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Abstract Between April and the end of its mission on 15 September, Cassini executed a series of 22 very
similar 6.5-day-period proximal orbits, covering the mid-latitude region of the nightside magnetosphere.
These passes provided us with the opportunity to examine the variability of the nightside plasma sheet
within this time scale for the first time. We use Cassini particle and magnetic field data to quantify the
magnetospheric dynamics along these orbits, as reflected in the variability of certain relevant plasma
parameters, including the energetic ion pressure and partial (hot) plasma beta. We use the University College
London/Achilleos-Guio-Arridge magnetodisk model to map these quantities to the conjugate
magnetospheric equator, thus providing an equivalent equatorial radial profile for these parameters. By
quantifying the variation in the plasma parameters, we further identify the different states of the nightside
ring current (quiescent and disturbed) in order to confirm and add to the context previously established by
analogous studies based on long-term, near-equatorial measurements.

Plain Language Summary Highly energized charge particles are trapped in the rapidly rotating
magnetic cavity (the magnetosphere) of Saturn. Subject to the strong centrifugal potential, these particles,
with energies in the order of few keV to few MeV, deform the dipole magnetic field of the planet and
form an equatorial disk shaped structure, the magnetodisk. In this study we present how a theoretical
magnetodisk model can be combined with Cassini particle data and accurately describe the field and plasma
properties of the Saturnian magnetodisk. We further demonstrate how the previously observed variability of
the electric current encircling the planet, the ring current, is also clearly identified in the measurements
obtained during the 22 Cassini proximal orbits of nearly identical geometry. We find that this short-time
temporal variability is comparable to the documented local time asymmetry of the ring current.

1. Introduction

During its long (>13 years) mission as a dedicated orbiter of Saturn, Cassini covered almost all parts of the
planet’s magnetosphere and returned a wealth of in situ and remote observations of magnetospheric particle
and magnetic field properties. The Saturnian plasma sheet, in particular, was extensively studied during the
last decade. Its three-dimensional structure and its dynamical (periodic and episodic) variability was revealed
through multi-instrumental data analyses (e.g., Arridge et al., 2011; Carbary et al., 2015; Cowley & Provan,
2017; Kellett et al., 2011; Krupp et al., 2009; Nemeth et al., 2015; Sergis et al., 2011, 2017; Thomsen et al.,
2017; Wilson et al., 2015, 2017) and modeled by several sophisticated approaches (e.g., Achilleos, Guio, &
Arridge, 2010a; Arridge et al., 2011; Cowley & Provan, 2017; Jia & Kivelson, 2012).

One of the characteristics of Saturn’s plasma sheet is its intense variability on relatively short time scales (of
few minutes to few hours) that is persistently present in the properties of the hot (keV range) ion population
and the corresponding suprathermal pressure component). Based on the hot plasma variability, and in par-
ticular on themeasured radial profile of the hot plasma beta (ratio of the hot plasma pressure to themagnetic
pressure), two distinct states of the Saturnian ring current were identified as long ago as Cassini’s initial prime
mission: a “quiescent” and a “disturbed” ring current (Sergis et al., 2007).
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The University College London/Achilleos-Guio-Arridge (UCL/AGA) magnetodisk model is a magnetostatic
model, adapted from that of Caudal (1986) for the Jovian system. The axisymmetric model solves for both
magnetic field and plasma pressure throughout the magnetospheric volume, using observed profiles of
plasma properties on the equatorial plane (see Achilleos, Guio, & Arridge, 2010a, for more details). In so
doing, the model quantifies the degree of radial “stretching” of the dipolar field lines of the planet’s internal
field, imposed by the disk plasma’s rotational motion and pressure.

In this work we focus on the hot component of the particle population (E > 3 keV) that, although tenuous,
carries the larger part of the plasma pressure, compared to the dense thermal plasma that dominates the
particle number density. We attempt to determine whether the previously documented intense variability
of the plasma sheet (e.g., quiescent versus disturbed state) in this energy range is primarily a temporal
effect or is correlated to the magnetospheric spatial topology (e.g., linked to local L-shell and/or the local
time sector). We further examine the L-shell profile of hot plasma properties, derived from Cassini data,
and attempt to assess their contribution to the dynamics of the Saturnian system. In addition, the compar-
ison of our “mapped” equatorial hot plasma pressure profiles—derived from “magnetically mapping” the
high-latitude pressures with the model—with previous, directly observed equatorial profiles allows us
to validate the model’s use and its assumption of an energetic population with uniform pressure along
field lines.

Figure 1. Overview of Cassini’s proximal orbits: (a) x-y plane projection, (b) x-z plane projection, (c) density distribution in
the local time-latitude parameter space, and (d) density distribution in the local time-range parameter space. The
coordinates are in the Saturn-centered SZS coordinate system (z-axis parallel to Saturn’s spin axis, x-axis roughly sunward in
the Sun-spin axis plane, and y-axis completes the system, pointing roughly toward dusk).
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2. Observations and Methodology

The 22 proximal orbits of Cassini covered the period between 22 April
and 15 September 2017 (end of the mission), and presented a unique
characteristic: These 22 passes had a period of 6.5 days with very similar
geometry and spatial coverage (Figure 1). This set of orbits allowed us
for the first time to explore the temporal variability of the nightside
plasma sheet in a time scale of the order of 1 week. As the spatial cover-
age remained very stable and repeatable from orbit to orbit, we had a
unique opportunity to observe the range of the dynamics associated
with this time scale, along a nearly fixed spatial “swathe” through
the magnetosphere.

We used energetic (>3 keV) ion measurements from the three sensors
of the Magnetospheric Imaging Instrument (MIMI) onboard the Cassini
spacecraft (Krimigis et al., 2004) to compute the particle pressure for
the corresponding energy range during the 22 Cassini proximal orbits,
following the methodology introduced by Sergis et al., 2007, 2009.
Similarly to Sergis et al., 2017, the computed suprathermal pressure
includes also the contribution from H2

+ ions, in addition to the main
contributions, protons (H+) and water product ions (W+). The adopted
time resolution for the computation was 10 min, to ensure reliable sta-
tistics, given the typical count rates in the region of interest, without
compromising the detailed spatial coverage. In addition, the hot
plasma beta was computed using the same time resolution as the cor-
responding in situ magnetic field measurements from the Cassini mag-
netometer (MAG; Dougherty et al., 2004). We should note, however,
that the total particle pressure, the total plasma beta, and the asso-
ciated pressure gradient component of the ring current, all contain
the contribution from the thermal ions, which is not addressed in this
study. Nevertheless, beyond L = 10 where this work’s focus resides,
the hot plasma pressure contribution is usually well over 50%.

In order to produce the corresponding equatorial L-shell pressure and
beta profiles, we employ the UCL/AGA magnetodisk model (Achilleos,

Guio, & Arridge, 2010a), computed for a dayside magnetopause standoff distance of 25 RS, close to the mean
value for the probability distribution of this quantity at Saturn (Achilleos et al., 2008), and use the model field
to project the acquired high-latitude hot plasma pressure onto the equatorial plane of the nightside magne-
tosphere of Saturn. Thus, we project along shells of field lines produced by a centered dipole internal field
plus a realistic magnetodisk/ring current distribution.

3. Results

The resulting L-shell profile for hot plasma pressure is presented in Figure 2, as a scatter plot (Figure 2a) and
as a probability distribution map (Figure 2b). Note that the “L shell” parameter referred to for the abscissa
represents the equatorial crossing distance of the relevant field line and can deviate up to a factor of 2 from
the dipole L shell, depending on the magnetic latitude. The hot plasma pressure data exhibit a scatter of
nearly one order of magnitude, and a clear drop with L shell between L ~ 10 and L ~ 16, in agreement
to the presently established picture of the equatorial hot plasma distribution from direct observations
(Sergis et al., 2017). Measurements that correspond to intervals during which Cassini is located in the
magnetic lobes (i.e., those regions magnetically conjugate to polar shells relatively devoid of plasma) can
be easily identified and are marked (Figure 2a), although they do not seem to affect the overall
distribution (Figure 2b).

Figure 3 shows the corresponding L-shell profiles (scatter and probability map) for the hot plasma beta, com-
puted using the coincident, in situ magnetic field measurements. The hot plasma beta increases with L shell,
reaching β ~ 1 near L = 16 and generally appears quite similar to the direct equatorial beta profile derived by

Figure 2. (a) L-Shell (UCL/AGA model) profile of the hot plasma pressure mea-
sured during the 22 proximal orbits of Cassini. The disturbed and the quiescent
ring current states are marked, together with suspected lobe sampling, (b) the
same distribution given as an occurrence probability map in the L-shell-log (P)
parameter space. UCL/AGA = University College London/Achilleos-Guio-Arridge.
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Sergis et al., 2007, using data from 11 equatorial orbits of Cassini.
Beyond L = 16, both profiles (hot plasma pressure and hot beta)
become significantly more variable.

At this point, we should note that the geometry of the proximal orbits,
although beneficial for the study of the plasma sheet dynamics,
imposes a systematic error due to the inevitable incomplete pitch
angle coverage with changing spacecraft latitude, as Cassini cannot
measure ions that mirror equatorward of its position. Beyond L = 16,
Cassini travels closer to the equatorial plane and can thus capture
almost the full range of the quasi-isotropic pitch angle distribution of
ions. Therefore, both the hot pressure and hot beta L-shell profiles of
Figures 2 and 3 should be viewed as lower limits for L< 16, until a more
detailed pitch angle analysis can be carried out and the appropriate
correction is applied. These lower limits are nevertheless in agreement
with the direct equatorial profiles within the displayed uncertainties.

An additional error in our equatorial projection is imposed by the fact
that the UCL/AGA model does not predict an azimuthal component
of the magnetic field. This component is generally known from pre-
vious studies that have empirically modeled this component using its
observed relation with the poloidal field (e.g., Achilleos et al., 2014;
Arridge et al., 2011; Connerney et al., 1983) but can also be locally
measured when Cassini crosses the equatorial plane. However, the pre-
sence of a nonzero azimuthal field component cannot affect signifi-
cantly the mapping process or the produced L-Shell profiles (i.e., in
such a degree that the equatorial foot point of a model field line would
correspond to a different local time sector compared to the real cross-
ing point of the field line).

Despite the small systematic underestimation in the pressure (of the
order of 10–30% as discussed later), two states of the ring current can
be unambiguously identified in both profiles, similar to those intro-

duced by Sergis et al. (2007) and later modeled by Achilleos, Guio, Arridge, Sergis, et al. (2010b): A “quiescent”
and a “disturbed” ring current, with a corresponding strength ratio in the range ~5 to ~8, as reflected in the
energetic particle pressure and the corresponding plasma beta. In addition, Krupp et al. (2018) report that,
during the proximal orbits, the disturbed ring current is correlated with low-latitude energetic neutral atom
(ENA) emissions, as energetic neutrals, produced at the ring current region, reach Saturn’s atmosphere and
are backscattered (planet-wards) to Cassini.

Figure 4a summarizes the hot plasma pressure conditions in the nightside magnetosphere of Saturn during
the Cassini proximal orbits (median pressure values per radial bins of 1 RS, solid line). This profile is compared
to the long-term (2004–2013) measured radial hot plasma pressure (dashed line) for roughly the same local
time sector (Sergis et al., 2017). The very good agreement between the two profiles is indicative of how well
the UCL/AGA model reproduces the disk-like magnetic field and projects the high-latitude measurements to
the equatorial plane. The relatively small systematic difference in the pressure values is below 30% for L shells
between ~10 and ~16 (Figure 4b) and is attributed to the incomplete pitch angle sampling described earlier.
Note that the average 2004–2013 profile was obtained from measurements strictly close to the center of the
plasma sheet, thus demonstrating that the more energetic ions (>3 keV) are not subject to significant
confinement toward the equator, in terms of their overall pressure.

The error bars in the profile of Figure 4 correspond to the interquartile range (Q1–Q3) and are thus indicative
of the dynamic behavior of the plasma sheet, which appears comparable to the typical range associated with
the local time asymmetry that characterizes the averaged conditions in the ring current region (Krimigis et al.,
2007; Sergis et al., 2017).

An uncertainty in the overall mapping process is also introduced by the selection of the magnetopause
standoff distance, as this distance can vary on time scales as small as a few hours or even less (Achilleos

Figure 3. Similar to Figure 2 but for the hot plasma beta distribution. UCL/
AGA = University College London/Achilleos-Guio-Arridge.
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et al., 2008; Kanani et al., 2010; Pilkington et al., 2015a; Pilkington et al., 2015b; Ramer et al., 2016), due to both
external and internal influences (Sorba et al., 2017). Since there is no dedicated upstreammonitor at Saturn in
addition to Cassini, it is not possible to have a continuous, accurate estimate of magnetopause size as a
function of time. During the execution of the proximal orbits Saturn was under the influence of recurrent
corotating interaction regions, and likely interacted with periodically varying solar wind flows, as well as
enhanced and rarefied interplanetary magnetic field (Roussos et al., 2018). In addition, the same study
reports that Saturn was exposed to two transients of solar energetic particles that are expected to have
increased the interplanetary magnetic field in the region, causing a magnetospheric compression, for at
least the few-day duration of each event’s peak. We should point out, however, that the observed
difference is considered a relatively small influence, given the much higher range associated with the solar
wind dynamic pressure.

4. Summary and Conclusions

We analyzed Cassini/MIMI and MAG data obtained during the final (proximal) obits of the Cassini mission.
These 22 orbits had a very similar geometry with a period of 6.5 days and are therefore ideal to examine
the hot ion plasma variability on this time scale, since all spatial dependencies are minimized due to the
repeatable orbital coverage.

Using the UCL/AGA magnetodisk model, we modeled the global geometry of the planetary field and
projected the computed hot plasma pressure onto the equatorial plane. We constructed the corresponding
L-shell profiles for the suprathermal pressure and the corresponding plasma beta, and we compared those to
the average radial profiles directly observed for the same local time sector from previous, more extended
parts of the mission.

The main conclusions of this study can be summarized as follows:

1. The L-shell profile of the hot plasma pressure produced by mapping the data to the equatorial plane with
the UCL/AGA magnetodisk model is in very good quantitative and qualitative agreement with the

Figure 4. (a) Average L-shell profile of the hot plasma pressure for the 22 proximal orbits of Cassini (solid line). Pressure
medians are given for each bin of 1 RS, while the error bar brackets the interquartile range (Q1 to Q3). For comparison,
the corresponding pressure profile from a larger part of the mission (2004–2013) and for roughly the same local time range
(2100–0300 hr) is shown (dashed line). (b) Percent deviation between the two profiles as a function of L shell.
UCL/AGA = University College London/Achilleos-Guio-Arridge.
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corresponding (and directly observed) average, long-term profiles presented in Sergis et al., 2017. This
similarity indicates that the model describes very well the distorted or “stretched” magnetic field config-
uration of the Saturnian magnetodisk, when an appropriate magnetopause standoff distance is selected.
The systematic deviation, attributed mostly to the incomplete pitch angle sampling, appears to be below
~30%.

2. The two states of the Saturnian ring current (quiescent and disturbed) that have been reported since the
early stages of the Cassini mission are also identified herein on the 6.5-day time scale, indicating that
the temporal (few-day time scale) variability in the nightside magnetosphere is at least comparable to the
documented systematic spatial variation with local time. The partial (hot) plasma beta appears to increase
with L shell at least up to L ~ 18, revealing the increasing contribution of the hot plasma component to the
dynamics of the system. It is important to note that at L ~ 17, the hot plasma beta attains a median value
of ~1, suggesting that the energetic (E > 3 keV) particle pressure alone can locally balance the magnetic
pressure.

The successful application of the UCL/AGA model to project measurements from the proximal orbits indi-
cates that, if the described issues concerning pitch angle sampling and the variability of the magnetopause
location are successfully addressed, we would, in principle, be able to expand this magnetic mapping
method to data from the entire mission.
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