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Abstract—For the accurate representation and reconstruction
of band-limited signals on the sphere, an optimal-dimensionality
sampling scheme has been recently proposed which requires the
optimal number of samples equal to the number of degrees
of freedom of the signal in the spectral (harmonic) domain.
The computation of the spherical harmonic transform (SHT)
associated with the optimal-dimensionality sampling requires the
inversion of a series of linear systems in an iterative manner.
The stability of the inversion depends on the placement of iso-
latitude rings of samples along co-latitude. In this work, we have
developed a method to place these iso-latitude rings of samples
with the objective of improving the well-conditioning of the linear
systems involved in the computation of the SHT. We also propose
a multi-pass SHT algorithm to iteratively improve the accuracy
of the SHT of band-limited signals. Furthermore, we review
the changes in the computational complexity and improvement
in accuracy of the SHT with the embedding of the proposed
methods. Through numerical experiments, we illustrate that the
proposed variations and improvements in the SHT algorithm
corresponding to the optimal-dimensionality sampling scheme
significantly enhance the accuracy of the SHT.

Index Terms—unit sphere, sampling, spherical harmonic trans-
form, optimal-dimensionality, condition number minimization,
harmonic analysis

I. INTRODUCTION

Signal analysis on spherical bodies has widespread appli-
cations in the fields of cosmology, geodesy, geomagnetics,
acoustics and computer graphics [1]–[6]. Data measured over
the surface of a spherical object, i.e., in the spatial domain,
can be transformed to the harmonic domain using the spherical
harmonic transform (SHT) which is the analogue in spherical
geometry of the renowned Fourier transform in Euclidean
geometry [7]. Sampling schemes utilized for computing SHTs
are categorized as theoretically exact, accurate or approxi-
mate [8]–[18]. In this work, we consider those schemes which
enable exact or accurate computation of the SHT of band-
limited signals. Different sampling schemes have different
spatial dimensionality defined as the number of sample points
needed to accurately or exactly compute the SHT and thus
capture the information content of band-limited signals. For
the computation of SHTs of a signal band-limited at L (defined
in Section II-B), the optimal spatial dimensionality attainable
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by any sampling scheme on the sphere is L2, which is equal to
the degrees of freedom of the band-limited signal in harmonic
space.

Driscoll and Healy [8] developed an exact method to
compute the SHT of a signal, that is band-limited at L, which
requires ∼ (asymptotically, as L → ∞) 4L2 equiangular
samples on the sphere, where the complexity of most stable
algorithm to compute SHT is O(L3). In comparison, the
sampling scheme presented by McEwen and Wiaux [18]
requires ∼ 2L2 equiangular samples to exactly compute the
SHT with complexity O(L3). The Gauss-Legendre sampling
scheme [18], [19] also requires ∼ 2L2 for exact computation
of the SHT, where the complexity to compute the SHT is
O(L3). To the best of our knowledge, there does not exist
any theoretically exact sampling scheme with dimensionality
less than ∼ 2L2. On the other hand, the SHT can also
be computed approximately using the least-squares based
method proposed by Sneeuw [9], which, although requiring L2

samples, becomes inaccurate and computationally inefficient
scaling as O(L6) for large band-limits.

Recently, an optimal-dimensionality sampling scheme has
been proposed in [20] for the accurate computation of the
SHT of band-limited signals using only L2 samples. Optimal-
dimensionality sampling has been customized to serve the
needs of applications in acoustics [4] and diffusion MRI [21].
Although the SHT associated with this sampling scheme
requires the optimal number of samples, it has computational
complexity of O(L3.37). The computation of the SHT for
optimal-dimensionality sampling involves inversion of a series
of systems of linear equations. For accurate inversion of these
systems, a condition number minimization method has been
proposed in [20] to determine the locations of samples.

This paper aims to improve the accuracy of the SHT
associated with the optimal-dimensionality sampling scheme.
We serve this objective by developing a new method for
the placement of samples and proposing a variation in the
computation of the SHT. We develop a method, referred to
as the elimination method, for the placement of iso-latitude
rings of samples such that the condition number (ratio of the
largest to the smallest singular value) of the matrices used in
the computation of the SHT is minimized. Due to the iterative
nature of the resulting SHT algorithm, the error builds up in
the computation of the SHT. To resolve this issue, we also
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propose a multi-pass SHT algorithm which iteratively reduces
the residual between the given signal and the reconstructed
signal. We also analyze the changes in the complexity of
the SHT with the use of these methods. Through numerical
experiments, we demonstrate the improvement in accuracy
with the use of the proposed methods. The remainder of
the paper is structured as follows. We present the necessary
mathematical background in Section II before reviewing the
optimal-dimensionality sampling scheme in Section III. Sec-
tion IV presents the proposed developments and also contains
the accuracy analysis. Concluding remarks are then made in
Section V.

II. MATHEMATICAL BACKGROUND

A. Signals on the Sphere

Let f(θ, φ) denote a complex-valued, square integrable
function on the unit sphere S2, where θ ∈ [0, π] and φ ∈
[0, 2π) denote the co-latitude and longitude respectively. The
space formed by these functions is a Hilbert space, denoted
by L2(S2), equipped with the following inner product given
by

〈f, h〉 ,
∫
S2
f(θ, φ)h(θ, φ) sin θ dθ dφ, (1)

for any two functions f, h ∈ L2(S2). In (1), (·) denotes
the complex conjugate operation, sin θdθdφ is the differential

surface element and
∫
S2
≡
∫ π

θ=0

∫ 2π

φ=0

is an integral over

the whole sphere. The inner product in (1) induces a norm
‖f‖ , 〈f, f〉1/2, and signals with finite induced norm are
referred to as “signals on the sphere”.

B. Harmonic Domain Representation

Signals can be transformed to the harmonic domain using
the natural basis – spherical harmonic basis functions (or
simply spherical harmonics). Spherical harmonics, denoted
by Y m` (θ, φ) for integer degree ` ≤ 0 and integer order
−` ≤ m ≤ `, are defined as

Y m` (θ, φ) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ, (2)

where Pm` (·) is the associated Legendre function [7]. Any
function f ∈ L2(S2) can be expanded in terms of spherical
harmonics as

f(θ, φ) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (θ, φ). (3)

Here (f)m` denotes the spherical harmonic coefficient of
degree ` ≤ 0 and order −` ≤ m ≤ ` and is given by the
spherical harmonic transform (SHT) as

(f)m` , 〈f, Y m` 〉 =

∫
S2
f(θ, φ)Y m` (θ, φ) sin θ dθ dφ. (4)

The synthesis equation, (3), to reconstruct the signal from its
spherical harmonic coefficients is referred to as inverse SHT.
A signal f ∈ L2(S2) is said to band-limited if (f)m` = 0 for

` ≥ L, where L is the band-limit of the signal, and can be
expressed in terms of spherical harmonics as

f(θ, φ) =

L−1∑
`=0

∑̀
m=−`

(f)m` Y
m
` (θ, φ). (5)

The signals, band-limited at L, form an L2 dimensional
subspace of L2(S2), which we denote by HL.

III. PROBLEM FORMULATION

A. Optimal Dimensionality Sampling on the Sphere

The optimal-dimensionality sampling scheme on the sphere
requires (optimal number) L2 samples to accurately compute
the SHT for a signal with band-limit L [20]. In this scheme,
L iso-latitude rings are placed on the sphere at locations (to
be explained shortly) given in vector θ, defined as

θ , [θ0 , θ1 , . . . , θL−1] . (6)

The ring placed at θk contains 2k+1 equiangular points along
longitude φ.

B. SHT Formulation

For a signal f ∈ HL sampled using optimal-dimensionality
sampling scheme, we define a vector gm, for every |m| < L
as

gm ,
[
Gm(θ|m|), Gm(θ|m|+1), . . . , Gm(θL−1)

]T
, (7)

where Gm(θk) for each θk ∈ θ is given as

Gm(θk) ,
∫ 2π

0

f(θk, φ)e−imφdφ = 2π

L−1∑
`=m

(f)m` P̃
m
` (θk).

(8)

Here P̃m` (θk) , Y m` (θk, 0) denotes scaled associated Leg-
endre functions. The second equality in (8) is obtained by
using (2) and (5) and employing the orthogonality of complex
exponentials. By defining another vector fm as

fm =
[
(f)m|m|, (f)m|m|+1, . . . , (f)mL−1

]T
, (9)

containing the spherical harmonic coefficients of order m, we
formulate a linear system given as

gm = Pm fm, (10)

where the Pm is an (L−|m|)×(L−|m|) matrix with elements
given by

Pm(i, j) = P̃m|m|+j−1(θ|m|+i−1). (11)

C. Problem Under Consideration

For each order |m| ≤ L, the spherical harmonic coefficients
contained in fm can be recovered by solving the linear system
given in (10). Computation of the SHT, i.e., the computation of
spherical harmonic coefficients of the signal f ∈ HL sampled
according to the optimal-dimensionality sampling scheme,
involves the inversion of a series of linear systems formed by
the matrix Pm (defined in (11)) for m = 0, 1, . . . , L−1 [20]. A
condition number minimization method has been proposed in
[20] to determine the locations of the iso-latitude rings indexed
in (6) such that the matrix Pm for each m = 0, 1, . . . , L− 1
is well-conditioned and the SHT can be accurately computed.



With an objective to improve the accuracy of the SHT, we
consider the problem of determining the locations of iso-
latitude rings of samples which reduce (improve) the condition
number (ratio of the largest to the smallest eigenvalue) of the
matrices Pm, m = 0, 1, . . . , L − 1. The θ vector containing
the locations of iso-latitude rings, initially in the ascending
order of co-latitude angle, is re-ordered such that every Pm
matrix has minimum condition number. To further increase
the accuracy of the SHT, we also propose a multi-pass SHT
algorithm which iteratively reduces the error between the given
signal (samples in spatial domain) and the signal synthesized
using the computed spherical harmonic coefficients.

IV. OPTIMIZED SAMPLES PLACEMENT AND MULTI-PASS
SHT

With an objective to improve the accuracy of the SHT using
optimal number of samples, we first present our proposed
method for the placement of the iso-latitude rings of samples
and later we present iterative method for the computation of
the SHT.

A. Condition Number Minimization

The recovery of fm for each |m| < L using (10) requires in-
version of the Pm matrix for each |m| < L. For accurate com-
putation of the SHT, it is therefore necessary that the matrix
Pm is invertible and well-conditioned. Since Pm is a matrix
of associated Legendre polynomials of order m and degrees
|m| ≤ ` < L evaluated at θi, i = |m|, |m+ 1|, . . . , L− 1, its
accurate inversion depends on the locations of the iso-latitude
rings indexed in (6). To determine the locations of the iso-
latitude rings, we propose a condition number minimization
technique, herein referred to as the elimination method, for
the construction of the vector θ.

Let Ω be a set of L equiangular co-latitude angles between
0 and π defined as

Ω ,

{
π (2t+ 1)

2L− 1

}
, t = 0, 1, . . . , L− 1. (12)

For m = 0, the Pm matrix is formed by inserting all elements
of set Ω in (11) and has dimension L×L. Since Pm, for m=1,
requires L − 1 co-latitude angles, we eliminate one element,
say {Ωj}, from the set Ω and calculate the condition number,
denoted by κm, of Pm using all possible L− 1 combinations
of residual elements Ω\ {Ωj}. The element {Ωj}, whose
elimination results in the lowest condition number of Pm, is
then selected as the first element of the θ vector. The Ω set is
then updated as Ω← Ω\ {Ωj}. The same procedure is carried
out for the construction of the θ vector for m = 2, 3, . . . , L−1
which we summarize below in the form of an algorithm.

The θ vector constructed using the proposed elimination
method is optimized in a sense that it generates Pm matrices
of lower condition number as compared to the optimal-
dimensionality sampling scheme. This improvement in the
condition number comes from the fact that the proposed
elimination method has L− |m| choices for θm such that the
condition number of matrix Pm is minimized. In contrast, the
method proposed in [20] has |m| choices for the selection

Algorithm 1 Elimination Method

Require: θ given L
1: procedure ELIMINATION METHOD

2: Ω ,
{
π (2t+1)
2L−1

}
t=0,1,...,L−1

.

3: for m = 0, 1, . . . , L− 1 do
4: for j = 0, 1, . . . , L−m do
5: αj ← Ω\ {Ωj}
6: evaluate Pm using (11) and
7: compute condition number κm
8: end for
9: determine index k for minimum value of κm

10: update θm ← Ωk
11: update Ω← αk

12: end for
13: return θ
14: end procedure

m
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Fig. 1: The condition number κm of the matrix Pm, m =
0, 1, . . . , L−1 using the proposed optimized placement of iso-
latitude rings and the design proposed in [20] for band-limit
L = 32.

of θm and minimization of the condition number of matrix
the Pm. As an illustration, the condition number κm of the
matrix Pm, m = 0, 1, . . . , L−1 using the proposed optimized
placement of iso-latitude rings and the design proposed in
[20] is plotted in Fig. 1 for band-limit L = 32. We also
plot the maximum of the condition number κm obtained for
different band-limits 16 ≤ L ≤ 512 in Fig. 2. It is evident
that the proposed elimination method improves the well-
conditioning of the systems involved in the computation of
the SHT algorithm associated with the optimal-dimensionality
sampling on the sphere.

B. Multi-pass SHT

The spherical harmonic coefficients of a band-limited signal
sampled according to the optimal-dimensionality sampling
scheme are computed iteratively for each order in a sequence
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Fig. 2: The maximum of the condition number max(κm) , 0 ≤
m < L for different band-limits 16 ≤ L ≤ 512.

|m| = L − 1, L − 2, . . . , 0. The SHT is inherently iterative
in nature as the spherical harmonic coefficients of order |m|
are used in the computation of the SHT of order |m| − 1.
Consequently, the error propagates and builds up in the itera-
tive computation of spherical harmonic coefficients. To reduce
this error building-up, we propose a multi-pass SHT algorithm
which iteratively improves the accuracy of the SHT.

For a signal f ∈ HL sampled by the optimal-dimensionality
sampling scheme, the spherical harmonic coefficients can be
accurately computed by the algorithm presented in [20]1. We
define the residual (error) between the signal f and the signal
synthesized from the recovered spherical harmonic coefficients
as

rk(θ, φ) = f(θ, φ)−
L−1∑
`=0

∑̀
m=−`

(f̃k)m` Y
m
` (θ, φ) (13)

where (f̃k)m` denotes the spherical harmonic coefficient com-
puted using the proposed SHT algorithm and k = 1 (indicating
the number of times the transform has been carried out). Once
residual is computed, we use the SHT algorithm to compute
its spherical harmonic coefficients, denoted by (r̃k)m` , which
we use to update (f̃k)m` as

( ˜fk+1)m` = (f̃k)m` + (r̃k)m` . (14)

We propose to iteratively use (13) and (14) to compute (f̃k)m`
for k = 1, 2, . . ., until the following stopping criterion is met

max |rk+1(θ, φ)| > max |rk(θ, φ)|, (15)

where max is taken over the samples of the sampling scheme.
Since the proposed method requires to compute the SHT
multiple times, we refer to the proposed method for the
computation of spherical harmonic coefficients as the multi-

1SHT can be computed accurately for band-limited signals sampled over
optimal-dimensionality sampling scheme [20] using the MATLAB based
package Novel Spherical Harmonic Transform (NSHT) publicly available at
www.zubairkhalid.org/nsht.

pass SHT. Later, we illustrate that the proposed method
significantly improves the accuracy of the SHT.

C. Computational Complexity Analysis

Here we briefly discuss the computational complexity of the
proposed elimination method for the placement of iso-latitude
rings and the multi-pass SHT algorithm. The elimination
method has the computational complexity of O(L5). However,
it only needs to be run once for the determination of θ for
each L. Furthermore, we note that the complexity of the
method presented in [20] for the placement of samples is
also O(L5). For the optimal-dimensionality sampling scheme,
the SHT can be computed with complexity of O(L3.37). For
the proposed multi-pass SHT algorithm, the complexity scales
with the number of iterations, denoted by K, needed for the
convergence of error. In the next section, we provide exam-
ples to illustrate that the proposed multi-pass SHT algorithm
converges quickly in K � L number of iterations.

D. Accuracy Analysis

In this section, we analyse the accuracy of the proposed
multi-pass SHT algorithm of a band-limited signal evaluated
using the optimal-dimensionality sampling scheme with iso-
latitude rings placed using the proposed elimination method.
Comparison between the proposed developments and the SHT
proposed in [20] has been carried out through numerical
experiments. In our experiment, we first take a band-limited
signal f ∈ HL by randomly generating its spherical har-
monic coefficients (f)m` . The real and imaginary parts of the
coefficients are uniformly distributed in [0, 1]. Using inverse
SHT, we obtain the signal f in the spatial domain, that
is, over the samples of the optimal-dimensionality sampling
scheme (proposed sampling or [20]). We then apply the SHT
presented in [20] and the proposed multi-pass SHT algorithm
to recover the spherical harmonic coefficients, denoted by
(f̃)m` and (f̃k)m` respectively. We conduct experiments for 10
different signals to obtain the average value of the maximum
error between reconstructed and original spherical harmonic
coefficients defined as

Emax , max |(f̃)m` − (f)m` |, (16)

Ekmax , max |(f̃k)m` − (f)m` |, (17)
which we plot for band-limits 8 ≤ L ≤ 1024 in Fig. 3,
where it can be observed that the proposed multi-pass SHT
algorithm and optimized placement of samples results in the
more accurate computation of the SHT.

We also analyse the convergence of the multi-pass SHT
algorithm and the improvement in the accuracy of the SHT
enabled by the proposed multi-pass SHT algorithm. We plot
the maximum absolute error Ekmax for band-limits L = 128
and L = 256 in Fig. 4, where it can be observed that the
proposed multi-pass SHT improves the accuracy of SHT and
converges (quickly) in K � L number of iterations.

V. CONCLUSIONS

In this work, we have proposed variations in the spheri-
cal harmonic transform (SHT) associated with the optimal-

www.zubairkhalid.org/nsht
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Fig. 3: Maximum errors Emax and Ekmax between the original
and recovered spherical harmonic coefficients using original
optimal-dimensionality sampling scheme and the proposed
sampling respectively for band-limits 8 ≤ L ≤ 1024. Here k
depends on the stopping criterion given in (15) and is different
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Fig. 4: Maximum error Ekmax, given in (17), between the
original and recovered spherical harmonic coefficients for
band-limits L = 128 and L = 256 and different iterations
of the multi-pass SHT.

dimensionality sampling scheme which consist of iso-latitude
rings of samples and enables accurate computation of the
SHT of band-limited signals using the optimal number of
samples given by the degrees of freedom required to represent
a band-limited signal in harmonic space. We have presented
the elimination method for the iterative placement of iso-
latitude rings of samples. The proposed placement reduces
the condition number of matrices involved in the computation
of SHT and consequently improves the accuracy of the SHT.
We have also proposed the multi-pass SHT algorithm which

iteratively reduces the residual between the given signal and
the reconstructed signal and therefore improves the overall
accuracy of the SHT. We have analyzed the changes in the
computational complexity and improvement in accuracy with
the use of proposed variations in the computation of the SHT.
We have also conducted numerical experiment to illustrate the
improvement in accuracy enabled by the proposed methods.
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