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SUMMARY
Oriens lacunosum-moleculare (O-LM) interneurons constitute 40% of hippocampal interneurons expressing Somatostatin (SST). Recent

evidence has indicated a dual origin for these cells in the medial and caudal ganglionic eminences (MGE and CGE), with expression

of Htr3a as a distinguishing factor. This is strikingly different from cortical SST interneurons that have a single origin within the

MGE/preoptic area (POA). We reassessed the origin of hippocampal SST interneurons using a range of genetic lineage-tracing mice

combinedwith single-cell transcriptomic analysis.We find a commonorigin for all hippocampal SST interneurons inNKX2-1-expressing

progenitors of the telencephalic neuroepithelium and an MGE/POA-like transcriptomic signature for all SST clusters. This suggests that

functional heterogeneity within the SST CA1 population cannot be attributed to a differential MGE/CGE genetic origin.
INTRODUCTION

The medial and caudal ganglionic eminences (MGE and

CGE) are the two major germinal zones generating

GABAergic interneurons for the neocortex (Wonders and

Anderson, 2006). The prime distinguishing factor between

the MGE and CGE progenitor pools is the expression of

NKX2-1 within the neuroepithelium. Genetic lineage

tracing in transgenic mice largely confirmed findings

from classical embryology studies showing that the MGE

generates Somatostatin (SST)-expressing and Parvalbumin

(PV)-expressing interneurons (Fogarty et al., 2007; Xu

et al., 2008), whereas most Calretinin (CR), Neuropeptide

Y (NPY), all Reelin (RLN)+ SST�, and all Vasoactive intesti-

nal peptide cells originate in the CGE (Miyoshi et al.,

2010; Rubin et al., 2010). The preoptic area (POA) is an

additional small source of cortical interneurons, generating

a variety of subtypes including, PV, SST, RLN, NPY, and CR

interneurons as well as neurogliaform cells (Gelman et al.,

2009, 2011; Niquille et al., 2018).

Lineage-tracing studies have also assessed the origin of

hippocampal interneurons (Chittajallu et al., 2013; Fogarty

et al., 2007; Gelman et al., 2011; Tricoire et al., 2010, 2011).

Common principles as well as differences between the em-

bryonic sources of cortical and hippocampal interneurons

have been reported (reviewed in Pelkey et al., 2017). Most

noticeable is the origin of oriens lacunosum-moleculare

(O-LM) interneurons, which have their cell bodies within

stratum oriens (s.o.) and represent 40% of all SST interneu-

rons in the hippocampus (Pelkey et al., 2017). Similar

to the cortex, an MGE origin for O-LM cells was initially

reported using electrophysiological and morphological

assessment, combined with lineage-tracing studies (Fogarty
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et al., 2007; Tricoire et al., 2011). A surprising second origin

for�30% of all hippocampal O-LM cells was later proposed

in the CGE (Chittajallu et al., 2013). The latter conclusion

was based on findings from transgenic mouse lines that la-

bel MGE and CGE interneurons, combined with physiolog-

ical and functional studies (Chittajallu et al., 2013).

Recent in situ hybridization (ISH) mapping of Sst inter-

neurons in the developing mouse brain suggested that

most, if not all, telencephalic Sst cells originate in the diag-

onal area (or anterior entopeduncular area [AEP]) and not

the pallidal neuroepithelium (Puelles et al., 2016). This sug-

gestionwas based on the observation that Sst cells appear to

emerge in themantle adjacent to the AEP, which is thought

to downregulate expression of the endogenous Nkx2-1

gene at embryonic day 13.5 (E13.5) (Puelles et al., 2016).

We previously used mice expressing Cre under control of

Lhx6 to label MGE-derived interneurons in the cortex and

hippocampus (Fogarty et al., 2007). We showed that all

SST-expressing interneurons in the hippocampus can be

labeled in these mice and concluded an MGE origin for

this population, similar to their cortical counterparts (Fo-

garty et al., 2007). These findings are in contrast to recent

reports of a dual MGE-CGE origin for SST O-LM cells (Chit-

tajallu et al., 2013). We therefore made use of further trans-

genic tools to re-address this question.
RESULTS

Genetic Lineage Tracing Shows an MGE/AEP Origin

for All CA1 SST Interneurons

We used a series of Cre transgenic mice to trace the origins

of hippocampal SST+ interneurons. Cre expression is
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summarized in Figure 1A. Nkx2-1-Cre is expressed in the

neuroepithelium of the MGE, AEP, and POA but lacks

expression in the dorsalmost domain of the MGE

(dMGE), despite robust expression of the endogenous

Nkx2-1 gene in that area (Fogarty et al., 2007). Nkx6-2-

Cre is expressed in the dMGE neuroepithelium and the

POA (Flames et al., 2007; Fogarty et al., 2007) and Shh-

Cre is expressed in the POA (Flames et al., 2007; Flandin

et al., 2010; Gelman et al., 2009). Dual transgenic mice

expressing Nkx2-1-Cre and Nkx6-2-Cre label the entire

MGE, AEP, and POA neuroepithelial zones (Fogarty et al.,

2007). None of the mice used in this study express Cre

in the LGE or the CGE (Flandin et al., 2010; Fogarty

et al., 2007). We crossed Cre mice to GFP- or YFP-express-

ing reporter lines (Mao et al., 2001; Srinivas et al., 2001)

and quantified the percentage of SST interneurons express-

ing GFP/YFP in s.o. in CA1 at postnatal day 30 (P30) (Fig-

ures 1B–1F). Around 70% of SST interneurons expressed

YFP in Nkx2-1-Cre;R26R-YFP mice, indicating that the

majority are generated from Nkx2-1-Cre-expressing

precursors (Figures 1B and 1F). This is consistent

with previous findings and suggests that the remaining

30% may be generated either outside the MGE/POA (Chit-

tajallu et al., 2013) or from the dMGE, which does not

express Cre in these mice (Figure 1A) (Fogarty et al.,

2007). Analysis of Nkx6-2-Cre;R26R-GFP mice showed

activation of GFP in around 30% of CA1 SST interneurons

(Figures 1C and 1F), indicating either a dMGE or a POA

origin for these cells. To distinguish between the two, we

examined Shh-Cre;R26R-YFP mice where the POA neuroe-

pithelium was labeled and found <5% contribution to SST

interneurons (Figures 1D and 1F). This indicates that SST

interneurons labeled in Nkx6-2-Cre mice originate mainly

in the dMGE. The complementarity between Nkx2-1-

Cre and Nkx6-2-Cre mice was confirmed in Nkx2-1-

Cre;Nkx6-2-Cre;R26R-GFP triple transgenics where nearly

all SST-expressing interneurons in CA1 s.o. were labeled

with GFP (Figures 1E and 1F). Altogether, our genetic

lineage-tracing analysis shows that all SST-expressing

hippocampal CA1 interneurons in s.o. originate in Nkx2-

1-expressing proliferative zones, as previously demon-

strated for all cortical SST interneurons (Bandler et al.,

2017; Kessaris et al., 2014).

The AEP Contributes to but Is Not the Sole Source of

Telencephalic SST Interneurons

Recent ISH mapping of Sst interneurons in the developing

mouse brain suggested that most, if not all, telencephalic

Sst cells originate in the AEP (or diagonal area) and that fail-

ure to label 30% of cortical interneurons in Nkx2-1-Cre

mice may have been caused by lack of NKX2-1 expression

in the AEP at E13.5 (Puelles et al., 2016). We could not

detect downregulation of NKX2-1 in the AEP at E13.5 (Fig-
2 Stem Cell Reports j Vol. 13 j 1–10 j November 12, 2019
ure S1A) and, in contrast to the dMGE, which fails to acti-

vate expression of YFP in our Nkx2-1-Cre;R26R-YFP mice

(Figure S1A) (Fogarty et al., 2007), we find robust activation

of the Rosa26R-YFP allele in the AEP at E13.5 (Figure S1A).

This indicates that the 30% of SST interneurons that failed

to be labeled in the Nkx2-1-Cre; R26R-YFP mouse are not

generated from the AEP. Instead, in Nkx6-2-Cre mice,

which express Cre in the dMGE but not in the AEP (Fig-

ure S1B) (Fogarty et al., 2007), 30% of hippocampal SST

interneurons are labeled and complement the Nkx2-1-Cre

mice (Figure 1F). Hence, we can conclude that the AEP

may contribute to but is not the sole or principal source

of SST interneurons, and it is not the source of 30% of

hippocampal SST interneurons that are unlabeled in our

Nkx2-1-Cre mice.

SST-Expressing Cells Are Generated in the Absence of

NKX2-1

To clarify the requirement for NKX2-1 in the generation

of SST interneurons, we examined Nkx2-1 germline

knockout (KO) embryos for the presence of SST-positive

cells. At E13.5, most Sst cells were missing from the telen-

cephalon in Nkx2-1 KO embryos compared with controls

(Figures 2A and 2B). However, a clear stream of Sst cells

seemingly emerging from the AEP could be detected in

mutant embryos (Figure 2B). Activation of Lhx6, a direct

transcriptional target of NKX2-1 (Du et al., 2008; Sand-

berg et al., 2016), can be detected in mutant embryos

near the Sst+ zone, but expression is not maintained in

migrating SST cells (Figures 2C and 2D). At E18.5, the lat-

est stage at which these embryos can be examined due to

postnatal lethality, we could detect Sst-expressing cells in

subcortical regions such as the developing amygdala, but

these did not express Lhx6 (Figures 2E–2H). In contrast,

the hippocampus was devoid of Sst- and Lhx6-expressing

cells (Figures 2I–2L). Altogether, our data indicate that

subcortical Sst+ cells can be generated in the absence of

Nkx2-1, but these do not maintain expression of Lhx6

and do not migrate to the hippocampus. Whether these

represent an Nkx2-1/Lhx6-independent Sst population or

an abnormal population of Sst cells generated in these

mutants remains unknown.

A Single LHX6 Origin for All Hippocampal SST

Interneurons

We previously showed that nearly 100% of hippocampal

CA1 SST interneurons are labeled with YFP in Lhx6-

Cre;R26R-YFP transgenic mice (Fogarty et al., 2007). We

extended this work by assessing SST interneurons at all

anterior-posterior levels of CA1. We confirmed a near-

complete co-localization of SST with YFP (Figures 3A–

3C). To determine whether SST interneurons maintain

LHX6 expression in postnatal animals, we used transgenic
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Figure 1. Genetic Lineage Tracing of SST Interneurons in CA1
(A) Cre expression in the ventral telencephalon in transgenic mice used in this study.
(B–E) Immunohistochemistry detecting CA1 SST interneurons expressing XFP in Nkx2-1-Cre;R26R-YFP (B), Nkx6-2-Cre;R26R-GFP (C),
Shh-Cre;R26R-YFP (D), and Nkx2-1-Cre;Nkx6-2-Cre;R26R-GFP (E) at P30. Boxed areas are shown at higher magnification. Arrows show
double-positive cells and arrowheads show SST+/XFP� cells.
(F) Quantification of XFP/SST interneurons as a percentage of SST cells in CA1 stratum oriens (s.o.) at P30. Mean ± SD.
Scale bars, 20 mm (left images) and 5 mm (right images).
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mice expressing Cre under control of Sst (Taniguchi et al.,

2011). Immunohistochemistry for LHX6 and YFP and

quantification of co-localization between the two in

CA1 s.o. showed that the majority of SST CA1 interneu-

rons maintain LHX6 expression in the adult (Figures 3D

and 3E). However, there was a marked variability in the

levels of expression of LHX6, and a small proportion of

YFP cells appeared negative for LHX6 (�15%) (Figures

3D and 3E). This variability was also observed in the

cortex, although a smaller proportion was negative for

LHX6 in this region (�5%) (Figures 3D and 3F). These

LHX6-negative/YFP-positive cells in Sst-Cre;R26R-YFP

transgenic mice may simply express very low levels of

LHX6, undetectable with our protocols. Alternatively,

they may represent non-SST cells, ectopically expressing

Cre, as recently suggested (Hu et al., 2013; Mikulovic

et al., 2015). Altogether, the data indicate that SST CA1 in-

terneurons in s.o. originate from LHX6-expressing progen-

itors and the vast majority maintain LHX6 expression at

adult stages.

Single-Cell Transcriptomic Analysis Shows Clustering

of Hippocampal Sst/Htr3a Interneurons with MGE

Populations

To detect the presence of Htr3a-expressing Sst interneu-

rons in the adult hippocampus, we took advantage of

our recent RNA transcriptomics dataset of 3,283 interneu-

rons from CA1 (Harris et al., 2018). Based on their tran-

scriptomic profiles, CA1 interneurons could be subdivided

into 49 major clusters that can be arranged in 10 ‘‘conti-

nents’’ on an nbtSNE map (Harris et al., 2018). Clusters

originating in the MGE can be identified in ‘‘continents’’

1, 2, 3, 4, and 10 (indicated in Figure 4A) (Harris et al.,

2018). High Htr3a expression is observed in CGE-derived

clusters, which do not express Sst (Figures 4A and 4B).

Among MGE populations, low expression of Htr3a is

observed in a few clusters in continents 1 and 10, which

co-express Sst (circled in red in Figure 4A). These include

putative O-LM and hippocamposeptal neurons. Our data

demonstrate that Sst and Htr3a-co-expressing cells are pre-

sent in small numbers in CA1, although their expression

profile is more similar to MGE rather than CGE-derived

interneurons.
Figure 2. Expression of Sst and Lhx6 in Control and Mutant Embr
(A–D) E13.5 coronal sections showing expression of Sst (A and B) a
cephalon of Nkx2-1�/� embryos compared with controls. A clear stream
in B) but these do not appear to migrate to the cortex. Lhx6 can only b
is not maintained in migrating cells.
(E–H) E18.5 coronal sections showing expression of Sst (E and F)
telencephalon in Nkx2-1 mutant embryos and these do not express Lh
(I–L) The hippocampus is devoid of Sst and Lhx6 expression in Nkx2-
Scale bars, 200 mm (A–H) and 150 mm (I–L).
DISCUSSION

We used a range of genetic lineage-tracing mice together

with single-cell transcriptomic analysis to re-examine the

origin of hippocampal CA1 Sst-expressing interneurons.

We find that all Sst cells in CA1 are generated from Nkx2-

1-expressing neuroepithelial cells and can be labeled

with Lhx6-Cre transgenic mice. Low expression of Htr3a

can be detected in some Sst CA1 interneurons but their

transcriptomic signature clusters them together with

MGE-derived populations. Altogether, our data indicate a

single MGE/POA origin for all hippocampal CA1 SST

interneurons.

A dual MGE-CGE origin for CA1 O-LM cells had recently

been suggested (Chittajallu et al., 2013). While an MGE

origin parallels that of SST interneurons in the cortex, the

finding of a CGE origin for Htr3a+Sst+ O-LM cells was sur-

prising. Apart from expression of 5-HT3AR and consequent

preferential response to serotonin, MGE and CGE O-LM

cells were found to have identical characteristics. These

included laminar position, neurochemical content, basic

membrane and spiking properties, as well as muscarinic

and mGluR1 or mGluR5 response profiles (Chittajallu

et al., 2013). Three observations led to the suggestion

that SST+5-HT3AR
+ O-LM cells have a CGE origin: (1)

�30% of SST cells with typical O-LM characteristics were

labeled with GFP in Htr3a-GFP mice; (2) a proportion of

s.o. SST O-LM cells were labeled with GFP in Mash1-

CreER;RCE transgenic mice following tamoxifen adminis-

tration; and (3) there was only�10% overlap in expression

of tdTomato and GFP in Nkx2-1-Cre;tdTOM;Htr3a-GFP

mice (Chittajallu et al., 2013). Together, these observations

suggested a CGE origin for �30% of SST O-LM cells.

However, there are known caveats to the transgenic mice

used: Nkx2-1-Cre mice fail to express Cre in the dMGE, re-

sulting in large numbers of unlabeled MGE cells in lineage-

tracing experiments (Xu et al., 2008); Mash1 is expressed

throughout the MGE and CGE neuroepithelium (Casarosa

et al., 1999), and the extent of preferential CGE labeling

depends on the dose and time of tamoxifen administration

or even the genetic background of the mice used. In Htr3a-

Cre;GFP and Htr3a-GFP mice, labeled cells can be seen

to emanate not only from the CGE but also from the
yos Lacking NKX2-1
nd Lhx6 (C and D). Most Sst expression is missing from the telen-
of Sst cells appears to be emerging from the AEP in mutants (arrows

e detected near the AEP in mutant embryos (arrows in D). Expression

and Lhx6 (G and H). Sst cells can be detected in the subcortical
x6. Boxed areas are shown in high magnification in (I) to (L).
1 mutant embryos.
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express low levels of Htr3a. There is no significant linear correlation between the expression of Htr3a (x axis) and Sst (y axis) in these cells.
Solid line: correlation coefficient. Dashed line: x = 0.
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AEP/POA, and hence cannot be used to exclusively trace

the CGE (Vucurovic et al., 2010). Finally, as Htr3a is a post-

mitotic marker, it is difficult to exclude the possibility of
upregulation of the gene during migration or at any later

stage during the maturation of these cells, independently

of the neuroepithelial origin of these cells.
Stem Cell Reports j Vol. 13 j 1–10 j November 12, 2019 7
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In the present study, we used transgenic mice expressing

Cre in neuroepithelial cells and showed that all SST CA1 in-

terneurons are generated in the MGE/POA, including

the dMGE, which fails to express Cre in Nkx2-1Cre mice

(Fogarty et al., 2007). Lhx6-Cre;Rosa26YFP mice also label

all SST interneurons in CA1 with YFP. Even though Lhx6

does not delineate a neuroepithelial domain, it is a direct

target of NKX2-1 and hence labels postmitotic neurons

generated from Nkx2-1-expressing precursors (Du et al.,

2008; Fogarty et al., 2007; Sandberg et al., 2016). To further

examine the possibility that some SST cells may be gener-

ated from theCGE,wemined our single-cell transcriptomic

data (Harris et al., 2018). Sst-expressing cells clustered

together on nbtSNE maps based on their transcriptomic

profile, and these were clearly separate from CGE clusters.

Cells expressing low levels of Htr3a were found among

SST clusters but their profiles were more similar to MGE

populations than CGE ones. Altogether, our data point

toward an MGE/POA origin for all hippocampal CA1 SST

interneurons.

Interestingly, we found that some SST-expressing cells

are generated in the absence of NKX2-1 in the AEP/POA

regions. These cells remain within the subcortical

telencephalon and do not migrate to the cortex or the hip-

pocampus. It is possible that other NKX genes, such as

Nkx2-4 or Nkx6-2, may compensate for the loss of

NKX2-1 in AEP/POA regions in NKX2-1 mutants, thereby

allowing the generation of SST interneurons in the absence

of NKX2-1. For example, nkx2-4 is expressed in the hypo-

thalamus and is functionally redundant with nkx2-1 in

zebrafish (Manoli and Driever, 2014). Alternatively, some

SST cells may normally be generated in the AEP/POA re-

gions independently of NKX2-1, but these do not migrate

to the cortex or the hippocampus.

Knowledge of the embryonic origin of cortical

GABAergic interneurons and genetic programs that drive

distinct interneuron fates has been instrumental in the

generation of these cells in vitro for putative stem cell-based

therapeutic approaches (Tyson and Anderson, 2014).

Much of this knowledge has come from genetic lineage

tracing in transgenic mice using recombinases. However,

these come with caveats of their own: mice expressing

Cre in neuroepithelial domains need to be well character-

ized spatially and temporally, not only by expression

of the endogenous gene but also of the Cre transgene and

the activation of the Cre reporter gene. This is because

the Cre transgenemay not fully recapitulate the expression

of the endogenous gene. In addition, parameters such as

accessibility of loxP sites and distance between them will

determine the ease with which recombination takes place,

thereby masking or unmasking low levels of expression of

Cre and causing variable reporting depending on the

model used. Even more caution should be exercised when
8 Stem Cell Reports j Vol. 13 j 1–10 j November 12, 2019
carrying out lineage-tracing experiments based onmice ex-

pressing a reporter gene such as GFP or other fluorescent

proteins in postmitotic neurons because of the difficulty

in tracing the history of activation of that promoter

throughout embryogenesis and into adulthood. Single-

cell transcriptomics is now transforming developmental

and evolutionary biology by providing us with unprece-

dented insight into the transcriptomic makeup of single

cells. However, the technique inherently lacks positional

information and, being relatively new, is still rife with

experimental and computational caveats. Combining

genetic lineage tracing and single-cell transcriptomics

provides us with a powerful method for identifying devel-

opmental cell diversifications and deciphering in vivo cell

lineages, information that forms the basis for stem cell

studies and the generation of differentiated cells in vitro.
EXPERIMENTAL PROCEDURES

Animals
Tg(Nkx2-1-cre)1Wdr (MGI:3761164) (Kessaris et al., 2006),

Tg(Nkx6-2-icre)1Kess (MGI:4355562) (JAX 027798), Tg(Lhx6-icre)1Kess

(MGI:4355717) (JAX 026555) (Fogarty et al., 2007),

Shhtm1(EGFP/cre)Cjt (MGI:3053959) (JAX 005622) (Harfe et al.,

2004), Ssttm2.1(cre)Zjh (MGI:4838416) (JAX 013044) (Taniguchi

et al., 2011), R26R-YFPKI (JAX 006148) (Srinivas et al., 2001),

and R26R-GFPKI reporter mice (JAX 004077) (Mao et al., 2001)

have been described previously. We refer to them herein as

Nkx2-1-Cre, Nkx6-2-Cre, Lhx6-Cre, Shh-Cre, Sst-Cre, R26R-

YFP, and R26R-GFP, respectively. Mice carrying a germline dele-

tion in Nkx2-1 were generated by germline recombination of a

floxed allele (Kusakabe et al., 2006). All animals used in this

study were maintained on a mixed C57BL6/CBA background

at the Wolfson Institute for Biomedical Research, University

College of London in accordance with United Kingdom legisla-

tion (ASPA 1986).

Tissue Processing, Immunohistochemistry, and ISH
Tissue processing, immunohistochemistry, and ISHwere carried out

as previously described (Magno et al., 2012; Rubin et al., 2010).

Primary antibodies used were: rat monoclonal anti-GFP immuno-

globulin G (IgG) 2a (GF090R) (1:1,000, Nacalai Tesque, cat. no.

04404-84), rabbit polyclonal anti-SST (1:200, Peninsula Labs, cat.

no. T-4103.0050), rabbit polyclonal anti-TTF-1 IgG (NKX2-1)

(1:100, Santa Cruz Biotechnology, cat. no. sc-13040), and rabbit

polyclonal anti-LHX6 (a gift from V. Pachnis). Alexa-Fluor conju-

gated secondary antibodies were used at 1:1,000 (Thermo Fisher)

(donkey anti-rabbit 568, cat. no. A-10042, donkey anti-rat 488,

cat. no. A-21208). For RNA ISH, Lhx6- and Sst DIG-labeled probes

were generated from a plasmid (kind gift from V. Pachnis) and

IMAGE clone 4218815 (Source Biosciences), respectively.

Imaging and Quantification
Images were captured using a Hamamatsu C4742-95 camera

on a Zeiss Axioplan fluorescence microscope and Digital Pixel
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software. Confocal images were captured on a Leica CTR6500

confocal microscope or a Zeiss LSM880 with Airyscan. ISH images

were captured on a Zeiss Axio Scan.Z1 scanner. Image composites

were assembled using Microsoft ICE software (Microsoft, Red-

mond,WA) and processed with Adobe Photoshop CS6 (Adobe Sys-

tems, San Jose, CA). Figures were generated in Adobe Illustrator

CS6 (Adobe Systems). Quantification was performed as described

previously (Fogarty et al., 2007; Magno et al., 2012). Three animals

were used in each experiment and quantification was performed

on 4–6 hippocampal CA1 regions from 2–3 sections per animal

(30 mm thickness). A total of 400–600 SST+ cells per animal were

counted in order to generate the data shown in Figures 1 and 3.

Two-tailed t tests were used with an alpha of 0.05.

Single-Cell RNA-Sequencing Analysis
The single-cell data presented were obtained by reanalyzing our

previously published datasets (Harris et al., 2018). The code for

cluster analysis and all other algorithms can be found at https://

github.com/cortexlab/Transcriptomics. To visualize different cell

subtypes, we used the negative binomial t-stochastic neighbor-

embedding (nbtSNE) algorithm as previously described (Harris

et al., 2018).
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