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Abstract

An investigation on boundary shear flow past a circular cylinder near a wall is numerically performed via
a stabilized finite element method. The main focus is to uncover its major difference with the flows corre-
sponding to the symmetry boundary, and to two identical circular cylinders in a side-by-side arrangement.
In particular at Reynolds number Re = 100, extensive simulations are made for different gaps between the
cylinder and wall. It is noted that in the wake of the cylinder the vortex contour lines shift upwards. At
Re = 100, the flow behind a cylinder near the wall may be time dependent. With a reduction of the gap
spacing to a magnitude in (0.75,1), the vortex shedding nearly vanishes. For the flow behind two identical
circular cylinders side and side, the flow may change from periodic flow to totally irregular one. The drag
force CD, lift force CL,rms and Strouhal number St of the circular cylinder near the wall vary differently
with the gap, compared with those in the other two cases. When the cylinder is located in the boundary
layer, the boundary shear flow has strong effect on the hydrodynamic quantities. Extensive simulations are
also made for Re = 200, 400, 600 and 800. It is found that the Reynolds number has strong effect on the
flow and force on the cylinder, not only through the variation of Re itself but also the boundary layer of the
wall. Withe Re increasing, strong vortex shedding from the near-wall cylinder at e = 0.5 starts above a Re
in (200, 300).

Keywords: Boundary shear flow, flow past circular cylinder, stabilized finite element method, flow and
force characteristics with wall effects

1. Introduction

Boundary shear flow past a cylinder near a wall, characterized by the mutual interaction between the
vortices in the wake and the shear layers near the wall, has important engineering relevance, for example
in the case of gas and oil pipelines and cables near the seabed. In such flow, the presence of the wall plays
an important role. From geometrical configuration point of view, the problem has similarity to (1) another5

cylinder which is placed at the mirror image position, with symmetry condition on the wall, (2) two cylinders
in side-by-side arrangement (Figure 1). These cases may look similar in configuration. However, because
of the difference in the conditions on the wall, their overall flow characteristics are completely different.
Through numerical simulation, the present study investigates the flow past a single circular cylinder near a
wall, and aims to uncover its major difference with the flows corresponding to the symmetry boundary, and10

to two identical circular cylinders in a side-by-side arrangement.
There has been a substantial volume of work on the flow past two circular cylinders in a side-by-side

arrangement in the past few decades[1, 2]. Typical work includes that by Williamson[3] who experimentally
investigated the flow at Re = 50 − 200 and 0.5 < G ≤ 5 (G is the gap spacing between the two cylinder
surfaces on the near side, which is nondimensionalized by the diameter of the cylinder D) using flow-15

visualization methods. It was found that vortex-shedding synchronization could occur either in phase or
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Figure 1: Schematic diagram of the present computational domain (only the upper half part is needed for
cases with the wall and symmetry boundaries, for which u = 1 is used at the inlet).

antiphase above a critical gap spacing. Below a certain gap spacing the flow became asymmetric or unsteady.
Certain harmonic modes of vortex shedding were observed in the asymmetric regime whereby the shedding
frequency on one side of the wake was a multiple of that on the other side. Kang[4] carried out a numerical
investigation on the problem using an immersed boundary method in a range of 40 ≤ Re ≤ 160 and G < 5.20

Six kinds of wake patterns: antiphase-synchronized, in-phase-synchronized, flip-flopping, deflected, single
bluff-body and steady wake patterns were observed in the study. Experimental and numerical studies have
also been performed in other ranges of physical parameters, such as those by Kim and Durbin[5], Xu et
al.[6], Jiao and Wu[7]. These studies have presented some in depth understanding of the underlying physics
of the complex flow past two cylinders.25

The wake of two circular cylinders in a side-by-side arrangement is due to interaction of two rows of
vortices shed from two cylinders respectively, and the intensity of interaction depends on the gap spacing
between two cylinders. At Re = 100, when G > 5, the two cylinders become virtually independent and
each of them can be treated in isolation. When 2 < G < 5, the flow past two cylinders is similar to that
past a single cylinder with symmetry condition imposed on the symmetry line. The lift force coefficients of30

the two cylinders are in antiphase (or 180o phase difference). At 0.4 ≤ G ≤ 1.5, the wakes of two cylinder
intersect with each other strongly, such that the vortex motion is no longer periodic and becomes irregular.
For these cases, the flow characteristics are no longer similar to the flow with a symmetry boundary since
the reflection of the symmetry boundary prevents the vertical velocity from such interaction in the wake.

In the case of the cylinder located in the vicinity of a wall, the incoming flow will be very much affected35

by the wall boundary layer, especially at relatively low Reynolds number. This means that the cylinder is
in shear flow rather than in uniform flow. This may very much affect the features of flow past cylinder.
Likewise, it is expected that the wall boundary layer may substantially affect the process of vortex shedding
and its subsequent motion in the wake. Some studies on such a flow have been conducted (Bearman and
Zdravkovich[8, 9], Buresti et al.[10], Grass et al.[11], Taniguchi and Miyakoshi[12], Lei et al.[13], Price et40

al.[14], Wang and Tan[15], Taneda[16]). Most of those studies were carried out at Reynolds number in
the sub-critical flow regime (O(104)− O(105)). The flow regimes are relatively insensitive to the Reynolds
number within this range. The wall boundary effect on the flow patterns, vorticities, vortex shedding and
hydrodynamic quantities with different gap spacing between the cylinder bottom and the wall boundary
were investigated. It has been demonstrated that in sub-critical flow regimes the vortex shedding in the45

wake is suppressed when e (e is the spacing between the cylinder bottom and the wall boundary which is
nondimensionalized by D, namely, e = G/2) is less than about 0.3[17]. Teneda[16] and Lei et al.[18] carried
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out both experimental and numerical studies at Reynolds numbers (Re < 1000). Some explanations for
vortex shedding suppression at small gap were provided.

The objective of the present study is to undertake further in depth investigation into the flow past a50

cylinder near a wall. In particular, we will focus on the cases in which the boundary layer of the wall may
have a stronger effect. Therefore the Reynolds numbers chosen are relatively low, in which the thickness of
boundary layer may be comparable to the gap between the cylinder and the wall. We shall then compare
the results with those for two cylinders in a side-by-side arrangement and a single cylinder near a symmetry
boundary, in both of which, the incoming flow is uniform. We then try to acquire some deeper understanding55

on how the shear layer of the wall and the wall itself will affect the vortex shedding process and its subsequent
motion. The numerical method used in the present study is the stabilized finite element method [19, 20, 21].
A generalized-α method of second order accuracy[22] is applied to temporal advance with a specified high
temporal frequency damping, which eliminates non-physical instabilities.

In particular, we deal with the flows in a range of 100 ≤ Re ≤ 800 and G ≤ 5. Extensive results are60

provided to show the sensitivity of the flow to the gap spacing e (or G), and how this compares with the
flows in two cylinder case and single cylinder near the symmetry line case. We aim to uncover the underlying
mechanism of the wake interaction in these three cases, and to investigate how the flow structures in the
wake influence the hydrodynamic quantities. Investigations on the effects of the Reynolds number in these
cases are also performed and results are compared. Noticeably, the three-dimensional wake transition might65

appear for a single cylinder at Re above 200[23]. On the other hand, the work by Prsic et al.[24] revealed
that the mean drag force and root-mean-square(RMS) of lift force of the 2D and 3D simulations differed by
less than 1% at Re = 100 and 500. Only when Re ≥ 1000, some of results from the 2D simulations started
to deviate notably from those from 3D. Considering the main purpose of the present study is on the effect
of the wall and boundary layer through comparison with results from similar configurations, the 3D effect70

is not expected to have major influence on the main focus of this paper.
The paper is organized as follows. The finite element method, generalized-α method and problem setup

are provided in Section 2. Validation, results and discussion on the effect of the gap to diameter ratio as
well as the Reynolds number are presented in Section 3. Finally, conclusions are given in Section 4.

2. Mathematical formulation75

2.1. Governing equation

The two dimensional (2D) continuity equation and Navier-Stokes equations for the incompressible viscous
flows are used. The non-dimensional forms of these equations, based on the incoming velocity Uc of the
flow, body dimension L and kinetic viscosity ν of the fluid, can be written as

∇ · u = 0, (1)

L(u, p) =
∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∇2u = 0, (2)

where u denotes the velocity, p denotes the pressure, Re = UcL/ν is Reynolds number.

2.2. Discrete formulation

The numerical method used in the study is based on a finite element method. Multiplying Eqs. (1) and
(2) by the weighting function W = {q,w}, respectively, and integrating the result over the fluid domain,
we have their standard Galerkin formulations

(q,∇ · u)Ω = 0, (3)

(w,
∂u

∂t
)Ω + (w,u · ∇u)Ω + (w,∇p)Ω − (w,

1

Re
∇2u)Ω = 0, (4)

where Ω denotes the fluid domain, (, )Ω represents an integration in the space domain. In this study, bilinear
shape and weighting functions are used for the above discrete formulation.80
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It is often that the standard Galerkin formulations (3) and (4) may become ill-conditioned and the
solution procedure may become unstable, especially when the linear shape function is used, which is known
as the LBB condition. In order to circumvent the instability, we use overbar to indicate u and p in Eqs. (3)
and (4), and then modify these two equations as

(q,∇ · ū)Ω + (q,∇ · u′)Ω = 0, (5)

(w,
∂ū

∂t
)Ω + (w, ū · ∇ū)Ω + (w, ū · ∇u′)Ω + (w,∇p̄)Ω

+(w,∇p′)Ω − (w,
1

Re
∇2ū)Ω = 0, (6)

where

u′ = −τmL(ū, p), (7)

p′ = −τc∇ · ū, (8)

where L(ū, p) is the residual of Eq. (2). In the above two equations, τm and τc are defined as follows[25, 26]

τm =
(
c1ūGū+

c2
Re2

G : G+
c3

∆t2

)− 1
2

(9)

τc =
ūGū

tr(G)
(10)

where : denotes a double dot product, c1,c2 and c3 are constants depending on the element type, which, for
bilinear shape functions used in this paper, are taken as c1 = 1, c2 = 36 and c3 = 4. G is a covariant metric
tensor of the gradient of local element spatial coordinates ξ with respect to the global coordinates x for the
same point

G =

(
∂ξ

∂x

)T
∂ξ

∂x
, (11)

and ∂ξ
∂x is the Jacobian matrix. tr(G) in Eq. (10) represents a summation of the diagonal elements of G.85

To avoid the presence of the derivative of u′ and p′,as well as the second derivative of ū, the terms
involved with ∇u′, ∇p′ and ∇2ū are integrated by parts. Ignoring the effects of u′ and p′ on the boundary,
Eqs. (3) and (4) become

(q,∇ · ū)Ω − (∇q,u′)Ω = 0, (12)

(w,
∂ū

∂t
)Ω − (∇w, ū⊗ ū)Ω + (w,∇p̄)Ω + (∇w, 1

Re
∇ū)Ω

−(∇w, ū⊗ u′)Ω − (∇ ·w, p′)Ω

+(w, (ū · n)ū− 1

Re
∇ū · n)Γ = 0. (13)

where ⊗ denotes the tensor product, or ū ⊗ ū = ūiūj , Γ represents the fluid domain boundary, and n
denotes the outward normal vector to the fluid domain boundary.

2.3. Time discretization

In the present study, we employ a generalized-α method, which was applied to fluid dynamics in [22, 27,
28], to solve Eqs. (12) and (13). Define a as the nodal values of {u, p}T , ȧ are the temporal derivative of a90

at the same nodes. Performing integrations in Eqs. (12) and (13) results in a system of nonlinear ordinary
differential equations

Aȧ = Ba. (14)
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Introducing the generalized-α method for the above system yields

R(ȧn+αm
,an+αf

) = Aȧn+αm
−Ban+αf

= 0, (15)

an+1 = an + ∆tȧn + γ∆t(ȧn+1 − ȧn), (16)

ȧn+αm
= ȧn + αm(ȧn+1 − ȧn), (17)

an+αf
= an + αf (an+1 − an), (18)

where ∆t = tn+1 − tn is the time step size which is taken as a constant in the present work, αm and αf are
parametric constants with

αm =
1

2

(
3− ζ
1 + ζ

)
, αf =

1

1 + ζ
, (19)

ζ is set to 0.5 to retain unconditional stability and a second-order accuracy[22], and γ = 0.5 + αm + αf .95

Here a prediction-multicorrection procedure is used to handle the above generalized-α method algorithms.
The procedure starts with a prediction of the solution and its temporal derivative at tn+1

a
(0)
n+1 = an, (20)

ȧ
(0)
n+1 =

γ − 1

γ
ȧn. (21)

Substituting these predictions into Eqs. (17) and (18), and the results into Eq (15), we can force R = 0 by

correction of a
(i)
n+αf

through ∆a
(i)
n+αf

. Utilizing a Newton’s iteration procedure we have

R
(
ȧ

(i)
n+αm

,a
(i)
n+αf

)
+
∂R

(
ȧ

(i)
n+αm

,a
(i)
n+αf

)
∂a

(i)
n+αf

∆a
(i)
n+αf

= 0. (22)

Once ∆a
(i)
n+αf

is obtained, a
(i)
n+αf

and ȧ
(i)
n+αm

are updated via

a
(i+1)
n+αf

= a
(i)
n+αf

+ ∆a
(i)
n+αf

, (23)

ȧ
(i+1)
n+αm

=

(
1− αm

γ

)
ȧn +

αm
γ∆tαf

(
a

(i+1)
n+αf

− an
)
. (24)

Here Eq. (24) is obtained from Eqs. (16)-(18) by eliminating an+1 and ȧn+1. This process continues

utill ∆a
(i)
n+αf

is less than a given tolerance. With the solved a
(i)
n+αf

and ȧ
(i)
n+αm

, the solutions at tn+1 are

determined using Eqs. (17) and (18), and computation moves to the next time step.100

2.4. Problem setup

Simulations through the above described procedure are performed for a circular cylinder of diameter D
in a rectangular computational domain (Figure 1). The size of the whole computational domain is 35D by
20D. The centre of the cylinder is located at the origin of the coordinate system (xc = 0, yc = 0), which is
10D downstream the flow inlet, and the flow outlet is located 25D downstream the centre of the cylinder.105

These distances are comparable to those in previous publications, for example in Wu & Hu (2008)[29] and
are sufficient to neglect the effects of the boundary truncation far upstream and downstream of the cylinder.
For the cases with the wall and symmetry boundaries, the top boundary is located at a height of 10D from
the centre of the cylinder. This ensures that it has negligible effect on the flow past the cylinder.

In all the numerical simulations, the characteristic length L = D and no-slip boundary conditions are
applied to the cylinder surface as well as the bottom wall. However the impermeable condition is applied
on the latter when symmetry boundary is used. At the flow inlet, a constant velocity value is given for the
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two-cylinder and symmetry boundary cases. For the wall boundary case, an approximate sheared profile
based on the Blasius laminar boundary layer theory is prescribed at the inlet,

ū(y) =

{
2 (y+e+0.5)

δ − (y+e+0.5)2

δ2 if (y + e+ 0.5) ≤ δ
1 otherwise

(25)

where y is perpendicular to the wall and y = −e− 0.5 is the wall surface,110

δ = 4.92

√
(x− xs)
Re

denotes the boundary layer thickness[30] and xs is the starting point of the boundary layer. In the simulations
below, δ is set as a fixed value of 1.733 at the inlet. Thus at different Re, xs is adjusted accordingly.
Correspondingly, at different Re, the boundary layer thickness at x = 0 where the cylinder centre is located
is given in Table 1). For the top side of the domain, a boundary condition of (∂ū∂y = 0, v̄ = 0) is used. Thus

Table 1: Boundary layer thickness at the cylinder location for different Reynolds numbers.

Reynolds number (Re) 100 200 300 400 600 800
Boundary layer thickness (δ) 2.329 2.05 1.95 1.899 1.845 1.8177

on the boundary, either the Dirichlet condition (DC) in which the velocity is prescribed, or the Neumman115

condition (NC) in which the normal derivative of the velocity is prescribed, is imposed. In the former,
DC is used explicitly on the boundary in the finite element formation in Eqs.(12) and (13), and those w
corresponding to the nodes on the boundary are not included in the weight process of Galerkin method.
In the latter, NC is applied directly in the finite element formulation in Eq (13). At the flow outlet the
following outflow boundary conditions[27] is employed120

−({ū · n} )ū+
1

Re
∇ū · n = 0, (26)

where the term {ū · n} denotes the negative part of ū · n, that is{
{ū · n} = ū · n if ū · n < 0

{ū · n} = 0 otherwise
(27)

The first term on the left-hand-side in (26) is non zero only in the case of reverse flow through the outlet.

(a) (b)

Figure 2: Mesh for a cylinder near the wall (e = 1). (a) whole computational domain, (b) near the cylinder.

Substituting Eq. (26) into Eq. (13) on the outlet boundary, the contribution from this boundary will then
contain only

+

∫
Γoutlet

w({ū · n}+)ūdΓoutlet. (28)
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where125 {
{ū · n}+ = ū · n if ū · n > 0

{ū · n}+ = 0 otherwise
(29)

In the study, a body-fitted, structured multi block mesh of quadrilateral elements is used, which is
generated by ICEM CFD. A sketch of the mesh for the case e = 1 is illustrated in Figure 2. For all the
simulations, the size of the elements near the cylinder and the wall boundary is set such that η+ = uτηRe < 1,
where uτ denotes the friction velocity at the wall, and η denotes the element thickness in the normal direction
to the wall.130

3. Results and discussion

To validate the present numerical method and computer code, flow past a single circular cylinder at
Re = 100 is first simulated. In the computation, a mesh with 26020 elements, which is at the same level as
that of other cases used below is adopted. A temporal step of ∆t = 0.05 is used for time advancement. A

Table 2: Hydrodynamic force coefficients of a single circular cylinder at Re = 100.

CD CL,max CL,rms St
Present 1.3418 0.3375 0.237 0.166

Park et al.[31] 1.33 0.3321 0.165
Kang[4] 1.33 0.32 0.165

Placzek et al.[32] 1.37 0.33 0.23

(a) (b)

Figure 3: (a) Streamlines of instantaneous flow, (b) vorticity contours, red colour: positive vorticity, blue
colour: negative vorticity, lines correspond to constant w with |w| < 4. From top to bottom: flow with a
wall boundary (e = 2), symmetry boundary (e = 2) and flow past two cylinders (G = 4) at Re = 100.

higher number of elements and a smaller ∆t have been used, and convergence has been achieved. Here, the135
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typical results, including mean drag force coefficient (CD), maximum of lift force (CL,max), root-mean-square
(RMS) of lift force

CL,rms =

√
1

T2 − T1

∫ T2

T1

(
CL − CL

)2
dt, (30)

and Strouhal number (St), are presented in Table 2. All these results are taken after the flow is fully
developed and a periodic state is reached. Through the data in the table, it can be seen that all the typical
results are in a good agreement with those obtained by others.140

3.1. Effect of the gap spacing

As discussed in the introduction, when G > 5, the mutual interference between two cylinder wakes is
weak. As G < 5 or e < 2.5, the interference among multiple shear layers behind the cylinders affects strongly
the flow in the wake, and the flow is very sensitive to the gap spacing. In the subsequent cases considered in
this section, flow patterns and hydrodynamic quantities at Re = 100 for e < 2.5 with the wall and symmetry145

boundaries and the flow past two cylinders for G < 5 are comparatively studied, using the obtained results
when applicable.

3.1.1. flow patterns

The nondimensionalized vorticity

w =
∂v̄

∂x
− ∂ū

∂y
(31)

is introduced for the subsequent discussion. In Figure 3a, at a given instant, streamlines are shown in line150

for e = 2 or G = 4, while the vorticity contour is shown in Figure 3b. It can be seen through the streamline
patterns and vorticity contours that vortex shedding takes place in the three flow configurations. The flows

(a) (b)

Figure 4: (a) Streamlines of instantaneous flow, (b) vorticity contours, red colour: positive vorticity, blue
colour: negative vorticity, lines correspond to constant w with |w| < 4. From top to bottom: flow with a
wall boundary (e = 1), symmetry boundary (e = 1) and flow past two cylinders (G = 2) at Re = 100.

behind two cylinders is symmetric with respect to the centerline and antiphase-synchronized. The flow
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patterns and vorticity contour with the symmetry boundary are very similar to the upper half part of the
flow past two cylinders. For the flow with the wall boundary, it is clearly visible that the shear layers from155

the cylinder interact with the shear layer from the wall boundary layer. One of the results is that it causes
a vortex contour line shifting upwards.

As e is reduced to 1 (G = 2), the flow past two cylinders still stays symmetric about the centerline and
antiphase-synchronized, and its upper half is still similar to the flow with the symmetry boundary (shown
in Figure 4). For the flow with the wall boundary, according to the streamlines, the flow velocity through160

the gap becomes low since the whole gap stays inside the boundary layer (e = 1 < δ = 2.329). In fact the
centre of the cylinder itself is also already in the boundary layer (e + 0.5 = 1.5 < δ = 2.329). Therefore
only the weak vortex shedding takes place in the wake in this case. From the vorticity contour, it can be
observed that the interaction between the two shear layers behind the cylinder becomes less strong because
of the weak shear layers due to the lower velocity through the gap, and the vortex contour pattern appears165

in a longer shape as a result of the effect of the shear layer near the wall.

(a) (b)

Figure 5: (a) Streamlines of instantaneous flow, (b) vorticity contours, red colour: positive vorticity, blue
colour: negative vorticity, lines correspond to constant w with |w| < 4. From top to bottom: flow with a wall
boundary (e = 0.35), symmetry boundary (e = 0.35) and flow past two cylinders (G = 0.7) at Re = 100.

With further reduction of the gap spacing (e = 0.35 or G = 0.7), the flow past two cylinders is no
longer periodic (shown in Figure 5) when it is fully developed. The two downstream wakes mix together
and becomes fully transient, which can be confirmed by the time evolution of lift force subsequently. The
flow with the symmetry boundary still stays periodic. In the flow with the wall boundary, the gap is much170

smaller and the whole body is inside the boundary layer (e + 1 = 1.35 < 2.329). The wake eventually
becomes steady with no strong vortex shedding.

For the flow with the wall boundary, it may be of interest to see the incoming flow to the cylinder along
the vertical line passing through its left tip. We define an effective Reynolds number as

Reef = uD ∗Re, (32)

where175

uD =

∫ 0.5

−0.5

ū(xc − 0.5, y)dy. (33)
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Figure 6: Mean horizontal velocity profiles of the flows with the wall boundary at x = xc − 0.5, over
−0.5 ≤ y ≤ 0.5.

Table 3: Effective Reynolds numbers for flow past a circular cylinder close to the wall boundary at different
gaps.

e No wall 2.5 2 1.5 1 0.75 0.5 0.35
Reef 35.15 35.924 35.727 34.59 29.6 24.4 18.88 14.527

Figure 6 shows the mean horizontal velocity profiles averaged after the flow reaches a periodic state at
x = xc−0.5, over −0.5 ≤ y ≤ 0.5. Here, the profile (black line) corresponding to uniform incoming flow past
a single isolated cylinder is plotted for comparison. It can be seen that for the cases with a larger gap, for
example, from e = 2.5 to e = 1.5, the velocity is slightly larger than the one of the single isolated cylinder.
As the gap decreases, the velocity also deceases, especially over the lower part as it moves into the boundary180

layer. Based on the definition in Eq.(32), the effective Reynolds numbers for the different gap can be given
in Table 3. When e >= 1.5, the effective Reynolds number is almost the same as that a single cylinder in
isolation. When e <= 1, Reef decreases rapidly with e. For e = 0.5 and 0.35, Reef becomes much smaller
than that for the single isolated cylinder. Correspondingly the flows in these cases are steady, as discussed
previously.185

3.1.2. Hydrodynamic forces

The hydrodynamic force coefficients of the cylinder for the three configurations are investigated in this
section. The time evolution of the drag and lift force coefficients for three different e or G are shown in
Figure 7. The results for the single isolated cylinder are also plotted in the figure as a reference. For e = 2
or G = 4, there is no major difference in the oscillation amplitudes of the drag force, the cylinder near the190

wall has the smallest drag force magnitude. The frequencies of the lift force are also similar, although there
is some difference in magnitude. It can clearly be seen that the oscillation amplitude of the lift force of the
cylinder in the boundary layer approaches that of the single isolated cylinder, and is lower than those in the
other two cases. From e = 2 (or G = 4) to e = 1 (or G = 2), the drag force magnitude of the cylinder near
the wall decreases evidently, and the oscillation amplitudes of the drag and lift forces decline drastically.195

The drag forces of the cylinder near the symmetry boundary and the upper cylinder slightly increase, and
the oscillation amplitudes of the drag and lift force in those cases increase midly. As the gap spacing e (or
G) reduces to 0.35 (or 0.7), the oscillations of the drag and lift forces of the cylinder near the wall disappear,
which is associated with the flow characteristics described previously. At this gap, the drag and lift forces
of the upper cylinder in the two cylinder cases are not periodic any more due to the transient wakes of the200
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Figure 7: Variations of the drag (CD and lift (CL) force coefficients with time for e = 2, 1, 0.35 or G = 4,
2, 0.7 (from top to bottom) at Re = 100.
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two cylinders. The force coefficients of the cylinder with the symmetry boundary still remain periodic, and
the oscillation amplitude of the lift force decreases.

Figure 8: Variation of the mean drag (CD) and lift (CL) force coefficients with the gap e (or G) at Re = 100.

The variations of the mean drag (CD and lift (CL) force coefficients with the gap spacing are plotted
in Figure 8. In the figure, the mean drag and lift force coefficients of a single isolated cylinder are shown
in dashed line. The drag forces of the upper circular cylinder in the two cylinder case and the cylinder205

with the symmetry boundary are slightly larger than that of the single isolated cylinder. The mean drag
force increases with the gap spacing in the case with the wall boundary. As the interference of the wall or
symmetry boundary or the other cylinder wake on the cylinder wake becomes weak with the gap spacing
increasing, all the drag forces are expected to approach the value of the single isolated cylinder as e is
sufficiently large. For the lift force, its magnitude of the upper cylinder decreases with G. The lift force210

magnitudes of the cylinders near the wall boundary are the smallest as e is smaller than 1.5, and the ones of
the cylinder near the symmetry boundary are in the middle. With the gap spacing increasing, the lift force
trends to the magnitude of the single isolated cylinder. In view of the coefficient approaching the value of
the single isolated cylinder, the lift force seems more sensitive to the gap spacing than the drag force.

Figure 9: Variations of the RMS of the lift force coefficient and the vortex-shedding frequency (Strouhal
numbers) with the gap e (or G) at Re = 100.

Figure 9 shows the variation of the RMS of the lift force coefficient and the Strouhal numbers (vortex-215

shedding frequencies) with the gap spacing. In the curves of the RMS, there exists a peak for the two flows
with no wall boundary. The RMS reveals that, when the gap spacing is small (e = 0.35 or G = 0.7), the
oscillation amplitudes of the lift forces from all the three flows are smaller than that of a single isolated
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cylinder, especially for the flow with the wall boundary, in which the RMS is zero. From e = 0.75 to 1,
it can been that the RMS magnitude for the cylinder near the wall noticeably increases and is no longer220

close to zero, which indicates that the stronger vortex shedding takes place between e = 0.7 and 1. All
the RMS values approach that of a single isolated cylinder as the gap spacing increases. From the curve
for the Strouhal numbers, it can be seen that the vortex-shedding frequencies of the two flows with no wall
boundary are close to that of a single isolated cylinder. For the flow with the wall boundary, the Strouhal
number is zero for e = 0.35, 0.5 and 0.75 as there is no lift force oscillation, and a sharp increase appears in225

0.75 < e < 1. After that, its value approaches the frequency of a single isolated cylinder.
For all the cases considered in this part, it should be noted that the cylinder is located in the boundary

layer (e+0.5 < δ = 2.329) when e ≤ 1.5. Thus the different gap spacing between the cylinder and wall partly
reflects the different location in the boundary layer with different thickness. From the obvious variation of
the results with the gap spacing, it can be expected that the boundary layer thickness also has strong effect.230

When e ≥ 2, the cylinder is outside the boundary layer (e + 0.5 > 2.329), the statistical force coefficients
approach those of the single isolated cylinder, which implies that the effect of the boundary shear flow
becomes weak.

3.2. Effect of Reynolds number

In addition to the effect of the gap spacing, it is also interesting to investigate the effect of the Reynolds235

number. When the body is near the wall, the Reynolds number has not only direct effect on the flow past
cylinder, but also indirect effect through the change of the incoming Blasius flow. In this section, simulations
are undertaken over a range of Reynolds numbers (Re = 100, 200, 300, 400, 600, 800) for e = 0.5. In order
to provide a better illustration for the effect of different boundary conditions on the cylinder wake, the
hydrodynamic forces of a single isolated cylinder at these Reynolds numbers are presented as well.

(a) (b)

Figure 10: (a) Streamlines of instantaneous flow, (b) vorticity contours, red colour: positive vorticity, blue
colour: negative vorticity, lines correspond to constant w with |w| < 4. From top to bottom: flow with the
wall boundary with e = 0.5 at Re = 100, 200, 400 and 800.

240
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3.2.1. Flow characteristics

It had been observed in the previous sections that, for the flow with the wall of e = 0.5 at Re = 100,
the vortex shedding in the wake is suppressed and the wake turns out to be a steady vortex. Figure 10
shows streamline patterns and vorticity contours of instantaneous flows at different Re. It is clear that the
flow past the cylinder close to the wall boundary is sensitive to the Reynolds number. At Re = 100 or 200,245

the wake is steady after a transition period, and a long vortex street is finally present near the wall in the
downstream wake. From the vorticity contours at Re = 100 or 200, it can be seen that the vorticities in the
downstream wakes are negative, the anti-clockwise vortices (positive vorticity) in the wakes are suppressed
by the shear layers with negative vorticity from the wall so that the vortex shedding does not occur. As
Re increases, the vorticity contours clearly display vortices in pair in the wake(with negative and positive250

vorticity), which implies that the unsteady vortex shedding occurs. At these flows, because of high shear
stress of the three shear layers behind the cylinder and near the wall, the paired vortices in the wake result
in a series of vortices along the wall, which are clearly shown by the vortical structures in the streamline
patterns at Re = 400 and 800. Through the vorticity contour, the high magnitude of the vorticity illustrates
the strong interaction of the three shear layers at Re = 800.255

3.2.2. Hydrodynamic forces
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Figure 11: Time history of the drag and lift force coefficients with e = 0.5 (or G = 1) at Re = 100, 400 and
800 (from top to bottom).

It is of significant practical importance to understand the effect of the Re on the drag and lift force
coefficients near the wall. Figure 11 respectively shows the time history of the lift and drag force coefficients
for the single isolated and near-wall cylinder at Re = 100, 400 and 800. It is clear that the curves of the
drag and lift forces of the single isolated cylinder at the three Reynolds numbers stay oscillatory, and the260

oscillation amplitudes of the coefficients increase with the Reynolds number. For the cylinder close to the
wall, in an agreement with the flow characteristics, the drag and lift forces remain constant after the flow is
fully developed at Re = 100, which confirms that the unsteady vortex shedding does not occur at this flow.
The curves of the two coefficients appear to be oscillatory at Re = 400 and 800, and it can be observed that
the oscillation amplitude of them increases as Re increases from 400 to 800, which implies that the vortex265

shedding strengthens as Re increases.
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Figure 12: Variation of the mean drag (CD) and lift (CL) force coefficients with Re at e = 0.5 (or G = 1).

Figure 12 shows the mean drag and lift force coefficients at different Reynolds numbers. The mean drag
force coefficients of the single isolated cylinder slightly increase with Re. The mean lift coefficients are zero
due to the flow symmetry. However, the forces of the near-wall cylinder behave differently. The mean drag
forces of the cylinder near the wall boundary at all the Reynolds numbers are smaller than those of the270

single isolated cylinder. Looking again the vorticity contours in Figure 10, the strength of the vorticity in
the wake of the cylinder near the wall increases as Re increases, while the pressure in the wake decreases.
As a result, the mean drag force of the cylinder near the wall boundary decreases when Re increases from
Re = 100 to 300, and the decrease continues between Re = 300 and 800 but it is not evidently visible in
the figure. With the effect of the shear layer from the wall, the wake of the near-wall cylinder is no longer275

symmetric, and thus the mean lift forces are non-zero. Through the flow patterns, the pressure underneath
the near-wall cylinder decreases when Re increases. Therefore it can be observed that the mean lift force
appears to be negative from Re = 200, and decreases in the range of Re calculated.

Figure 13: Variations of the RMS of the lift force coefficient and the vortex-shedding frequency (Strouhal
numbers) with Re at e = 0.5 (or G = 1).

Figure 13 shows the variation of the RMS of the lift force coefficient and the Strouhal numbers (vortex-
shedding frequencies) with Re. It can be seen that, for all the Reynolds numbers, the RMS of the lift force280

and Strouhal numbers of the near-wall cylinder are smaller than those of the single isolated cylinder, which
reveals that the strength of the vortex shedding behind the near-wall cylinder is weaker than that behind
the single isolated cylinder and the vortex shedding frequency of the near-wall cylinder is lower than that
behind the single isolated cylinder at the same Re, or that the vortex shedding of the near-wall cylinder is
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virtually absent with CL,rms = 0 and St = 0 at Re = 100 or 200. It should be noted that the RMS of the285

lift force of the single isolated cylinder is sensitive to the Reynolds number, and increases with Re. However,
the CL,rms of the near-wall cylinder is zero at Re = 100 and 200, increases to non-zero from Re = 200
to 300, continues to increase from Re = 300. The variation of CL,rms reveals that, in the flow past the
near-wall cylinder with e = 0.5, the vortex shedding virtually does not occur at Re = 100 and 200, and it
starts only when Re is about the range of (200,300). The Strouhal numbers of the single isolated cylinder290

slightly increase with Re. For the near-wall cylinder, in accordance with the CL,rms, the Strouhal number
stays zero at Re = 100 and 200. From Re = 300 to 800, it gradually increases slowly.

3.3. Tabulated results for effects of gap spacing, Reynolds number and boundary layer thickness

In above two Sections, the effect of the gap spacing at a fixed Reynolds number and the effect of the
Reynolds number at a fixed gap spacing on the wake of the near-wall cylinder are shown through various295

figures. To have some further insight into the effects of gap spacing, Reynolds number and boundary layer
thickness, the mean drag CD, mean lift CL, RMS of lift CL,rms and Strouhal number at different gap

Table 4: Mean drag force coefficient of the near-wall cylinder at different gap spacings, Reynolds number-
s/boundary layer thicknesses.

Re

δ e

0.35 0.5 0.75 1 1.5 2 2.5

100 2.329 0.649 0.693 0.8 0.97 1.217 1.3276 1.37
200 2.05 0.4742 0.49 0.7675 0.9571 1.2011 1.3083 1.3448
300 1.95 0.4212 0.46 0.7725 0.9818 1.236 1.34 1.3707
400 1.899 0.3874 0.4416 0.7884 1.0045 1.2674 1.3664 1.3937
600 1.845 0.423 0.4278 0.8081 1.036 1.3034 1.3997 1.4243
800 1.8177 0.42 0.422 0.8168 1.0615 1.33 1.429 1.452

Table 5: Mean lift force coefficient of the near-wall cylinder at different gap spacings, Reynolds number-
s/boundary layer thicknesses.

Re

δ e

0.35 0.5 0.75 1 1.5 2 2.5

100 2.329 0.185 0.051 0.00065 -0.0568 -0.0334 -0.0051 0.0075
200 2.05 0.0312 -0.0233 -0.0785 -0.0844 -0.0314 -0.0213 -0.0065
300 1.95 -0.0028 -0.0435 -0.1043 -0.0889 -0.041 -0.0186 -0.0172
400 1.899 -0.0187 -0.0637 -0.1145 -0.0947 -0.0474 -0.0212 -0.015
600 1.845 -0.0611 -0.0895 -0.1103 -0.0926 -0.06 -0.0369 -0.0208
800 1.8177 -0.0895 -0.0984 -0.1163 -0.1168 -0.075 -0.0399 -0.019

spacings, Reynolds numbers and boundary layer thicknesses are provided in the following tables. As the
location of the cylinder is fixed, at each given Reynolds number, the boundary layer thickness is also fixed.

It can be seen from Tables 4 and 5 that, for the fixed Reynolds numbers or boundary layer thicknesses,300

the mean drag increases with the gap spacing, the mean lift decreases first, reaches a trough, and then
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increases. When the gap spacing is fixed, the mean drag varies differently with the Reynolds number, and
the mean lift decreases with the Reynolds number.

In a similar way, the RMS of lift force coefficient and Strouhal number are given in Table 6 and 7. It
has been mentioned previously that vortex shedding is very weak when e ≤ 0.75 at Re = 100 or e ≤ 0.5305

at Re = 200 or e = 0.35 at Re = 300. For all the cases in which the vortex shedding is no longer weaker,
the RMS of lift force coefficients increases with the gap spacing. On the other hand, it increases with the
Reynolds number when the gap spacing is fixed. The vortex shedding frequency increases with the Reynolds
number except in the case of Re = 200. At a fixed Reynolds number, the vortex shedding frequency increases
with the gap spacing.310

Table 6: RMS of lift force coefficient of the near-wall cylinder at different gap spacings, Reynolds numbers/
boundary layer thicknesses.

Re

δ e

0.35 0.5 0.75 1 1.5 2 2.5

100 2.329 0 0 0 0.033 0.16 0.2175 0.24
200 2.05 0 0 0.1103 0.2393 0.411 0.478 0.501
300 1.95 0 0.0266 0.2264 0.4063 0.5862 0.6515 0.6685
400 1.899 0.0052 0.0766 0.3347 0.5169 0.6989 0.7616 0.7753
600 1.845 0.0777 0.1382 0.4578 0.6364 0.8219 0.8837 0.8949
800 1.8177 0.1172 0.1873 0.5112 0.7007 0.9066 0.968 0.9768

Table 7: Strouhal number of the near-wall cylinder at different gap spacings, Reynolds numbers/boundary
layer thicknesses.

Re

δ e

0.35 0.5 0.75 1 1.5 2 2.5

100 2.329 0 0 0 0.1709 0.1611 0.1709 0.1709
200 2.05 0 0 0.1611 0.1758 0.1312 0.1373 0.1404
300 1.95 0 0.1392 0.1758 0.1868 0.2051 0.2136 0.2136
400 1.899 0.1416 0.1489 0.1807 0.1904 0.2148 0.2197 0.2246
600 1.845 0.1648 0.1538 0.1840 0.2005 0.2225 0.2307 0.2307
800 1.8177 0.1648 0.1495 0.1892 0.2075 0.2288 0.235 0.2383

4. Conclusions

An investigation on boundary shear flow past a circular cylinder near a wall has been numerically
performed, in which a stabilized finite element method and a generalized-α method are applied to space
discretization and time integration of the impressible Navier-Stokes equations respectively. The investigation
has shed some light into the major difference between the boundary layer flow past a circular cylinder near315

a wall and the flows corresponding to the symmetry boundary, and to two identical circular cylinders in a
side-by-side arrangement. Through the obtained results, we can draw the following conclusions.
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1. At Re = 100, with the effect of the boundary layer flow, the vortex contour lines near the wall in the
wake of the cylinder shift upwards. With a reduction of the gap spacing, the lower shear layer behind
the cylinder is suppressed by the shear layer from the boundary layer flow near the wall, partly due320

to lower effective Reynolds number, resulting in a steady state in the wake.

2. At Re = 100, the CD, CL,rms and St number of the circular cylinder near the wall are more sensitive
to the gap spacing in contrast with those in the other two flows. When the cylinder locates in the
boundary layer, the boundary shear flow has strong effect on the hydrodynamic quantities of the
cylinder.325

3. For a fixed gap between the cylinder and the wall (e = 0.5), the flow past the near-wall cylinder is
steady at low Reynolds numbers. The periodic vortex shedding occurs with a series of vortices present
along the wall as Re increases.

4. At e = 0.5, the mean lift force and RMS of the lift force of the near-wall cylinder are sensitive to Re.
The mean lift force decreases with Re. The CL,rms is virtually zero when Reynolds number is around330

Re = 100 to 200 and then increases with Re. The mean drag force and Strouhal number are not much
sensitive to Re after the vortex shedding starts from Re=300.Re = 300.

As a conclusion, the boundary shear flow has strong effect on the flow and forces of the cylinder, not only
through the variation of gap spacing but also the Reynolds number. In the boundary layer flow at Re = 100,
the vortex shedding from the cylinder is suppressed below a certain e in (0.75, 1). At a certain gap spacing,335

there is a certain Reynolds number at which the vortex shedding of the cylinder in the boundary layer flow
become significant. For the example of e = 0.5, it is found in the present study that the vortex shedding
starts above a Re in (200, 300).
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