ 1​ 
2​​(2​ y 

¯
 ​ − b)​​(​ y 

¯
 ​ − b)​ 

	 + k​λ​1​​​(​ y 
¯
 ​(5​λ​0​​ + 3​λ​1​​) − b(4​λ​0​​ + 2​λ​1​​))​)​]​ /

 	​ [δ​λ​1​​(δ + r)​(k(​λ​0​​ + ​λ​1​​) + ​λ​1​​​(​ y 
¯
 ​ − b)​)​]​.​

Thus, for fixed ​​(​λ​0​​, ​λ​1​​, ​ y 
¯
 ​, k, c, b, r, δ)​​, ​​y –​  >  K​ is sufficient for ​​p​ h​​ − ​p​ l​​  >  0​. Further 

note that for fixed ​​(​λ​0​​, ​λ​1​​, ​ y 
¯
 ​, k, c, b, r, δ)​​, ​K​ is finite, and thus the result holds for all ​​

y –​  ∈  (K, ∞)​. Finally, since ​K​ is continuous in ​​(​λ​0​​, ​λ​1​​, ​ y 
¯
 ​, k, c, b, r, δ)​​, the result not 

only holds for a fixed vector of remaining parameters ​​(​λ​0​​, ​λ​1​​, ​ y 
¯
 ​, k, c, b, r, δ)​​ but for 

an open set of them. ∎

E. Proof of Proposition 2

PROOF: 
We first derive necessary and sufficient bounds for match productivity,  

​​y –​  ∈ ​ [​​y –​​l​​​(​ y 
¯
 ​)​, ​​y –​​h​​​(​ y 

¯
 ​)​]​​ (for any given ​​ y 

¯
 ​​ ), in order for multiple steady states to exist. We 
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can explicitly compute these bounds from a system of two equations (per bound), 
namely free entry (24) under active (passive) OJS and the no-deviation condition 
(28) (and (27)) from active (passive) OJS, that we solve for ​​y –​​ in each case:

​​​y –​​l​​​(​ y 
¯
 ​)​  =  ​ y 

¯
 ​ + ​ 

​(b − ​ y _ ​)​​(k​λ​0​​ + ​λ​1​​​(− b + ​ y 
¯
 ​)​)​​(δk(​λ​0​​ + ​λ​1​​) + k(​λ​0​​ + ​λ​1​​)r + δ​λ​1​​​(− b + ​ y _ ​)​)​

      _____________________________________________________________     
k(​λ​0​​ + ​λ​1​​)(δ + r)​(k(​λ​0​​ + ​λ​1​​) + ​λ​1​​​(− b + ​ y 

¯
 ​)​)​ ​  

	   + ​ 
c​λ​1​​​(− b + ​ y 

¯
 ​)​​(2δk(​λ​0​​ + ​λ​1​​) + 2k(​λ​0​​ + ​λ​1​​)r + δ​λ​1​​​(− b + ​ y 

¯
 ​)​)​ ​m​​ −1​​(​ 

k(δ + r) 
 ________ 

 ​λ​1​​​(− b + ​ y 
¯
 ​)​
 ​)​
       _________________________________________________________________    

​k​​ 2​(​λ​0​​ + ​λ​1​​)p(δ + r)
  ​​,

​​​y –​​h​​​(​ y 
¯
 ​)​  = ​ 

kp​(− ​b​​ 2​δ​λ​1​​ + bk​λ​0​​(δ + r) + 2bδ​λ​1​​​ y 
¯
 ​ − δ​λ​1​​ ​​ y 

¯
 ​​​ 2​)​ + c​λ​1​​​(− 2δk​λ​0​​ − 2k​λ​0​​ r + δ​λ​1​​​(b − ​ y 

¯
 ​)​)​​(b − ​ y 

¯
 ​)​ ​m​​ −1​​(​ 

k(δ + r) 
 _________  

 ​λ​1​​​(− b + ​ y _ ​)​
 ​)​

         ______________________________________________________________________________________________     
​k​​ 2​ ​λ​0​​ p(δ + r)

  ​.​

We still need to show that ​​​y –​​h​​​(​ y _ ​)​  > ​​ y –​​l​​​(​ y _ ​)​​ for an open set of parameters  
​​(​λ​0​​, ​λ​1​​, ​ y _ ​, p, k, c, b, r, δ)​​. Solving ​​​y –​​h​​​(​ y _ ​)​ − ​​y –​​l​​​(​ y _ ​)​  >  0​ for ​c​, we obtain

  ​c  > ​ K ˆ ​  ≔ ​  
kp​(​k​​ 2​ ​λ​0​​(​λ​0​​ + ​λ​1​​)r + δ​(k​λ​0​​ + ​λ​1​​​(− b + ​ y 

¯
 ​)​)​​(k(​λ​0​​ + ​λ​1​​) + ​λ​1​​​(− b + ​ y 

¯
 ​)​)​)​
      _____________________________________________________________      

δ​λ​ 1​ 
2​​(− k(​λ​0​​ + ​λ​1​​) + ​λ​1​​​(b − ​ y 

¯
 ​)​)​​(b − ​ y 

¯
 ​)​ ​m​​ −1​​(​(k(δ + r))​ / ​(​λ​1​​​(− b + ​ y 

¯
 ​)​)​)​

  ​​.

Thus, for fixed ​​(​λ​0​​, ​λ​1​​, ​ y _ ​, p, k, b, r, δ)​​, ​c  > ​ K ˆ ​​ is sufficient for ​​​y –​​h​​​(​ y _ ​)​  > ​ ​y –​​l​​​(​ y _ ​)​​. 
Further note that for fixed ​​(​λ​0​​, ​λ​1​​, ​ y _ ​, p, k, b, r, δ)​​, ​​K ˆ ​​ is finite, and thus the result holds 
for all ​c  ∈ ​ (​K ˆ ​, ∞)​​. Finally, since ​​K ˆ ​​ is continuous in ​​(​λ​0​​, ​λ​1​​, ​ y _ ​, p, k, b, r, δ)​​, the result 
not only holds for a fixed vector of parameters ​​(​λ​0​​, ​λ​1​​, ​ y _ ​, p, k, c, b, r, δ)​​ but for an 
open set of them. ∎

F. Proof of Proposition 3

PROOF: 
Each of the items in the proposition hinges on the fact that ​θ(1)  ≥  θ(0)​, which 

follows from Lemma 1:

	 (i)	 This follows from Lemma 1 (i.e., necessary condition for multiplicity 
​θ(1)  ≥  θ(0)​), and

	​ θ(Ω) ​ u + λ(Ω)γ (Ω)  _____________ u ​   =  Θ(Ω)​,

where ​(u + λγ )/ u  =  2 − δ /(δ + λm(θ))​ is increasing in ​Ω​ since  
​λ(1)m(θ(1)) ≥ λ(0)m(θ(0))​.

	 (ii)	 From (BC), ​u(1)  ≤  u(0)​ immediately follows from ​θ(1)  ≥  θ(0)​ and 
since ​m(θ)​ is increasing in θ.
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	 (iii)	 We return to (iii) after proving (viii).

	 (iv)	 EE flows are defined as

	​ EE(Ω)  =  λ(Ω)m(θ(Ω))γ (Ω) 

	 =  λ(Ω)m(θ(Ω)) ​  δm(θ(Ω))  _____________________________   (δ + m(θ(Ω)))(δ + λ(Ω)m(θ(Ω))) ​,​

where we used (​γ​ C). Then ​EE(1)  ≥  EE(0)​ provided

 ​​  
δλ(1)m ​(θ(1))​​ 2​

  _________________________   (δ + m(θ(1)))(δ + λ(1)m(θ(1))) ​ − ​ 
δλ(0)m ​(θ(0))​​ 2​

  _________________________   (δ + m(θ(0)))(δ + λ(0)m(θ(0))) ​  ≥  0​,

 ​​ δ​​ 2​​(λ(1)m ​(θ(1))​​ 2​ − λ(0)m ​(θ(0))​​ 2​)​ 

    + λ(0)λ(1)m(θ(0))m(θ(1))​[m(θ(1)) − m(θ(0))]​​

	​ + m(θ(0))m(θ(1))δ​[λ(1)m(θ(1)) − λ(0)m(θ(0))]​  ≥  0,​

�which holds since ​λ(1)  >  λ(0)​ and under multiplicity  
​m(θ(1))  ≥  m(θ(0))​.

	 (v)	 Inequality ​λ(1)γ (1) / s(1)  >  λ(0)γ (0) / s(0)​ follows from  
​λ(1)m(θ(1))  >  λ(0)m(θ(0))​ and ​λ(Ω)γ (Ω) / s(Ω)  =  1 − u(Ω) / s(Ω)  
=  1 − ​(​δ​​ 2​ + δλ(Ω)m(θ(Ω)))​ / ​(​δ​​ 2​ + 2δλ(Ω)m(θ(Ω)))​​, where

	​​  
∂ (u(Ω) / s(Ω))  ____________  ∂λ(Ω)m(θ(Ω)) ​  =  − ​  ​δ​​ 3​  _____________________  

​​(​δ​​ 2​ + 2δλ (Ω)m(θ(Ω)))​​​ 2​
 ​  <  0.​

	 (vi)	 Using (BC) and (​γ​C), we obtain ​γ (Ω)/(1 − u(Ω))  =  δ/(δ + λ(Ω)m(θ(Ω)))​. 
By Lemma 1, ​θ(Ω)​ is increasing in ​Ω​ (and also ​λ(1)  >  λ(0)​ by assump-
tion), and thus ​γ (Ω) / (1 − u(Ω))​ is lower when employed workers search 
actively, ​Ω  =  1​, compared to when they do not, ​Ω  =  0​.

	(vii)	 The mean-min wage ratio can be reformulated as ​Mm(Ω)  
= ​ (γ (Ω)/(1 − u(Ω)))​​(1 − (​

_
 w​(Ω)/​ w _ ​(Ω)))​ + ​(​

_
 w​(Ω)/​ w _ ​(Ω))​​. We want to 

provide conditions under which Mm is increasing in ​Ω​. We have (treating ​Ω​ 
with some abuse as continuous here)

	​​  
∂ Mm(Ω) _______ ∂ Ω  ​  = ​  

∂ ​ 
γ (Ω) ______ 

1 − u(Ω) ​ _______ ∂ Ω  ​​(1 − ​ 
​
_

 w​(Ω) _____ 
​ w 
¯

 ​(Ω) ​)​ + ​(1 − ​ 
γ (Ω) _______ 

1 − u(Ω) ​)​ ​ 
∂  ​ 

​
_

 w​(Ω) ____ 
​ w _ ​(Ω) ​ ______ ∂ Ω  ​ .​
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The first term is positive by (vi) of this Proposition. So we need to discipline 
the second term, where

	​​  
∂  ​ 

​
_

 w​ (Ω) ____ 
​ w 
¯

 ​(Ω) ​ ______ ∂ Ω  ​  =  −  ​ 
(δ + r) ​ y 

¯
 ​​[k(δ + r) + ​(b − ​ y 

¯
 ​)​​(λ ​ ∂ m _ ∂ θ ​ ​ 

∂ θ _ ∂ Ω ​ + ​ ∂ λ _ ∂ Ω ​ m)​]​
    ________________________________________    

​​((δ + r)(b + kΩ) + ​(b − ​ y 
¯
 ​)​λm(θ))​​​ 2​

  ​​,

which has an ambiguous sign. A sufficient condition for this 
expression to be positive is that ​k​ is small (​k  →  0​), since then  
​0  ≥ ​ (b − ​ y 

¯
 ​)​(λ(∂ m / ∂ θ)(∂ θ / ∂ Ω) + ∂ λ / ∂ Ωm)​, provided that the value of 

a job, ​​​ J _ ​​t​​​, in (25) is nonnegative (an assumption that we maintain throughout).

	(viii)	 To show that the conventional Beveridge curve (BC), which 
gives ​v​ as a function of ​u​, shifts out in the boom, it suffices that ​v​ increases 
in ​λ(Ω)​ for  any given ​u​. Differentiating (BC) with respect to ​λ​ while 
keeping ​u​ fixed and solving for ​∂ v / ∂ λ​ yields (assuming ​u  ∈  (0, 1]​ such  
that ​m′  >  0​)

	​​   ∂ v _____ ∂ λ(Ω) ​  = ​ 
γ v
 ________ γλ(Ω) + u

 ​,​

which is positive.

	 (iii)	 We know from (ii) of this Proposition that ​u(1)  ≤  u(0)​,  
and from (viii) that for  any given ​u​, ​v​ is higher under active OJS 
(outward shift of Beveridge curve). Because (BC) is downward 
sloping, it follows that also for ​u(1)  ≤  u(0)​ it must be the case  
that ​v(1)  >  v(0)​.

	 (ix)	 Since ​λ(Ω)​ is increasing in ​Ω​, it suffices to show that the deriv-
ative of ​v​ with respect to ​λ(Ω)​ is nonnegative for any given ​s​.  
Differentiating (BC​​​​​ s​​) with respect to ​λ(Ω)​ while keeping ​s​ fixed and solving 
for ​∂ v / ∂ λ​ yields

 	

​​  ∂ v _____ ∂ λ(Ω) ​  = ​  
δsm(θ(Ω))(δ + m(θ(Ω)))    _______________________________________________     

​(​δ​​ 2​(1 − λ(Ω)) + 2δλ(Ω)m(θ(Ω)) + 2​λ​​ 2​ m ​(θ(Ω))​​ 2​)​m′(θ(Ω))
 ​,​

which is positive for ​λ(Ω)  ≤  1​. ∎

G. Dynamic Equilibrium

Local Stability: Derivations.—To analyze the dynamic properties, we take the 
following dynamic equilibrium equations into account:

(33)	​​​ u​  t​​ ˙ ​  =  δ(1 − ​u​ t​​) − ​u​ t​​ m(​θ​t​​)​,
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(34)	​​​ γ​t​​ ˙ ​  = ​ u​  t​​ m(​θ​t​​) − (δ + ​λ​t​​ m(​θ​t​​)) ​γ​t​​​,

(35)	​​​​  J _ ​​t​​ ˙ ​  =  − ​(p​ y 
¯
 ​ − ​​ w 

¯
 ​​t​​)​ + ​​ J 

¯
 ​​t​​ (r + δ + ​λ​t​​ m(​θ​t​​))​,

where (33) describes unemployment dynamics, (34) gives the dynamics for 
employed workers after a UE transition, and (35) describes how the value of a filled 
job evolves over time. All time-varying values and variables in this system depend 
on agents’ beliefs about how profitable OJS is, i.e., on the path of ​​{Ω}​t≥0​​​, but we 
suppress this dependence to simplify notation.

It will be more convenient to work with ​​​θ​t​​ ˙ ​​ instead of ​​​​ J 
¯
 ​​t​​ ˙ ​​, so we first transform the 

equation for ​​​J​  t​​ ˙ ​​ into an equation in ​​​θ​t​​ ˙ ​​. Notice that from the free-entry condition, we 
can find an expression for ​​​ J 

¯
 ​​t​​​:

(36)	​​​  J 
¯
 ​​t​​  = ​   c ____ 

q(​θ​t​​)
 ​ ​ ​u​  t​​ + ​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​  − ​ 

​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​ ​​ J 
–
​​  t​​​.

Take the time derivative of ​​​ J _ ​​t​​​ (taking into account ​q(​θ​t​​)  =  m​(θ​t​​ )/​θ​t ​​)​) to obtain

(37)	​​​​  J _ ​​t​​ ˙ ​  = ​​ θ ˙ ​​t​​ ​  c ____ 
m (​​θ​t​​)​​ 2​

 ​ (m​(θ​t​​) − ​θ​t​​ m′(​θ​t​​)) ​ 
​u​ t​​ + ​λ​t​​ ​γ​t​​ _ ​u​ t​​ ​ 

	 + ​​u​  t​​ ˙ ​ ​ 
​λ​t​​​γ​t​​ _ 
​u​ t​ 

2​
 ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​t​​)​ − ​​γ​t​​ ˙ ​ ​ ​λ​t​​ _ ​u​ t​​ ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​t​​)​ 

	 = ​​ θ ˙ ​​t​​ ​  c _____ 
m(​θ​t​​)

 ​ (1 − η(​θ​t​​)) ​ 
​u​  t​​ + ​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​ 

	 + ​​u​  t​​ ˙ ​​ 
​λ​t​​ ​γ​t​​ _ 
​u​  t​ 

2​
 ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​t​​)​ − ​​γ​t​​ ˙ ​ ​ ​λ​t​​ _ ​u​ t​​ ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​t​​)​​,

where we define the elasticity of the matching function as ​η(θ)  =  θm′(θ)/m(θ)​.
Plug the expressions for ​​​​ J _ ​​t​​ ˙ ​​, (37) and for ​​​ J _ ​​t​​​ from free entry (36) into (35) to obtain

	​​​ θ ˙ ​​t​​ ​  c _____ 
m(​θ​t​​)

 ​ (1 − η(​θ​t​​)) ​ 
​u​  t​​ + ​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​  + ​​u​ t​​ ˙ ​​ 

​λ​t​​ ​γ​t​​ _ 
​u​ t​ 

2​
 ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​J 
–
​)​ − ​​γ​t​​ ˙ ​ ​ ​λ​t​​ _ ​u​  t​​ ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​t​​)​

      =  − ​(p​ y 
¯
 ​ − ​​ w 

¯
 ​​t​​)​ + ​(​  c ____ 

q(​θ​t​​)
 ​ ​ ​u​ t​​ + ​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​  − ​ 

​λ​t​​ ​γ​t​​ _ ​u​ t​​ ​ ​​ J 
–
​​t​​)​(r + δ + ​λ​t​​ m(​θ​t​​))​

and solve for ​​θ ˙ ​​ to obtain

​​​θ ˙ ​​t​​  = ​  
m(​θ​t​​) ​u​  t​​  ___________________  

c(1 − η(​θ​t​​))(​u​  t​​ + ​λ​t​​ ​γ​t​​)
 ​ × ​[​ 

​λ​t​​ _ ​u​  t​​ ​​(− ​ 
​θ​t​​ c _____ 

m(​θ​t​​)
 ​ + ​​J 

–
​​t​​)​​(− ​​u​  t​​ ˙ ​ ​ 

​γ​t​​ _ ​u​  t​​ ​ + ​​γ​t​​ ˙ ​)​ − ​(p​ y 
¯
 ​ − ​​ w 

¯
 ​​t​​)​

	 + ​(​  c ____ 
q(​θ​t​​)

 ​ ​ ​u​ t​​ + ​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​  − ​ 
​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​ ​​ J 

–
​​t​​)​(r + δ + ​λ​t​​ m(​θ​t​​))]​.​
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So our dynamic system is given by (12)–(14) in the main text, which we restate here 
for convenience:

(38)   ​​​   u​ t​​ ˙ ​  =  δ (1 − ​u​ t​​ ) − ​u​  t​​ m(​θ​t​​)​,

(39)   ​​​   γ​t​​ ˙ ​  = ​ u ​t​​ m(​θ​t​​) − (δ + ​λ​t​​ m(​θ​t​​)) ​γ​t​​​,

(40)   ​​   ​θ​t​​ ˙ ​  = ​  
m(​θ​t​​ )​u​ t​​  ___________________  

c​(1 − η(​θ​t​​))​​(u​  t​​ + ​λ​t​​ ​γ​t​​)
 ​ ​

	 ​  × ​[​ 
​λ​t​​ _ ​u​ t​​ ​​(− ​ 

​θ​t​​ c _____ 
m(​θ​t​​)

 ​ + ​​J 
–
​​ t​​)​​(− ​​u ˙ ​​t​​ ​ 

​γ​t​​ _ ​u​ t​​ ​ + ​​γ​t​​ ˙ ​)​ − ​(p​ y _ ​ − ​​ w _ ​​t​​)​ 

 	   + ​(​  c ____ 
q(​θ​t​​ )

 ​ ​ ​u​  t​​ + ​λ​t​​ ​γ​t​​ _ ​u ​t​​ ​  − ​ 
​λ​t​​ ​γ​t​​ _ ​u​  t​​ ​ ​​ J 

–
​​  t​​)​(r + δ + ​λ​t​​ m(​θ​t​​))]​​.

To analyze the local stability of system (38)–(40), we further have to specify the 
system’s Jacobian:

	​​ J​​ ⁎​(Ω)  = ​

⎡

 ⎢ 
⎣

​ 

​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​u​ t​​

 ​​|​​​x(Ω)
​​

​ 

​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​γ​t​​

 ​​|​​​x(Ω)
​​

​ 

​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​θ​t​​

 ​​|​​​x(Ω)
​​

​   ​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​u​ t​​
 ​​|​​​x(Ω)

​​​  ​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​γ​t​​
 ​​|​​​x(Ω)

​​​  ​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​θ​t​​
 ​​|​​​x(Ω)

​​​   

​​ 
∂ ​​θ ˙ ​​t​​ _ ∂ ​u​ t​​

 ​​|​​​x(Ω)
​​

​ 

​​ 
∂ ​​θ ˙ ​​t​​ _ ∂ ​γ​t​​

 ​​|​​​x(Ω)
​​

​ 

​​ 
∂ ​​θ ˙ ​​t​​ _ ∂ ​θ​t​​

 ​​|​​​x(Ω)
​​

 ​

⎤

 ⎥ 
⎦

​​,

whose entries (which are evaluated at steady state ​x(Ω)  ≔  (u(Ω), γ (Ω), θ(Ω​)) are 
given by

  ​​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​u​ t​​

 ​​|​​​x(Ω)
​​  =  − (δ + m(θ(Ω)))​,

  ​​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​γ​t​​

 ​​|​​​x(Ω)
​​  =  0​,

  ​​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​θ​t​​

 ​​|​​​x(Ω)
​​  =  − u(Ω)m′(θ(Ω))​,

  ​​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​u​ t​​
 ​​|​​​x(Ω)

​​  =  m(θ(Ω))​,

  ​​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​γ​t​​
 ​​|​​​x(Ω)

​​  =  − (δ + λ(Ω)m(θ(Ω)))​,
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  ​​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​θ​t​​
 ​​|​​​x(Ω)

​​  =  m′(θ(Ω))(u(Ω) − λ(Ω)γ (Ω))​,

  ​​​ 
∂ ​​θ ˙ ​​t​​ _ ∂ ​u​ t​​

 ​​|​​​x(Ω)
​​  = ​  

m(θ(Ω))λ(Ω)γ (Ω)   ____________________________   
c(1 − η(θ(Ω)))(u(Ω) + λ(Ω)γ (Ω)) ​ 

	 × ​[​(− ​ 
θ(Ω)c

 ______ 
m(θ(Ω)) ​ + ​J 

–
​)​ × ​(​ 

γ (Ω) _____ 
u(Ω) ​ [r + 2δ + (λ(Ω) + 1)m(θ(Ω))] + m(θ(Ω)))​]​​,

  ​​​ 
∂ ​​θ ˙ ​​t​​ _ ∂ ​γ​t​​

 ​​|​​​x(Ω)
​​  = ​  

m(θ(Ω))λ(Ω)   _____________________________   
c(1 − η(θ(Ω)))(u(Ω) + λ(Ω)γ (Ω)) ​ 

	 × ​[− ​(− ​ 
θ(Ω)c

 ________ 
m(θ(Ω)) ​ + ​J 

–
​)​(r + 2δ + 2λ(Ω)m(θ(Ω)))]​​,

  ​​​ 
∂ ​​θ ˙ ​​t​​ _ ∂ ​θ​t​​

 ​​|​​​𝐱​(Ω)​

​​  = ​  
m(θ(Ω))u(Ω)   ______________________________   

c (1 − η (θ(Ω)))(u(Ω) + λ(Ω)γ (Ω)) ​

	 × ​[λ(Ω)m′(θ(Ω))​(− ​ 
pkΩ  __________________  

r + δ + λ(Ω)m(θ(Ω)) ​ 

	 + ​ 
γ (Ω)(1 − λ(Ω)) + u(Ω)   ___________________  

u(Ω) ​ ​(− ​ 
θ(Ω)c

 ________ 
m(θ(Ω)) ​ + ​J 

–
​)​)​]​ 

	 + r + δ + λ(Ω)m(θ(Ω))​.

The linearized system (around the steady state) of differential equations is then 
given by

	​​

⎡

 ⎢ 

⎣

​ 

​​u ˙ ​​t​​

​ ​​​​γ​t​​ ˙ ​​ 

​​​​θ ˙ ​​t​​

 ​​ 

⎤

 ⎥ 

⎦

​  = ​

⎡

 ⎢ 

⎣

​ 

​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​u​ t​​

 ​​|​​​x(Ω)
​​

​ 

​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​γ​t​​

 ​​|​​​x(Ω)
​​

​ 

​​ 
∂ ​​u ˙ ​​t​​ _ ∂ ​θ​t​​

 ​​|​​​x(Ω)
​​

​   ​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​u​ t​​
 ​​|​​​x(Ω)

​​​  ​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​γ​t​​
 ​​|​​​x(Ω)

​​​  ​​ 
∂ ​​γ​t​​ ˙ ​

 ___ ∂ ​θ​t​​
 ​​|​​​x(Ω)

​​​   

​​ 
∂ ​​θ ˙ ​​t​​ ___ ∂ ​u​ t​​

 ​​|​​​x(Ω)

​​

​ 

​​ 
∂ ​​θ ˙ ​​t​​ ___ ∂ ​γ​t​​

 ​​|​​​x(Ω)

​​

​ 

​​ 
∂ ​​θ ˙ ​​t​​ ___ ∂ ​θ​t​​

 ​​|​​​x(Ω)

​​

 ​

⎤

 ⎥ 

⎦

​ ​

⎡

 ⎢ 

⎣

​ 

​u​  t​​ − u(Ω)

​ ​​γ​t​​ − γ (Ω)​ 

​​θ​t​​ − θ(Ω)

 ​​

⎤

 ⎥ 

⎦

​ .​

H. Proof of Lemma 2

PROOF:
This proof closely follows the proof from Lemma 1:

	 (i)	 No deviation when no one searches: given ​​{​Ω​t​​}​t≥0​​  =  {0}​, it must be 
that ​​​ E ¯ ​​t​​ (0 | 0)  ≥ ​​  E ¯ ​​t​​ (1 | 0)​ for all ​t  ∈  [0, ∞)​. In this case, when no one actively 
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searches on the job, a worker, who is in a low-productivity job and deviates 
during an interval ​dt​ by choosing ​ω  =  1​, gets a payoff:

	 ​​  ​ E ¯ ​​t​​ (1 | 0)  = ​   1 _ 
1 + rdt

 ​ ​[dt(​​ w 
¯

 ​​t​​(0) − pk) + (1 − δdt)dtλ(1)m(​θ​t​​(0)) ​​E 
–
 ​​t+dt​​ 

	 + (1 − δdt)(1 − dtλ(1)m(​θ​t​​(0))) ​​ E ¯ ​​t+dt​​ (0 | 0) + δdt ​U​ t+dt​​]​​,

where the only difference compared to the expression in Lemma 1 is 
that the variables carry time subscripts indicating that we allow for the 
economy to be out of steady state. Noticing, however, that under sequen-
tial auctions bargaining, ​​​E 

–
 ​​t+dt​​ (0 | 0)  = ​ E 

–
 ​ (0 | 0)​ is a constant and indepen-

dent of ​t​, and similarly that ​​​ E _ ​​t+dt​​ (0 | 0)  = ​ U​ t+dt​​  =  U​ is a time-independent 
constant (which we can hence write as ​​ E ¯ ​(0 | 0)​), the no-deviation condition  
​​​ E _ ​​t​​ (0 | 0)  ≥ ​​  E _ ​​t​​ (1 | 0)​ is almost identical to the one in steady state  
​​ E _ ​ (0 | 0)  ≥ ​  E _ ​ (1 | 0)​ (except that ​​θ​t​​​ and thus also ​​w​ t​​​ are time dependent), 
namely,

	​​  E _ ​ (0 | 0)(1 + rdt) 

	     ≥  dt(​​ w _ ​​t​​ (0) − pk) + dtλ(1)(1 − δdt)m(​θ​t​​(0))​E 
–
 ​ 

	 + ​[1 − δdt − dtλ(1)m(​θ​t​​(0)) + d​t​​ 2​ δλ(1)m(​θ​t​​(0))]​​ E _ ​ (0 | 0) + δdtU.​

After subtracting ​​ E ¯ ​ (0 | 0)​ from both sides, dividing by ​dt​ and taking the 
limit ​dt  →  0​, we obtain

�​ r​ E ¯ ​ (0 | 0)  ≥ ​​  w 
¯

 ​​t​​(0) − pk + λ(1)m(​θ​t​​(0))​E 
–
 ​ + (−δ − λ(1)m(​θ​t​​(0)))​ E ¯ ​ (0 | 0) + δU.​

This leads to the same upper bound on ​​θ​t​​ (0)​ as in steady state, but here it 
needs to hold for all ​t  ∈  [0, ∞)​:

(41)	​​ θ​t​​(0)  ≤ ​ m​​ −1​​(​ 
k(r + δ) _________ 

​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​.​

If and only if (41) holds for all ​t  ∈  [0, ∞)​, the equilibrium with passive OJS 
exists.

	 (ii)	 No deviation when everyone searches: given ​​{​Ω​t​​}​t≥0​​  =  {1}​, it must be 
that ​​​ E ¯ ​​t​​ (1 | 1)  ≥ ​​  E ¯ ​​t​​ (0 | 1)​ for all ​t  ∈  [0, ∞)​. We proceed in the analogous way 
to point (i) and arrive at the following no-deviation condition, which gives a 
lower bound for ​​θ​t​​ (1)​ for all ​t  ∈  [0, ∞)​:

(42)	​​ θ​t​​ (1)  ≥ ​ m​​ −1​​(​ 
k(r + δ) _________ 

​λ​1​​​(​ y 
¯
 ​ − b)​

 ​)​.​
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If and only if (42) holds for all ​t  ∈  [0, ∞)​, the equilibrium with active OJS 
exists. ∎

Appendix B. Data Appendix

A. Monthly Flow Rates and Flows

We use data provided by IPUMS-CPS from 1996 to 2016. We follow the dat-
ing convention as in Fallick and Fleischman (2004) and refer to a flow from 
month ​t​ to month ​t + 1​ as a month ​t​ flow. We denote by ​E​E​  t, t+1​​​ the EE flow from ​t​ 
to ​t + 1​ and similarly for ​U​E​  t, t+1​​​ and ​E​U​ t, t+1​​​. Labor market flow rates are defined 
as ​∑ E​E ​t, t+1​​/∑ ​E​  t​​​, ​∑ U​E​  t, t+1​​/∑ ​U​ t​​​, and ​∑ E​U​ t, t+1​​/∑ ​E​   t​​​, respectively, where ​∑​ 
denotes the sum of sample weights for all observations in the respective catego-
ries. In our model, however, all flows are relative to the labor force. We therefore 
report the normalized flows (by the labor force) ​∑ E​E​  t, t+1​​/∑ L​F​ t​​​, ​∑ U​E​  t, t+1​​/∑ L​F​ t​​​, 
and ​∑ E​U​ t, t+1​​/∑ L​F​ t​​​.

B. Quarterly Flow Rates, Flows, Seasonal Adjustment, and De-trending

Quarterly Flows: In order to obtain quarterly analogues of our monthly flows, we 
first convert them to instantaneous flows. Let ​​X​  t​​​ be the flow of interest in month ​t​. 
Then the instantaneous flow is given by ​​X​ t​ 

inst​  =  − log(1 − ​X​  t​​)​. Thereafter, we con-
vert it into quarterly estimates using ​​X​ t​ 

quarterly​  =  1 − exp(− 3​X​ t​ 
inst​ )​. Since we obtain 

this quarterly estimate for each month ​t​, we average ​​X​ t​ 
quarterly​​ for the 3 months of a 

quarter to arrive at the final quarterly rate.

Seasonal Adjustment: Once we have the monthly and quarterly data on flows, 
flow rates, and wage measures, we seasonally adjust all time series using the X-13 
ARIMA program of the US Census Bureau.

De-trending: All de-trended time series are computed using the HP filter with 
smoothing parameter 1,600 for quarterly data and 129,600 for monthly  data.

C. Construction of the Variables Used in Calibration and Quantitative Exercises

  • � Worker flows: In the model, we denote the flows by ​E​E​  t​​, U​E​  t​​, E​U​ t​​​, and they 
correspond to ​∑ E​E​  t, t+1​​/∑ L​F​ t​​​, ​∑ U​E​  t, t+1​​/∑ L​F​ t​​​, and ​∑ E​U​ t, t+1​​/∑ L​F​ t​​​ in the 
data; see Appendix BA for how we construct them.

  • � Unemployment rate ​​u​  t​​​ is the quarterly average of the CPS unemployment rate 
(which we seasonally adjusted). We obtain the vacancy rate ​​v​ t​​​ from the JOLTS 
data (again seasonally adjusted).

  •  Matching rate of workers ​m​: ​m(​θ​t​​ )  =  U​E​  t​​ / ​u​  t​​​.
  • � Effective measure of on-the-job searchers, ​​γ​t​​ ​λ​t​​​: ​​γ​t​​ ​λ​t​​  =  E​E​ t​​ / m(​θ​t​​ )​, where we 

use both ​E​E​ t​​​ and ​m(​θ​t​​ )  =  U​E​  t​​ / ​u​ t​​​, both obtained earlier.



VOL. 11 NO. 4� 227EECKHOUT AND LINDENLAUB: UNEMPLOYMENT CYCLES

  • � Effective labor market tightness ​​θ​t​​  = ​ v​ t​​ / ​s​ t​​​: ​​v​ t​​​ is vacancy data from JOLTS 
and ​​s​ t​​  = ​ u​  t​​ + ​λ​t​​ ​γ​t​​​ can be computed from the effective measures of on-the-job 
searchers and the unemployment rate.

  • � Stock of on-the-job searchers ​​γ​t​​​: see Section IVD and in particular  
equation (17) (main text).

  • � Stock of employed workers in high-productivity jobs: ​​ξ​t​​  =  1 − ​u​  t​​ − ​γ​t​​​.
  • � Conditional matching rate for unemployed workers ​​κ​t​​  = ​ u​  t​​ / (​u​  t​​ + ​λ​t​​ ​γ​t​​ )​, 

where ​​γ​t​​ ​λ​t​​  =  E​E​  t​​ / m(​θ​t​​ )​ (see previously mentioned information).
  • � Wage dispersion ​​

_
 w​ / ​ w _ ​​: see Appendix BD.

  • � EE flows that are associated with wage growth ​E​E​ t, t+1​ 
(Wag​e​t+1​​>Wag​e​t​​ )​​: see  

Appendix BE.

D. The Mean-Min Wage Ratio

In the CPS, in each period ​t​, a new cohort enters for 16 sample periods. We 
distinguish calendar time ​t​ and sample time ​τ​. At any calendar time ​t​, a cohort may 
be in any of the possible sample times ​τ  ∈  {1, … , 16}​. Each individual answers 
the CPS questions in sample months ​τ  =  1, … , 4​ and ​τ  =  13, … , 16​, and during 
times ​τ  =  5, … , 12​, they do not. So for each participant, we have 8 monthly 
observations over a 16-month period. Let ​X​ denote the variable of interest, and  
let ​​X​   t, τ​​​ be the time and sample specific variable for each cohort (or if the variable 
of interest is a flow, it is the change between ​t​ and ​t + 1​ and ​τ​ and ​τ + 1​). A flow  
​​X​   t, τ​​​ between time ​t​ and ​t + 1​ can comprise of observations from 6 cohorts, who 
transition between the sample months 1–2, 2–3, 3–4, 13–14, 14–15, and 15–16. 
Earnings are only recorded in sample periods ​τ  =  4​ and ​τ  =  16​ (variable 
earnweek), which corresponds to the two months when each cohort is in the 
outgoing rotation (earner study) group in the CPS sample.36

Figure 10 illustrates this structure. Calendar time ​t​ is given by the top row. 
Sample  time is given by ​τ​ in ​​X​   t, τ​​​ . Consider, for example, ​X  =  EE​, the ​EE​ flow. 
Then ​E​E​  t​​​ in ​t  =  3​ equals the sum of flows for the 6 cohorts marked by the dotted 
rectangle and is given by ​​∑ τ ∈T​ 

 
 ​​ E​E​  3, τ​​​ where ​T  =  {1, 2, 3, 13, 14, 15}​. Wages are 

observed in the diagonal sections with ​τ  =  {4, 16}​.
To compute the Mm-wage ratio, we need an estimate for wage dispersion 

between high- and low-productivity jobs, ​​​
_

 w​​t+1​​ / ​​ w 
¯

 ​​ t+1​​​, for all ​t​. Guided by our model, 
we compute ​​​

_
 w​​t+1​​​ as the average wage associated with an EE move, ​E​E​  t​​​ . In turn, we 

compute ​​​ w 
¯

 ​​ t+1​​​ as the average wage associated with a UE move, ​U​E​  t​​​. For illustration, 
we focus here on the EE moves (and ​​

_
 w​​); the logic for UE moves (and ​​ w _ ​​) is similar. 

In any given month ​t​, we first find all individuals who make an ​E​E​  t​​​ switch. The 
challenge however is that in the CPS, among all these individuals only one-fourth of 
the employed are in the Earnings Sample in period ​t + 1​. However, we can impute 
the wages of those who have an ​E​E​  t​​​ switch but for whom we do not directly observe 
wages in period ​t + 1​.

36 We use variable earnweek as our measure of wage, which is a part of the earner study. This variable tracks 
wages and reports how much the respondent usually earns per week at their current job before deductions. 
Approximately one-quarter of the CPS sample is in the earner study each month.



228	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� OCTOBER 2019

Imputing Wages for EE Movers Who Are Not in the Earnings Study.—Let the 
set of all ​E​E​  t​​​ movers for whom we do not observe wages in ​t + 1​ be denoted by  
​E​E ​ t,  τ​ 

w′ ​​, where ​w′​ denotes unobserved wages in period ​t + 1​. We observe wages only 
for  the ​E​E​  t, τ​​​ movers who have ​τ + 1  =  4​ or ​τ + 1  =  16​ and denote this set by  
​E​E ​ t, τ​ 

w ​​ where ​w​ denotes observed wages in period ​t + 1​. For illustration, we focus 
on only 4 consecutive calendar months ​t  ∈  {3, 4, 5, 6}​ and on ​E​E​  3, τ​​​ . Then, the set  
​E​E​ 3, τ​ 

w  ​​ comprises of members of cohort 1 and 4 who are in the Earning Study at 
the time of the flow ​t + 1  =  4​. On the other hand, the set ​E​E​  3, τ​ 

w′ ​​ comprises of  
2 subsets:

	 (i)	 Individuals in cohort 2 and 5 with ​E​E​  3, τ​​​ and ​τ + 1  =  3​ or ​τ + 1  =  15​ 
whose wages may be observed in the next period when they enter the earner 
study in period ​t  =  5​.

	 (ii)	 Individuals in cohort 3 and 6 with ​E​E​  3, τ​​​ and ​τ + 1  =  2​ or ​τ + 1  =  14​ 
whose wages may be observed two periods ahead when they enter the earner 
study in period ​t  =  6​.

As we can see in the timeline in Figure 10, we have wages for subset 1 and sub-
set 2 in calendar time 5 and 6, respectively. But in order to use those wage obser-
vations, we need to ensure that they are representative of the wages in calendar 
time ​t + 1  =  4​, when the ​E​E​  3, τ​​​ switch was made.

To do so, we create two subsets ​E​E​​  w′→w​  ⊂ ​ EE​  3, τ​ 
w′ ​​ and ​E​E​​ w′⁣→⁣≠EE​  ⊂  E​E​ 3, τ​ 

w′ ​​ , where 
the first subset denotes individuals for whom we observe a wage in the future and 
the second subset denotes individuals who do not make another EE switch before 
this wage is observed.

Then ​E​E​​ w′→w​  ∩  E​E​​ w′⁣→⁣≠EE​​ is the set of observations who made an ​E​E​  3,τ​​​ switch 
without observed wages in ​t + 1  =  4​ but whose future wages can be used to 
impute the wages for ​t + 1  =  4​ (the underlying assumption is that there was no 
wage change between ​t + 1  =  4​ and the time when the wage was observed). 
We append these observations to the set ​E​E​  3, τ​ 

w  ​​. Then the final set of moves 

Figure 10. Timeline

Calendar

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Cohort 1 X 1,1 X 2,2 X 3,3 X 4,4 X13,13 X14,14 X15,15 X16,16

Cohort 2 X 2,1 X 3,2 X 4,3 X 5,4 X14,13 X15,14 X16,15 X17,16

Cohort 3 X 3,1 X 4,2 X 5,3 X 6,4 X15,13 X16,14 X17,15 X18,16

Cohort 4 X 1,13 X 2,14 X 3,15 X 4,16

Cohort 5 X 2,13 X 3,14 X 4,15 X 5,16

Cohort 6 X 3,13 X 4,14 X 5,15 X 6,16
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where wages are either observed or imputed for calendar time ​t + 1  =  4​ is  
given by

	​ Expanded Set E​E​  3​​  =  E​E​  3, τ​ 
w  ​  ∪ ​ (E​E​​ w′→w​  ∩  E​E​​ w′⁣→⁣≠EE​)​​.

Once we have this set of all individuals with an ​E​E​  3, τ​​​ move and a wage in ​t + 1  =  4​, 
we simply take the weighted average of these wages using the earnings weight in the 
earner study as our sample weights.

E. Measure of ​EE​ Flows to a Higher Wage

In order to account for the ​EE​ transitions that are consistent with the model, 
our objective in this section is to obtain a measure of ​E​E​ t​​​ flows that are associ-
ated with wage increases. Given the limited wage data in the CPS, assess-
ing the wage before and after an ​EE​ move requires some assumptions in order 
to use the two available wage observations as the wages before and after such  
a move.

Focus on EE Moves Where Both Previous Wage and New Wage Are Observed.—
We illustrate our method for obtaining ​EE​ flows to higher wages between 
any two calendar months ​t​ and ​t + 1​. To make the exposition clear, consider 
flows ​E​E​  15, τ​​​ . First, unlike the previous section, note that this computation requires 
a measure of ​w​ in both time ​t​ and ​t + 1​. Second, note that only cohorts with  
​τ  ∈  {13, 14, 15, 16}​ are relevant for our purpose, as only for these cohorts we 
have two wage observations. As a result, we only focus on cohort 1, 2, and 3 
from Figure 10. We keep our notation ​​X​   t, τ​​​ , and we need data for sample 
months, ​τ  ∈  {4, 13, 14, 15, 16}​ for these 3 cohorts which correspond to calendar 
time ​t  ∈  {4, 5, 6, 13, 14, 15, 16, 17, 18}​. This is because for cohort 1, ​​w​ 4, 4​​​ and  
​​w​ 16, 16​​​ are the two instances we observe their wages. Similarly for cohort 2, ​​w​ 5, 4​​​ 
and ​​w​ 17, 16​​​ are the two times we observe their wages. Finally, for cohort 3, ​​w​ 6, 4​​​ 
and ​​w​ 18, 16​​​ are the two times we observe their wages. It is useful to split the cal-
endar times ​t​ in two subsets ​t  ∈  {4, 5, 6}​ and ​t  ∈  {13, 14, 15, 16, 17, 18}​. The first 
set records the first calendar time that we observe the wages of the three cohorts. 
These give us the measure of the previous wage (i.e., prior to the EE move) for 
each cohort. The lower bound of the second set is given by the earliest possible ​EE​ 
move made by cohort 1 (​t  =  13​), while the upper bound of the second set is given 
by the last possible ​EE​ move made by cohort 3 (​t  =  18​).

Imputing Previous Wage and New Wage.—We define the previous wage as 
the one in the job ​​E​  t​​​ before making a move to job ​​E​  t+1​​​. And the new wage cor-
responds to the one in the new job ​​E​  t+1​​​ after the job switch. For each cohort we 
want the first observed wage before the ​E​E​  t​​​ switch to be representative of the 
wage ​​w​ t​​​ in job ​​E​  t​​​. At the same time, we want the second observed wage to be rep-
resentative of the wage ​​w​  t+1​​​ in job ​​E​  t+1​​​. This entails different restrictions on the 3 
cohorts which are explained later in this paper, again for illustration consider the  
​E​E​  15, τ​​​ move.
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Our key assumption is the following: for all three cohorts, we assume that there 
is no EE move in the eight months between the two rotation phases. That is, we 
assume there is no ​E​E​  t​​​ move for ​t  ∈  {4, 5, 6, 7, 8, 9, 10, 11, 12}​ for cohort 1 and 
no ​E​E​  t​​​ move for ​t  ∈  {6, 7, 8, 9, 10, 11, 12, 13, 14}​ for cohort 3. This is a strong 
assumption, but it is unavoidable for recovering the wage before and after an ​EE​ 
move from the CPS data. In addition, in order to correctly impute wages for the 
two months before and after the ​EE​ switch, we restrict our set of observations for 
each cohort to individuals for whom we have the data for all 5 relevant sample 
months.

For cohort 1, the ​E​E​  15, 15​​​ move coincides with ​τ + 1  =  16​ when they are in 
the earner study. Therefore, the second observed wage ​​w​ 16, 16​​​ is representative 
of the job in ​​E​ 16, 16​​​ for all EE switchers. Now, for the first observed wage ​​w​ 4, 4​​​ to 
be representative of the job ​​E​  15, 15​​​, we restrict our sample only to observations 
where we do not observe an ​E​E​  13, 13​​​ switch or an ​E​E​  14, 14​​​, but we do observe  
an ​E​E​  15, 15​​​ switch.

For cohort 2, the ​E​E​  15, 14​​​ move does not have a wage observation in ​τ + 1  =  15​ 
but only in ​τ + 2  =  16​. Therefore, the second observed ​​w​  17, 16​​​ may not be represen-
tative of the job in ​​E​  16, 15​​​ for all ​EE​ switchers. Moreover, the first observed wage ​​w​ 5, 4​​​ 
may not be representative of the job in ​​E​  15, 14​​​ prior to the EE switch. Now, for ​​w​ 5, 4​​​ to 
be representative of the job ​​E​  15, 14​​​ before the switch and ​​w​  17, 16​​​ to be representative of 
the job ​​E​  16, 15​​​ after the switch, we restrict our sample only to observations where we 
do not observe an ​E​E​  14, 13​​​ switch or an ​E​E​  16, 15​​​ switch, but we do observe an ​E​E​  15, 14​​​ 
move.

For cohort 3, the ​E​E​  15, 13​​​ move does not satisfy ​τ + 1  =  16​ when the second 
wage is observed. Therefore, the second observed wage ​​w​ 18,16​​​ may not be repre-
sentative of the job in ​​E ​16, 14​​​ for all ​EE​ switchers. However, given our assumptions, 
the first observed wage ​​w​ 6, 4​​​ is representative of the job in ​​E​  15, 13​​​. For the second 
observed wage ​​w​ 18, 16​​​ to be representative of the job ​​E​  16, 14​​​, we restrict our sample 
to observations where we do not observe ​E​E ​16, 14​​​ or ​E​E ​17, 15​​​ switches, but we do 
observe an ​E​E​  15, 13​​​ move.

Collecting the Observations.—Once we have the ​E​E​  15, τ​​​ moves ​∀ τ  ∈  {13, 14, 15}​ 
with two wages observed for each cohort (considered as the previous wage in 
job ​​E​  15, τ​​​ and new wage in job ​​E​  16, τ+1​​​), we pool the observations from these three 
cohorts to obtain the ​EE​ flows for calendar time ​t  =  15​. Note that this dataset of ​EE​ 
moves with two wage observations can be created ​∀ t​. Finally, we use these data to 
compute ​E​E​  t​ 

(​w​ t+1​​>​w​ t​​)​​, i.e., the set of EE moves to higher wages ​∀ t​.

Appendix C. Additional Empirical and Simulation Results

A. Flow Rates, Search Intensity in ATUS and of Those NILF

Search Intensity of Those Not in the Labor Force.—Similar to how we calculate 
the search intensity of the employed, we calculate the search intensity of those Not 
in the Labor Force. Denote their stock by ​N​ and their flow into employment by ​
NE​. Then ​NE  = ​ λ​N​​ m(θ )N​, where ​​λ​N​​​ is the search intensity and ​m(θ )   =  UE / U​ 



VOL. 11 NO. 4� 231EECKHOUT AND LINDENLAUB: UNEMPLOYMENT CYCLES

Figure 11. Matching Rates of Employed and Unemployed Workers

Figure 12. Labor Market Flows (De-trended)
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is the matching probability derived from the unemployment-to-employment flow. 
Therefore, we calculate search intensity as ​​λ​N​​  = ​ (NE ⋅ U)​/​(UE ⋅ N)​​.

B. Additional Figure: Transition Dynamics
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