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Abstract. Let (M, g) be a compact, smooth, Riemannian manifold and {φh} an
L2-normalized sequence of Laplace eigenfunctions with defect measure µ. Let H be
a smooth hypersurface with unit exterior normal ν. Our main result says that when
µ is not concentrated conormally to H, the eigenfunction restrictions to H satisfyˆ

H

φhdσH = o(1) and

ˆ
H

hDνφhdσH = o(1),

h→ 0+.

1. Introduction

On a compact Riemannian manifold (M, g), with no boundary, consider a sequence
of Laplace eigenfunctions {φh},

−h2∆gφh = φh,

normalized so that ‖φh‖L2(M) = 1. The goal of this article is to study the average
oscillatory behavior of φh when restricted to a hypersurface H ⊂M . Namely, the goal
is to find a condition on the pair ({φh}, H) so thatˆ

H
φh dσH = o(1), (1)

as h → 0+, where σH denotes the hypersurface measure on H induced by the Rie-
mannian structure.

It is important to point out that one cannot always expect to observe this oscillatory
decay. For instance, on the round sphere, zonal harmonics of even degree integrate to
a constant along the equator. Also, for any closed geodesic inside the square flat torus.
there is a sequence of eigenfunctions that integrate to a non-zero constant.

Integrals of the form (1) have been studied for quite some time, going back to the
work of Good [Goo83] and Hejhal [Hej82] that treated the case where H is a periodic
geodesic inside a compact hyperbolic manifold. These authors proved that in such a
case,

´
H φh dσH = O(1) as h→ 0+. Zelditch [Zel92] generalized this to the case where

H is any hypersurface inside a compact manifold, showing that for any hypersurface
H, ˆ

H
φhdσH = O(1). (2)

In addition, it follows from [Zel92] that for a density one subsequence of eigenvalues
{hj}j , one has limj→∞

´
H φhj dσH = 0. Moreover, one can actually get an explicit

polynomial bound of the form O(h1/2−0) for the rate of decay of expectations for the
density-one subsequence (see [JZ16]). However, the latter estimate is not satisfied for
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all eigenfunctions and it is not clear which sequence of eigenfunctions must be removed
for the estimate to hold. There are several articles that address this issue by restricting
to special cases of Riemannian surfaces (M, g) and special curves H ⊂M. Working on
surfaces of strictly negative curvature, and choosing H to be a geodesic, Chen-Sogge
[CS15] proved

´
H φh dσH = o(1). Subsequently, Sogge-Xi-Zhang [SXZ16] obtained

a O((log h)−1/2) bound on the rate of decay under a relaxed curvature condition.
Recently, working on surfaces of non-positive curvature Wyman [Wym17] obtained
(1) when assuming curvature conditions on H. Finally, we remark that on average,

one expects
´
H φh dσH � h

1
2 (see [Esw16]).

In this article we focus on establishing (1) given explicit conditions on the sequence
of eigenfunctions {φh}. We do not impose any geometric conditions on (M, g), nor do
we assume it is a surface. Furthermore, we do not restrict our attention to geodesic
curves and allow H to be any hypersurface in M . Instead, we prove that (1) holds
provided that the sequence {φh} does not asymptotically concentrate in the conormal
direction N∗H to H. One example where this holds is the case quantum ergodic
sequences of eigenfunctions and any hypersurface H.

1.1. Statements of the results. Let H ⊂M be a closed smooth hypersurface, and
write S∗HM ⊂ S∗M for the space of unit covectors with foot-points in H, and S∗H
for the set of unit covectors tangent to H. We fix t0 > 0 small enough and define a
measure µH on S∗HM ⊂ S∗M by

µH(A) :=
1

2t0
µ
( ⋃
|s|≤t0

Gs(A)
)
, (3)

where Gt : S∗M → S∗M denotes the geodesic flow. Remark 3 shows that if A ⊂ S∗HM
is so that A ⊂ S∗HM\S∗H, then µH(A) is independent of the choice of t0 and it is
natural to replace fixed t0 with limt0→0.

Definition 1. We say that µ is conormally diffuse with respect to H if

µH(N∗H) = 0.

If U ⊂ H is open, we say that µ is conormally diffuse with respect to H over U if

µH(N∗H ∩ S∗UM) = 0.

As an example, this condition is satisfied when {φh} is a quantum ergodic (QE)
sequence and µ = µL, the Liouville measure on S∗M. Note that the QE condition is
much stronger than the assumption in Definition 1. In Section 5 we give examples of
hypersurfaces and sequences of eigenfunctions for which the defect measure is conor-
mally diffuse but is not absolutely continuous with respect to the Liouville measure.
Our main result is the following.

Theorem 1. Let H ⊂ M be a closed hypersurface. Let {φh} be a sequence of eigen-
functions associated to a defect measure µ that is conormally diffuse with respect to
H. Then, ˆ

H
φh dσH = o(1),
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and ˆ
H
h∂νφh dσH = o(1),

as h→ 0+.

Remark 1. The proof of Theorem 1 actually shows that
´
H φhχdσH = o(1) for any

χ ∈ C∞(H). We note also that the methods of this paper give another independent
proof of (2).

As we have already pointed out, the Liouville measure µ = µL is conormally diffuse.
Consequently, the following result is a corollary of Theorem 1:

Theorem 2. Le H ⊂ M be a closed hypersurface and {φh} be any QE sequence
sequence of eigenfunctions. Then,ˆ

H
φh dσH = o(1) and

ˆ
H
h∂νφh dσH = o(1).

By Lindenstrauss’ celebrated result [Lin06], Hecke eigenfunctions on compact, arith-
metic hyperbolic surfaces are all QE (ie. they are quantum uniquely ergodic (QUE)).
Together with Theorem 2 this yields

Theorem 3. Let (H/Γ, g) be a compact, arithmetic surface and H ⊂ M be a closed,
C∞ curve. Then, for all Hecke eigenfunctions {φh},ˆ

H
φh dσH = o(1) and

ˆ
H
h∂νφh dσH = o(1).

One can localize the results in Theorems 1-3. In the following, we write dσH for the
measure on H induced by the Riemannian structure.

Theorem 4. Let (M, g) be a smooth, closed Riemannian manifold and H ⊂ M be
a closed hypersurface with A ⊂ H a subset with piecewise C∞ boundary and suppose
U ⊂ H is open with A ⊂ U . Let {φh} be a sequence of eigenfunctions with defect
measure µ conormally diffuse with respect to H over U . Then,ˆ

A
φh dσH = o(1),

and ˆ
A
h∂νφh dσH = o(1),

as h→ 0+.

Remark 2. We note that as a corollary of Theorem 4, the results in Theorems 2 and
3 for QE eigenfunctions extend to all smooth curve segments A.
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2. Decomposition of defect measures

2.1. Invariant Measures near transverse submanifolds. Let N be a smooth
manifold, V be a vector field on N and write ϕVt : N → N for the flow map generated
by V at time t. Let Σ ⊂ N be a smooth manifold transverse to V. Then for ε > 0
small enough, the map ι : (−2ε, 2ε)× Σ→ N

ι(t, q) = ϕVt (q)

is a diffeomorphism onto its image and we may use (−2ε, 2ε)×Σ as coordinates on N
near Σ.

Lemma 5. Suppose that µ is a finite Borel measure on N and that Vµ = 0 i.e.
(ϕVt )∗µ = µ. Then, for a Borel set A ⊂ [−ε, ε)× Σ,

ι∗µ(A) = dtdµΣ(A)

where dµΣ is a finite Borel measure on Σ.

Proof. As above, we choose coordinates (t, q) so that ι∗V = ∂t. Then, for all F ∈
C∞c (−2ε, 2ε)× Σ, ˆ

∂tFdµ = 0.

Now, fix χ ∈ C∞c ((−2ε, 2ε)) with with
´
χdt = 1. Let f ∈ C∞c ((−2ε, 2ε) × Σ) and

define

f̄(q) :=

ˆ
f(t, q)dt.

Then f(t, q)− χ(t)f̄(q) = ∂tF with

F (t, q) :=

ˆ t

−∞
f(s, q)− χ(s)f̄(q)ds ∈ C∞c ((−2ε, 2ε)× Σ).

Therefore, for all f ∈ C∞c ((−2ε, 2ε)×N) and χ ∈ C∞c ((−2ε, 2ε)) with
´
χdt = 1,ˆ

f(t, q)dµ(t, q) =

ˆ
χ(t)f̄(q)dµ(t, q) =

˚
f(s, q)dsχ(t)dµ(t, q).

Now, let B ⊂ Σ be Borel and I ⊂ (−2ε, ε) Borel and fn(t, q) ↑ 1I(t)1B(q). Then by
the dominated convergence theorem,

µ(I ×B) =

¨
|I|1B(q)χ(t)dµ(t, q).

Next, let χn ↑ (2ε)−11[−ε,ε] with
´
χn ≡ 1. Then we obtain

µ(I ×B) =
|I|
2ε
µ([−ε, ε]×B).

So, letting µΣ(B) := (2ε)−1µ([−ε, ε]×B), we have that for rectangles I×B, µ(I×B) =
dtdµΣ(I × B). But then, since these sets generate the Borel sigma algebra, the proof
of the lemma is complete.

�
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2.2. Fermi coordinates. Throughout the remainder of the article we will work in the
case that H ⊂M is a smooth, orientable, separating hypersurface. That is, M \H has
two connected components. We then recover Theorem 1 for general H after proving
Theorem 4 for such hypersurfaces. We then divide a given hypersurface into finitely
many (possibly overlapping) subsets of separating orientable hypersurfaces and apply
Theorem 4 to each. Let H ⊂ M be a closed smooth hypersurface and let UH be a
Fermi collar neighborhood of H. In Fermi coordinates

UH = {(x′, xn) : x′ ∈ H and xn ∈ (−c, c)}
for some c > 0, and H = {(x′, 0) : x′ ∈ H}. Since H is a closed, separating hyper-
surface, it divides M into two connected components ΩH and M\ΩH . In the Fermi
coordinates system, the point (x′, xn) is identified with the point expx′(xnνn) ∈ UH
where νn is the unit normal vector to ΩH with base point at x′ ∈ H.

H

Hs

U

ΩH

ξn

ξ′

(x′, xn)

(x′, 0)

The Fermi coordinates on UH induce coordinates (x′, xn, ξ
′, ξn) on S∗UM = {(x, ξ) ∈

S∗M : x ∈ U} with (ξ′, ξn) ∈ S∗(x′,xn)M . In these coordinates, ξ′ is cotangent to H

while ξn is conormal to H.
Note that in the Fermi coordinate system we have

|(ξ′, ξn)|2g(x′,xn) = ξ2
n +R(x′, xn, ξ

′), (4)

where R satisfies that R(x′, 0, ξ′) = |ξ′|2gH(x′) for all (x′, ξ′) ∈ T ∗H and gH is the

Riemannian metric induced on H by g.

2.3. Transversals for defect measures. We now apply Lemma 5 to the special case
of defect measures, using the fact that they are invariant under the geodesic flow. In
what follows we write |ξ′|x′ := |ξ′|gH(x′), where gH is the Riemannian metric on H
induced by g. Let

GH(δ) := {(x, ξ) ∈ S∗HM : |ξ′|2x′ ≥ 1− δ2},
and define the set of non-glancing directions

Σδ := S∗HM \ GH(δ).

Lemma 6. Suppose µ is a defect measure associated to a sequence of Laplace eigen-
functions. Then, for all δ > 0 there exists ε > 0 small enough so that

ι∗µ = dt dµΣδ on (−ε, ε)× Σδ
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where

ι : (−ε, ε)× Σδ →
⋃
|s|<ε

Gs(Σδ), ι(t, q) = Gt(q),

is a diffeomorphism and dµΣδ is a finite Borel measure on Σδ.

Proof. In what follows we use Lemma 5 with N = S∗M , V = Hp the Hamiltonian flow
for p = |ξ|g, and ϕVt = Gt the geodesic flow. Note that since µ is a defect measure for
a sequence of Laplace eigenfunctions, it is invariant under the geodesic flow Gt. Then,
for q ∈ Σδ,

|Hpxn(q)| > c δ > 0

and hence Σδ is transverse to Gt. Therefore, there exists ε > 0 so that ι : (−2ε, 2ε)×
Σδ → S∗M, with ι(t, q) = Gt(q), is a coordinate map. �

Remark 3. For each A ⊂ S∗HM with A ⊂ S∗HM \ S∗H, there exists δ0 > 0 so that

dµΣδ(A) = lim
t→0

1

2t
µ
( ⋃
|s|≤t

Gs(A)
)

for all 0 < δ ≤ δ0. Indeed, since A is compact, there exists δ0 = δ0(A) > 0 so that
A ⊂ Σδ0 . Then, by Lemma 6, there exists ε = ε(A) > 0 so that if |t| ≤ ε, then

µ
( ⋃
|s|≤t

Gs(A)
)

= 2t dµΣδ(A).

In particular, we conclude that the quotient 1
2tµ
(⋃

|s|≤tG
s(A)

)
is independent of t as

long as |t| ≤ ε.
We also need the following description of µ.

Lemma 7. Suppose µ is a defect measure associated to a sequence of Laplace eigen-
functions, and let δ > 0. Then, in the notation of Lemma 6, there exists ε0 > 0 small
enough so that

µ = |ξn|−1dµΣδ(x
′, ξ′, ξn)dxn,

for (x′, xn, ξ
′, ξn) ∈ ι((−ε0, ε0)× Σδ).

Remark 4. Notice that |Hpxn| > γ on Σγ = S∗HM \ G(γ). Therefore, there exists
c0, c1 > 0 so that

{(x′, xn, ξ′, ξn) : |xn| ≤ c0γ, |ξ′|2x′ ≤ 1− c−1
0 γ2} ⊂

⋃
|t|≤c1γ

Gt(Σγ).

Proof. By Lemma 6,

ι∗µ = dµΣδ(x
′, ξ′, ξn)dt on (−ε, ε)× Σδ.

Then, for q ∈ Σδ

|∂txn(ι(0, q))| = |Hpxn(ι(0, q))| = |ξn(ι(0, q))|
|ξ|g

> δ
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and hence for ε0 > 0 small enough and q ∈ Σδ, t ∈ (−ε0, ε0),

|∂txn(ι(t, q))| = |Hpxn(ι(t, q))| = |ξn(ι(t, q))|
|ξ|g

>
δ

2
.

Therefore, dt = f(x′, xn, ξ
′, ξn)dxn where

f(x′, xn, ξ
′, ξn) = |Hpxn(ι−1(xn, (x

′, ξ′, ξn)))|−1 =
|ξ|g
|ξn|

= |ξn|−1

where in the last equality, we use that |ξ|g = 1. In particular,

µ = |ξn|−1dµΣδ(x
′, ξ′, ξn)dxn.

�

Before proceeding to the proof of Theorem 1 we note that Lemma 7 implies that for
all δ > 0,

µ(S∗HM \ GH(δ)) = 0. (5)

Remark 5. Notice that the measure

|ξn|−1dµΣδ(x
′, ξ′, ξn) =

1√
1− |ξ′|2x′

dµΣδ(x
′, ξ′, ξn)

is hypersurface measure on S∗HM \G(δ) induced by µ where we take ∂xn to be the nor-
mal vector field to S∗HM . For example, if µL is Liouville measure, then, parametrizing
S∗HM \ G(δ) by (x′, ξ′)

d(µL)Σδ = c1{S∗HM\G(δ)}(x
′, ξ′, ξn)dx′dξ′

for some c > 0.

3. Proof of Theorem 1

Consider the cut-off function χα ∈ C∞(R, [0, 1]) with

χα(t) =

{
0 |t| ≥ α
1 |t| ≤ α

2 ,

with |χ′α(t)| ≤ 3/α for all t ∈ R.
For δ > 0 consider the symbol

βδ(x
′, ξ′) = χδ(|ξ′|x′) ∈ S0(T ∗H) (6)

where we continue to write |ξ′|x′ := |ξ′|gH(x′). We refer the reader to the Appendix
where the semiclassical notation used in this section is introduced. The operator
Oph(βδ) ∈ Ψ0(H) microlocalizes near the conormal direction in T ∗H which is identified
with ξ′ = 0 via the orthogonal projection. The first step towards the proof of Theorem
1 is to reduce the problem to study averages over H of the functions φh and h∂νφh
when microlocalized near the conormal direction.

Lemma 8. For any δ > 0 and u ∈ L2(H),ˆ
H
u dσH =

ˆ
H
Oph(βδ)u dσH +Oδ(h

∞)‖u‖L2(H).
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Proof. We wish to show that

〈(1−Oph(βδ))u, 1〉L2(H) = 〈u, (1−Oph(βδ))
∗1〉L2(H) = Oδ(h

∞).

To prove this, we simply note that in local coordinates

(1−Oph(βδ))
∗1(x) =

1

(2πh)n−1

¨
e
i
h
〈x−x′,ξ′〉aδ(x, ξ

′;h)(1− χ2δ)(|ξ′|x) dξ′dx′,

for some symbol aδ ∈ S0. The phase function Φ(x′, ξ′;x) = 〈x − x′, ξ′〉 has critical
points in (x′, ξ′) given by

(x′, ξ′) = (x, 0).

By repeated integration by parts with respect to the operator

L :=
1

|x− x′|2 + |ξ′|2

 n∑
j=1

ξ′jhDx′j
+

n∑
j=1

(x′j − xj)hDξ′j

 ,

using that L(eiΦ/h) = eiΦ/h, one gets

(1−Oph(βδ))
∗1(x) =

1

(2πh)n−1

¨
ei

(x−x′)ξ′
h aδ(x, ξ

′)(1−χδ)(|ξ′|x)χ1(|x−x′|) dξ′dx′+Oδ(h∞)

= Oδ(h
∞),

uniformly in x ∈ H. The last line follows by repeated integrations by parts with respect
to L using the fact that (1− χδ)(k)(0) = 0 for all k ≥ 0. �

3.1. Proof of Theorem 1. We wish to show that for any ε > 0 there exists h0(ε) > 0
so that ∣∣∣∣ˆ

H
φh dσH

∣∣∣∣ ≤ ε and

∣∣∣∣ˆ
H
h∂νφhdσH

∣∣∣∣ ≤ ε, (7)

for all h ≤ h0.
In view of Lemma 8, we can microlocalize the problem to the conormal direction;

that is, the claim in (7) follows provided we prove that given ε > 0 there exist δ(ε) > 0
and h0(ε) > 0 so that∣∣∣∣ˆ

H
Oph(βδ)φh dσH

∣∣∣∣ ≤ ε and

∣∣∣∣ˆ
H
Oph(βδ)h∂νφhdσH

∣∣∣∣ ≤ ε, (8)

for all h ≤ h0(ε).
To prove (8), by Cauchy-Schwarz, it clearly suffices to establish the stronger bounds

‖Oph(βδ)φh‖L2(H) ≤ ε and ‖Oph(βδ)h∂νφh‖L2(H) ≤ ε, (9)

for all h ≤ h0(ε) and δ(ε) > 0 sufficiently small.
From now on, we fix ε > 0. Using Green’s formula [CTZ13], it is straightforward to

check that for any operator A : C∞(M)→ C∞(M) one has the Rellich Identity

i

h

ˆ
ΩH

[−h2∆g, A]φh φh dvg =

ˆ
H
Aφh hDνφh dσH +

ˆ
H
hDν(Aφh)φh dσH , (10)

where Dν = 1
i ∂ν , with ν being the unit outward vector normal to ΩH .
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Let δ > 0 and α > 0 be two real valued parameters to be specified later and consider
the operator

Aδ,α(h) := Oph(β2
δ ) ◦Oph(χα(xn)) ◦ hDν ,

where βδ is defined in (6).

Remark 6. We note that when we write Oph(β2
δ ) above, we are actually considering

the operator Oph(β2
δ )⊗ Idxn . That is, for u ∈ C∞(M),

[Oph(β2
δ )u](x′, yn) = [Oph(β2

δ )u|xn=yn ](x′).

The operator Aδ,α(h) is the semiclassical normal derivative operator h-microlocalized
to a neighbourhood of the conormal direction to H over the collar neighbourhood UH .

We note thatˆ
H
Aδ,α(h)φh hDνφh dσH =

〈
Oph(β2

δ )hDνφh , hDνφh
〉
L2(H)

, (11)

since χα(xn) = 1 for xn ∈ [−α
2 ,

α
2 ]. Without loss of generality, we may assume that

ΩH ∩ UH = {(x′, xn) : x′ ∈ H and xn < 0}.
With this choice, Dν = Dxn . We next recall that

γH(h2D2
νφh) = (I + h2∆gH )γH(φh) + ha1γH(φh) + ha2γH(hDνφh),

where γH : M → H is the restriction map to H, and a1, a2 ∈ C∞(H). Since χ′α(0) = 0

it follows from the restriction upper bounds ‖φh‖H = O(h−1/4) [BGT07, HT12, Tac10,
Tat98] and ‖hDνφh‖H = O(1) [CHT15, Tac14] that

〈(hDν)2φh, φh〉L2(H) − 〈(1 + h2∆gH )φh, φh〉L2(H) = OL2(
√
h).

Consequently,ˆ
H
hDν(Aδ,α(h)φh)φh dσH =

〈
hDνOph(β2

δ )χα(xn)hDνφh , φh
〉
L2(H)

=
〈
Oph(β2

δ )(hDν)2φh , φh
〉
L2(H)

=
〈
Oph(β2

δ )(1 + h2∆gH )φh , φh
〉
L2(H)

+O(h
1
2 ). (12)

Substitution of (11) and (12) in (10) gives

i

h

ˆ
ΩH

[−h2∆g, Aδ,α(h)]φh φh dvg =

=
〈
Oph(β2

δ )hDνφh , hDνφh
〉
H

+
〈
Oph(β2

δ )(1 + h2∆gH )φh , φh
〉
H

+O(h
1
2 ). (13)

Next, we observe that

‖Oph(βδ)hDνφh‖2H =
〈
Oph(β2

δ )hDνφh , hDνφh
〉
H

+O(h) (14)

since ‖hDνφh‖H = O(1) [CHT15]. On the other hand, for (x′, ξ′) ∈ suppβδ we have
|ξ′|2x ≤ δ2 and so,

β2
δ · (1− |ξ′|2x)− β2

δ · (1− 2δ2) = β2
δ

(
2δ2 − |ξ′|2x

)
≥ β2

δ δ
2 ≥ 0.
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Therefore, combining the sharp Garding inequality with the bound ‖φh‖H = O(h−1/4)
gives

(1− 2δ2)‖Oph(βδ)φh‖2H = 〈Oph(β2
δ (1− 2δ2))φh, φh〉H +O(h

1
2 )

≤ 〈Oph(β2
δ · (1− |ξ′|2x))φh, φh〉H +O(h

1
2 )

= 〈Oph(β2
δ )(1 + h2∆gH )φh, φh〉H +O(h

1
2 ). (15)

Substitution of (14) and (15) into (13) gives

‖Oph(βδ)hDνφh‖2H + (1− 2δ2)‖Oph(βδ)φh‖2H ≤
i

h

ˆ
ΩH

[−h2∆g, Aδ,α(h)]φh φh dvg +O(h
1
2 ). (16)

The claim in (9) follows at once from (16) provided we show that for any ε > 0
there exist δ, α > 0 and h0 > 0 (all possibly depending on ε) such that∣∣∣〈 i

h
[−h2∆g, Aδ,α(h)]φh , φh

〉
L2(ΩH)

∣∣∣ ≤ ε2 ∀h ≤ h0(ε) (17)

To prove (17) we note that〈 i
h

[−h2∆g, Aδ,α(h)]φh , φh

〉
L2(ΩH)

=

=
〈
Oph

({
σ(−h2∆g), σ(Aδ,α(h))

})
φh , φh

〉
L2(ΩH)

+O(h), (18)

where σ(Aδ,α(h))(x, ξ) = β2
δ (x′, ξ′)χα(xn)ξn, and according to (4), the Poisson bracket{

|(ξ′, ξn)|2x , σ(Aδ,α(h))
}

= 2χ′α(xn)β2
δ (x′, ξ′) ξ2

n + χα(xn)qδ(x
′, xn, ξ

′, ξn) (19)

where,

qδ(x, ξ) := ξn∂ξ′R · ∂x′β2
δ − ξn∂x′R · ∂ξ′β2

δ − ∂xnR · β2
δ .

We now estimate each term in the RHS of (19) separately.

Lemma 9. Let {φh} be an L2-normalized eigenfunction sequence with defect measure
µ. Then,

(i) |
〈
Oph(χα(xn)qδ)φh , φh

〉
L2(ΩH)

| ≤ Rα,δ + o(1),

where

Rα,δ := ‖qδ‖L∞ · µ({(x′, xn, ξ′, ξn) ∈ S∗UHM : |xn| ≤ α, |ξ′| < δ}) 1
2 .

In addition,

(ii)
〈
Oph(2χ′α(xn)β2

δ (x′, ξ′) ξ2
n)φh , φh

〉
L2(ΩH)

=

ˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′) ξ2
n dµ+ o(1).

In both (i) and (ii), o(1) denotes a term that vanishes as h→ 0+.
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We postpone the proof of Lemma 9 until the end of this section. Assuming this
result for the moment, we now conclude the proof of the theorem. From Lemma 9 and
(19), it follows that〈 i

h
[−h2∆g, Aδ,α(h)]φh , φh

〉
L2(ΩH)

=

ˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′) ξn
2 dµ+Rα,δ + o(1).

(20)

Since µ is a Radon measure, and hence monotone,

lim
α→0

Rα,δ = ‖qδ‖L∞ · µ({(x′, 0, ξ) ∈ S∗HM ; |ξ′| < δ}) 1
2 . (21)

Thus, using Lemma 7 (or more precisely (5)) gives

lim
α→0

Rα,δ = 0. (22)

Moreover, since the LHS of (16) is independent of α, we are free to take the α→ 0
limit of both sides. In view of (20) and (21), it follows that after taking h → 0+ and
then α→ 0+,

lim sup
h→0

(
‖Oph(βδ)hDνφh‖2H + (1− 2δ2)‖Oph(βδ)φh‖2H

)
≤

≤ lim sup
α→0

lim sup
h→0+

i

h

ˆ
ΩH

[−h2∆g, Aδ,α(h)]φh φh dvg

= lim sup
α→0+

ˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′) ξ2
n dµ. (23)

The last line in (23) follows from (22).
To analyze the RHS of (23), fix γ > 0 small. By Lemma 7 there exists εγ > 0 and

a measure µΣγ on Σγ = {(x, ξ) ∈ S∗HM : |ξ′|2x′ ≤ 1− γ2} so that

µ(x, ξ) = f(x′, xn, ξ
′, ξn)dµΣγ (x′, ξ′, ξn)dxn, (x, ξ) ∈

⋃
|t|≤εγ

Gt(Σγ).

By Remark 4 we may assume that we work with α, δ small enough so that

supp(χ′α · β2
δ ) ⊂

⋃
|t|≤εγ

Gt(Σγ). (24)

Since supp(χ′α) ⊂ (−α, 0), by the Fubini theorem we haveˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′)ξ2
n dµ =

=

ˆ 0

−c
2χ′α(xn)

(ˆ
S∗HM

β2
δ (x′, ξ′)ξ2

n|ξn|−1dµΣγ (x′, ξ′, ξn)

)
dxn

=

ˆ
S∗HM

ˆ 0

−c
2χ′α(xn)β2

δ (x′, ξ′)|ξn|dxndµΣγ (x′, ξ′, ξn).

(25)
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Sending α→ 0 gives

lim
α→0+

ˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′)ξ2
n dµ =

ˆ
S∗HM

2β2
δ (x′, ξ′)|ξn|dµΣγ (x′, ξ′, ξn).

Sending δ → 0 and using that βδ ≡ 1 on N∗H, |βδ| ≤ C we obtain

lim
δ→0

lim
α→0+

ˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′)ξ2
n dµ =

ˆ
N∗H

2 dµΣγ (x′, ξ′, ξn) = 2µΣγ (N∗H).

(26)

Since µ is conormally diffuse, we have by Remark 3 that µΣγ (N∗H) = 0 and so (9)
follows from (26) and (23). �

3.2. Proof of Lemma 9.

Proof. First, we use the standard fact that {φh} are microsupported on S∗M [CHT15]
to h-microlocally cut them off near S∗M . More precisely, for r > 0 small, consider the
annular shell

A(r) :=
{

(x, ξ) ∈ T ∗M : 1− r < |ξ|g(x) < 1 + r
}
.

Let χ̃ ∈ C∞c (T ∗M) be a cutoff function equal to 1 on A(r) and zero on T ∗M \A(2r).
Then, [CHT15]

‖φh −Oph(χ̃)φh‖L2(M) = O(h∞). (27)

Proof of (i): Since ‖φh‖L2(M) = 1, by Cauchy-Schwarz,∣∣〈Oph(χα(xn)qδ)φh , φh
〉
L2(ΩH)

∣∣2 ≤ ‖Oph(χα(xn)qδ)φh‖2L2(M)

=
〈
[Oph(χα(xn)qδ)]

∗[Oph(χα(xn)qδ)]φh, φh
〉
L2(M)

=
〈
[Oph(χα(xn)qδ)]

∗[Oph(χα(xn)qδ)]φh, Oph(χ̃)φh
〉
L2(M)

+O(h∞)

=
〈
Oph(χ̃ · χ2

α(xn) · |qδ|2)φh, φh〉L2(M) +O(h)

=

ˆ
S∗M

χ̃ · χ2
α(xn) · |qδ|2 dµ+ o(1)

≤ ‖qδ‖2L∞ · µ
(
{(x′, xn, ξ′, ξn) ∈ S∗UHM : |xn| ≤ α, |ξ′| < δ}

)
+ o(1),

where the penultimate identity follows from the fact that µ is the defect measure as-
sociated to {φh} and the symbol χ̃ · χ2

α(xn) · |qδ|2 ∈ C∞c (T ∗UH).

Proof of (ii): Let ρ ∈ C∞c (R) be a smooth cut-off function with ρ(xn) = 0 for xn ≥ 0
and ρ(xn) = 1 for xn ≤ −α/2. Then, since ΩH ∩UH is identified with the set of points
on which xn < 0, and supp(χ′α) ⊂ (−∞,−α/2] ∪ [α/2,+∞), we have

ρ(xn)χ′α(xn) =

{
0 on Ωc

H ,

χ′α(xn) on ΩH .
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Note that since χ′α(xn) = 0 for xn ∈ [−α/2, α/2], we may regard ρχ′α as a smooth
function defined on all of M . We then have that〈

Oph(2χ′α(xn)β2
δ (x′, ξ′) ξ2

n)φh , φh
〉
L2(ΩH)

=

=
〈
Oph(2ρ(xn)χ′α(xn)β2

δ (x′, ξ′) ξ2
n)φh , φh

〉
L2(M)

.

Microlocalizing the eigenfunctions near S∗M by using the cut-off χ̃ we obtain〈
Oph(2χ′α(xn)β2

δ (x′, ξ′) ξ2
n)φh , φh

〉
L2(ΩH)

=

=
〈
Oph(χ̃ρ(xn)2χ′α(xn)β2

δ (x′, ξ′) ξ2
n)φh , φh

〉
L2(M)

+O(h).

Using that µ is the defect measure associated to {φh}, and that the symbol χ̃β2
δ ξ

2
n ∈

C∞c (T ∗M), we obtain〈
Oph(χ̃ρ(xn)2χ′α(xn)β2

δ (x′, ξ′) ξ2
n)φh , φh

〉
L2(M)

=

=

ˆ
S∗M

2ρ(xn)χ′α(xn)β2
δ (x′, ξ′) ξ2

n dµ+ o(1)

=

ˆ
S∗ΩH

M
2χ′α(xn)β2

δ (x′, ξ′) ξ2
n dµ+ o(1),

as claimed. �

Remark 7. By replacing the test operator Aδ,α(h) with

Ãδ,α(h) := Oph(β2
δ (x′, ξ′)) ◦ f(x′) ◦Oph(χα(xn)) ◦ hDν ,

where f ∈ C∞(H) and carrying out the same argument as in the proof of Theorem 1,
it is easy to see that under the assumption µH(π−1(supp f) ∩N∗H) = 0,ˆ

H
f φhdσH = o(1) and

ˆ
H
f hDνφhdσH = o(1).

4. Proof of Theorem 4

To prove Theorem 4 we need the following result.

Lemma 10. Suppose A ⊂ H has piecewise smooth boundary. Then for all ε > 0

‖(1−Oph(βδ))
∗1A‖L2(H) = Oε(h

1
2
−ε).

Proof. To prove this result we first introduce a cut-off function χh so that (1− χh)1A
is smooth and close to 1A. Let χh ∈ C∞c (H) satisfy

i) χh ≡ 1 on {x ∈ H : d(x, ∂A) ≤ h1−ε}.
ii) suppχ ⊂ {x ∈ H : d(x, ∂A) ≤ 2h1−ε}.

iii) |∂αxχ| ≤ Cαh|α|(1−ε).
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Then, (1 − χh)1A satisfies the same bound as in (iii), and hence integrating by parts

as in Lemma 8 i.e. with L := 1
|x−x′|2+|ξ′|2

(∑n
j=1 ξ

′
jhDx′j

+
∑n

j=1(x′j − xj)hDξ′j

)
, gives

[(1−Oph(βδ))
∗(1− χh)1A](x)

=
1

(2πh)n−1

¨
e
i
h
〈x−x′,ξ′〉(1− βδ(x′, ξ′))(1− χh(x′))1A(x′)dx′dξ′

=
1

(2πh)n−1

¨
e
i
h
〈x−x′,ξ′〉(L∗)N

[
(1− βδ(x′, ξ′))(1− χh(x′))1A(x′)

]
dx′dξ′

= ON (h1−n+N(1−ε)).

In particular,

‖(1−Oph(βδ))
∗(1− χh)1A‖L∞ = Oε(h

∞). (28)

On the other hand

‖χh1A‖L2(H) = O(h
1−ε

2 ). (29)

Combining (28) and (29) together with L2 boundedness of Oph(βδ) proves the lemma.
�

4.1. Proof of Theorem 4. Let A ⊂ H be an open subset with piecewise C∞ bound-
ary and indicator function χA. Suppose that U ⊂ H is open with A ⊂ U . Then since
C∞(H) is dense in L2(H), for any ε > 0, we can find f ∈ C∞(H)

‖f − 1A‖L2(H) ≤ ε, supp f ⊂ U.
Now,∣∣∣ˆ

H
1AφhdσH

∣∣∣ ≤
≤
∣∣∣ ˆ

H
1AOph(βδ)φhdσH

∣∣∣+
∣∣∣〈(1−Oph(βδ))φh, 1A〉H

∣∣∣
≤
∣∣∣ˆ

H
(1A − f)Oph(βδ)φhdσH

∣∣∣+
∣∣∣ ˆ

H
fOph(βδ)φhdσH

∣∣∣+
∣∣∣〈φh, (1−Oph(βδ))

∗1A〉H
∣∣∣

≤
∣∣∣ˆ

H
(1A − f)Oph(βδ)φhdσH

∣∣∣+ o(1). (30)

The last line follows by applying Lemma 10, the universal upper bound ‖φh‖L2(H) ≤
Ch−

1
4 [BGT07] and Cauchy-Schwarz to the third term, and by applying Remark 7 to

the second term.
Now, since βδ is supported away from

S∗H := {(x′, ξ′) ∈ T ∗H : |ξ′|x′ = 1},
we have that ‖Oph(βδ)φh‖L2(H) ≤ C [BGT07, Tac10] and hence applying Cauchy–
Schwarz to (30) ∣∣∣ˆ

H
1AφhdσH

∣∣∣ ≤ Cε+ o(1).

Since ε > 0 was arbitrary, the theorem follows. �
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Remark 8. It is clear from the proof of Theorem 4 that one can decrease the regularity
assumption on ∂A and only assume that ∂A has Minkowski box dimension < n − 3

2
where n = dimM . However, we do not pursue this here.

5. Examples

5.1. Non vanishing averages on the torus. Let T2 be the 2-dimensional square
flat torus. We identify T2 with {(x1, x2) : (x1, x2) ∈ [0, 1) × [0, 1)}. Consider the
sequence of normalized eigenfunctions

φh(x1, x2) = e
i
h
x1 .

Consider the curve H ⊂ T2 defined as H = {(x1, x2) : x1 = 0}. Then, since φh|H ≡ 1,
we have ˆ

H
φhdσH = 1, h−1 ∈ 2πZ+.

We claim that in this case the measure µ associated to {φh} is not conormally diffuse
with respect to H. Actually, we next prove that

µ(x1, x2, ξ1, ξ2) = δ(1,0)(ξ1, ξ2) · dx1 dx2, (x, ξ) ∈ S∗T2. (31)

Given (31), it follows that

µH = δ(1,0)(ξ1, ξ2), (x, ξ) ∈ S∗T2.

In particular,
µH(N∗H) = 1,

so the measure µ is not conormally diffuse with respect to H.
To see that (31) holds, fix any a ∈ C∞c (T ∗T2). Then,

〈Oph(a)φh, φh〉 =
1

(2πh)n

ˆ
T2

ˆ
T2

ˆ
R2

a(x, ξ)e
i
h
ψ(x,y,ξ)dξdydx

for the phase function

ψ(x, y, ξ) := 〈x− y, ξ〉+ y1 − x1.

We next do Stationary Phase in (y, ξ). The critical points for the phase are (y, ξ) =
(x, (1, 0)). Also,

Hess(y,ξ)ψ =

(
0 −1
−1 0

)
.

It follows that

〈Oph(a)φh, φh〉 =

ˆ
T2

a(x, (1, 0))dx =

ˆ
S∗T2

a(x, ξ) δ(1,0)(ξ)dx,

as claimed.

5.2. Defect measures that are not Liouville. As we already pointed out in the
Introduction, the assumptions on µ for being conormally diffuse are much weaker than
asking µ to be absolutely continuous with respect to the Liouville measure on S∗M .
In these examples we build a defect measure µ that is not absolutely continuous with
respect to the Liouville measure but still satisfies the hypothesis of Theorem 1 for a
suitable choice of curve H.
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5.2.1. Toral Eigenfunctions. Let T2 be the 2-dimensional square flat torus. We identify
T2 with {(x1, x2) : (x1, x2) ∈ [0, 1)× [0, 1)}. Consider the sequence of eigenfunctions

φh(x1, x2) = e
i
h
x1 , h−1 ∈ 2πZ.

As shown in Section 5.1, the associated defect measure is

µ(x1, x2, ξ1, ξ2) = δ(1,0)(ξ1, ξ2)dx1 dx2.

Next, consider the curve H ⊂ T2 defined as H = {(x1, x2) : x2 = 0}. Since N∗H =
{(x1, x2, ξ1, ξ2) ∈ S∗T2 : ξ1 = 0}, we have for δ > 0 sufficiently small,

µH(N∗H) = 0.

Theorem 1 therefore implies that

lim
h→0+

ˆ
H
ϕhdσ = lim

h→0+

ˆ 1

0
e
ix1
h dx1 = 0.

Of course, in this case the much stronger result
´ 1

0 e
ix1
h dx1 = 0 holds for all h−1 ∈

2πZ.

5.2.2. Gaussian Beams. Consider the two dimensional sphere S2 equipped with the
round metric, and use coordinates

(θ, ω) 7→ (cos θ cosω, sin θ cosω, sinω) ∈ S2,

with [0, 2π)× [−π/2, π/2]. For each of the frequencies h−1 =
√
l(l + 1) with ` ∈ N we

associate the Gaussian beam

φh(θ, ω) =
1

2ll!

( 2l + 1

4π(2l)!

) 1
2
e−ilθ(cosω)l.

It is normalized so that

‖φh‖L2(S2) = 1, (−h2∆S2 − 1)φh = 0.

Then, let χ ∈ C∞c (−1, 1) with χ ≡ 1 on [−1
2 ,

1
2 ] and define

uh(θ, ω) =
1

2ll!

( 2l + 1

4π(2l)!

) 1
2
e−ilθχ(ω)e−lω

2/2.

Observe that

uh − φh = oL2(1),

so for the purposes of computing the defect measure, we may compute with uh. Using
this, by an elementary stationary phase argument, (see e.g. [Zwo12, Section 5.1]) the
defect measure associated to φh is

µ =
1

2π
δ{ω=0,ξ=−1,ζ=0}dθ

where ξ is dual to θ and ζ is dual to ω. Let H = {(θ, ω) : ω = 0} be the equator. In
particular, N∗H = {(θ, ω, ξ, ζ) ∈ S∗S2 : ω = 0, ξ = 0, ζ = ±1}. Then,

µH(N∗H) = µ({ω ∈ (−t0, t0), ξ = 0, ζ = ±1}) = 0
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and Theorem 1 implies ˆ
H
φh(θ, 0)dθ = o(1).

6. Appendix on Semiclassical notation

We next review the notation used for semiclassical operators and symbols and some
of the basic properties. First, recall that for a compact manifold M of dimension n,
we write

Sm(T ∗M) := {a(·;h) ∈ C∞(T ∗M) : |∂αx ∂βξ a(x, ξ;h)| ≤ Cαβ(1 + |ξ|)m−|β|}.
We write Ψm(M) for the semiclassical pseudodifferential operators of order m on M
and

Oph : Sm(T ∗M)→ Ψm(M)

for a quantization procedure with Oph(1) = Id +OD′→C∞(h∞) and for u supported in
a coordinate patch, ϕ ∈ C∞c (M) with ϕ ≡ 1 on suppu we have

Oph(a)u(x) =
1

(2πh)n

¨
e
i
h
〈x−y,ξ〉ϕ(x)a(x, ξ)u(y)dξdy +OD′→C∞(h∞)u.

Then there exists a principal symbol map

σ : Ψm(M)→ Sm(T ∗M)/hSm−1(T ∗M)

so that

Oph ◦ σ(A) = A+OΨm−1(h), A ∈ Ψm, σ ◦Oph = π : Sm → Sm/hSm−1,

where π is the natural projection map. Moreover, for A ∈ Ψm1 , B ∈ Ψm2 ,

• σ(AB) = σ(A)σ(B) ∈ Sm1+m2/hSm1+m2−1,

• σ([A,B]) = h
i

{
σ(A), σ(B)

}
∈ hSm1+m2−1/h2Sm1+m2−2,

where {·, ·} denotes the poisson bracket. For more details on the semiclassical calculus
see e.g. [Zwo12, Chapters 4,14] [DZ16, Appendix E].

Finally, we recall the for any {u(h)}0<h<h0 ⊂ L2(M) a bounded family of functions,
we may extract a subsequence hk → 0 so that for a ∈ C∞c (T ∗M),

〈Oph(a)uhk , uhk〉L2(M) →
hk→0

ˆ
a(x, ξ)dµ

for a positive Radon measure µ. We call µ a defect measure for uhk . For p ∈ Sm(T ∗M)
real valued, if u(h) solves

Oph(p)u = o(h), ‖u(h)‖L2 = 1,

then for any defect measure µ associated to u(h),

suppµ ⊂ {p(x, ξ) = 0}, exp(tHp)∗µ = µ

where Hp denotes the Hamiltonian vector field associated to p. See e.g. [Zwo12,
Chapter 5] for more details.
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