SHARP NORM ESTIMATES OF LAYER POTENTIALS AND OPERATORS AT
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ABSTRACT. In this paper, we investigate single and double layer potentials mapping boundary data to
interior functions of a domain at high frequency A?> — oco. For single layer potentials, we find that the
L*(8Q) — L*(Q) norms decay in A. The rate of decay depends on the curvature of Q: The norm is A~/4
in general domains and A7%/6 if the boundary 92 is curved. The double layer potential, however, displays
uniform L?(9Q) — L?(92) bounds independent of curvature. By various examples, we show that all our
estimates on layer potentials are sharp.

The appendix by Galkowski gives bounds L?(99) — L?(99Q) for the single and double layer operators at
high frequency that are sharp modulo log A. In this case, both the single and double layer operator bounds
depend upon the curvature of the boundary.

1. INTRODUCTION

Denote A = 3_7 ; 92 as the Laplacian operator in R™. Given a piecewise smooth and bounded domain
Q C R", Green’s formula yields that the solution to the Helmholtz equation in 2

—Au =\
has the form
(1.1) u(z) = Kx(x —y)0,,u(y)do, — Ou, Kx(z — y)u(y)doy,

o0 o0
where 8, is the outward normal derivative at y € 02, do is the surface measure on 92, and K is a
fundamental solution to (—A — A\?), that is
(1.2) (—A = N Ky\(x) = d(z).
In fact, we can write K explicitly as
n—2

TN AN WY
Kt =1 () H e,

where H 9)2 is the Hankel function of the first kind and order "T_Q It is the kernel of the outgoing
2

resolvent R = [-A — (A + iO)Q}_l.
Let us therefore define the semiclassical single layer potential S;\r as

SY(f) = B (fdo) = K * (fdo),
and the semiclassical double layer potential D;\r as
DY (f) = 0, Ky * (fdo).
Now ({L1.1]) can be written

(1.3) u =Sy (d,u) — DY (ulaon),
allowing us to construct interior eigenfunction from boundary data. In particular,
u= Sj\'(&,u), for Dirichlet eigenfunction u|pg = 0,
{u = —Dj (u|spq), for Neumann eigenfunction d,u = 0.
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Main results. In this paper we obtain sharp L?(99) — L?(£) bounds on S;f and D:\F.

Theorem 1.1 (Boundedness and sharpness of semiclassical single layer potentials).

(i). In a general domain €,

15T (u)| 12(0) < CA%H“HL?(@Q),
where ¢ depends only on Q. Furthermore, the exponent —3/4 is sharp if the boundary 02 contains
a flat piece.
(7). If O is curved, that is, the second fundamental form of OS) is (positive or negative) definite, then

_s
1SF ()l L2(0) < eXT5 [lullL2(a0),

where ¢ depends only on Q. Furthermore, the exponent —5/6 is sharp if Q is an annulus.

In contrast to the case of single layer potentials, we obtain a uniform bound for double layer potentials
in all domains. The sharp examples for the single layer potential all rely on concentration in the tangential
direction (see Section . However the symbol of D;r is zero in such tangential directions.

Theorem 1.2 (Boundedness and sharpness of semiclassical double layer potentials).

ID5 (w) |l r2(0) < ellull 200,

where ¢ depends only on ). Furthermore, the estimate is sharp if Q is a disc.

The representation of eigenfunctions in has applications in a variety of both theoretical and nu-
merical studies. Hassell and Zelditch [I8] use it to prove the quantum ergodicity of boundary values of
eigenfunctions. In particular, they express boundary traces of Dirichlet, Neumann, and Robin eigenfunc-
tions as eigenfunctions of integral operators produced by semiclassical layer potentials.

In a similar vein Toth and Zelditch [32] [33] recently applied these potentials to prove quantum ergodic
restriction (QER) theorems on interior hypersurfaces.

If the boundary 0f2 is analytic, then there exist analytic continuations of Sj\“ and D;\“ in the Grauert
tube (a complex neighborhood of the real domain). Such complexification enables the study of zeros of
eigenfunctions in the complex region (instead of in the real region), where it has a simpler characterization.
For detailed discussion on the nodal intersection estimates, see Toth and Zelditch [31], El-Hajj and Toth
[9].

In star shaped domains Barnett and Hassell [2] develop a numerical technique for constructing Dirichlet
eigenfunctions by solving a related eigenfunction problem on the boundary. They then use (1.3)) to
reconstruct interior eigenfunctions. Their technique allows them to control error on the boundary and so
mapping norms on S;\F control error in the interior.

In [2, Remark 3.2], the authors proposed the question of finding a bound on the A-dependence of the
single layer potential S;f. In particular they ask is

(1.4) 155 2200y L2(2) S A7

Such a bound would imply that boundary error controls interior error with no loss, which would be
optimal for their numerical technique. In fact, some results were achieved previously. Feng and Sheen
[TT] showed that the norm is uniformly bounded independent of X. Spence [26] improved this to A\~1/2.

Theorem answers Barnett and Hassell’s question in the negative for general (and even curved)
domains. However, the estimate might hold for strictly convex domains; see Conjecture

Weaker estimates than those of Theorem were obtained by Feng and Sheen [I1] and Spence
[26]. Precisely, Feng and Sheen [II] proved ||Di|r2(00)—r2(0) < A; while Spence [26] improved to
[ DallL2o0)—r2(0) S A2 See also the survey article [6] for related results and their applications in
numerical computations.

One may compare the high frequency (A — o) results of Theorems and with the case A = 0.
There reduces to the construction of a harmonic function u in by its boundary data. K = K; =
N is the fundamental solution of the Laplacian: —AN(z) = §(z). The two convolution-type operators
S(f) and D(f) mapping L?(09Q) to L?()) with kernels N and 9, N are the classical single and double
layer potentials at zero frequency. The mapping properties of these layer potentials from boundary data
to interior functions and related boundary value problems have been studied extensively over the past
century. See [10} 23], B5] and [7), 12] for a detailed discussion of this classical problem.

In the case of classical single and double layer potentials, it is the regularity of the boundary that
determines mapping properties, with the case of smooth boundaries being rather trivial. By contrast, in
the high frequency limit A — oo, the interest is not the boundedness of S; and D; for a particular A, but
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rather the rate of decay of the mapping norms as A — oo. In this limit, the problem is interesting even
for smooth boundaries, as Theorem shows, the rate of decay depends on the geometric properties of
the boundaries.

The single and double layer operators S/J\r and Dj\r are restrictions of layer potentials S’;\r and Dj to
the boundary, that is, DY : f — DY (f)|oq and SY : f — Sy (f)|an. Galkowski’s appendix to this paper
provides estimates for both D;f and S;f. These operators have been studied by other mathematicians and
some results were known prior to the above estimates. Please refer to the appendix for a brief discussion.

Theorem A.1 (Boundedness and sharpness of semiclassical layer operators).

ISF] < CA~Y2log in general domains;
ALAOD=L20) = oy -2/3 log A if 0N) is curved,

and
CA\/*log \ in general domains;

DY <

IPX N2 00)- r200) < {C)\l/G log A if 0N is curved.

Moreover, these estimates are sharp modulo the log \.

Connection with boundary estimates of eigenfunctions. Because of (1.3, there is a close relation
between semiclassical layer potentials and boundary estimates of eigenfunctions.

e Dirichlet eigenfunction: u satisfies u = Sy (8,u). Bardos, Lebeau, and Rauch [I] and Hassell and
Tao [16} 17] proved that

ull2) = A 10vull L2 (a0,
as u = Sy (0,u) this implies that

1S5 1| 22 o0y L2(2) = A
Therefore the sharp examples for Theorem that we produce in Section [4] are far from being

normal derivatives of a Dirichlet eigenfunctions.
e Neumann eigenfunction: u satisfies u = Dy (ulsq). Hence, as a corollary of Theorem (1.2} we have

Corollary 1.3 (Boundary estimate of Neumann eigenfunctions). Let u be a Neumann eigenfunc-
tion of A in Q with eigenvalue \*. Then

lullz2(0) < cllullz2a0),
where C' is independent of A.

Tataru [29] proved that

1
(1.5) ullL200) S A% [ullp2(q)-
Putting the above results together gives both lower and upper bounds of the boundary estimates
of Neumann eigenfunctions:

lull 2@ S lullz2ee) S Asllull2)-
Furthermore, this suggests that the sharp examples for Tataru’s estimate are far from saturating
the double layer potential estimates. We will discuss the sharpness of above inequalities in Section
[, and construct examples for which saturation is achieved.

Connection with interior hypersurface restriction estimates of eigenfunctions. One can simi-
larly define the incoming resolvent
-1
Ry = [-A~ (A -0y
and K as its kernel. Then the above theorem is also valid with the same norm for Sy. We will drop

the =+ sign in the L? estimates without causing any confusion. If we write dF) as the spectral measure

operator 6(—A — A%), then Stone’s formula (See e.g. [20, Chapter XIV].)
_R{ R,
o 2m

(1.6) dE)

immediately implies the same norm bounds from L?(9Q) to L?(£2). Moreover, the sharp examples of these
bounds on spectral measure operators automatically provides the sharpness for single layer potentials.

Proposition 1.4 (Boundedness and sharpness of spectral measure operators).
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(i). In a general domain 2,
_3
|[dEx(udo)| r2() < eA™ 4 ||ullz2(50)

and the norm is sharp if the boundary 02 contains a flat piece.
(7). If OS2 is curved, then

_5
|[dEx(udo) || r2() < A8 ||ull 2250
and the norms are sharp if Q is an annulus.
Notice that the kernel of dFE
Ky - Ky
) 271
satisfies (—A — A2)K = 0. To estimate the norm of
dEy(-do) : L*(89Q) — L*(Q),

we consider the adjoint operator (dF))* with the same norm. In particular, the estimates of dFE) in
Proposition is equivalent to

(1.7) I(dEN)" ()| 2(00) < {

We provide a proof of here. It also motivates the strategy of the main proof of Theorem
Write v = (dE))*(u), then v is an eigenfunction in R™. In particular, if we choose a compact set §2; such
that Q € ©; € R", v is an eigenfunction in 7, and 92 can be regarded as an interior hypersurface in
Q1. Tt is a classical result in scattering theory that (dEy)* : L?(Q) — L?(Q4) is bounded. In fact, from
the semiclassical Fourier integral operator theory, (See e.g. [25].) we have

Ky =

A1 1wl 20 in general domains;

A6 1wl 20 it 0Q) is curved.

(1.8) Ioll 2oy < A ullzzg)-

Since 92 C €2, we can use the interior hypersurface restriction estimate for v from [4, 22]:

1 _3
[vllz2a0) < eAtllvllLz@) < A2 |ull L2
on general 0f), and

1 _5
[vllz2(a0) < eAs[[v]lL2@) < A6 ||lull L2
if 99 is curved.

Connection with interior hypersurface estimates of quasimodes and strategy of the proofs.
Consider the adjoint operator

(S L(Q) — L2(09).
Unlike (dE))*u, (SY)*u is not an eigenfunction on the whole space R™. The failure of (Sy)*u to be an
eigenfunction arises from a singularity in its kernel at the diagonal. Our strategy is therefore to divide
the kernel into near-diagonal and off-diagonal parts. The near-diagonal part admits better bound than
required, and the off-diagonal part while not an exact eigenfunction is a good approximate eigenfunction
(or quasimode) which can be treated within the semiclassical framework.

To use the the semiclassical framework we set h = A~!, then Laplacian eigenfunctions satisfy p(z, hD)u =

0 for

p(z,hD) = (—h?A —1).
For any function v we may measure the quasimode error

E[v] = (=h*A - 1)v

See [30, Section 7.4.1] for more details on quasimodes. Restrictions of quasimodes to hypersurfaces are
studied in [27] and [I5]. Therefore we are able to reduce the problem of operator norm estimates to that
of estimating the quasimode error of the off-diagonal contribution.

A similar strategy applies to double layer potential (Dj\r)*, as the off-diagonal part on the boundary
resembles the normal derivative of an Op2(h) quasimode, and therefore we can use the result on Neumann
data restriction estimates in [28].
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Semiclassical interpretation. Here we provide a semiclassical description of the problem and our
approach. While this description is not strictly necessary to prove Theorems and it allows us
to develop a useful heuristic that gives us insight into the role of geometry in these estimates. In the
semiclassical setting (with h = A~!) Laplacian eigenfunctions are solutions to

p(z, hD)u = (—h?*A — 1)u = 0,
where p(z, hD) has symbol p(z,¢) = |¢* — 1. Similarly can be written as
p(z,hD)K;" (z) = h26(x).
Hoérmander’s theory on propagation of singularities asserts that
(1L9)  WEL(K)\WFE(g) C {(2,6) € T'R" : p(z,€) = 0} = {(3,€) € T'R : |¢] = 1} = SR,

which means that W Fy, (K)\ W Fj(g) is in the bicharacteristic variety of p, and furthermore it is invariant
under the Hamiltonian flow ®* of p. Here, W F}, is the semiclassical wavefront set, T*R" and S*R" are the
cotangent and cosphere bundles of R™, and ®* of p is the geodesic flow in R™. See [21], 36] for a complete
discussion of the theory.

This framework provides an heuristic to understand the improvement in Theorem [I.1] for curved do-
mains.

The dominating singularities of S;f and D;“ propagate through the bicharacteristic flowout, i.e., the
geodesic flow. Since f is supported on 0f2, the dominating singularities propagate along the lines tangent
to the boundary. Therefore it is natural to expect worse estimates in the flat case where tangent lines
coincide with the boundary.

Next we consider the semiclassical description of the outgoing and incoming resolvents Rf and the
spectral measure dEy. From the intersecting Lagrangian distribution theory introduced in [24] (for the
semiclassical version see [I3| Appendix A}), Rj\r is an intersecting Lagrangian distribution associated to
two Lagrangian submanifolds [13, Theorem 3]:

e The conormal bundle to the diagonal,
Ll = {(‘Tﬂgay?n) eT'R"x T*R" : z = y,f = 7]}7

which is the lift of WF},(g) in (1.9) from in T*R"™ to in T*R"™ x T*R™;
e The bicharacteristic flowout ®* in the positive direction from the intersection of L; and the bichar-
acteristic variety S*R™ x S*R",

Ly ={(z,&y,m) e T"R" x T*R" : { =, |n| = 1,z =y +tn,t > 0}.

R, is the same except it would be the bicharacteristic flowout in the negative direction. When we
subtract them in ([L.6]), the diagonal part cancels and dE) is associated to the flowout Ly in both directions,
from the intersection of L; and the characteristic variety:

Lo={(z,&y,n) e T"R" x T*R" : £ =n,|n| = 1,z =y + tn,t € R}.

The above characterization can also been seen in the proof of Theorem [I.1]in Section 2, as we cut the
kernel into near-diagonal and off-diagonal parts, which correspond to the two Lagrangian submanifolds.

Organisation of the paper. In Section [2] we prove Theorem and in Section [3| we prove Theorem
In Section [4] we show that all of these estimates are essentially sharp, and then give some further
remarks concerning the relation between these bounds and the convexity of the domain. In the appendix,
we prove the mapping norms of semiclassical layer operators and show that the estimates are nearly sharp.

Throughout this paper, A < B (A 2 B) means A < ¢B (A > ¢B) for some constant ¢ depending only
on the domain, in particular, independent of A\; A =~ B means A < B and B < A; the constants ¢ and C
may vary from line to line.
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for discussion of sharpness of the double layer operator estimates. J.G. is grateful to the National Science
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DGE 1106400 and grant DMS-1201417. X. H. acknowledges the support of the Australian Research
Council through Discovery Project DP120102019.
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2. BOUNDEDNESS OF SEMICLASSICAL SINGLE LAYER POTENTIALS

We aim to use previously know bounds for restriction of quasimode to hypersurfaces, both in the general
and curved cases. We want mapping norm bounds for Sy : L2(9Q) — L?(f2). However to use prior results
on restriction of quasimodes we actually study the adjoint operator (Sy)* : L%(2) — L?(992). Now

21 () u(e) = [ Kilx = yuw)dy,

where
(—A = MK} = 6(x).
Therefore if Rpq is the restriction operator to the boundary of Q we must prove L2(Q) — L?(9f) estimates
for RaQS;. We will do this by constructing an auxiliary quasimode v defined on R, for which we know
the restriction bounds, then the problem reduces to finding the L? norm and the quasimode error of v.
To begin we excise the diagonal of (S;\r)* that is let ¢ : R® — R™ be a smooth cut off function equal to
one in |z — y| < 1 and supported in |z — y| < 2. Then we decompose (S} )* as

(2.2) (S =8"+8,

where

(2.3) Shule) = [ K3 = )¢ (M'\z - 9)) uly)dy.
(2.4) Su@) = [ Ki(w—y) (1= ¢ (M7 Nw — 1)) ulw)dy.

We first show that S has a better L*(2) — L?(92) mapping norm than predicted by Theorem [1.1] and
therefore we may focus on the mapping norm of S.

Proposition 2.1. Let S° be as defined in ([2.3)), then
_3
(2.5) 15% 200) S A2 [lull z2(q)-

Proof. We use the explicit respresntation of K} as a Hankel function. If n > 3, we have that the kernel
of S K°(x,%) has the bounds

KOz, y)| < |z =y,
and is supported in |z — y| < MA~!. Fixing x we have

MX~1T
1K (2, )l < / .
0

S CM)\_Q.

Conversely fixing y we have
M1
1K)l S [ 2
0

5 CM)\il.

Therefore by Young’s inequality
15%l| 200y S Car A= [Jul| 20

which is better than (2.5).
In R?, if [z —y| < MA!

|K%(,y)| < log (Alx —y|) < C- (A|lz —y[)™*
for any € > 0. The same application of Young’s inequality implies

15%l| 22 a0y S Care A |Jul| 20
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We now focus on the operator S. Let ~
v = Su.

We will treat v as a quasimode of (—h2A — 1). Accordingly let

E[v] = (=h?A = 1)v.
From [27] and [I5], we know that

_1 _
(2.6) lollae) S B3 (1ol L2y + B I Bl g
in the general case and

_1 _
(2.7) vl 200y S h™ s [HUHH(RH) +h 1||E['U]||L2(R")}

in the case where 0f2 is curved. We can also obtain these bounds from [29] by considering the function

ety which is an approximate solution to the wave equation. It is known that (Sj\r)* has mapping norm
A~! from L2(Q) — L2?(R™), see for example [34]. By the arguments of Proposition 59 has mapping
norm A2 from L?(Q) — L2(R") therefore as

S = (S;\’—)* - Sov

0]l 2ny = [1Sullp2@ny S A Hullrz) = Pllullrz)-

So to obtain Theorem [T.1]it is enough to show that
B[]l 2 @ny S P2 [lull L2
Rescaling this to work in terms of A we require that
I(=A = X)oll2@ny < llullr2(@)-

Now

o(@) = [ K3l =) (1= (1A — ) ulw)dy,

where
(—A = MK} =6.
So applying the operator (—A — A\?) we have

(2.8) (=8 =0 = [ (1= ¢ M@ =) [(=As = N)K3(@ = y)Julw)dy + Eu.

(29) Bu= [ (K3 - 5)A, (1- MA@ - )

—2V, (1= C(M7"Mz — ) - VoK (2 — y)]u(y)dy.

The first term in (2.8) is zero as the support of (1 —((M~*A(z —y))) is bounded away from the
diagonal x = y. The second term is the error term and has kernel supported in MA™! < |z —y| < 2M AL,
It therefore suffices to show that

HEUHL2(R") S ||UHL2(Q)-
Proposition 2.2. If E is given by (2.9), then
HEUHLQ(R") N ”UHL2(Q)-

Proof. This is similar to the proof of Proposition 2.1} By choosing M large enough we may assume that
the argument of the Hankel function A\|z — y| is large and therefore

HP o~ yl)| < A3e — |7

for any . Therefore on the support of the kernel of £ we have
[K(x —y)| S A2
IVoKx(z —y)| )\n—17

Vo (1= (MM =) [ S

Ay (1= M Az —y)) | S A
Therefore we may write

Bu= [ R~ yuly)dy.
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where |K (z — y)| < A" and is supported on MA™! < |z —y| < 2MA~!. Now

N 2MA—1L
1B < /\”/ Pl <1
0

Therefore by Young’s inequality B
| Eullr2@mny S [Jull2 o)
as required. n

3. BOUNDEDNESS OF SEMICLASSICAL DOUBLE LAYER POTENTIALS

We now address the mapping norms of the double layer potential
(3.1) Diu —/ Ou, Kx(x — y)u(y)doy,.

We proceed in a similar fashion as the proof for the single layer potential working instead with the adjoint
operator (D+) Let ¢ : R" — R be a smooth cut off function equal to one in |z| < 1 and supported in
|z| < 2. Then we decompose D5 as

(3.2) (Df)* = Do+ D

where

(3.3) Dou= [ 0, Kilw—y)¢ (MA@ 1)) uly)dy
and

(3.4) Du= [ 8, K3 =) [1= ¢ (M@~ v)] ulw)dy.

Similar to the single layer potential case we will treat Dy by Young’s inequality and D by quasimode
methods.

Proposition 3.1. Let Dy be as defined in (3.3)) then
I Doull 2200y S A2l 20

Proof. We have that

n—2
sy = (P Y (A ) T AP e
015~y = § (= )[ (=) MOl
n—2

n—2 A N _ A bl
(1) T ) -2 (G ) B <A|x—y|>]

2|z —y| \ 27|z — y| 27|z 3

Therefore on the support of the kernel of Dy we have that
0, K3 (2 — )| < | —y|~" !

We cannot directly apply Young’s inequality as ||K(-,y)||;1 is not bounded. However if we decompose
dyadically we may use Young’s inequality on each piece and, since ||K(x,-)||z1 is much better than O(1),
recover something summable. Accordingly we write

Dy = i D}
j=0
where
(3.5) Dhu= | K3 = ) (M A~ ) )y

Qi =Qn{y|279M ! <|z—y| <279 M
Now applying Young’s inequality to each D we have
NI\ R iy —1y =L
IDfull 2oy S 2PN (279272 (2794 2 Jufl 12

SATH22702 | 2
and therefore
IDoull 200y S A2 [[ull L2y
as claimed.
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Proposition 3.2. Let D be given by (3.4) then

| Dullr200) S llullz2@)

Proof. We note that if we define the auxiliary function w by

(3.6) w = Du
then

(3.7) w = dyv + Eu
where

Bu= 20 [ K3 - )0,,¢ (M2~ ) ulw)iy
and v is the quasimode
v=Su
introduced in the proof of Theorem
From [28] and [29] we know that normal derivatives of quasimodes enjoy the hypersurface restriction

bound

0.0 22(a0) < Allvllz2 @)
therefore by the L?(2) — L?(R™) mapping properties of the single layer potential
(3.8) 10vvl 200y S lullp2(q)-

So we can restrict our attention to Eu. We write
Eu = /QE(w,y)U(y)dy
and note by Young’s inequality

I r- 1/2 & 1/2
| Bllzzon) S sup B, ) INEC ) full oy

On the support of E(x,y) we have that
|K*(z —y)| SA"2 n#2
|[K*(z —y)| SlogA n=2

Therefore for n # 2 we have R
sup || E(z, )| S AT AT S AT
xT

and B
sup [ E(,y)[| S A ATD <1
Y
Forn =2 R
sup ||E(z, )] < AMogX-A72 < A7 tlog A
and

sup | E(-,y)|| < AlogA- A7 < log A
)

so for any € > 0
~ —1+4e €
[Eullz200) S A2 AZ|lullp2(

and therefore setting € < 1/2 .
| Eull200) S llullr2(o)
as required.

4. SHARP EXAMPLES AND FURTHER REMARKS

In this section, we construct examples to show that the estimates in Theorems and are in
fact sharp. That is, we prove that lower bounds hold in some domains for some sequences of functions.
Furthermore, we make some remarks on single layer potentials and spectral measure operators in strictly
convex domains.
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4.1. Sharpness of Theorem Semiclassical single layer potentials in general domains. In
the view of the Stone’s formula and Proposition we only need to prove the sharpness of dFE},
and then the sharpness of Sy follows immediately. In fact, we construct functions {f\} on the square
[—1,1]""! such that
ldEA(Fado)ll 21, m-1x(0,1)) ot

I il L2 (=191 -

(4.1)

Throughout this subsection, we denote x = (2/,x,) € R® where ' € R"~! and x,, € R. We develop
our sharp example through a series of lemmas. First we observe the following fact.

Lemma 4.1. Write ' = [-1,1] x --- x [=1,1] C R™™1, for A > 0 there exists an L?> normalized function
I such that

(1) supp fr C &,

(2) fx=0,

(3) fa€) > crif |€ —nmy| <1 forny = (\0,...,0) and some positive constant c¢i depending only on

the dimension.

Proof of Lemma[{.1 Fixa Schwartz function ¢ such that ¢ > 0and ¢ = 1in Q'. Let fo = oxa/llexa lL2@n-1y,
obviously supp fo C €, and we verify that fy also satisfies (2) and (3) above. Since x¢ is even, and
2 2sin(g)

XQ’(&I) = H € )
=1 v

we obtain fo = cp * X > 0. Now we compute

fo(¢) = C/ () xer (6" = n')dn' > C/ X (&' =n')dn' > e,
Rn—l ‘nllgl
if |¢' —ng| < 1. Therefore if we set fy(z') = P fo(2’), we have constructed of function that satisfies all
the required condtions. O

Now denote Q = Q' x [0,1] € R", and let supp f\ C Q' x {z,, = 0}. We claim that f) is our desired
sharp example. That is

_3
|dBA(fxdo) | 120y = |EA(fdo)xall2gan) > A5

To facilitate our calculation we will replace xqo with a function g designed to make calculation on the
Fourier transform side easy. We need the following lemma.

Lemma 4.2. There exists a function g such that
(1) suppg C €,
(2) 0 < g < ¢y for some constant ca > 0 depending only on the dimension,
(8) §(&) > cs in {|¢| < ca} for some positive constants c3 and ¢y < % depending only on the dimension.

Proof of Lemma[{-2 Fix z = (0,...,0,3) € Q, and write ¢ = X|z—s|<1- Let g = * ¢, then both (1) and

1.
<3
(2) above are satisfied, and

30) = [0 = | [ pladz] > 0.
Thus, §(&) > ¢3 in {|€] < ¢4} because § is continuous. O

In order to evaluate [|[dEx(frdo)||r2(q), notice that m(f) = fr(¢) and

B (o) (€) = 0(1gP — 3) Fado(€) = PEB,

where dp is the surface measure on {|¢| = A}. Using the function g constructed in Lemma for any &
such that

c 1
cefo<atg s D andl —uh< 5} =G

we have 1
2 ~ -
[dEN(fado)]" + §(€) > =2 Ay > S

A J{ml=anin—€|<ca} A ’
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in which we use the geometric fact that the area measure |{|n] = A} N {|n — €| < ca}| ~ 7L if € is a fixed
point near the sphere with 0 < A — |{| < § < %. Recall that 7} = (},0,...,0), then the volume measure
of Gy has

1
|GAl = HO <A-)E <L %4 and [¢' — | < 2}‘ ~ V.
Therefore,
~ _ 1 3
|[dEA(frdo) gl z2mny = c|[[dEA(frdo))™ G| p2imny = eATHGAZ > eA7 1.
(R") (R7)

Now, since g is supported in 2 and bounded from above,

_ _3
IdEA(fado )| r2@) = I[dEA(fado)xallL2@n) > ¢3 ' |[dEA(frdo)gllr2@ny = cA74,
and we have obtained ({4.1]).

4.2. Sharpness of Theorem Semiclassical single layer potentials in curved domains. As
in Section we only need to prove the sharpness of dF\. We construct functions {f)} such that

|[dEX(fado)| L2

5
>c\6
|3l 2200

(4.2)

where () is annulus.

Let By = {z € R?,|z| < 1}, By = {x € R% |z| < 2}, and Q = {z € R?,1 < |z| < 2}. We work in polar
coordinates (r,6) and set

fu(z) = * e L2(89).
Then
u(x) = dBE(frdo)(x) = adip(Ar)e™,
in which Jj, is the Bessel function of the first kind and order k. We pick A = jj 1 as the first positive zero
of Ji. Then u solves the Dirichlet boundary value problem
—Au = Nu in By,
{u =0, du= etk on OB;.
We need to show that .
[ullz() = eA7s.

From [8, Section 10.21.40], J..(A) = O(k~3). Thus
_ 1
ERVARY

(4.3) a = O(k™3).

We also have
(4.4) A=k+cski +O(k3),

where c5 = 1.86... is an independent constant. Since (A + A?)u = 0,
1 k2

zﬁ+&+(}?—2>]u:0
r r

Furthermore, d,u(z) = aAJj(Ar)e*® and 0?u(z) = aX2J!(Ar)e*?. To evaluate lull z2(q), notice that in
R™,

n—1 1
37« + 72AS7L71,
r T

A=02+
in which Agn-1 is the Laplacian on the sphere S*~!. Then the commutator

—1 1
A, 79, = {a,% + ”Tar + ﬂASn_l,raT]

-1 1
[02,r0,] + ["Tar,rar} + [ﬂASnl,raT]

_ 262+2(n—1)

= 2A.

Using the above facts and Green’s formula, we have

—2)\2/ lu> = 2 Au'ﬂ:/ [A, 70 u-u
|z|<R |z|<R |z|<R

2
87« + ﬁASn—l



12 XIAOLONG HAN AND MELISSA TACY WITH AN APPENDIX BY JEFFREY GALKOWSKI
= / [A+ N rdu-a
|z|<R
_ /| BN B 1= O (A4 W)
x|<
= /I | Rﬁr(raru) U — ropu - Optl
x|=
= /I | R&u U+ 0% - U — 7|Opul?
x|=
= /| Rl
"

= —2a*7R? [0~ KPR (JL(\R)? + N (JL(AR))?]

which implies

2_ 2 _p2 _Lz 2 / 2
(4.5) /x|<R‘“| @R (1= 530 | GROR)? + (HOR)?|

If R = 1, then note that \ is a zero of Ji. As (4.3)) gives |a| ~ A5 and J(N) = JL(Gka) ~ A5 in 8,
Section 10.21.40],

1
2
(4.6) lullz2(,) = </| - ]u|2> = |a|v/7|J,(N)| = eX7L.

If R =2, then
k2 3 5
(4.7) ull o 5y = 2lalv/7 [(1 - M) (JR@N)2 + (02| = ex .
Here, we use the asymptotic expansions of Bessel functions for large orders in [§]
Ji(ksec3) ~ < L >é coS (ktanﬁ — kB — 177) ,
ktan 3 4
and

Ji.(ksecB) ~ (sinfﬁ)) : sin (k‘ tan B — kS — iw) ,

in which sec 3 = 2)\/k — 2 in the view of (4.4)), and thus § ~ . Therefore,

_s
ullz2(0) = llull2(By) — llullL2(B) = eA7s,

as required.

4.3. Further remark: Semiclassical single layer potentials in strictly convex domains. If we
choose R =1+ ¢ in (4.5)) for any fixed ¢ > 0, then

_5
@7 ullz2(pyy) = A7s

is valid when k, and therefore A, is large. (We can argue similarly by setting 8 asymptotically fixed
depending only on £.) Comparing and ’, we see that the L2 norm of u is essentially concentrated
outside the disc. As discussed in the Introduction, this is because the estimates are dominated by the
semiclassical singularities of u, which propagate along the tangent lines of the circle. All such lines lie
outside of By. Therefore, |ul|2(p,) ~ A7 is smaller than [[ul 125, \p,) ~ A5,

However, in the case when the domain is flat as in Section the tangent lines coincide with the

boundary, one may get worse L? bound for u (~ )\7%).
The above observation motivates us to consider the problem in strictly convex domains, in which case all
the tangent lines lie outside the domain. Analogously to the unit disc, we make the following conjecture.

Conjecture 4.3. If Q) is strictly conver, then

(4.8) 1Sx(F)lIr2e) < A fl r200),
and

(4.9) [dEX(fdo)|l 20y < A7 fll 200)-
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The computation in Section already gave the sharp example in this case once one observes (4.6)),
which says

|[dEX(fxdo) 20
13l 2200
is valid in the unit ball for some constant ¢ and functions {f)}.
In fact, the estimates in Conjecture are sharp in any strictly convex domain: From [ [16] 17],

=)\t

ull 2y = A 1Ovull 200y
where u is a Dirichlet eigenfunction in Q, therefore u = S\(0,u), and (4.8) and (4.9)) are sharp in all
strictly convex domains.

4.4. Sharpness of Theorem Semiclassical double layer potentials. We show the sharpness
in the unit ball:

[ DA(frdo)| L2 ()
I fxllz200)

(4.10)

for some constant ¢ and functions {fy}.
Consider the Neumann eigenfunctions:

—Au = Nu in By,
{Gl,u =0, u= e on OB;.
Then, adopting the same notations as in Section we have
u(z) = Dx(frdo)(z) = aJp(\r)e*?,
in which A = j; ; is the I-th zero of J;, and a = 1/J()).
We use identity with R =1 and JJ(\) = 0 to obtain

1

2 ]432
2
— >
||U||L2(B1) (,/|x<l ‘U| > a <1 )\2) =

by picking A ~ 2k. In fact, A = ji ; — 00 as I > k — oo.
On the other hand, to saturate the inequality (|1.5)):
1
lull 208,y S A3 llullz2(B,)s
we pick A = jj | as the first zero of J;. From [8] Section 10.21.40], we have
A= jhy =k +O(k3),
then

ol gy = Jw (1 - (’“> — O(k™5) = O(A73).

Ji1)?
As |lull z29p,) ~ 1 this implies that

1
ullL2om, = A3 ||ull2(B,)-

See also [16, Example 7] on the boundary estimates of Neumann eigenfunctions.

APPENDIX A. THE SINGLE AND DOUBLE LAYER OPERATORS

By JEFFREY GALKOWSK

In this appendix, we give high frequency estimate for the double and single layer operators. We do this
by adapting the methods of [14] to the double layer operator. The estimates on single layer operators
appear in [I4, Theorem 1.2], but we repeat them below for the convenience of the reader.

We use the same notation as in the prequel. In addition, let v : H*(R?) — H*~1/2(dQ), s > 1/2 denote
restriction to J€). Then, define the single layer operator,

Sy =4St L*(09) — L*(0Q)

17.G.s address is Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA, and e-mail address
is jeffrey.galkowski@math.berkeley.edu.
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and the double layer operator
Dy : L*(09) — L*(9Q)
where

DY) = [0, Kalw—u)fw)dy.

Theorem A.1. Let 90 C R? be a finite union of compact embedded C™ hypersurfaces. Then there exists
Ao such that for A > Ag,

1 1
(A1) 1S3 |22 00)—>12(80) < CA72 log A, DY || 2200 12(50) < C AT log A.
Moreover, if 08 is a finite union of compact subsets of curved C™ hypersurfaces, then
_2 1
(A.2) IS¥ 20y L2090y S CAT3 log A, IDY [l2(00)—22(60) < CAF log .
Moreover, modulo the factor log A, all of the above estimates are sharp.

Such mapping bounds of layer operators in lower dimension cases (d = 2,3) have been studied by
Chandler-Wilde, Graham, Langdon, and Lindner [5]. In particular, they showed the upper bounds
”S;\FHLQ(BQ)*)LQ(BQ) < eAd=3)/2 and ||D;\‘FHL2(8Q)4)L2(8Q) < eX@=D/2 In 2-dim, they also proved that

-1/2 —2/3

if ) contains a flat piece and > cA if 9N is curved. In 2-dim they also

ISy [ 22 (00)— 2 (992 = €A
show the existence of 0Q) with \|Dj\rHLz(39)_>L2(aQ) > CAY4 and curved 99 with HD;—HLQ(@Q)_}LQ((‘)Q) >
CAY/8. The special cases of the circle and sphere are studied previously by various authors. We refer to
[5] for more background in this area. This appendix improves these estimates by giving “nearly” sharp
bounds in all dimensions. We also point out that the approaches to prove estimates for semiclassical layer
potentials and operators are completely different.

In section we prove the upper bounds in Theorem In sections and we show that the
exponents on \ in Theorem are sharp.
Remark: If we impose the condition that  is convex with piecewise smooth, C1'! boundary, then we
expect that D;\r is uniformly bounded in A but we do not consider that here.

A.1. Proof of Theorem To analyze the single and double layer operators, we rewrite them in
terms of the outgoing free resolvent. In particular, we have that

Sy =R~
where R;\r is the outgoing free resolvent.

To understand D;\r in relation to the free resolvent, we let L be a vector field with L|gq = 0,. Then,
for o € Q, x € 992, we have

D (@) = Jim, [ R (w0 — y)(L*(fdo))(y) = 3/(a) = lim, R{L(fdo) (o) — 5/(2).

where L* = —L —divL and Ry is the outgoing free resolvent (see for example [19, Section 5], [30, Section
7.11]). Moreover,
DY : L*(09) — L*(09Q).

Let () :=2+4]-]|.
Lemma A.2. Suppose that for T € R? any compact embedded C™ hypersurface, and some o, § > 0,
(A.3) JIEFR(©3(1€] = r)de < Colr)@ gy
(A1) J1F32(©3(1€l = e < Cr@)> Iy

Let Ty, Ty € RY be compact embedded C™ hypersurfaces. Let L be a vector field with L = 0, on I'y
for some choice of normal v on T'1 and ¢ € C§°(R) with » = 1 in neighborhood of 0. Then define for
f S L2(F1) g € LQ(F2>

Rror(fo9) = [ RX@OTD)for)g00, s @iy (f9) = [ REWAT D)L (for,)g0r,.
Then for ImX > 0, [A| > ¢ >0,
(A.5) Q%110 (> )| < Cry o (N2 Hog O 1 f |2y 19l 22 ()
(A.6) QAr1r (F9)] < Cryr N og N1 [l 20 19112
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Proof. We follow [14] to prove the lemma. First, observe that due to the compact support of for, (A.3])
and (A.4) imply that for I' € R¢,

— 2
(A7) / Ve LFor(€)] a(1gl =) < C (M2 £ 3a(ry »
(A8) [Ivefae@l 6061 - < € 0PIl
Now, gor, € H_%_G(Rd), and
(A.9) R{($(\ YD) L*(for,)) € C*(RY),  Rf(¥(A"'|D|)for,) € C=(RY).

We only consider |[A\| > ¢ > 0 to avoid considering the low frequency divergence in low dimensions.
However, this can be handled as in [14].
By Plancherel’s theorem,

L*fo o 5 5
Q)\ JT1,T2 f’ /¢ 1|§’ f |E~1‘2( )g F2(£)’ Q)\Fl,l—‘z fﬂ /dj 1|§‘ f F‘lé.(|2)g FQ( )
Thus, to prove the lemma, we only need estimate
1y FE) G(E)
(A.10) [e0eD S

where by (A.3]), (A.4), (A.7)), and (A.8)
HF”L2(5;?*1) + HvéFHp(sg*l) < C<7">51Hf||L2(F): HGHL2(sg*1) + HvﬁGHm(S,@*l) < C<T>62H9HL2(F)-

Consider first the integral in (A.10) over ||¢] — ||| > 1. Since ||¢]* — A?| > ||£]2 — |A]?|, by the Schwartz
inequality, (A.3]), and - this piece of the integral is bounded by

A1 F(¢ )G(f) / 1
< -5 F(r0) G(r)dS(0)dr
A&I—Allzl YO TR e | = MAZ|r— NIz 72 = A2 Jsi () GLr)as(o)
< Cllflw gl [ ()P0 |2 = AP |
MIAZ|r—|Al|>1
< Az oz [ =N ar
MXZ]r—[Al[>1
(A1) < CIAH log I 1 20y gl z2qry

Remark: The estimate (A.11) is the only term where the log appears.
Next, if Im A > 1, then [[¢]* — X*[ > [A], and by (A.3), (A.4)

FE) G() d1+02—1
—= =2 e | < C|N\|0rT0?
‘/m <t €7 — A2 &= CA 12y gl 2y

Thus, we may restrict our attention to 0 <ImA <1 and ||¢| — |A[| < 1.
We consider Re A > 0, the other case following similarly, and write

1 1

IR |sr Velog(lel =)

where the logarithm is well defined since Im(|¢| — A) < 0. Let x(r) = 1 for [r| < 1 and vanish for |r| > 2.
We then use integration by parts, together with (A.3)), (A.4), (A.7), and (A.8]) to bound

1
[ xtier=1ap GESA |€| Velog(lg] = ) dg | < CIN I flla) gl 2r)

Now, taking §; = d9 = a gives (-i and taking §; = « and Jy = (3 gives (A.6). O
We now prove the estimates and (| -

Lemma A.3. Let T' € R? be a compact C™ embedded hypersurface. For L = 9, on T, estimate (A.3)
holds with o = 1. Estimate (A.4) holds with f = 1/4. Moreover, if T is curved, then (A.4)) holds with
B =1/6.
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Proof. Let A: H*(R?) — H*"1(RY). To estimate
/ A Pae] - 1),

write
(A*(for)(€)5(€] ) / / A (F(2)00)5(€] — 1)o@ @D dade = [ FAT,pdz
N

where
(A12) 70— [ o(lg = o) e

For y € C3°(R%), xT'¢ is a quasimode of the Laplacian with eigenvalue A = r in the sense of [27]. Thus,
we can use the restriction bounds for eigenfunctions found in [4], [15], [28], and [27], to obtain estimates
on T'¢.

To prove (A.4)), let A= 1. Then, by [4, Theorem 3], [27, Theorem 1.7]

1
(A.13) IXTr 9l L2y < T2 IXT'9l L2(Ra),s
and if I' is curved, then by [15, Theorem 1.3]

1
(A.14) XT3l 2y < r8lIXTl| 12 (ra)-

Remark: Estimates (A.13) and (A.14)) continue to hold on C'! and C?! curved hypersurfaces respec-
tively ([3] [14]).
Next, we take A = L to obtain (A.3]). Observe that
XLTy¢ = LxT¢ + [x, LT, ¢

with [x, L] € C§°(R%). Therefore, [x, L]T¢ is a quasimode of the Laplacian with eigenvalue 7.
Hence, using the fact that L = 9, on I" together with |28, Theorem 0.3], we can estimate LT'¢.

(A.15) IXLT @l 2y < ILXTrdll 2y + (1L, X T @l 2y < CrlIXTr 9l L2 way-
To complete the proof of the Lemma, we estimate ||x7'¢||;2(ra). We have that

XT3l L2y = (X * g6 (I€] = 7)I| L2 (Ray-

Therefore,
I+ 9901~ guny = [ | [, 26— motnyin]
< Nolagspry [ [y, 1506 = mPPdnde
< llgl2aqgpy [ / (€] — )N dnde < COllg]2, g0
Combining this with (A.13]), (A.14) and (A.15)) completes the proof of the Lemma. O

To complete the proof of Theorem we need an estimate on the high frequency component of S;f
and Df. Let v : H3(QF) — H*1/2(0Q), s > 1/2 denote the restriction map where QT = Q and
Q™ =R%\ Q. Then we have

Lemma A.4. Let M > 1 and ¢ € C§°(R) with ¢» =1 for |§| < M. Suppose that OS2 is a finite union of
compact embedded C*° hypersurfaces. Then

(A.16) YRS (1= (A D))IY = Or290)-12(00) (A7),

(A.17) YERT (1 — (A D)) L*Y* = Or2(a0)—12(00) (1)-

Proof. Let h™* = X\. Then R ,(1 — ¢ (hD)) € h*¥~? (see, for example, [I3, Theorem 3]) where VL
denotes the class of semiclassical pseudodifferential operators of order k (see [36] for a detailed account
of the theory of semiclassical analysis).

Now, let I';, I'y € R? be embedded C* hypersurfaces and denote by v; : H*(R%) — H*~1/2(I;), s > 1/2
and by ~/ its adjoint. Then
(A18) Yi = OHS(Rd)%HS_l/Q(Fi)(h‘_l/2)‘
Hence, we have
il 1 (1= (|hD))y; = Opz2(R).
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Since v = >, i, we have proven estimate (A.16])

The strategy for obtaining the bound (A.17)) will be to compare D;f at high frequency with the corre-
sponding operators for A = 0. First, observe that Rd (1 — (|hD|) € h2¥~2.

We consider

Apr = (B, — BE)(1 = (kD)) = h=2R} R (1 — w(|hD))).
Hence, Aj,-1 € h2U~*. We will bound
By = 5iAy 1 (1= w(JhD)) L.
To do so, consider the adjoint
By, = v L(1 = (|hDI)) Ap-17;.

Then, observe that since I'; is smooth, we may extend L off of I'; to a smooth vector field, L, without
changing Bj. Hence, using (A.18), and the fact that L = Ops_,gs—1(h™1), we have that By, = Op2_,72(1).

Now, by [19, Section 5]

Y RG (1= (kD)) L*y : L*(09) — L*(99)
for 02 a finite union of compact embedded C*° hypersurfaces. Hence,
YER} (1 = (|hD|)L*y = v R{ (1 — ¢ (|hD|)) L*y + yAp-1 L*v* = Or2(90) s 12(00) (1)

and we have proven ((A.17]) O
Taking 092 = |J; I'; and applying Lemmas and Lemma [A.4] finishes the proof of Theorem
A.2. Sharpness of the single layer operator estimates. We now show that the estimates on S;f
in Theorem are sharp modulo the log losses. We use a different approach from that in [5, Theorem
4.2] where the authors construct examples giving the same lower bounds. These examples rely on the

concentration of semiclassical singularities in small neighborhoods of glancing rays.
First, recall as above that the spectral measure operator is denoted by dE) (see ([1.6))). Then,

Sy -8y

Al E\v* =
(A.19) ydE\y i

But, dE) has kernel .
2 —d/ ile—y.€) g¢
nom 7 [ e

Thus,
VAExY* = CaA ™ T TR "
where T}, is the operator in (A.12)). By [4], [15], the estimates (A.13)) and (A.14]) are sharp and hence for
A > )\Oa

1
CX"2 T general
dE\Y* > .
[YdEAY*|| L2y 22(r) = {C)\‘§ I ourved
Putting this together with (A.19) gives that

1
CA7z T general
St >
ISX 220y~ L2(0) 2 {C/\—§ I' curved

as desired.

A.3. Sharpness of the double layer operator estimates. We will show that there exist smooth
embedded hypersurfaces I' such that for A > Ag,

CA'/* T general
CA/6 T curved
In the flat case, our examples are adaptations of those given in [5, Theorems 4.6] to higher dimensions.
However, in the curved case, the example we provide is more subtle and improves the lower bound
1D N 2(r) > CAY/® given in [5, Theorem 4.7]

The idea will be to use a family functions which is microlocalized at a point ((2/,0),&") € T*T" such
that [¢'| < 1 and the geodesic

(A.20) DS 22y p2r) > {

{(@,0)+ (& \/1-[g?) : teR}

is tangent to I' at some point away from (2, 0).
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A.3.1. Flat case. Let
[y = {(x1,20,2") €RY : 1/2 <21 <3/2,20 =0,]2| <1}
Dy = {(z1,20,2') € R? : 2 = 0,23 + |2')? < 1}.
Let x € C°(R41) have x > 0, ||x||z2 = 1, and ¥(0) > 1/2. That is
/X(SEQ,CC/)dCCQdI/ >1/2.
Then, denote by x) := x(MA\7(z2,2')) and observe that
allze = CaA=772, / xadaada’ > Oy A~

where M > 0 will be chosen later and v > 1/2.
Now, let I' € R? be a smooth embedded hypersurface such that I'y UTy C I'. Suppose also that
f € L3(T) is supported on I'y. Then,

D firy = [ (00, (@ =) (w)dy
2
Now, for |z — y| > ¢,

_ T — )l/ i ax— _
(A21) 0, Rf (o ) = Caxt I el (-2 g (0072 4 00 — yl) 4072
We will consider xy as a function in L?(TI'y). Thus, since for z € I'; and y € I'y, |2 — y| > €, we consider

’L')\|$fy‘ _
@y [ €N — g0
’ /1“2 |z — y|(@F1)/2 Xa(y)dy.

We are interested in obtaining lower bounds for the L? norm on I'y. In particular, let ¢ € C§°(R) with
(z) =1 for |z| < 1. Then, let ¥y 1(2) = (M A7|z]) and ¥y 2(2) = Y(MA?|z|).

We estimate A
e x —y, vy)

u = Yya(r1 — 1)¢A,1($/))\(d_1)/2/
I

on I'y. For x € T'y Nsupp ¥ 1(2)a2(x1 — 1) and y € supp x»

(A.22) BV y L o), fe—yl = 211+ OO-D))

Hence, we have

AT
ule, = Cathra(@r — 1)iory (@)A=D/2 f 57 [ (1+ O M%) 4 O((M A=) xdy
Ty

and on |2/| < M~I\77,
ulp, (z1,2') > Cipy oy — DA/ /X/\d?/ > oAld=1)/2=(d=1)7

So,

HU||%2(F y=C Y3 5 (x — 1)AITI72A07 > opd-1=Bd=4)r—2
! Tinfa/|<CA—
Thus, using elementary estimates on the remainder terms
1—(3d—4)
ID Xl > Cllull > A=
Hence,

”DYXA” > o
Xl

Thus, choosing v = 1/2, 79 = 0 and M large enough,
1Dl = CAY x|

as desired.
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A.3.2. Curved case. In order to obtain the lower bound in the curved case, we will need to arrange to
hypersurfaces, I'y and I's parametrized respectively by v, o : B(0,¢) C R4 — R? such that

(@) = o) = [7(0) = o(0)] + O(|lz1 — 1*) + O(l2" — y/'?)
where x = (z1,2') € R¥1. To do this, let 4 : (—¢, €) — R? be a smooth unit speed curve with curvature

k(t) = || (t)|| and normal vector n(t) = ~"(t)/k(t). We assume £(0) # 0 and '(0) # 0. Then, let o(¢)
be the loci of the osculating circle for 4(¢). That is,

FIGURE 1. We show an example of a curve 4 and its loci of osculating circles, &.

NN n(t
a(t) =4(t) + o)
Finally, define
(@)= Glan) + ()P, 7)), o(e) = (5(x1) + 7 (21)]2"]?, 7).

Then we have

V() = o(@)]? = 13(y) = 5(z1)]* + O('|* + |y *) + | — o[>
Let d(x1,y1) = |3(y1) — &(z1)|. Then,

Op,d(z1,21) = 8§1d(x1,x1) =0.
Hence,
d(z1,y1) = d(z1,21) + O(|lz1 — w1[*)

and we have near x =y = 0,

V() = o(@)] = [4(0) = a(0)| + O(lz1 — w1 |*) + O’ * + /).
Moreover,

@) =1 Wm) _ o

(o) — o (@) (lo = ol)-

Now, with x € Cgo(]Rdfl)’ let
X = X(M (X zy, \22')).
Then,
XAl L2 a1y = Cy A~ T2 / xadzpda' > CoyA~d=202=7,
B(0,¢)

Next, define x»1 € L2(T'1) by xa1(7(¥)) :== xa(y) and xx2 € L2(T2) by xa2(0(z)) := xa().
Then

(A-23) HX/\,l

r2(ry) > ovellzey) = CHXAHL‘Z(Rd*l)’/F XA /r XA2 2 C/B(O X
1 2 €

Moreover, for =, y € supp xa

(A.24) [7(y)—(2)] = (0) = (0)| +O(M LA 4 A~22)) <“|<j(?y )‘j%”‘ﬁ — 1O EATR).

Hence, choosing 71 = 1/3 and 2 = 1/2 and M large enough, using (A.23)), (A.24)) in (A.21)) we have

d—1
L2(T5) > CAN2 "2 73772 "%

xx2(2)DY xa1
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which implies
1
DX xa1llz2ry) = CAS a2 ry)-
All that remains to show is that I's and I'; can be chosen so that they are curved. To see this, let §
be a unit speed reparametrization of ¢ — (¢ + 1, (¢ + 1)2). (This example is shown in Figure[1}) Then, a
parametrization of I'y is given by

, —20t4+1),1) |,
mx)H>Qﬁ+L@+1ﬁy+(1i4ﬁ11;mﬁﬂj

and a parametrization of I'y is given by

' L2(t+1) | o
(t,2) = ((—4(t+ D 3(t+1)* + 2) + \}%\x \2,x> .

Then, a simple calculation verifies that near (0, 0) these surfaces are curved. Hence, letting I" be a curved
hypersurface containing I'; and I'y completes the proof of the estimate ((A.20))
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