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Abstract
We consider solving the exterior Dirichlet problem for the Helmholtz equation with
the h-version of the boundary element method (BEM) using the standard second-kind
combined-field integral equations.We prove a new, sharp bound on how the number of
GMRES iterations must grow with the wavenumber k to have the error in the iterative
solution bounded independently of k as k → ∞ when the boundary of the obstacle is
analytic andhas strictly positive curvature. Toour knowledge, this result is thefirst-ever
sharp bound on how the number of GMRES iterations depends on the wavenumber
for an integral equation used to solve a scattering problem. We also prove new bounds
on how h must decrease with k to maintain k-independent quasi-optimality of the
Galerkin solutions as k → ∞ when the obstacle is nontrapping.

Mathematics Subject Classification 35J05 · 35J25 · 65N22 · 65N38 · 65R20

1 Introduction

This paper is concerned with the wavenumber-explicit numerical analysis of boundary
integral equations (BIEs) for the Helmholtz equation

�u + k2u = 0, (1.1)
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where k > 0 is thewavenumber, posed in the exterior of a 2- or 3-dimensional bounded
obstacle � with Dirichlet boundary conditions on � := ∂�.

We consider the standard second-kind combined-field integral equation formula-
tions of this problem: the so-called “direct” formulation (arising fromGreen’s integral
representation)

A′
k,ηv = fk,η (1.2)

and the so-called “indirect” formulation (arising from an ansatz of layer potentials not
related to Green’s integral representation)

Ak,ηφ = gk, (1.3)

where

A′
k,η := 1

2
I + D′

k − iηSk, Ak,η := 1

2
I + Dk − iηSk, (1.4)

η ∈ R \ {0} is an arbitrary coupling parameter, Sk is the single-layer operator, Dk is
the double-layer operator, and D′

k is the adjoint double-layer operator (1.7), (1.8).
For simplicity of exposition, we focus on the direct Eq. (1.2), but the main results

also hold for the indirect Eq. (1.3) (see Remark 1.20 below). The contribution to Eq.
(1.2) from the Dirichlet boundary conditions is contained in the right-hand side fk,η;
our results are independent of the particular form of fk,η, and so we can simplify the
presentation by restricting attention to the particular exterior Dirichlet problem corre-
sponding to scattering by a point source or plane wave, i.e. the sound-soft scattering
problem (Definition 1.7 below).

We consider solving theEq. (1.2) in L2(∂�) using theGalerkinmethod; thismethod
seeks an approximation vN to the solution v from a finite-dimensional approximation
space VN (where N is the dimension, i.e. the total number of degrees of freedom). In
the majority of the paper ∂� is C2, in which case VN will be the space of piecewise
polynomials of degree p, for some fixed p ≥ 0, on shape-regular meshes of diameter
h, with h decreasing to zero; this is the so-called h–version of theGalerkinmethod, and
we denote VN and vN by Vh and vh , respectively, and note that N ∼ h−(d−1), where
d is the dimension. To find the Galerkin solution vh , one must solve a linear system of
dimension N ; in practice this is usually done using Krylov-subspace iterative methods
such as the generalized minimal residual method (GMRES).

For the numerical analysis of this situation when k is large, there are now, roughly
speaking, two main questions:

Q1. Howmust h decreasewith k in order tomaintain accuracy of theGalerkin solution
as k → ∞?

Q2. How does the number of GMRES iterations required to achieve a prescribed
accuracy grow with k?

The goal of this paper is to prove rigorous results about these two questions, and then
compare them with the results of numerical experiments.
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We now give short summaries of the main results. These results depend on the
choice of the coupling parameter η; for the results on Q1 we need |η| ∼ k and for the
results on Q2 we need η ∼ k, where we use the notation a ∼ b to mean that there
exists C1, C2 > 0, independent of h and k, such that C1b ≤ a ≤ C2b. We also use
the notation a � b to mean that there exists C > 0, independent of h and k, such that
a ≤ Cb.

Summary of main results regarding Q1 and their context Numerical experiments
indicate that, in many cases, the condition hk � 1 is sufficient for the Galerkin method
to be quasi-optimal (with the constant of quasi-optimality independent of k; i.e., (1.14)
below holds); see [44, Section 5]. This feature can be described by saying that the h-
BEM does not suffer from the pollution effect (in constrast to the h-FEM; see, e.g.,
[7], [52, Chapter 4]). The best existing result in the literature is that k-independent
quasi-optimality of the Galerkin method applied to the integral Eq. (1.2) holds when
hk(d+1)/2 � 1 for 2- and 3-d C2,α obstacles that are star-shaped with respect to a
ball [44, Theorem 1.4]. In this paper we improve this result by showing that the k-
independent quasioptimality holds for 2-d nontrapping obstacles when hk3/2 � 1, for
3-d nontrapping obstacles when hk3/2 log k � 1, and for 2- and 3-d smooth (i.e. C∞)
convex obstacles with strictly positive curvature when hk4/3 � 1 (see Theorem 1.10
below).

The ideas behind the proofs of these results are summarised in Remark 1.13 below,
but we highlight here that all the integral-operator bounds used in these arguments
are sharp up to a factor of log k. Therefore, to lower these thresholds on h for which
quasi-optimality is proved, one would need to use different arguments than in the
present paper. We also highlight that recent experiments by Baydoun and Marburg
[10,11,60,61] give examples of Helmholtz problems where the h-BEM suffers from a
pollution effect, and therefore determining the sharp threshold on h for k-independent
quasi-optimality to hold in general is an exciting open question.

Summary of main results regarding Q2 and their context There has been a large
amount of research effort expended on understanding empirically how iteration counts
for integral-equation formulations of scattering problems involving the Helmholtz or
Maxwell equations depend on k; see, e.g, [1,4,15,16,81], and the references therein.

To our knowledge, however, there are no sharp k-explicit bounds in the literature, for
any integral-equation formulation of a Helmholtz or Maxwell scattering problem, on
the number of iterations GMRES requires to achieve a prescribed accuracy. The main
reason, in this current setting of the Helmholtz exterior Dirichlet problem, is that the
operator A′

k,η is non-normal for all obstacles other than the circle and sphere [13,14].
Therefore, for sufficiently-accurate discretisations, the Galerkin matrix of A′

k,η is also
non-normal, and one cannot use thewell-known bounds onGMRES iterations in terms
of the condition number (see, e.g., the review in [71, Section 6]).

In this paper, we prove that, for 2- and 3-d analytic obstacles with strictly positive
curvature, the number of GMRES iterations growing like k1/3 is sufficient to have the
error in the iterative solution bounded independently of k (see Theorem 1.16 below).
Numerical experiments in Sect. 5 show that the numbers of GMRES iterations for the
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sphere and an ellipsoid grow slightly less than k1/3 (k0.29 for the sphere and k0.28 for
an ellipsoid), and thus our bound is effectively sharp.

The ideas behind the proof are summarised in Remark 1.18 below. The focus of
this paper is in proving results for the operator A′

k,η, i.e. the operator in the standard
second-kind integral formulation, but we highlight in Remark 4.5 below how a bound
on the number ofGMRES iterations of k1/2 when d = 2 and k1/2 log k when d = 3 can
be obtained for a modification of A′

k,η, the so-called star-combined integral equation

introduced in [74]. Moreover, whereas our bound on the number of iterations of k1/3

for A′
k,η holds for analytic obstacles with strictly positive curvature, the bounds for the

star-combined operator hold for a much wider class of obstacles, namely piecewise-
smooth Lipschitz obstacles that are star-shaped with respect to a ball.

Discussion of these results in the context of using semiclassical analysis in the
numerical analysis of the Helmholtz equation In the last 10 years, there has been
growing interest in using results about the k-explicit analysis of theHelmholtz equation
from semiclassical analysis (a branch of microlocal analysis) to design and analyse
numerical methods for the Helmholtz equation.1 The activity has occurred in, broadly
speaking, four different directions:

1. The use of the results of Melrose and Taylor [64]–on the rigorous k → ∞ asymp-
totics of the solution of the Helmholtz equation in the exterior of a smooth convex
obstacle with strictly positive curvature—to design and analyse k-dependent
approximation spaces for integral-equation formulations [5,29–32,41],

2. The use of the results of Melrose and Taylor [64], along with the work of Ikawa
[53] on scattering from several convex obstacles, to analyse algorithms formultiple
scattering problems [2,33].

3. The use of bounds on the Helmholtz solution operator (also known as resolvent
estimates) due to Vainberg [80] (using the propagation of singularities results
of Melrose and Sjöstrand [63]) and Morawetz [66] to prove bounds on both
‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) and the inf-sup constant of the domain-based variational

formulation [9,22,24,73], and also to analyse preconditioning strategies [40].
4. The use of identities originally due to Morawetz [66] to prove coercivity of A′

k,η

[75] and to introduce new coercive formulations of Helmholtz problems [28,42,
43,65,74].

The results of the present paper arise from a fifth direction, namely using estimates on
the restriction of quasimodes of the Laplacian to hypersurfaces from [17,26,48,77–
79] to prove sharp k-explicit bounds on Sk, Dk and D′

k as operators from L2(∂�)

to H1(∂�). We state these sharp k-explicit bounds in Sect. 2 below, and they are
proved in the companion paper [39]. In the present paper, we use these new results, in
conjunction with the results in Points 3 and 4 above, to obtain answers to Q1 and Q2.

1 A closely-related activity is the design and analysis of numerical methods for the Helmholtz equation
based on proving new results about the k → ∞ asymptotics of Helmholtz solutions for polygonal obstacles;
see [20,21,49–51].
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1.1 Formulation of the problem

1.1.1 Geometric definitions

Let � ⊂ R
d , d = 2 or 3, be a bounded Lipschitz open set, such that the open

complement �+ := R
d \ � is connected. Let H1

loc(�+) denote the set of func-
tions v such that χv ∈ H1(�+) for every χ ∈ C∞

comp(�+) := {χ |�+ : χ ∈
C∞(Rd) is compactly supported}. Let γ + denote the trace operator from �+ to ∂�.
Let n be the outward-pointing unit normal vector to � (i.e. n points out of � and in
to �+), and let ∂+

n denote the normal derivative trace operator from �+ to ∂� that
satisfies ∂+

n u = n · γ +(∇u) when u ∈ H2
loc(�+). (We also call γ +u the Dirichlet

trace of u and ∂+
n u the Neumann trace.)

Definition 1.1 (Star-shaped, and star-shaped with respect to a ball)

(i) � is star-shaped with respect to the point x0 ∈ � if, whenever x ∈ �, the segment
[x0, x] ⊂ �.

(ii) � is star-shaped with respect to the ball Ba(x0) if it is star-shaped with respect to
every point in Ba(x0).

(iii) � is star-shaped with respect to a ball if there exists a > 0 and x0 ∈ � such that
� is star-shaped with respect to the ball Ba(x0).

Definition 1.2 (Nontrapping) We say that � ⊂ R
d , d = 2, 3 is nontrapping if ∂� is

smooth (C∞) and, given R such that � ⊂ BR(0), there exists a T (R) < ∞ such that
all the billiard trajectories (in the sense of Melrose–Sjöstrand [63, Definition 7.20])
that start in �+ ∩ BR(0) at time zero leave �+ ∩ BR(0) by time T (R).

Definition 1.3 (Smooth hypersurface) We say that � ⊂ R
d is a smooth hypersurface

if there exists ˜� a compact embedded smooth d − 1 dimensional submanifold of Rd ,
possibly with boundary, such that � is an open subset of˜�, with � strictly away from
∂˜�, and the boundary of � can be written as a disjoint union

∂� =
(

n
⋃

�=1

Y�

)

∪ �,

where eachY� is an open, relatively compact, smooth embeddedmanifold of dimension
d − 2 in˜�, � lies locally on one side of Y�, and � is closed set with d − 2 measure 0
and � ⊂ ⋃n

l=1 Yl . We then refer to the manifold ˜� as an extension of �.

For example, when d = 3, the interior of a 2-d polygon is a smooth hypersurface, with
Yi the edges and � the set of corner points.

Definition 1.4 (Curved) We say a smooth hypersurface is curved if there is a choice
of normal so that the second fundamental form of the hypersurface is everywhere
positive definite.

Recall that the principal curvatures are the eigenvalues of the matrix of the second
fundamental form in an orthonormal basis of the tangent space, and thus “curved” is
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equivalent to the principal curvatures being everywhere strictly positive (or everywhere
strictly negative, depending on the choice of the normal).

Definition 1.5 (Piecewise smooth) We say that a hypersurface � is piecewise smooth
if � = ∪N

i=1�i where �i are smooth hypersurfaces and �i ∩ � j = ∅.

Definition 1.6 (Piecewise curved) We say that a piecewise-smooth hypersurface � is
piecewise curved if � is as in Definition 1.5 and each � j is curved.

1.1.2 The boundary value problem and integral equation formulation

Definition 1.7 (Sound-soft scattering problem) Given k > 0 and an incident plane
wave uI (x) = exp(ikx · a) for some a ∈ R

d with |a| = 1, find uS ∈ C2(�+) ∩
H1
loc(�+) such that the total field u := uI + uS satisfies the Helmholtz equation (1.1)

in �+, γ +u = 0 on ∂�, and uS satisfies the Sommerfeld radiation condition

∂uS

∂r
(x) − ik uS(x) = o

(

1

r (d−1)/2

)

as r := |x| → ∞, uniformly in x/r .

The incident field in the sound-soft scattering problem of Definition 1.7 is a plane
wave, but this could be replaced by a point source or, more generally, a solution of the
Helmholtz equation in a neighbourhood of �; see [19, Definition 2.11].

Obtaining the direct integral equation (1.2). If u satisfies the sound-soft scattering
problem of Definition 1.7 then Green’s integral representation implies that

u(x) = uI (x) −
∫

∂�


k(x, y)∂+
n u(y) ds(y), x ∈ �+, (1.5)

(see, e.g., [19, Theorem 2.43]), where 
k(x, y) is the fundamental solution of the
Helmholtz equation given by


k(x, y) = i

4
H (1)
0

(

k|x − y|), d = 2, 
k(x, y) = eik|x−y|

4π |x − y| , d = 3

(note that we have chosen the sign of
k(x, y) so that−(�+k2)
k(x, y) = δ(x−y)).
Taking the exterior Dirichlet and Neumann traces of (1.5) on ∂� and using the jump
relations for the single- and double-layer potentials (see, e.g., [19, Equation 2.41]) we
obtain the integral equations

Sk∂
+
n u = γ +uI and

(

1

2
I + D′

k

)

∂+
n u = ∂+

n u I , (1.6)
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where Sk and D′
k are the single- and adjoint-double-layer operators defined by

Skφ(x) :=
∫

∂�


k(x, y)φ(y) ds(y), D′
kφ(x) :=

∫

∂�

∂
k(x, y)
∂n(x)

φ(y) ds(y), (1.7)

for φ ∈ L2(∂�) and x ∈ ∂�. Later we will also need the definition of the double-layer
potential,

Dkφ(x) :=
∫

∂�

∂
k(x, y)
∂n(y)

φ(y) ds(y) for φ ∈ L2(∂�) and x ∈ ∂�. (1.8)

The first equation in (1.6) is not uniquely solvable when −k2 is a Dirichlet eigen-
value of the Laplacian in �, and the second equation in (1.6) is not uniquely solvable
when −k2 is a Neumann eigenvalue of the Laplacian in � (see, e.g., [19, Theorem
2.25]). The standard way to resolve this difficulty is to take a linear combination of
the two equations, which yields the integral Eq. (1.2) where A′

k,η is defined by (1.4),

fk,η := ∂+
n u I − iη γ +uI , (1.9)

and we use the notation that v := ∂+
n u (this makes denoting the Galerkin solution

below easier, since we then have vh instead of (∂+
n u)h).

The space L2(∂�) is a natural space for the practical solutionof second-kind integral
equations since it is self-dual, and, for η ∈ R\{0}, A′

k,η is a bounded invertible operator

from L2(∂�) to itself [19, Theorem 2.27]. Furthermore the right-hand side fk,η is in
L2(∂�) (since uI ∈ C∞(�+)) and thus we consider the Eq. (1.2) as an equation in
L2(∂�).

The Galerkin method Given a finite-dimensional approximation space VN ⊂
L2(∂�), the Galerkin method for the integral Eq. (1.2) is

find vN ∈ VN such that
(

A′
k,ηvN , wN

)

L2(∂�)
= (

fk,η, wN
)

L2(∂�)
for all wN ∈ VN .

(1.10)

Let VN = span{φi : i = 1, . . . , N }, let vN ∈ VN be equal to
∑N

j=1 Vjφ j , and

define v ∈ C
N by v := (Vj )

N
j=1. Then, with Ai j := (A′

k,ηφ j , φi )L2(∂�) and fi :=
( fk,η, φi )L2(∂�), the Galerkin method (1.10) is equivalent to solving the linear system
Av = f .

We consider the h–version of the Galerkin method, and we then denote VN and vN

by Vh and vh respectively. The main results for Q1 and Q2 will be stated under the
following assumption on Vh .

Assumption 1.8 (Assumptions onVh)Vh is a space of piecewise polynomials of degree
p for some fixed p ≥ 0 on shape-regular meshes of diameter h, with h decreasing to
zero (see, e.g., [70, Chapter 4] for specific realisations). Furthermore
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(a) if w ∈ H1(∂�) then

min
wh∈Vh

‖w − wh‖L2(∂�) � h ‖w‖H1(∂�) , (1.11)

(b)

‖wh‖2L2(∂�)
∼ hd−1 ‖w‖22 , (1.12)

where ‖ · ‖2 denotes the l2 (i.e. euclidean) vector norm.

Remark 1.9 (For what situations is Assumption 1.8 proved?) Part (a) is proved for
subspaces consisting of piecewise-constant basis functions in [70, Theorem 4.3.19]
when ∂� is a polyhedron or curved (in the sense of Assumptions 4.3.17 and 4.3.18,
respectively, in [70]) and in [76, Theorem 10.4] when � is a piecewise-smooth
Lipschitz domain. Part (a) is proved for subspaces consisting of continuous piecewise-
polynomials of degree p ≥ 1 (in the sense of [70, Definition 4.1.36]) in [70, Theorem
4.3.28].

Part (b) is proved for subspaces consisting of piecewise-linear basis function in
[76, Lemma 10.5] when ∂� is piecewise-smooth and Lipschitz, and for more general
subspaces in [70, Theorem 4.4.7].

1.2 Statement of themain results and discussion

The results concerning Q1 are stated in Sect. 1.2.1, and the results concerning Q2 are
stated in Sect. 1.2.2.

1.2.1 Results concerning Q1

Theorem 1.10 (Sufficient conditions for the Galerkin method to be quasi-optimal)
Let u be the solution of the sound-soft scattering problem of Definition 1.7 and let
v := ∂+

n u. Let |η| ∼ k, and let Vh satisfy Part (a) of Assumption 1.8.

(a) If either (i) � is nontrapping, or (ii) � is star-shaped with respect to a ball and ∂�

is C2,α and piecewise smooth, then given k0 > 0, there exists a C > 0 (independent
of k and h) such that if

hk3/2 ≤ C, d = 2, hk3/2 log k ≤ C, d = 3, (1.13)

then the Galerkin equations (1.10) have a unique solution which satisfies

‖v − vh‖L2(∂�) � min
wh∈Vh

‖v − wh‖L2(∂�) (1.14)

for all k ≥ k0.
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(b) In case (ii) above, if additionally ∂� is piecewise curved, then given k0 > 0, there
exists a C > 0 (independent of k and h) such that if

hk4/3 log k ≤ C, d = 2, 3 (1.15)

then (1.14) holds.
(c) If � is convex and ∂� is C∞ and curved then given k0 > 0, there exists a C > 0

(independent of k and h) such that if

hk4/3 ≤ C, d = 2, 3 (1.16)

then (1.14) holds.

Having established quasi-optimality, it is then natural to ask how the best approxi-
mation error minwh∈Vh ‖v − wh‖L2(∂�) depends on k, h, and ‖v‖L2(∂�).

Theorem 1.11 (Bounds on the best approximation error) Let u be the solution of the
sound-soft scattering problem of Definition 1.7 and let v := ∂+

n u. Let Vh satisfy
Assumption 1.8.

(a) If ∂� is C2,α and piecewise smooth, then, given k0 > 0,

min
wh∈Vh

‖v − wh‖L2(∂�) � h A(k) ‖v‖L2(∂�) (1.17)

with A(k) = k5/4 log k, for all k ≥ k0.
(b) If ∂� is piecewise curved, then, given k0 > 0, (1.17) holds with A(k) = k7/6 log k,

for all k ≥ k0.
(c) If � is convex and ∂� is C∞ and curved, then, given k0 > 0, (1.17) holds with

A(k) = k, for all k ≥ k0.

Combining Theorems 1.10 and 1.11 we can obtain bounds on the relative error of
the Galerkin method. For brevity, we only state the ones corresponding to cases (a)
and (c) in Theorems 1.10 and 1.11.

Corollary 1.12 (Bound on the relative errors in the Galerkin method) Let u be the
solution to the sound-soft scattering problem, let |η| ∼ k, and let Vh satisfy Part (a)
of Assumption 1.8.

(a) If either (i) � is nontrapping, or (ii) � is star-shaped with respect to a ball and ∂�

is C2,α and piecewise smooth, then given k0 > 0, there exists a C > 0 (independent
of k and h) such that if h and k satisfy (1.13) then the Galerkin equations (1.10)
have a unique solution which satisfies

‖v − vh‖L2(∂�)

‖v‖L2(∂�)

�
{

k−1/4 log k, d = 2,

k−1/4, d = 3,

for all k ≥ k0.
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(b) If � is convex and ∂� is C∞ and curved, then given k0 > 0, there exists a C > 0
(independent of k and h) such that if hk4/3 ≤ C the Galerkin equations (1.10)
have a unique solution which satisfies

‖v − vh‖L2(∂�)

‖v‖L2(∂�)

� 1

k1/3

for all k ≥ k0.

Remark 1.13 (Themain ideas behind the proofs of Theorems 1.10 and 1.11 ) The proof
of Theorem 1.10 uses the classic projection-method analysis of second-kind integral
equations (see, e.g., [6, Chapter 3]), with A′

k,η treated as a compact perturbation of 1
2 I .

In [44], this argument was used to reduce the question of finding k-explicit bounds on
the mesh threshold h for k-independent quasi-optimality to hold to finding k-explicit
bounds on

‖Sk‖L2(∂�)→H1(∂�), ‖D′
k‖L2(∂�)→H1(∂�), and ‖(A′

k,η)
−1‖L2(∂�)→L2(∂�).

We use the new, sharp bounds on the first two of these norms from [39], quoted here as
Theorem 2.1, and the sharp bounds on the third of these norms from [9, Theorem 1.13]
(for nontrapping obstacles) and [22, Theorem 4.3] (for obstacles that are star-shaped
with respect to a ball).

The bounds of Theorem 1.11 are proved by showing that

‖v‖H1(∂�) � A(k) ‖v‖L2(∂�) , (1.18)

and then using the approximation theory result (1.11). The bound (1.18) is obtained
from the integral equation (1.2) using the second-kind-structure of the equation and
the L2(∂�) → H1(∂�) bounds on Sk and D′

k from Theorem 2.1.

Remark 1.14 (Comparison to previous results) Theorems 1.10 and 1.11 and Corol-
lary 1.12 sharpen previous results in [44]: the mesh thresholds for quasi-optimality
in Theorem 1.10 are sharper than the corresponding ones in [44], and the results are
valid for a wider class of obstacles.

This sharpening is due to the new, sharp bounds on L2(∂�) → H1(∂�) norms
of Sk , Dk , and D′

k from [39], and the widening of the class of obstacles is due to
the bound on ‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) for nontrapping obstacles from [9, Theorem

1.13]. In more detail: Theorem 1.4 of [44] is the analogue of our Theorem 1.10 except
that the former is only valid when � is star-shaped with respect to a ball and C2,α and
the mesh threshold is hk(d+1)/2 ≤ C . Comparing this result to Theorem 1.10 we see
that we’ve sharpened the threshold in the d = 3 case, expanded the class of obstacles
to nontrapping ones, and added the additional results (b) and (c). Theorem 1.11 on the
best approximation error is again proved using the L2(∂�) → H1(∂�)-bounds from
[39] and thus we see similar improvements over the corresponding theorem in [44] (
[44, Theorem 1.3]).

As discussed in Remark 1.13, both the present paper and [44] use the classic
projection-method argument to obtain k-explicit results about quasi-optimality of the
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h-BEM. There are two other sets of results about quasi-optimality of the h-BEM in
the literature:

(a) results that use coercivity [29,74,75], and
(b) results that give sufficient conditions for quasi-optimality to hold in terms of how

well the spaces Vh approximate the solution of certain adjoint problems [8,57,62].

These two sets of results are discussed in detail in [44, pp. 181–182] and [44, Sec-
tion 4.2] respectively, and neither give results as strong as those in Theorem 1.10.

Finally, in this paper we have only considered the h-BEM; a thorough k-
explicit analysis of the hp-BEM for the exterior Dirichlet problem was con-
ducted in [57] and [62]. In particular, this analysis, combined with the bound on
‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) for nontrapping obstacles from [9, Theorem 1.13], proves

that k-independent quasi-optimality can be obtained for nontrapping obstacles through
a choice of h and p that keeps the total number of degrees of freedom proportional to
kd−1 [57, Corollaries 3.18 and 3.19].

Remark 1.15 (How sharp are the quasioptimality results?) Numerical experiments in
[44, Section 5] show that for a wide variety of obstacles (including certain mildly-
trapping obstacles) the h-BEM is quasi-optimal with constant independent of k
(i.e. (1.14) holds), when hk ∼ 1. The closest we can get to proving this is the result for
strictly convex obstacles in Theorem 1.10 part (c), with the threshold being hk4/3 ≤ C .
The recent results of Baydoun and Marburg [10,11,60,61], however, give examples of
cases where hk ∼ 1 is not sufficient to keep the error bounded as k → ∞.

1.2.2 Result concerning Q2

We now consider solving the linear system Av = f with the generalised minimum
residual method (GMRES) introduced by Saad and Schultz in [69]; for details of the
implementation of this algorithm, see, e.g., [45,68].

Theorem 1.16 (A bound on the number of GMRES iterations) Let � be a 2- or 3-d
convex obstacle whose boundary ∂� is analytic and curved. Let Vh satisfy Part (b) of
Assumption 1.8, let the Galerkin matrix corresponding to (1.10) be denoted by A, and
consider GMRES applied to Av = f

There exist constants η0 > 0 and k0 > 0 (with η0 = 1 if � is a ball) such that if
k ≥ k0 and η0k ≤ η � k, then, given 0 < ε < 1, there exists a C (independent of k,
η, and ε) such that if

m ≥ Ck1/3 log

(

12

ε

)

, (1.19)

then the mth GMRES residual rm := Avm − f satisfies

‖rm‖2
‖r0‖2 ≤ ε,

where ‖ · ‖2 denotes the l2 (i.e. euclidean) vector norm.
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In other words, Theorem 1.16 states that, for convex, analytic, curved�, the number of
iterations growing like k1/3 is a sufficient condition for GMRES to maintain accuracy
as k → ∞.

Remark 1.17 (How sharp is the result of Theorem 1.16?) Numerical experiments in
Sect. 5 show that for the sphere the number of GMRES iterations grows like k0.29,
and for an ellipsoid they grow like k0.28. The bound in Theorem 1.16 is therefore
effectively sharp (at least for the range of k considered in the experiments).

Remark 1.18 (Themain ideas behind the proof of Theorem 1.16) The two ideas behind
Theorem 1.16 are that:

(a) A sufficient (but not necessary) condition for iterative methods to be well behaved
is that the numerical range (also known as the field of values) of the matrix is
bounded away from zero, and in this case the Elman estimate [34,35] and its
refinement due to Beckermann, Goreinov, and Tyrtyshnikov [12] can be used to
bound the number ofGMRES iterations in terms of (i) the distance of the numerical
range to the origin, and (ii) the norm of the matrix.

(b) When � is convex, C3, piecewise analytic, and ∂� is curved, [75] proved that
A′

k,η is coercive for sufficiently large k (with η ∼ k). The k-dependence of the
coercivity constant, along with the k-dependence of ‖A′

k,η‖L2(∂�)→L2(∂�) then
give the information needed about the numerical range of the Galerkin matrix A
required in (a).

Remark 1.19 (Comparison to previous results) The bound m � k2/3 when ∂� is
a sphere was stated in [75, Section 1.3]; this bound was obtained using the orig-
inal Elman estimate (see Remark 4.4 below), and the fact that the sharp bound
‖A′

k,η‖L2(∂�)→L2(∂�) � k1/3 was known for the circle and sphere; see [19, Sec-
tion 5.4]. To our knowledge, there are no other k-explicit bounds in the literature
on the number of GMRES iterations required to achieve a prescribed accuracy for a
Helmholtz BIE. The closest related work is [23], which uses a second-kind integral
equation to solve the Helmholtz equation in a half-plane with an impedance boundary
condition. The special structure of this integral equation allows a two-grid iterative
method to be used, and [23] proves that there exists C > 0 such that if kh ≤ C , then,
after seven iterations, the difference between the solution and the Galerkin solution
computed via the iterative method is bounded independently of k and h.

Remark 1.20 (Translating the results to the indirect equation (1.3)) Instead of using
Green’s integral representation (1.5) to formulate the sound-soft scattering problem
as the integral equation (1.2), one can pose the ansatz that the scattered field satisfies

uS(x) =
∫

∂�

∂
k(x, y)
∂n(y)

φ(y) ds(y) − iη
∫

∂�


k(x, y)φ(y) ds(y)

for x ∈ �+, φ ∈ L2(∂�), and η ∈ R \ {0}. Imposing the boundary condition γ +uS =
−γ +uI on ∂� and using the jump relations for the single- and double-layer potentials
leads to the integral equation (1.3) where Ak,η is defined by (1.4) and g = −γ +uI .
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One can show that Ak,η and A′
k,η are adjoint with respect to the real-valued L2(∂�)

inner product (see, e.g., [19, Equation 2.37, Remark 2.24, §2.6]), and so their norms
are equal, the norms of their inverses are equal, and if one is coercive then so is
the other (with the same coercivity constant). These facts imply that the results of
Theorems 1.10 and Theorem 1.16 hold for the indirect equation (1.3).

The bounds on the best approximation error in Theorem 1.11 hold for the indirect
equation (1.3) with (a) A(k) = k3/2 for d = 2, A(k) = k3/2 log k for d = 3, (b)
A(k) = k4/3 log k, and (c) A(k) = k4/3. These powers of k are all slightly higher than
those for the direct equation; the reason for this is that we havemore information about
the unknown in the direct equation (since it is ∂+

n u) than about the unknown φ in the
indirect equation. Indeed, one can express φ in terms of the difference of solutions
to interior and exterior boundary value problems–see [19, p. 132]–but it is harder to
make use of this fact than for the direct equation.

Remark 1.21 (Translating the results to the general exterior Dirichlet problem) The
results of Theorems 1.10 and 1.16 are independent of the right-hand side of the integral
equation (1.2), and therefore hold for the general Dirichlet problem with Dirichlet
data in H1(∂�) (this assumption is needed so that A′

k,η can still be considered as an

operator on L2(∂�); see, e.g., [19, Section 2.6]). The results of Theorem 1.11 and
Corollary 1.12, however, do not immediately hold for the general Dirichlet problem,
since they use the particular form of the right-hand side in (1.9).

Outline of the paper In Sect. 2 we recap the sharp L2(∂�) → H1(∂�) bounds from
the companion paper [39]. In Sect. 3 we prove Theorems 1.10 and 1.11 (the results
concerningQ1). In Sect. 4we prove Theorem 1.16 (the result concerningQ2), and then
in Sect. 5 we give numerical experiments showing that Theorem 1.16 is effectively
sharp in its k-dependence.

2 Recap of the L2(@Ä) → H1(@Ä) bounds from [39]

The following result was proved in [39, Theorem 2.10]. In stating this result, we use
the weighted H1(∂�) norm

‖w‖2
H1

k (∂�)
:= k−2 ‖∇∂�w‖2L2(∂�)

+ ‖w‖2L2(∂�)
, (2.1)

in contrast to the usual H1(∂�) norm

‖w‖2H1(∂�)
:= ‖∇∂�w‖2L2(∂�)

+ ‖w‖2L2(∂�)
,

where∇∂� is the surface gradient operator on ∂� (see, e.g., [19, p. 276]); we note that
the use of such weighted norms is standard in both the semiclassical and numerical
analysis of the Helmholtz equation, and reflects the fact that we expect to incur a power
of k every time we take a derivative of a Helmholtz solution; see, e.g., [65, Remark
3.8].
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Theorem 2.1 (Bounds on ‖Sk‖L2(∂�)→H1
k (∂�), ‖Dk‖L2(∂�)→H1

k (∂�),

‖D′
k‖L2(∂�)→H1

k (∂�))

Let � be a bounded Lipschitz open set such that the open complement �+ := R
d \ �

is connected.

(a) If ∂� is a piecewise-smooth hypersurface (in the sense of Definition 1.5), then,
given k0 > 1, there exists C > 0 (independent of k) such that

‖Sk‖L2(∂�)→H1
k (∂�) ≤ C k−1/2 log k. (2.2)

for all k ≥ k0. Moreover, if ∂� is piecewise curved (in the sense of Definition 1.6),
then, given k0 > 1, the following stronger estimate holds for all k ≥ k0

‖Sk‖L2(∂�)→H1
k (∂�) ≤ Ck−2/3 log k. (2.3)

(b) If ∂� is a piecewise smooth, C2,α hypersurface, for some α > 0, then, given
k0 > 1, there exists C > 0 (independent of k) such that

‖Dk‖L2(∂�)→H1
k (∂�) + ∥

∥D′
k

∥

∥

L2(∂�)→H1
k (∂�)

≤ Ck1/4 log k.

Moreover, if ∂� is piecewise curved, then, given k0 > 1, there exists C > 0
(independent of k) such that the following stronger estimates hold for all k ≥ k0

‖Dk‖L2(∂�)→H1
k (∂�) + ∥

∥D′
k

∥

∥

L2(∂�)→H1
k (∂�)

� k1/6 log k.

(c) If � is convex and ∂� is C∞ and curved (in the sense of Definition 1.4) then, given
k0 > 1, there exists C such that, for k ≥ k0,

‖Sk‖L2(∂�)→H1
k (∂�) ≤ Ck−2/3,

‖Dk‖L2(∂�)→H1
k (∂�) + ∥

∥D′
k

∥

∥

L2(∂�)→H1
k (∂�)

≤ C .

The requirement in Part (b) of Theorem 2.1 that ∂� is C2,α arises since this is the
regularity required of ∂� for Dk and D′

k to map L2(∂�) to H1(∂�); see [54, Theorem
4.2], [27, Theorem 3.6].

The bounds in Theorem 2.1 contain k-explicit L2(∂�) → L2(∂�) bounds on
Sk, Dk and D′

k . These L2(∂�) → L2(∂�) bounds were originally proved in [47,
Appendix A] and [36] (and the realisation that these L2(∂�) → L2(∂�) bounds
could be extended to L2(∂�) → H1(∂�) bounds was the motivation for [39]).

Remark 2.2 (Sharpness of the bounds in Theorem 2.1) In [39, Section 3] it is shown
that, modulo the factor log k, all of the bounds in Theorem 2.1 are sharp (i.e. the
powers of k in the bounds are optimal). The sharpness (modulo the factor log k)
of the L2(∂�) → L2(∂�) bounds contained in Theorem 2.1 was proved in [47,
Section A.2–A.3]. Earlier work in [18, Section 4] proved the sharpness of some of
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the L2(∂�) → L2(∂�) bounds in 2-d; we highlight that [39, Section 3] and [47,
Section A.2–A.3] contain the appropriate generalisations to multidimensions of some
of the arguments of [18, Section 4] (in particular [18, Theorems 4.2 and 4.4]).

Remark 2.3 (Sharp bounds on Sk when d = 2) When d = 2 and ∂� is Lipschitz, the
sharp bound

‖Sk‖L2(∂�)→L2(∂�) � k−1/2 (2.4)

was proved using the Riesz–Thorin interpolation theorem in [18, Theorem 3.3] and
by the Schur test in [38, Theorem 6]. Similarly, the sharp bound

‖Sk‖L2(∂�)→H1(∂�) � k1/2 (2.5)

was proved using the Riesz–Thorin interpolation theorem in [44, Theorem 1.6].

3 Proofs of Theorems 1.10, 1.11 (the results concerning Q1)

3.1 Proof of Theorem 1.10

The heart of the proof of Theorem 1.10 is the following lemma.

Lemma 3.1 There exists a C̃ > 0 such that under the condition

h
∥

∥D′
k − iηSk

∥

∥

L2(∂�)→H1(∂�)
‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) ≤ ˜C (3.1)

the Galerkin equations (1.10) have a unique solution satisfying (1.14).

The presence of ‖(A′
k,η)

−1‖L2(∂�)→L2(∂�) in (3.1) means that before prov-
ing Theorem 1.10 using Lemma 3.1 we need to recall the following bounds on
‖(A′

k,η)
−1‖L2(∂�)→L2(∂�).

Theorem 3.2 ([22, Theorem 4.3], [9, Theorem 1.13]) If |η| ∼ k and either � is star-
shaped with respect to a ball and C2 in a neighbourhood of almost every point on � or
� is nontrapping, then, given k0 > 0, ‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) � 1 for all k ≥ k0.

Proof of Theorem 1.10 using Lemma 3.1 Using the triangle inequality, a sufficient con-
dition for (3.1) to hold is

h
(

∥

∥D′
k

∥

∥

L2(∂�)→H1(∂�)
+ |η| ‖Sk‖L2(∂�)→H1(∂�)

)

‖(A′
k,η)

−1‖L2(∂�)→L2(∂�) ≤ ˜C . (3.2)

In [39, Remark 2.22] it is shown that the L2(∂�) → H1(∂�) norms of D′
k and Sk

are maximised in different regions of phase space, and thus we do not lose anything
by using the triangle inequality, i.e., (3.2) is no less sharp than (3.1) in terms of k-
dependence.
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The mesh thresholds (1.13), (1.15), (1.16) then follow from using the bound
‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) � 1 from Theorem 3.2 and the different bounds on

‖D′
k‖L2(∂�)→H1(∂�) and ‖Sk‖L2(∂�)→H1(∂�) in Theorem 2.1 (recalling the defini-

tion of the H1
k (∂�) norm in (2.1)), apart from when d = 2 when we use the bound on

Sk (2.5) instead of (2.2). ��
ToproveTheorem1.10we therefore only need to proveLemma3.1.Thiswas proved

in [44, Corollary 4.1], but since the proof is short we repeat it here for completeness.
We first introduce some notation: let Ph denote the orthogonal projection from

L2(∂�) onto Vh (see, e.g, [6, Section 3.1.2]); then the Galerkin equations (1.10) are
equivalent to the operator equation

Ph A′
k,ηvh = Ph fk,η. (3.3)

The proof requires us to treat A′
k,η as a (compact) perturbation of the identity, and

thus we let Lk,η := D′
k − iηSk . Furthermore, to make the notation more concise,

we let λ = 1/2. Therefore, the left-hand side of (3.3) becomes (λI + Ph Lk,η)vh ,
and the question of existence of a solution to (3.3) boils down to the invertibility of
(λI + Ph Lk,η). Note also that, using the Ph notation, the best approximation error on
the right-hand side of (1.14) is ‖(I − Ph)v‖L2(∂�).

The heart of the proof of Lemma 3.1 is the following lemma.

Lemma 3.3 If

∥

∥(I − Ph)Lk,η

∥

∥

L2(∂�)→L2(∂�)
‖(A′

k,η)
−1‖L2(∂�)→L2(∂�) ≤ δ

1 + δ
(3.4)

for some δ > 0, then the Galerkin equations have a unique solution, vh, which satisfies
the quasi-optimal error estimate

‖v − vh‖L2(∂�) ≤ λ(1 + δ)‖(A′
k,η)

−1‖L2(∂�)→L2(∂�)‖(I − Ph)v‖L2(∂�). (3.5)

Proof of Lemma 3.1 using Lemma 3.3 By the polynomial-approximation result (1.11),

∥

∥(I − Ph)Lk,η

∥

∥

L2(∂�)→L2(∂�)
� h

∥

∥Lk,η

∥

∥

L2(∂�)→H1(∂�)
.

Therefore, choosing, say, δ = 1, we find that there exists a C̃ > 0 such that (3.1)
implies that (3.4) holds. ��
Thus, to prove Theorem 1.10, we only need to prove Lemma 3.3.

Proof of Lemma 3.3 Since

λI + Ph Lk,η = λI + Lk,η − (I − Ph)Lk,η

= (

λI + Lk,η

)

(

I − (

λI + Lk,η

)−1
(I − Ph)Lk,η

)

,
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if

∥

∥

(

λI + Lk,η

)−1
(I − Ph)Lk,η

∥

∥

L2(∂�)→L2(∂�)
< 1,

then (λI + Ph Lk,η) is invertible using the classical result that I − A is invertible if
‖A‖ < 1. In this abstract setting ‖(I − A)−1‖ ≤ (1− ‖A‖)−1, and thus if (3.4) holds
we have

∥

∥(λI + Ph Lk,η)
−1

∥

∥

L2(∂�)→L2(∂�)
≤ ∥

∥

(

λI + Lk,η

)−1 ∥

∥

L2(∂�)→L2(∂�)

1

1−δ/(1+δ)
,

= (1 + δ)
∥

∥(λI + Lk,η)
−1

∥

∥

L2(∂�)→L2(∂�)
.

(3.6)

Writing the direct equation as (λI + Lk,η)v = f and the Galerkin equation as (λI +
Ph Lk,η)vh = Ph f , we have

v − vh = v − (λI + Ph Lk,η)
−1Ph f = (λI + Ph Lk,η)

−1(λv − Ph( f − Lkv))

= λ
(

λI + Ph Lk,η

)−1
(I − Ph)v, . (3.7)

and the result (3.5) follows from using the bound (3.6) in (3.7). ��
Remark 3.4 (Is there a better choice of η than |η| ∼ k?) Theorem 1.10 is proved under
the assumption that |η| ∼ k. This choice of η is widely recommended from studies of
the condition number of A′

k,η; see [19, Chapter 5] for an overview of these. From (3.2)
we see that the best choice of η, from the point of view of obtaining the least-restrictive
threshold for k-independent quasi-optimality, will minimise the k-dependence of

(

∥

∥D′
k

∥

∥

L2(∂�)→H1(∂�)
+ |η| ‖Sk‖L2(∂�)→H1(∂�)

)

‖(A′
k,η)

−1‖L2(∂�)→L2(∂�).

There does not yet exist a rigorous proof that |η| ∼ k minimises this quantity, but [9,
Section 7.1] outlines exactly the necessary results still to prove.

3.2 Proof of Theorem 1.11

Proof of Theorem 1.11 By the polynomial-approximation result (1.11), we only need
to prove that the bound (1.18) hold with the different functions A(k). The idea is to
take the H1 norm of the integral equation (1.2) and then use the L2(∂�) → L2(∂�)

and L2(∂�) → H1(∂�) bounds contained in Theorems 2.1.
Taking the H1 norm of (1.2) and using the notation that A′

k,η = 1
2 I + Lk,η and

v := ∂+
n u, as in the proof of Theorem 1.10 above, we have that

‖v‖H1(∂�) �
∥

∥Lk,η

∥

∥

L2(∂�)→H1(∂�)
‖v‖L2(∂�) + ∥

∥ fk,η

∥

∥

H1(∂�)
.

In this inequality, η is just a parameter that appears in Lk,η and fk,η, with the equation
holding for all values of η; in other words, the unknown v(= ∂+

n u) does not depend on
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the value of η. We now seek to minimise the k-dependence of ‖Lk,η‖L2(∂�)→H1(∂�).
Looking at the k-dependence of the L2(∂�) → H1(∂�)-bounds on Sk and D′

k in
Theorem 2.1, we see that, under each of the different geometric set-ups, the best
choice is η = 0, and thus

‖v‖H1(∂�) �
∥

∥D′
k

∥

∥

L2(∂�)→H1(∂�)
‖v‖L2(∂�) + k2 (3.8)

where we have explicitly worked out the k-dependence of ‖ fk,η‖H1(∂�) using the
definition (1.9).

Taking the L2 norm of (1.2) (with η = 0), and noting that ‖ fk,η‖L2(∂�) ∼ k, we
have that

(

1 + ∥

∥D′
k

∥

∥

L2(∂�)→L2(∂�)

) ‖v‖L2(∂�) � k. (3.9)

Using (3.9) in (3.8), we have

‖v‖H1(∂�) �
(

∥

∥D′
k

∥

∥

L2(∂�)→H1(∂�)
+ k

(

1 + ∥

∥D′
k

∥

∥

L2(∂�)→L2(∂�)

)

)

‖v‖L2(∂�) .

(3.10)

Since the bounds on the L2(∂�) → H1(∂�)-norm of D′
k in Theorem 2.1 are one

power of k higher that the L2(∂�) → L2(∂�)-bounds in Theorem 2.1, using these
norm bounds in (3.10) results in the bound ‖v‖H1(∂�) � A(k)‖v‖L2(∂�) with the
functions of A(k) as in the statement of theorem (and equal to the right-hand sides of
the bounds on ‖D′

k‖L2(∂�)→H1(∂�) in Theorem 2.1). ��

4 Proofs of Theorem 1.16 (the result concerning Q2)

To prove Theorem 1.16 we need to recall (i) the result about coercivity of A′
k,η when

� is convex, C3, piecewise analytic, and curved from [75], and (ii) the refinement of
the Elman estimate in [12].

Theorem 4.1 (Coercivity of A′
k,η for � convex, C3, piecewise analytic, and curved

[75]) Let � be a convex domain in either 2- or 3-d whose boundary, ∂�, is curved
and is both C3 and piecewise analytic. Then there exist constants η0 > 0, k0 > 0
(with η0 = 1 when � is a ball) and a function of k, αk > 0, such that for k ≥ k0 and
η ≥ η0k,

∣

∣

(

A′
k,ηφ, φ

)

L2(∂�)

∣

∣ ≥ αk‖φ‖2L2(∂�)
for all φ ∈ L2(∂�), (4.1)

where

αk = 1

2
− O(

k−2/3 log k
)

as k → ∞. (4.2)
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In stating this result we have used the bound on Sk (2.3) and [75, Remark 3.3] to
get the asymptotics (4.2). The fact that η0 = 1 when � is a ball follows from [74,
Corollary 4.8].

Theorem 4.2 (Refinement of the Elman estimate [12]) Let A be a matrix with 0 /∈
W (A), where W (A) := {

(Av, v) : v ∈ C
N , ‖v‖2 = 1

}

is the numerical range of A.
Let β ∈ [0, π/2) be defined such that

cosβ = dist
(

0, W (A)
)

‖A‖2 ,

and let γβ be defined by

γβ := 2 sin

(

β

4 − 2β/π

)

. (4.3)

Suppose the matrix equation Av = f is solved using GMRES, and let rm := Avm − f
be the m-th GMRES residual. Then

‖rm‖2
‖r0‖2 ≤

(

2 + 2√
3

)

(

2 + γβ

)

γ m
β . (4.4)

When we apply the estimate (4.4) to A, we find that β = π/2 − δ, where δ = δ(k) is
such that δ → 0 as k → ∞. We therefore specialise the result (4.4) to this particular
situation in the following corollary.

Corollary 4.3 If β = π/2 − δ with 0 < δ < δ0, then there exists C1 > 0 and δ1 > 0
(both independent of δ) such that, for 0 < ε < 1,

if m ≥ C1

δ
log

(

12

ε

)

then
‖rm‖D

‖r0‖D
≤ ε (4.5)

for all 0 < δ < δ1.

That is, choosing m � δ−1 is sufficient for GMRES to converge in an δ-independent
way as δ → 0.

Proof of Corollary 4.3 If β = π/2 − δ, with δ → 0, then cosβ = sin δ = δ + O(δ3)

as δ → 0. From the definition of the convergence factor γβ , (4.3), we have

γβ := 2 sin

(

β

4 − 2β/π

)

= 2 sin

(

π

6
− 4δ

9
+ O(δ2)

)

= 1 − 4δ

3
√
3

+ O(δ2) as δ → 0, (4.6)

and then

log γβ = − 4δ

3
√
3

+ O(δ2) as δ → 0,
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and so there exist C2 > 0 and δ1 > 0 such that

γ m
β = em log γβ ≤ e−mδ/C2 for all 0 < δ ≤ δ1.

The bound (4.5) then follows from (4.4) since (2+2/
√
3)(2+γβ) < 3(2+2/

√
3) <

12.

Remark 4.4 (Comparison of (4.4) with the original Elman estimate) The estimate

‖rm‖2
‖r0‖2 ≤ sinm β (4.7)

was essentially proved in [34,35] (see also the review [71, Section 6] and the references
therein). When β = π/2 − δ, the convergence factor in (4.7) is

sin β = cos δ = 1 − δ2

2
+ O(δ4);

by comparing this to (4.6) we can see that (4.7) is indeed a weaker bound.

Proof of Theorem 1.16 The set up of the Galerkin method in §1.1 implies that, for any
vN , wN ∈ VN , (A′

k,ηvN , wN )L2(∂�) = (Av,w)2, where (·, ·)2 denotes the euclidean
inner product on l2. Therefore, the continuity of A′

k,η and the norm equivalence (1.12)
implies that

|(Av,w)2| �
∥

∥

∥A′
k,η

∥

∥

∥

L2(∂�)→L2(∂�)
hd−1 ‖v‖2 ‖w‖2 for all v,w ∈ C

N . (4.8)

Furthermore, if A′
k,η is coercive with coercivity constant αk,η, i.e., (4.1) holds, then

|(Av, v)2| � αk,ηhd−1 ‖v‖22 for all v ∈ C
N . (4.9)

The bounds (4.8) and (4.9) together imply that the ratio cosβ in (4.7) satisfies

cosβ � αk,η

‖A′
k,η‖L2(∂�)→L2(∂�)

.

Since � is C∞ and curved, the bound ‖A′
k,η‖L2(∂�)→L2(∂�) � k1/3 follows from

the bounds in Theorem 2.1 (recalling that η0k ≤ η � k). Since ∂� is piecewise
analytic, C3, and curved, from Theorem 4.1 there exists a k0 > 0 such that αk,η ∼ 1
for all k ≥ k0. Combining these two bounds we have cosβ � k−1/3 for all k ≥ k0 and
thus Corollary 4.3 holds with δ ∼ k−1/3 for all k ≥ k0; the result (1.19) then follows
from (4.5).

Note that the assumption in the theorem that ∂� is analytic comes from the fact
that if ∂� is both piecewise analytic and C∞, then ∂� must be analytic, where the
notion of piecewise analyticity in Theorem 4.1 is inherited from [25, Definition 4.1].

��
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Remark 4.5 (The star-combined operator) The bound on the number of iterations in
Theorem 1.16 crucially depends on the coercivity result of Theorem 4.1. Although
numerical experiments in [14] indicate that A′

k,η is coercive, uniformly in k, for a

wider class of obstacles that those in Theorem 4.1, this has yet to be proved.2

Nevertheless, there does exist an integral operator that (i) can be used to solve
the sound-soft scattering problem, and (ii) is provable coercive for a wide class of
obstacles. Indeed, the star-combined operator Ak , introduced in [74] and defined by

Ak := (

x · n(x)
)

(

1

2
I + D′

k

)

+ x · ∇∂�S − iηSk

(where ∇∂� is the surface gradient operator on ∂�; see, e.g., [19, p. 276]), has the
following two properties:

(i) if u solves the sound-soft scattering problem, then

Ak∂
+
n u = x · γ +(∇uI ) − iηγ +uI (4.10)

[74, Lemma 4.1] (see also [19, Theorem 2.36]), and
(ii) if � is a 2- or 3-d Lipschitz obstacle that is star-shaped with respect to a ball and

η := k|x| + i(d − 1)/2, then

�(

Akφ, φ
)

L2(∂�)
≥ 1

2
ess inf
x∈∂�

(

x · n(x)
)

> 0

for all k > 0 [74, Theorem 1.1].
The refinement of the Elman estimate in Theorem 4.2 can therefore be used to

prove results about the number of iterations required when GMRES is applied
to the Galerkin discretisation of (4.10). Since the coercivity constant of the star-
combined operator is independent of k, the k-dependence of the analogue of the
bound (1.19) for Ak rests on the bounds on ‖Ak‖L2(∂�)→L2(∂�).
For convex � with smooth and curved ∂�, Theorem 2.1 implies that

‖Ak‖L2(∂�)→L2(∂�) � k1/3, and we therefore obtain the same bound on m as
for A′

k,η (i.e. (1.19)). For general piecewise-smooth Lipschitz obstacles that are
star-shapedwith respect to a ball, Theorem 2.1 combinedwith the bounds (2.4) and
(2.5) shows that ‖Ak‖L2(∂�)→L2(∂�) � k1/2 when d = 2 and � k1/2 log k when
d = 3. Corollary 4.3 then implies that m � k1/2 for d = 2 and m � k1/2 log k
for d = 3. Recall that GMRES always converges in at most N steps (in exact
arithmetic), and when h ∼ 1/k we have that N ∼ kd−1; these bounds on m are
therefore nontrivial.

2 We note that [24, Remark 6.6] gives an example of a nontrapping obstacle for which A′
k,η

is not coercive

uniformly in k; therefore, the class of obstacles for which A′
k,η

is coercive, uniformly in k, is a proper subset
of the class of nontrapping obstacles.
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5 Numerical experiments concerning Q2

The main purpose of this section is to show that the k1/3 growth in the number of
iterations given by Theorem 1.16 is effectively sharp.

Details of the scattering problems considered We solve the sound-soft scattering
problem of Definition 1.7 with a = (1, 0, 0) (i.e the incident plane wave propagates
in the x1-direction), using the direct integral equation (1.2) and the Galerkin method
(1.10). The subspace Vh is taken to be piecewise constants on a shape regular mesh,
and the meshwidth h is taken to be 2π/(10k), i.e. we are choosing ten points per
wavelength. We solve the resulting linear system with GMRES, with tolerance 1 ×
10−5. We consider two obstacles:

1. � the unit sphere, and
2. � the ellipsoid with semi-principal axes of lengths 3, 1, and 1 (in the x1-, x2-, and

x3-directions respectively.

The computations were carried out using version 3.0.3 of the BEM++ library [72] on
one node of the “Balena” cluster at the University of Bath. The cluster consists of
Intel Xeon E5-2650 v2 (Ivybridge, 2.60 GHz) CPUs and the used node had 512GB
of main memory. BEM++ was compiled with version 5.2 of the GNU C compiler and
the Python code was run under Anaconda 2.3.0.

Numerical results Tables 1 and 2 displays the number of degrees of freedom, number
of iterations required for GMRES to converge, and time taken to converge, with η = k,
and with � the sphere or ellipsoid. The difference between Tables 1 and 2 is that, in
the first, k starts as 2 and then doubles until it equals 128, and in the second, k starts
as 3 and then doubles until it equals 96; we performed the second set of experiments
when the k = 128 run for the ellipsoid failed to complete. Figure 1 plots the iteration
counts from both tables and compares them to the k1/3 rate from Theorem 1.16 (the
graph is plotted on a log-log scale so that a dependence #iterations ∼ kα appears as a
straight line with gradient α).

We see from Fig. 1 that the k1/3 growth predicted by Theorem 1.16 appears to be
effectively sharp. Indeed, the plot of the iterations for the ellipsoid becomes roughly
linear from k = 12 onwards, and estimating the slope of this line using the numbers of
iterations at k = 12 and k = 96 we have that the #iterations ∼ k0.28. Using the numbers
of iterations at k = 12 and k = 96 to estimate the rate of growth for the sphere we
have that #iterations ∼ k0.29.

Finally, Table 3 compares the iteration counts and times for the sphere when η = k
and when η = −k. We see that, for every value of k considered, the number of
iterations when η = −k is much greater than when η = k. Table 3 only goes up to
k = 32, since the k = 64 run for the sphere with η = −k did not complete.

Remark 5.1 (The link between Table 3 and the recent work of Marburg [58,59])
We performed the experiment in Table 3 because, in the engineering-acoustics

literature,Marburg recently considered collocation discretisations of the direct integral
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Table 1 With � the sphere or ellipsoid and η = k, the number of degrees of freedom, number of iterations
required for GMRES to converge (with tolerance 1× 10−5), and time taken to converge, when GMRES is
applied to the Galerkin matrix corresponding to the direct integral equation (1.2), starting with k = 4 and
then doubling until k = 128

k Sphere Ellipsoid

#DOF #iterations Time (s) #DOF #iterations Time (s)

4 1304 13 3.10 3230 16 5.26

8 4998 15 7.42 12324 18 19.30

16 19560 18 40.30 48526 21 113.95

32 77224 22 271.42 190784 25 926.47

64 307454 28 2674.54 754236 31 10354.29

128 1225260 34 31024.43 * * *

*Denotes that the run did not complete

Table 2 Same as Table 1 but for a different range of k

k Sphere Ellipsoid

#DOF #iterations Time (s) #DOF #iterations Time (s)

3 846 13 1.12 1806 16 6.20

6 2880 15 3.85 6874 17 9.51

12 11054 17 18.56 26994 19 55.64

24 43688 20 107.18 107272 23 373.45

48 173264 26 928.61 426026 28 3985.63

96 689894 31 10753.95 1691328 34 43423.69

Fig. 1 The number of iterations required for GMRES to converge (with tolerance 1×10−5) when GMRES
is applied to the Galerkin matrix corresponding to the direct integral equation (1.2) with η = k, and with
� the sphere or ellipsoid, and the values of k from Tables 1 and 2 . The k1/3 rate is the upper bound on the
rate guaranteed by Theorem 1.16
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Table 3 With � the sphere and
η = k or η = −k, the number of
iterations required for GMRES
to converge (with tolerance
1 × 10−5) and time taken to
converge, when GMRES is
applied to the Galerin matrix
corresponding to the direct
integral equation (1.2)

k η = k η = −k

#iterations Time (s) #iterations Time (s)

4 13 3.10 44 3.46

8 15 7.42 88 9.04

16 18 40.30 405 75.38

32 22 271.42 11191 4502.05

equation for the Neumann problem (i.e. the Neumann-analogue of equation (1.2)) and
showed that the analogue of the choice η = k leads to much slower growth than the
analogue of the choice η = −k [58,59].

A heuristic explanation for this dependence of the number of iterations on the sign
of η is essentially contained in the work of Levadoux and Michielsen [55,56], and
Antoine and Darbas [3]. In our setting of using the operator A′

k,η to solve the exterior
Dirichlet problem, the key points are that

1. the ideal iη should approximate the Dirichlet-to-Neumann (DtN) map in �+, and
2. ik is a better approximation to the DtN map than −ik (at least for smooth convex

obstacles).

Regarding 1: taking the Dirichlet trace of Green’s integral representation (written with
general Dirichlet data, not just data coming from a plane wave as in (1.5)), and using
the jump relations for the single- and double-layer potentials (see, e.g., [19, Equation
2.41]) we find that

γ +u = −Sk(∂
+
n u) +

(

1

2
I + Dk

)

γ +u.

Rearranging this equation, and introducing the notation P+
DtN for the exterior Dirichlet-

to-Neumann map for solutions of the Helmholtz equation in �+ satisfying the
Sommerfeld radiation condition, we find that

I = 1

2
I + Dk − Sk P+

DtN. (5.1)

Green’s second identity implies that, for φ,ψ ∈ H1/2(∂�),

〈P+
DtNφ,ψ〉∂� = 〈φ, P+

DtNψ〉∂�,

where the duality pairing 〈φ,ψ〉∂� := ∫

∂�
φ ψ ds when φ,ψ ∈ L2(∂�); see [19,

Equation 2.65, Equation 2.84, Equation A.24]. Therefore, taking the adjoint of (5.1),
we find that

I = 1

2
I + D′

k − P+
DtNSk . (5.2)
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Comparing (5.2) to the definition of A′
k,η in (1.4), we see that the ideal iη should

approximate P+
DtN. The idea of choosing η as an operator, based on the relations (5.1)-

(5.2) (and their analogues for the Neumann problem), essentially first appeared in
[55,56]. The relation (5.1) appeared explicitly in [3, Theorem 2.1], with this paper
considering local approximations of the non-local operators P+

DtN and P+
NtD, whilst

[55,56] used non-local pseudodifferential-operator approximations.
Regarding 2: In the case when ∂� is a circle (of radius 1), the DtN map is given by

∂u

∂r
(1, θ) = k

∞
∑

n=−∞

H (1)′
n (k)

H (1)
n (k)

einθ

(

1

2π

∫ 2π

0
e−inφ u(1, φ) dφ

)

.

The uniform- and double-asymptotic expansions of the Hankel functions (see, e.g.,
[67, Sections 10.20, 10.41(v)]) imply that

k
H (1)′

n (k)

H (1)
n (k)

∼

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ik, for n fixed as k → ∞,

ik
√

1 − ( n
k

)2
, n, k → ∞ with k − |n| � k1/3,

e2π i/3
√

n2−k2

n2/3ζ

Ai′
(

e2π i/3n2/3ζ
)

Ai
(

e2π i/3n2/3ζ
) , n, k → ∞ with

∣

∣|n| − k
∣

∣ ≤ Mk1/3,

n
√

1 − ( k
n

)2
, n, k → ∞ with |n| − k � k1/3,

(5.3)

where ζ is defined in terms of n and k by [67, Equations 10.20.2 and 10.20.3].3

We see that the approximation k H (1)′
n (k)/H (1)

n (k) ∼ ik describes the DtN map on
the low frequency modes and, in particular, is much better than the approximation

k H (1)′
n (k)/H (1)

n (k) ∼ −ik. The asymptotics (5.3), however, show that neither the
approximations ik or −ik are particularly good on the higher frequency modes. An
almost-identical analysis is valid for the sphere, and more generally for a smooth
convex curved obstacle, since the symbol of theDtNmap for such domains is described
by the asymptotics (5.3); see [37, Section 9, last formula on p. 58].
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