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Abstract

The polytropic behavior of space plasmas defines a power law between the plasma moments during the transition
of the plasma from one state to another under constant specific heat. Knowledge of the polytropic index—the
power-law exponent—is essential for understanding the dynamics of plasma particles, while a full kinetic
description can be established by the study of the velocity distribution of plasma particles. The particle velocities of
collisionless space plasmas, such as the solar wind, follow the kappa distribution function. The kappa index, the
parameter that labels and governs these distributions, is an independent variable that describes the state of plasmas
and is required for a complete description of the plasma properties. Previous studies showed and demonstrated how
the kappa and polytropic indices are related to each other in the presence of potential energy, and their relationship
also depends on the potential degrees of freedom. This paper extends these analyses and derives the kappa and
polytropic indices of the solar wind proton plasmas using Wind observations during the last two solar cycles. We
examine and show the systematic long-term correlation between these indices, the magnetic field strength, and the
solar activity.
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1. Introduction

The polytropic behavior is a macroscopic relationship
between plasma moments that describes the transition of a
plasma from one state to another under constant specific heat
(e.g., Parker 1963; Chandrasekhar 1967):

µ µg g-P n T nor , 11 ( )

where the exponent γ constitutes the polytropic index, which is
characteristic for individual plasma streamlines and it may vary
for different plasma species, within different plasma regimes,
and/or with time (for example, see: Sittler & Scudder 1980;
Osherovich et al. 1993, 1998, 1999; Newbury et al. 1997;
Borovsky et al. 1998; Sittler & Burlaga 1998; Kartalev et al.
2006; Liu et al. 2006, Nicolaou et al. 2014a; Nicolaou &
Livadiotis 2017; Livadiotis 2016; Dialynas et al. 2018; Prasad
et al. 2018). The studies of the long-term behavior of the solar
wind proton polytropic index (e.g., Nicolaou et al. 2014a;
Livadiotis 2018a), calculated an average value γ ∼ 1.8, and it is
found to be independent of the solar wind speed (Totten &
Freeman 1995; Livadiotis 2018a). (Note: the symbols used in
this study are defined in Table 1.)

Recently, it has been shown that the polytropic relationship
is equivalent to the formulation of kappa distributions
(Livadiotis 2019a). It was specifically shown that not only
the kappa distributions can lead to the polytropic behavior, but
the reverse derivation is also true, namely, the polytropic
behavior act as a mechanism that produces kappa distributions.

Several studies have shown that the velocity and energy
distributions of space plasmas follow the kappa distribution
function (e.g., see: the book Livadiotis 2017; the reviews
Pierrard & Lazar 2010; Livadiotis & McComas 2013a;
Livadiotis 2015a, and references therein). While Maxwell–
Boltzmann distributions describe particle systems residing in

the stationary state of the classical thermal equilibrium, kappa
distributions describe particle systems residing in stationary states
of a generalized thermal equilibrium. Specifically, it was shown
that kappa distributions are consistent with (i) statistical mechanics,
as they maximize entropy under the constraints of a canonical
ensemble (Treumann 1999; Leubner 2002; Milovanov & Zelenyi
2002; Livadiotis & McComas 2009); and (ii) thermodynamics,
namely, particle systems exchanging heat and reaching thermo-
dynamic equilibrium are always stabilized into a kappa distribution
(Livadiotis 2018c).
The kappa index, the parameter that labels and governs kappa

distributions, indicates how far the system resides from the
classical thermal equilibrium (e.g., Livadiotis & McComas 2009,
2010, 2013a; Livadiotis 2015a), while attaining the physical
meaning of an intensive parameter consistent with thermo-
dynamics (Livadiotis 2018c). It characterizes the stationary state
of the plasma and determines the correlation of the energies of
two different plasma particles (Livadiotis & McComas 2011).
Therefore, the determination of the kappa index is crucial for the
complete description of the plasma kinetics and thermody-
namics, and for understanding the physical mechanisms and
processes taking place in plasma systems.
Given the strong connection of the kappa index with the

thermodynamic characterization of plasmas, it is not unusual for it
to be measured within a broad range of values within different
plasma regimes, to exhibit large temporal variations, and/or to be
correlated with other plasma parameters. Indeed, the kappa index
has been extensively studied for numerous space plasmas and
found to vary significantly within different plasma regimes; e.g.,
the solar wind (e.g., Collier et al. 1996; Mann et al. 2002;
Zouganelis et al. 2004; Maksimovic et al. 2005; Marsch 2006;
Yoon et al. 2006; Pierrard & Lazar 2010), across interplanetary
shocks (Wilson et al. 2019), planetary magnetospheres (e.g.,
Sckopke et al. 1981; Hapgood & Bryant 1992; Mauk et al. 2004;
Dialynas et al. 2009, 2018; Ogasawara et al. 2013; Nicolaou
et al. 2014b), the outer heliosphere and the inner heliosheath
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(e.g., Decker & Krimigis 2003; Decker et al. 2005; Zank et al.
2010; Livadiotis et al. 2011, 2012, 2013; Livadiotis & McComas
2012).

Both the polytropic and kappa indices characterize local
processes; they are constant along individual plasma stream-
lines, but they may vary within different plasma regimes and/
or time. A strong correlation between these indices has been
shown to exist for the solar wind proton plasma near 1 au (e.g.,
Ogasawara et al. 2017; Livadiotis 2018b; Livadiotis et al.
2018) (see Figure 1). The exact relationship between these
indices also involves the potential degrees of freedom dF
(Livadiotis 2018b, 2019a, 2019b, 2019c):

n g k kº - = + - = - --
F Fd d1
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2

1

2

1
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where we consider a negative attractive central potential,
F <r 0( ) , ¶F ¶ >r r 0( ) . We used the notation of the
invariant kappa index κ0. The standard kappa index κ was
shown to be dependent on the degrees of freedom (d.o.f.) d,
k = +d const. d

2
( ) , so that the difference k kº -d d

0 2
( ) is

invariant under variations of d.o.f.; for d=3, this is written as
k kº -0

3

2
(for more details, see Livadiotis & McComas

2011; Livadiotis 2015c).
Recently, we used the positional kappa distribution in the

presence of potential energy in order to examine the relation-
ship between the polytropic and kappa indices of the solar wind
protons (Livadiotis 2018b). Therefore, a systematic data
analysis for deriving the polytropic and kappa indices and
applying them to their linear relationship shown in
Equation (2), may lead to determining the potential degrees
of freedom, and thus to understanding the nature of the present
potential.

In this paper, we carry out the first systematic, long-term
study of the relation between the polytropic and kappa indices,

in order to investigate the nature of the potential present in the
solar wind plasma near 1 au and over the last two solar cycles.
In Section 2 we describe the Wind data set that we use in this
study. We explain how the solar wind proton bulk parameters
are derived and show characteristic time series of the
parameters we use through our analysis. In Section 3 we
present the data analysis followed in order to derive the
polytropic and kappa indices; then, we show the method to
quantify the relationship between these two indices. In
Section 4 we show the results of the derived indices for each
year from 1995 to 2017 and we describe their characteristic
features. We discuss our results in Section 5; specifically, we
show the annual averages of the key parameters as a function of
time, and investigate the correlations among them, the solar
activity and the interplanetary magnetic field strength; we
also examine the functional form of the potential energy
based on our findings. In Section 6, we summarize our basic
conclusions.

2. Data

We use ∼92 s resolution Wind measurements of solar wind
protons and magnetic field strength from 1995 to 2017. The
Wind/SWE experiment (Ogilvie et al. 1995) measures the plasma
particles and determines their velocity distribution function. The
proton bulk parameters n, VSW, and uth are derived by (i)
calculating the statistical moments of the distribution function,
and (ii) fitting a bi-Maxwellian distribution to the observations
(Kasper 2003). The fitting also derives the 1σ error of the plasma
parameters and the χ2; these provide a measure of the goodness of
the fitting. The Wind/MFI experiment (Lepping et al. 1995)
measures the magnetic field strength B, averaged over the plasma
data resolution (92s). (All data sets can be found athttps://
cdaweb.gsfc.nasa.gov/index.html/.)
In Figure 2, we show the solar wind plasma bulk parameters

and the magnetic field as measured for 1995, and in Figure 3,
we show the dynamic, thermal, and magnetic pressure
calculated for the same time period. The plasma temperature
is calculated from the thermal speed (Table 1). We also use the
annual sunspot number Sn from the World Data Center SILSO,
Royal Observatory of Belgium, Brussels.

3. Methodology

3.1. Subintervals Selection

The polytropic relationship applies along the same stream-
line plasma flow. Hence, for the calculation of γ, we need to
analyze subintervals obtained within the same streamline. The
analyzed subintervals obtained from a single spacecraft (S/C)
should be sufficiently short in order to minimize the possibility
of mixing measurements of different streamlines. Following
previous studies (e.g., Kartalev et al. 2006; Nicolaou et al.
2014a; Livadiotis & Desai 2016; Livadiotis 2018a; Elliot et al.
2019), we analyze every 5 consecutive Wind measurements,
which cover ∼8 minutes if there are no time gaps between
them. In order to exclude subintervals with large time gaps we
reject any subinterval that covers a time period larger than 10
minutes.

3.2. Calculation of the Polytropic Index γ

Taking the logarithm of Equation (1), we have

g= - +T nlog 1 log const ., 3( ) ( )

Table 1
Symbols for the Physical Quantities Used in This Paper

Symbol Physical quantity

mp proton mass
kB Boltzmann constant
n number density
ρ=nmp mass density
VSW bulk speed
u th,m thermal speed derived from statistical moments

u th,f thermal speed derived from fitting

=k T m uB
1

2 p th
2 temperature in terms of energy

P=nkBT thermal Pressure
B magnetic field strength
σi one-sigma error of the parameter i
δi standard error of the parameter i
d degrees of freedom
γ polytropic index
ν=1/(γ-1) secondary notation of a polytropic index
κ standard kappa index
k kº - d

0 2
invariant kappa index for d

Fd potential degrees of freedom
dr dimensionality
Sn sunspot number
r heliocentric distance
Φ potential

2
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where the constant is different for different streamlines. We use
orthogonal regression to calculate γ and σγ from the slope of

µT nlog log , within each subinterval of 5 consecutive
measurements. The left panel of Figure 4 shows the fitting of
Equation (3) to the density–temperature data within the
subinterval obtained in DOY: 1995 January 4, from ∼10:20
to ∼10:28 UT. For the specific example, the slope in the

-n Tlog log diagram is 0.58±0.04, thus, γ=1.58±0.04.

3.3. Calculation of the Invariant Kappa Index κ0

As explained in Livadiotis et al. (2018), and based on the
work of Nicolaou & Livadiotis (2016), the invariant kappa
index, for a 3D kappa distribution function, can be calculated
by combining uth,m and uth,f:

k k=
-

 = -
u

u u
u u u

2.5
2.5 . 40

th,f

th,m
2

th,f
2 th,f

2
0 th,m

2
th,f

2
2

( ) ( )

In Equation (4), we assume that the bi-Maxwellian fitting to the
observed proton distributions underestimates the actual thermal
speed of the plasma because the fitted model does not account
for the higher energy “tails” of the distribution function (for
more details, see: Nicolaou & Livadiotis 2016; Livadiotis
2018b). This underestimation is reflected in the values of thermal

speed and pressure, samples of which are plotted in Figures 2
and 3; uth,m is higher than uth,f and the thermal pressure
calculated for uth,m is higher than the thermal pressure calculated
for uth,f.
We use orthogonal regression to calculate κ0 and σκ from

the slope of the diagram of u2.5 th,f
2 plotted against

µ -u uth,m
2

th,f
2( ). The kappa index is estimated along with

the polytropic index for each selected subinterval (discussed in
Section 3.1). Note that according to Equation (4), the fitted line
passes from the origin (thus we apply linear regression with
the intercept fixed to zero). In the middle panel of Figure 4 we
show an example of this fitting to the subinterval obtained in
1995 January 4 between ∼10:20 and ∼10:28 UT. For the
specific subinterval, our analysis derives κ0=7.26±0.08.

3.4. Data Selection and Filtering

3.4.1. Error of Plasma Parameters

We exclude data points with large errors, in order to
minimize the propagated error in the derived parameters.
Similarly to Livadiotis (2018b), we analyze data points with
relative density error s nn and relative temperature error s TT

smaller than 30%. In addition, we reject subintervals that
include data point(s) for which the χ2 value is larger than 5.
Finally, we reject subintervals for which the calculated s sk gor
from linear regression σκ or σγ is larger than 1.

3.4.2. Bernoulli Integral

In order to enhance the possibility that the analyzed
subintervals correspond to individual streamlines where the
polytropic relation is valid, we analyze only subintervals with
quasi-constant energy of the proton plasma, that is, the
Bernoulli integral (Kartalev et al. 2006; Nicolaou et al.
2014a; Pang et al. 2015, 2016; Livadiotis 2018a, 2018b; Park
et al. 2019). For the plasma near 1 au, the Bernoulli integral can
be estimated from the plasma parameters as (e.g., Livadiotis
2016):

g
g r m r

g+
-

+ ¹V
P B1

2 1
for 1, and 5aSW

2
2

0

( )

r
r

m r
g+ + =V

P B1

2
ln for 1, 5bSW

2
2

0

( )

where P/ρ=kBT/mp=1/2·uth
2.

In the presented analysis, we first calculate the Bernoulli
integral for each subinterval (five consecutive data points)
using Equation 5(a) if g - >1 10%∣ ∣ , and Equation 5(b) if
g - <1 10%∣ ∣ . We then reject subintervals for which the
standard deviation of the Bernoulli integral is larger than 10%
of its average value. The right panel of Figure 4 shows the
Bernoulli integral calculated for the subinterval obtained in
1995 January 4 from ∼10:20 and ∼10:28. The red dashed lines
in the plot correspond to the mean value±10%. The nearly
constant Bernoulli integral within the specific subinterval
enhances the possibility that the analyzed plasma belongs to the
same streamline.

Figure 1. Mean values and their standard errors of (a) log κ0 and (b) γ, for the
solar wind proton plasma near 1 au, plotted against the solar wind flow speed
VSW. (Adapted from Livadiotis et al. 2018.)
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4. Results

4.1. Dependence of the Polytropic and Kappa Indices on the
Solar Wind Speed

First, we examine the dependence of γ and κ0 on the solar
wind speed VSW, and then determine the relationship between
the two indices. For each year, we generate the 2D histograms
of γ and log κ0 as a function of VSW (similarly to Livadiotis
& Desai 2016; Livadiotis 2018a). Figure 5 shows such a
histogram for 1997, while Figure 6 shows the specific panels
for the years from 1995 to 2017. For each year, we show (left)
the non-normalized and (right) normalized occurrence of (top)
γ and (bottom) log κ0.

For each velocity bin (column), we calculate the mean values
of γ, log κ0 (white lines in Figures 5 and 6) and their standard
errors δγ and δlog κ0, which we use to calculate the mean
values of the secondary polytropic index n gº - -1 1( ) and the
kappa index k = k100

log 0, as well as their propagation errors δν
and δκ0, respectively. Figure 7 shows the estimated mean
values of ν and log κ0, as a function of the solar wind speed
VSW for each year from 1995 to 2017.

4.2. Polytropic-Kappa Linear Relationship and Potential
Degrees of Freedom

According to Equation (2), the secondary polytropic index ν
is linearly related to the kappa index κ0, with the slope equal to
−1, and y-axis intercept given by:

= -Fy d
1

2
1. 60 ( )

For each year, we select the data points that follow the
expected linear relation. The selection is based on the χ2

optimization between the selected data points and the
theoretical line in Equation (2). Our analysis excludes data
points with κ0 larger than 4.5, which is the theoretical limit of
kappa indices for 3D kappa distributions describing both the
kinetic and potential energy with =Fd 61

2
(Livadiotis 2015b).

We calculate the average y-intercept y0̄ from the N selected data
points (κ0i, νi), as follows:

å åd d=
=

-

=

-y y y y , 7
i

N

i i
i

N

i0
1

0
2

0
1

0
2¯ ( )

Figure 2. 92 s resolution solar wind plasma and magnetic field strength measurements by Wind/SWE and Wind/MFI, respectively, during 1995.
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Figure 3. Solar wind pressure terms calculated using Wind plasma and magnetic field measurements (shown in Figure 2); From top to bottom: dynamic pressure,
thermal pressure for uth,m (Tm), thermal pressure for uth,f (Tf), magnetic pressure, and total pressure (using average temperature (Tm + Tf)/2).

Figure 4. Regression for estimating the polytropic and kappa indices for the sample data subinterval obtained on the DOY 1995 January 4 between ∼10:20 and
∼10:28UT. (Left) The linear relationship between log T and log n indicates a streamline with a nearly adiabatic plasma (γ=1.58 ± 0.04). (Middle) Fitting of
Equation (4) to the data within the same subinterval; the fitted line is forced to pass from the origin and its slope indicates κ0=7.26±0.08. (Right) The Bernoulli
integral is estimated for each point of the selected subinterval (black dots), while the red lines indicate±10% deviation of the mean value; apparently, the standard
deviation of the mean value is quite smaller than this deviation; the constancy of the Bernoulli integral enhances the possibility that the measurements correspond to
the same streamline, validating the estimation of the indices γ and κ0.
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where k n= +y i i i0 0 and d dk dn= +y i i i0 0
2 2 . The standard

error of y0̄ is

d d d= +y y y , 80 0
prop 2

0
stat 2( ) ( ) ( )

where dy0
prop is the propagation error:
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Finally, we calculate the potential degrees of freedom:

= +Fd y
1

2
1. 110̄ ( )

Figure 8 shows the indices ν and κ0 (averaged per VSW-bin)
plotted as a function of the solar wind speed VSW for the annual
interval in 1997; it also shows κ0 plotted against ν, by
canceling VSW. The blue data points (νi, κ0i,) are fitted with
Equation (2) (dashed line) in order to estimate the value of the
potential d.o.f., Fd1

2
. The analysis is completed for each year

from 1995–2017, in order to examine the long-term variation of

Fd1

2
over the last two solar cycles (see also Table 2). In

Figure 9, we show the panels of κ0 plotted against ν (similar to

that in the top right panel of Figure 8), for all the years from
1995 to 2017.

4.3. Description of the Results

The occurrences of γ and log κ0 as a function of VSW

(Figures 5 and 6) show that γ ranges between −2.5 and 5 and
log κ0 ranges between −1 and 1, but they mostly lie around
their mean values, that is, ∼1.68 and ∼0.37, respectively. The
average γ and log κ0 (per VSW bin, white lines in Figures 5 and
6) do not exhibit any characteristic or systematic variation with
VSW. The standard error of both indices is of the same order for
the entire solar wind speed range (see also Figure 1). We note
that the standard error increases with the spread of the values
around their mean and decreases when increasing the amount
of samples within each VSW bin. Therefore, as the majority of
the data reside in the intermediate speeds, our result indicates
that the spread of γ and κ0 is greater within that speed range.
The γ values are roughly symmetrically distributed; log κ0

values occasionally exhibit asymmetric occurrences with
“tails” toward the lower log κ0 values. We observe these
“tails” to be more pronounced during years with stronger solar
activity. For instance, in the years 1995–1997 and 2007–2009,
corresponding to minimum solar activity periods, the occur-
rence of log κ0 does not extend significantly below zero. On the
other hand, in the years 2000–2002 and 2012–2014, corresp-
onding to maximum solar activity, the occurrence exhibits tails
extending to ∼−1. These tails shift the average log κ0 (white
line on top of the occurrence plot) toward lower values.

Figure 5. (Left) Non-normalized and (right) normalized 2D histograms of (top) γ and (bottom) log κ0 as a function of VSW for the year 1997. The white lines indicate
the corresponding average values per VSW-bin.
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Figure 6. Annual (left) non-normalized and (right) normalized 2D histograms of (top) γ and (bottom) log κ0, plotted as a function of VSW, for the years from 1995 to
2017. The white lines indicate the corresponding average values per VSW-bin.
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Figure 5, shows the occurrences of the polytropic and kappa
indices as a function of the solar wind speed for 1997. The
average log κ0 is higher for lower speeds, VSW < 300 km s−1,
whichmay be caused by less reliable measurements that
characterize these speeds; for higher speeds and a wider range
of speeds log κ0 almost flattens, while it slightly increases for
the fast solar wind (VSW >550 km s−1). The behavior of the
polytropic and kappa indices as a function of VSW is slightly
different for different years of the last two solar cycles
(Figure 6).

Figure 7 shows the mean values of ν and log κ0 as a function
of VSW, for each year between 1995 and 2017. Interestingly,
while there is no systematic variation of both indices as a
function of VSW, most of the time, the two indices are anti-
correlated, as expected from theory (Livadiotis 2017, 2018b,
2019a, 2019b, 2019c). For instance, in 1997, ν∼1.5 within the

low speed range (VSW < 300 km s−1), reaches a maximum value
ν ∼ 2.5 in the intermediate speed range (450 km s−1 < VSW <
550 km s−1) and drops again down to ν∼1.5 as the speed
increases (VSW > 550 km s−1). Within the same year, log κ0
follows an opposite trend; log κ0 ∼ 0.5 within the low speed
range (VSW < 300 km s−1), reaches a minimum value log
κ0∼0.25 in the intermediate speed range (450 km s−1 < VSW
< 550 km s−1), and increases again to log κ0 ∼ 0.5 as the speed
increases (VSW > 550 km s−1). In another characteristic
example, in 2004, the two indices exhibit a different behavior
as a function VSW but similar to 1997, they are anti-correlated.
For this specific year, ν ∼ 1 in the low speed range (VSW <
300 km s−1) and ∼2 in the high speed range (VSW >
500 km s−1), exhibiting a local maximum (ν ∼ 1.5) for VSW ∼
400 km s−1 and a local minimum (ν ∼ 1.3) for VSW ∼
500 km s−1. In the same year, log κ0 ranges between 0.5 and 0,

Figure 7. Average (per VSW-bin) of the polytropic index ν and the logarithm of the kappa index κ0 for each year from 1995 to 2017.
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with a global minimum (log κ0 ∼ 0.3) at VSW ∼ 400 km s−1 and
a local maximum (logκ0 ∼ 0.4) at VSW ∼ 500 km s−1.

Although we observe anti-correlation between the values of
ν and κ0 in most of the annual intervals, there are examples in
which the two indices do not exhibit any systematic correlation.
We identify these cases in years 2002, 2007, and 2009.
Interestingly, we also observe that in 1996, the two indices are
positively correlated. Within this year, ν and log κ0 exhibit
similar behavior within a wide range of VSW. Specifically,
for VSW between 350 km s−1 and 500 km s−1, both indices
decrease; ν drops from a local maximum ν ∼ 2.5, to a local
minimum ν ∼ 1.5, while log κ0 decreases from local maximum
log κ0 ∼ 0.6, to a local minimum log κ0 ∼ 0.35. The linear
relation of Equation (2) is not applicable to any of these annual
intervals (see also Figure 9). We speculate that during these
annual intervals there is more than one potential affecting the
distribution function of the particles. In such a case, we need to
use a superposition of potentials to describe the observed
relationship, which is not the scope of this current work.

We fit ν and κ0 with Equation (2), within each of the annual
intervals that the two indices are anti-correlated (19 out of the
23 annual intervals) in order to determine the y-intercept y0̄, and

the potential degrees of freedom = +Fd y 11

2 0̄ . In Figure 8, we

show ν and κ0 as a function VSW and ν as a function of κ0 for
the year 1997. In this typical example, we fit the majority of the
data points with the linear model of Equation (2) and we
calculate =y 4.550̄ , therefore, =Fd 5.551

2
. In Figure 9 we

show ν as a function of κ0 for each year from 1995 to 2017.
Although there is a clear scattering of the data points, probably
due to the turbulent nature and the multiple structures within
the solar wind, the linear relationship between the polytropic
and kappa indices can be statistically identified in most of the
annual subintervals.

5. Discussion

5.1. Long-term Behavior of Polytropic and Kappa Indices and
Potential Degrees of Freedom

We investigate the annual averages of the key parameters as
a function of time, for the last two solar cycles. Table 2 shows
the annual averages of the polytropic index ḡ and n̄ , the
logarithm of the invariant kappa index klog 0 , the invariant
kappa index k0¯ , the potential degrees of freedom Fd1

2
, and their

errors, as calculated for each year from 1995 to 2017. For the
years in which the linear model does not apply (that is the cases

Figure 8. (Top left) κ0 and (bottom) ν indices plotted as a function of VSW for 1997. (Top right) κ0 plotted as a function of ν. Data points lying above the theoretical
limit κ0=4.5 (red dashed line) are excluded from this analysis (see the text). The data points (blue dots) follow the fitted linear relationship shown in Equation (2).
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of the four years mentioned above, i.e., 1996, 2002, 2007, and
2009), we do not derive y0̄ and Fd1

2
(listed as n/a in Table 2).

Figure 10 shows the time series of the calculated average
parameters along with the annual average sunspot number Sn
and the interplanetary magnetic field strength B. We identify
the following characteristics in the long-term behavior of the
parameters:

1. The annual average klog 0 and Fd1

2
are correlated with

each other, while both these parameters are anti-correlated
with the solar activity. From 1995 to 2000, both klog 0

and Fd1

2
decrease monotonically as Sn increases. During

the solar maximum in 2000, klog 0 and Fd1

2
reach their

minimum values, ∼0.2 and ∼4, respectively. During the
decay phase of the 23rd solar cycle, both klog 0 and Fd1

2
increase; during the solar minimum in 2008–2009, log κ0
reaches a maximum value ∼0.5 and Fd1

2
reaches a local

maximum ∼5.5. During the ascending phase of the 24th
solar cycle between 2009 and 2012, both klog 0 and y0̄
drop systematically and reach local minima in 2012, before
they increase again.

2. The annual average polytropic index ḡ exhibits weak
correlation with the solar activity. For the first three years,
the plasma is sub-adiabatic, with g ~ 1.4¯ , with a slide
increase in 1997, as g ~ 1.5¯ . From 1998 until 2017, the
plasma is nearly adiabatic with ḡ ranging between 1.65
and 1.8. The results of this study do not precisely follow
the characteristic long-term behavior of ḡ and its anti-
correlation with the solar activity shown by Nicolaou
et al. (2014a). The differences may be caused by the
different number of data points per subinterval and/or by
the different data sets and processing, as Nicolaou et al.
(2014a) used timeshifted, cross-calibrated data sets of

plasma parameters, measured by different S/C and
processed with different time resolutions.

5.2. Correlation of the Potential d.o.f. with Solar Activity

We further quantify the relation between Fd1

2
and Sn. We

seek a power-law function that relates the two parameters using
the fitting method based on the correlation coefficient
maximization (Livadiotis & McComas 2013b). We specifically
search for the positive exponent p for which the absolute
correlation coefficient between Fd1

2
and S p

n is maximized.

Because Fd1

2
and S p

n are anti-correlated, we optimize the
exponent p for the minimum Pearson correlation coefficient
value. We find that the minimum correlation (Pearson
coefficient −0.82) is achieved for p ∼ 0.6 (Figure 11, left).
We achieve an approximate fit (Figure 11, right) with

= -Fd S
1

2
5.75 0.08 . 12n

0.6 ( )

5.3. Evidence of a Long-term Relationship between Polytropic
and Kappa Indices

We examine 23 annual intervals, from 1995 to 2017,
to investigate the long-term behavior of the polytropic
n gº - -1 1( ) and kappa κ0 indices, and quantify the linear
relationship between them (averaged in each solar wind speed
bin) over the last two solar cycles. In 19 of the 23 examined
intervals (∼83%) we determine a significant amount of data
points that are linearly correlated. The analysis of these intervals
derives the potential d.o.f., Fd1

2
. This may be caused by the fact

that the annually based data analysis is not sensitive for the
various solar wind structures, thus we were averaging features
for which the relationship between the two indices is different—
for reasons that are not fully understood at the moment. A

Table 2
Annual Means of Polytropic and Kappa Indices, and the Related Potential d.o.f, for 1995–2017

Year n̄ ḡ σγ klog 0 σ log κ0 k0¯ σκ0 Fd1

2
d Fd1

2

1995 2.24 1.45 1.09 0.48 0.29 3.00 2.00 5.89 0.05
1996 2.25 1.45 1.04 0.46 0.25 2.91 1.70 n/a n/a
1997 1.98 1.50 1.11 0.43 0.32 2.72 2.02 5.57 0.06
1998 1.46 1.69 1.07 0.34 0.35 2.18 1.76 4.75 0.04
1999 1.38 1.73 1.01 0.31 0.36 2.03 1.69 4.53 0.04
2000 1.45 1.69 1.03 0.22 0.38 1.66 1.43 3.94 0.03
2001 1.43 1.70 1.05 0.25 0.39 1.77 1.60 4.21 0.04
2002 1.30 1.77 1.02 0.30 0.33 1.98 1.52 n/a n/a
2003 1.38 1.73 0.97 0.36 0.32 2.31 1.70 4.78 0.05
2004 1.35 1.74 1.02 0.36 0.33 2.30 1.75 4.70 0.03
2005 1.56 1.64 1.05 0.31 0.34 2.04 1.58 4.72 0.04
2006 1.48 1.68 1.03 0.43 0.28 2.68 1.72 5.07 0.03
2007 1.40 1.72 1.00 0.44 0.28 2.78 1.77 n/a n/a
2008 1.32 1.76 0.95 0.52 0.28 3.32 2.17 5.51 0.05
2009 1.38 1.73 1.01 0.53 0.29 3.41 2.30 n/a n/a
2010 1.34 1.74 1.03 0.40 0.32 2.52 1.87 4.82 0.04
2011 1.32 1.76 1.03 0.35 0.34 2.24 1.73 4.65 0.03
2012 1.43 1.70 1.06 0.25 0.35 1.76 1.43 4.19 0.04
2013 1.40 1.71 1.08 0.28 0.35 1.89 1.51 4.30 0.03
2014 1.40 1.71 1.05 0.28 0.34 1.91 1.47 4.26 0.03
2015 1.46 1.68 1.02 0.30 0.31 1.99 1.43 5.16 0.02
2016 1.44 1.70 1.02 0.39 0.30 2.47 1.69 5.38 0.04
2017 1.57 1.64 1.02 0.42 0.27 2.63 1.66 5.23 0.03
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Figure 9. Plots of κ0 as a function of ν for each year from 1995 to 2017 (in the same format as in the top right panel of Figure 8). Errors of ν are not shown, for clarity.
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deviation from the theoretical model in Equation (2) may be
expected if more than one potential is acting on the plasma
particles within the specific intervals. Such intervals could be
analyzed in future studies with finer resolutions, in order to
resolve the existing potentials. Moreover, different solar wind
structures such as magnetic clouds, CMEs, and CIRs may
introduce scattering of the data points around the theoretical
expectation. Also, the presence of enhanced turbulence can
introduce additional data-point scattering and prevent the
accurate determination of the potential d.o.f. Indeed, the anti-
correlation is not persistently strong within all the analyzed

annual intervals and the whole range of VSW, nonetheless the
result still constitutes strong evidence of the specific correlation,
verifying the results and the theoretical expectations (Livadiotis
2018a, 2018b, 2019a).

5.4. Distribution Function Affected by the Solar Activity

We found a clear variation of the annual Fd1

2
, which is

correlated with the annual average klog 0 . Both Fd1

2
and klog 0

are anti-correlated with Sn (Figure 10). Further analysis
quantifies the relationship between Fd1

2
and Sn (Figure 11).

Figure 10. (From top to bottom) Time series of Sn (gray, left y-axis) and B (black, right y-axis), annual averages ḡ , klog 0 , and y-intersect y0̄ (left y-axis) that
corresponds to the potential d.o.f, = +Fd y 11

2 0̄ (right y-axis). We observe that klog 0 and Fd1

2
are correlated, while both parameters are anti-correlated with the solar

activity. The polytropic index shows weaker correlation with the solar activity.

Figure 11. (Left) The (Pearson) correlation coefficient between the time series of Fd1

2
and Sn

p as a function of the exponent p. The strongest anti-correlation (Pearson

coefficient <−0.82) is calculated for p ∼ 0.6. (Right) The time series of Fd1

2
(black) and the - S5.75 0.08 n

0.6 (gray) are approximately fitted.
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The results indicate that, during periods of strong activity, the
enhanced magnetic field induces stronger correlations among
particles (Livadiotis et al. 2018), resulting in kappa distribu-
tions with lower κ0. This is specifically shown in Figure 12,
where κ0 decreases with increasing Sn and B. In the right panel
of Figure 12, we show the data points within the two solar
cycles. The anti-correlation between κ0 and B is more
pronounced during the 23rd solar cycle, for which κ0 drops
from ∼3.5 to ∼1.5 as B increases from ∼3 nT to ∼8 nT. In
addition, we observe anti-correlation between the magnetic
field and the potential d.o.f.; we discuss this behavior in the
next subsection.

5.5. Implications on the Potential Energy Function

The observed d.o.f. Fd1

2
decreases from ∼6 during solar

minimum to ∼4 during solar maximum. For the power-law
central potential,

F µ - -r r , 13b( ) ( )

(negative F <r 0( ) and attractive ¶F ¶ >r r 0( ) ), it has been
shown that the d.o.f. Fd1

2
can be expressed as a function of the

exponent b and the potential dimensionality dr (Livadiotis
2015b, 2017, Chapters 3 and 4)

=F
-d b d

1

2
. 141

r ( )

For a typical interplanetary electric field with b=1/2 (e.g.,
Cuperman & Harten 1971; Lacombe et al. 2002; Livadiotis
2018b), our findings indicate that the dimensionality dr reduces
from 3 during solar minimum and a weak magnetic field to 2
during solar maximum and a strong magnetic field. Table 3
shows the corresponding values of the potential dimensionality
dr, for such a typical interplanetary electric potential (b=0.5),
and the annual Sn and B. Figure 13 shows dr as a function of Sn
and B. The linear fitting to the data shows that during low
activity and a weak interplanetary magnetic field, the
interplanetary electric potential is characterized by spherical

symmetry, which reduces to cylindrical symmetry during high
activity and a strong interplanetary magnetic field.
It is possible that both dr and b may vary with the solar

activity and the interplanetary magnetic field. The diagram in
Figure 14 plots the exponent b as a function of dr within the
observed range of values of 1/2dΦ. In the same plot we indicate
the solutions for b=0.5, which are discussed above (inter-
section with the horizontal magenta), and the solutions of
dr=2 and dr=3 (intersections with the vertical gray lines).
For example, in the case of potential dimensionality fixed to
dr=3 (right gray dashed in Figure 14), our findings indicate
that the exponent b would vary from 0.75 during solar
maximum to 0.5 during solar minimum.

Figure 12. Kappa index κ0 plotted as a function of Sn (left) and B(right). The linear fit to data points (black dash) is shown for both panels. The dashed magenta line in
the right panel corresponds to the linear fitting to the data points within the 23rd solar cycle. The result indicates that κ0 decreases with increasing Sn and B.

Table 3
Annual Means of the Potential d.o.f., Space Dimensionality, and Magnetic

Field for 1995–2017

Year Fd1

2
d Fd1

2( ) dr δdr B Sn

1995 5.89 0.05 2.95 0.03 5.71 25.1
1996 n/a n/a n/a n/a 5.08 11.6
1997 5.57 0.06 2.79 0.03 5.50 28.9
1998 4.75 0.04 2.38 0.02 6.75 88.3
1999 4.53 0.04 2.27 0.02 6.63 136.3
2000 3.94 0.03 1.97 0.02 6.90 173.9
2001 4.21 0.04 2.11 0.02 6.77 170.4
2002 n/a n/a n/a n/a 7.46 163.6
2003 4.78 0.05 2.39 0.03 7.13 99.3
2004 4.70 0.03 2.35 0.02 6.19 65.3
2005 4.72 0.04 2.36 0.02 6.11 45.8
2006 5.07 0.03 2.54 0.02 4.95 24.7
2007 n/a n/a n/a n/a 4.35 12.6
2008 5.51 0.05 2.76 0.03 4.15 4.2
2009 n/a n/a n/a n/a 3.85 4.8
2010 4.82 0.04 2.41 0.02 4.61 24.9
2011 4.65 0.03 2.33 0.02 5.21 80.8
2012 4.19 0.04 2.10 0.02 5.64 84.5
2013 4.30 0.03 2.15 0.02 5.16 94.0
2014 4.26 0.03 2.13 0.02 5.79 113.3
2015 5.16 0.02 2.58 0.01 6.54 69.8
2016 5.38 0.04 2.69 0.02 5.96 39.8
2017 5.23 0.03 2.62 0.02 5.20 21.7
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6. Conclusions

The presented paper simultaneously derived the polytropic
and kappa indices of the solar wind protons over the last two
solar cycles, using Wind observations. The analysis determined
the long-term relationship between the two indices, from which
the potential d.o.f. were derived. We examined the character-
istic long-term correlation between these parameters, and how
this varies with the solar activity and the interplanetary
magnetic field.

In summary, in this paper we showed the following:

1. There is a systematic relationship between the polytropic
ν=1/(γ−1) and kappa κ0 indices of the solar wind
protons.

2. The kappa distribution function is affected by the solar
activity and the interplanetary magnetic field. More
specifically, the kappa index of the distribution function

decreases with increasing solar activity and magnetic
field strength.;

3. The potential degrees of freedom decrease with increas-
ing solar activity and the interplanetary magnetic field
strength.

4. The dimensionality of the particles varies with the solar
activity and the magnetic field. For a typical interplane-
tary electric field, the dimensionality reduces from dr=3
in solar minimum, to dr=2 in solar maximum, meaning
that particles have spatial configurations with d.o.f. close
to three for weaker magnetic fields, while it flattens to a
configuration of d.o.f. close to two for stronger magnetic
fields.

Finally, we highlight the importance of similar studies with
future S/C missions such as Solar Orbiter and Parker Solar
Probe, which will provide high-resolution data at a wide range
of heliocentric distances. With similar data analyses that
combine plasma, magnetic, and electric field measurements
from these missions, we can determine the dependence of
exponent b on r, which will lead to an accurate determination
of Φ(r). Additionally, we can determine Φ(r) beyond the
ecliptic, by analyzing future Solar Orbiter data obtained in
high-inclination orbits (>30°).
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