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We consider a system of two bosonic modes each subject to the dynamics induced by a thermal Markovian
environment and we identify instantaneous, local symplectic controls that minimize the loss of entanglement in
the Gaussian regime. By minimizing the decrease of the logarithmic negativity at every instant in time, it will
be shown that a nontrivial, finite amount of local squeezing helps to counter the effect of decoherence during
the evolution. We also determine optimal control routines in the more restrictive scenario where the control
operations are applied on only one of the two modes. We find that applying an instantaneous control only at
the beginning of the dynamics, i.e., preparing an appropriate initial state, is the optimal strategy for states with
symmetric correlations and when the dynamics is the same on both modes. More generally, even in asymmetric
cases, the delayed decay of entanglement resulting from the optimal preparation of the initial state with no further
action turns out to be always very close to the optimized control where multiple operations are applied during the
evolution. Our study extends directly to “monosymmetric” systems of any number of modes, i.e., to systems that
are invariant under any local permutation of the modes within any one partition, as they are locally equivalent to
two-mode systems.
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I. INTRODUCTION

The property of entanglement exhibited by quantum sys-
tems has both metaphysical and technological interest. In
applications, it has been found to be a fragile resource that
is quickly lost when the system is not isolated. Since any
manipulation of quantum systems requires them to be in con-
tact with a noisy environment, a major question in advancing
control upon them—arguably the main directive towards the
development of functional quantum technologies—is how we
can preserve this phenomenon for as long as it takes for an
experiment to unfold. The design and application of quantum
control techniques aimed at sustaining the entanglement of
quantum systems has thus been a lively area of work over the
past 15 years [1–17] that has seen the exploration of open-loop
[2,7] as well as measurement-based [3–6,8–10] and quantum
coherent feedback [13] strategies, applicable in principle to a
wide variety of systems, although quantum optical scenarios
seem to offer accurate enough control and low enough noise
to facilitate such endeavors [1,11,16].

In this paper, we address the open-loop control of Gaussian
entanglement, such as the one displayed in experiments based
on parametric down conversion processes [11,12,16]. As
well as providing an insightful theoretical landscape where,
as we shall see, much can be evaluated analytically even
when realistic noise is included, Gaussian systems are widely
applicable not only to optical setups, but also in all other
situations where the interaction between constituents and with
the environment may be linearized, e.g., in optomechanics,
ion traps, atomic ensembles, and certain quantum circuits
[18]. In particular, we shall consider a two-mode system
where each mode is subject to independent loss and thermal

noise, as would be the case in nondegenerate parametric
processes that give rise to two-mode squeezed states, the most
representative of entangled Gaussian states [11,12]. Alongside
the free, noisy evolution of an initial entangled state, which
clearly degrades the entanglement, we shall consider the
possibility of acting, at any instant in time, with arbitrary,
impulsive local symplectic transformations. Let us remind the
reader that such transformations, that will be assumed to be
instantaneous, correspond to all local unitary operations that
preserve the Gaussian character of the state. This assumption
is not unreasonable if one considers, for instance, loss rates
in the range of 10–103 kHz compared to manipulation times
of the order of 1–10 ns, both achievable simultaneously in
practice in a number of systems. This flavor of “optimal”
control, whereby some figure of merit was locally optimized
over instantaneous unitary manipulations, was already applied
to discrete quantum systems in [19], was first extended to
(single-mode) Gaussian states in [20], and was then adapted
to the control of the global entropies of multimode Gaussian
states in [21]. Here, we further extend this approach to the
nontrivial question of controlling quantum entanglement of a
two-mode system.

In this study, we will determine the optimal form of the
local symplectic transformation that, at each given time,
minimizes the loss in entanglement in terms of the logarithmic
negativity, a suitable quantifier. Quite remarkably, we shall see
that a single manipulation of the state through optimal local
symplectic transformations is always optimal in cases with
enough symmetry (either the same loss and thermal noise on
both modes or initial states with symmetric correlations): in
such cases no further impulsive transformations are required.
It is worth mentioning that the application of a single initial
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Gaussian control to delay the loss of nonclassical properties of
non-Gaussian states under the effect of decoherence has been
considered previously in the literature [22–25]. Interestingly,
we also have evidence that applying the control repeatedly
only gives marginal improvements in the general case of
asymmetric dynamics and correlations. Furthermore, we shall
also consider the case where only one of the two modes can
be controlled, showing that our analytical conditions extend
to this case too.

There is, of course, no guarantee that this “time-local” op-
timal control, where the first derivative with respect to time of
the figure of merit is optimized at all instants, would achieve a
global optimization. Hence we shall test it against a different
control strategy, where an alternative quantifier related to the
entanglement of the evolving two-mode Gaussian state is
optimized at all times. We find that the control based on the
logarithmic negativity proves more robust: in our numerical
investigation, we could find no way of outperforming it. We
will also quantify the advantage our optimized control grants
in certain practical cases, in terms of ebits of logarithmic
negativity.

The paper is organized as follows.

II. GAUSSIAN STATES

We introduce here the necessary definitions and tools con-
cerning Gaussian systems, following [18].

Let r̂ = (x̂1, p̂1, . . . , x̂n, p̂n)T be a vector of canonical
operators such that [x̂j , p̂k] = iδjk , where δjk is the Kro-
necker delta. The canonical commutation relations may also
be expressed as [r̂, r̂T] = i�, where the commutator is to
be interpreted as an outer product between vectors and the
antisymmetric, symplectic form is given by

� =
n⊕

i=1

(
0 1

−1 0

)
. (1)

Second-order Hamiltonians are defined as those that can be
written as Ĥ = 1

2 r̂TH r̂ + r̂Ta, where H is a 2n×2n, real,
symmetric matrix and a is a vector of real numbers. The set
of Gaussian states can be defined as the ground and thermal
states of positive-definite quadratic Hamiltonians:

ρ̂G = e−βĤ

Tr [e−βĤ ]
, (2)

where β is the inverse temperature of the state. Note that
the definition above encompasses the limiting instances of
the inverse temperature β, which are needed to describe
modes in pure quantum states. Such states are referred to
as Gaussian due to their Wigner representation which takes
a Gaussian form. As is well known, a Gaussian state ρ̂G

is completely characterized by the first- and second-order
statistical moments of the canonical operators. First moments
may be adjusted arbitrarily by local unitary “displacement”
operations, and thus their values are inconsequential to the
entanglement of a quantum state. We will therefore focus
on the second moments alone, which are usually grouped
together in the so-called covariance matrix:

σ = Tr [{(r̂ − d), (r̂ − d)T}ρ̂G], (3)

where d = Tr [r̂ρ̂G] and the anticommutator is taken on the
outer product of vectors of operators and the trace acts on the
Hilbert space, thus obtaining a 2n×2n covariance matrix σ .
In order to be a bona fide covariance matrix, σ must abide
by the uncertainty principle, σ + i� � 0. In the following we
will focus on two-mode Gaussian states; it is useful to express
the 4×4 covariance matrix of the system in terms of 2×2
blocks as

σ =
(

α γ

γ T β

)
, (4)

where α and β are the covariance matrices of the single-mode
reduced states.

Gaussian unitaries

A unitary operation sends Gaussian states into Gaussian
states if and only if it is generated by a second-order Hamil-
tonian. Since we are disregarding the first moments, we can
set a = 0 in the definition above and thus obtain the group
of symplectic transformations, generated at the Hilbert space
level by purely quadratic Hamiltonians. A symplectic trans-
formation S describes the linear, Heisenberg-picture evolution
of the vector r̂ under such a purely quadratic Hamiltonian as
r̂ �→ Sr̂. Since they correspond to unitary operations, sym-
plectic transformations must preserve the canonical commuta-
tion relations: they can in fact be defined as the set of 2n×2n

matrices S such that

S�ST = �, (5)

which form the real symplectic group Sp2n,R. Covariance ma-
trices transform under the finite-dimensional representation of
the symplectic group by conjugation:

σ �→ SσST. (6)

In the study at hand, we will focus on two-mode states and
consider control strategies enacted through local symplectic
transformations, acting separately on each mode, which be-
long to the direct sum Sp2,R ⊕ Sp2,R. Explicitly, a generic
local symplectic transformation Sloc on two modes may be
written as

Sloc =
(

S1 0
0 S2

)
, with S1, S2 ∈ Sp2,R . (7)

In the quantum optical practice, such operations correspond to
sequences of single-mode squeezers and phase shifters (also
known as “phase plates”).

Many properties of Gaussian states can be described in
terms of symplectic invariants, quantities invariant under sym-
plectic transformations, which we present more in detail in
Appendix A. On the other hand, the entanglement of Gaussian
states can be discussed in term of local symplectic invariants;
this topic is discussed in Appendix B, along with separability
conditions and entanglement quantifiers for Gaussian states.

III. OPTIMAL TIME-LOCAL CONTROL

A. Free evolution

As the free, uncontrolled, evolution of the system, re-
sponsible for the loss of coherence and entanglement, we
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shall adopt the rotating wave interaction of the system with a
number of bosonic Markovian environments with a different
coupling strength and number of thermal excitations for each
mode. The evolution of the state is described the following
Lindblad master equation:

˙̂ρ =
n∑

i=1

γi (N̄i + 1)D[âi] ρ̂ + γiN̄iD[â†
i ] ρ̂, (8)

where the superoperator D[ô] ρ̂ = ôρ̂ô† − {ô†ô, ρ̂} was in-
troduced together with the usual annihilation operators âk =
(x̂k + i p̂k )/

√
2. This dynamics is often referred to as “loss

in a thermal environment,” in this case a different thermal
environment for each mode. The parameters γi represent
the loss rates (we could omit one by scaling the unit of
time), whilst N̄i = 1/(exp[ h̄ωi

kTi
] − 1) are the mean number

of bosonic excitations of each bath, written in terms of the
baths’ temperatures Ti , the modes’ frequencies ωi , Planck’s
constant h̄, and Boltzmann’s constant k. We remark that the
number of excitations N̄i are different for bosonic modes
at different frequencies even if the temperature is the same.
This is relevant in various physical setups, e.g., quantum
states of the electromagnetic field generated by nondegenerate
parametric down conversion or analogous processes [26].

In terms of the covariance matrix, this dynamics leads to a
diffusive equation [18]:

σ̇ = Aσ + σAT + D, (9)

with A = − 1
2

⊕n
i γi12 and D = ⊕n

i χi12 and χi =
γi (2Ni + 1). Throughout the paper, the notation 1j will
indicate the j × j identity matrix. We remark that Eq. (9)
holds true for the covariance matrix of any state (regardless
of its Gaussian character) undergoing the dynamics given by
Eq. (8). To completely determine the evolution of a Gaussian
state, one also needs the equation for the first moments
ḋ = Ad. However, we will only need the evolution of the
covariance matrix, since it encodes all the entanglement
properties of a Gaussian state.

B. Local control

We will now assume the possibility of performing instanta-
neous, local symplectic transformations, as given by Eq. (7),
which cannot generate quantum correlations but can, as we
shall see, delay their decay during the interaction with the
thermal bath described by the diffusive dynamics (9).

To start with, observe that, since we are assuming arbitrary
local symplectic control, as in Eq. (7), we can restrict to
covariance matrices in Simon normal form, which can be
reached through local symplectic transformations [18,27]; the
blocks of a covariance matrix σ nf in normal form are all
diagonal:

αnf = a12, βnf = b12, γ nf = diag(c+, c−). (10)

Here, a, b, c+, and c− may be taken as the four independent
local symplectic invariants, in terms of which the optimization
problem we set to solve may be cast. Such invariants may be
promptly related to a set of quantities, such as Detσ , Detα,
Detβ, and Detγ , whose invariance is manifest since any local
symplectic matrix S has DetS = 1. Since local rotations are

symplectic transformations that preserve the local covariance
matrices, we may swap c+ and c− and without loss of gener-
ality assume c+ � c−.

Our main result is the analytic expression of the optimal
separable Gaussian unitary which maximizes the derivative
of the logarithmic negativity under the dynamics of Eq. (9).
The optimal control unitary is given by two local squeezing
operations Sj = diag(zj , 1/zj ) [18,28]; the optimal squeezing
parameters are

z̄j = 4

√
wj

vj

, (11)

where we introduced the coefficients

v1 = a(b2 − a2 + u) + 2c+(ac− − bc+), (12)

w1 = a(b2 − a2 + u) + 2c−(ac+ − bc−), (13)

v2 = b(a2 − b2 + u) + 2c+(bc− − ac+), (14)

w2 = b(a2 − b2 + u) + 2c−(bc+ − ac−), (15)

which in turn depend on the parameter

u =
√

(a2 − b2)2 + 4ab(c2+ + c2−) − 4c+c−(a2 + b2). (16)

Furthermore, if only one of the two modes can be acted on,
the optimal control operation is still a (single) local squeezing
with the same coefficient reported in Eq. (11).

In the next subsection we shall present the derivation of
these results.

1. Derivation of the optimal local squeezing

The logarithmic negativity [29] is the entanglement quan-
tifier that we shall adopt as a figure of merit for our control
scheme. For a two-mode Gaussian state it can be computed as

EN = max{0,− log2(ν̃−)}, (17)

where ν̃− is the smallest symplectic eigenvalue of the partially
transposed state, which reads

2ν̃2
− = �̃2

1 −
√(

�̃2
1

)2 − 4 Detσ , (18)

where �̃2
1 = Detα + Detβ − 2 Detγ . For a more thorough

treatment of the subject, see Appendix B.
Our control objective is thus to minimize the derivative

of 2ν̃2
−, since the logarithmic negativity EN is a decreasing

function of it. It is thus useful to work out explicitly its
derivatives with respect to Detσ and �̃2

1:

∂2ν̃2
−

∂ Detσ
= 2√(

�̃2
1

)2 − 4 Detσ
= 2

u
, (19)

∂2ν̃2
−

∂�̃2
1

= 1 − �̃2
1√(

�̃2
1

)2 − 4 Detσ

= 1 − a2 + b2 − 2c+c−
u

. (20)
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The quantity u =
√

(�̃2
1)2 − 4 Detσ is reported as a function

of the normal form coefficients in Eq. (16); notice that it is
always strictly greater than zero for entangled states. To see
this, it will suffice to notice that only one partially transposed
symplectic eigenvalue of a two-mode covariance matrix may
ever be smaller than 1 [18,30], as is the case for an entangled
state. Therefore, the two symplectic eigenvalues of a two-
mode entangled state must be different, which is equivalent
to stating u > 0.

Now, the free, diffusive evolution of the quantities Detσ
and �̃2

1 can be written as (see Appendix C for the derivation)

˙Detσ = − 2(γ1 + γ2)Det σ + χ1Det β Tr
[
S1(σ/β )ST

1

]
+ χ2Det α Tr

[
S2(σ/α)ST

2

]
, (21)

˙̃�2
1 = −2γ1Det α − 2γ2Det β + 2(γ1 + γ2)Det γ

+χ1Tr
[
S1αST

1

] + χ2Tr
[
S2βST

2

]
, (22)

where σ/β = α − γβ−1γ T and σ/α = β − γ Tα−1γ are the
Schur complements of σ with respect to the submatrices β

and α. Here, the role of the control operation has been made
explicit through the local symplectic transformations S1 and
S2. We intend to determine the symplectic matrices S1 and S2

that minimize the derivative of ν̃− and thus optimally preserve
the entanglement over an infinitesimal time interval, whereby
our control is termed “local” or “time local.”

Each of the single-mode symplectic matrices S1 and S2

admits a singular value decomposition as Sj = QjZjRj ,
where Qj and Rj are orthogonal symplectic matrices and
Zj = diag(zj , 1/zj ) is a local squeezing operation. This fact
simplifies our optimization considerably: first, notice that
all the terms depending on Sj in Eqs. (21) and (22) are
invariant under local orthogonal transformations, so that the
transformations Qj can be ignored altogether. Besides, due to
our use of the Simon normal form it may be shown that the
minimization we are considering below is always realized for
Rj = 12 and a proper choice of Zj . Hence the only relevant
local action may come from the local squeezing operations Z1

and Z2, diagonal in the normal quadratures (as we shall refer
to the degrees of freedom that attain the Simon normal form).

The straightforward evaluation of the quantities depending
on the local symplectic transformations in Eqs. (21) and (22)
yields

Det β Tr
[
S1(σ/β )ST

1

] =
[
b(ab − c2

−)

z2
1

+ b(ab − c2
+)z2

1

]
,

(23)

Det α Tr
[
S2(σ/α)ST

2

] =
[
a(ab − c2

−)

z2
2

+ a
(
ab − c2

+
)
z2

2

]
,

(24)

Tr
[
Z1αZT

1

] = a

(
z2

1 + 1

z2
1

)
, (25)

Tr
[
Z2βZT

2

] = b

(
z2

2 + 1

z2
2

)
. (26)

Now, our optimization over the squeezing parameters z1

and z2 may be defined by considering only the additive part
in the derivative of (2ν̃−)2 that contains such parameters; it
will also be convenient to multiply such a term by the positive
quantity u > 0 (that does not depend on z1 and z2) and to
refer to the quantity obtained by ξ . Equations (19),(20) and
(23)–(26) yield

ξ = χ1

(
v1z

2
1 + w1

z2
1

)
+ χ2

(
v2z

2
2 + w2

z2
2

)
. (27)

All of the quantities vj and wj , defined in Eqs. (12)–(15), are
bound to be positive semidefinite: if that were not the case,
there would exist physical cases where the free dynamics, that
corresponds to local completely positive maps, would be able
to increase the logarithmic negativity, which is impossible
since the latter is an entanglement monotone [29]. In point
of fact, it will be expedient to just consider the quantities vj

and wj as strictly positive in what follows. The possibility for
such parameters to take null values would imply the existence
of limiting states where the free, thermal lossy channel does
not decrease the entanglement: we are not aware of any such
states (nor did we encounter any numerical evidence where
any of the parameters above were zero).

Hence the minimization of ξ , which yields the optimal
local squeezing parameters to preserve as much quantum en-
tanglement as possible (in the form of logarithmic negativity),
is performed by separately minimizing the two terms in (27),
as they are both strictly positive; the dependence on the two
parameters χj thus vanishes. The result is straightforward and
furnishes the optimal parameters in Eq. (11).

2. Time-local control of a single subsystem

We now consider a different scenario where we have the
ability to control only one of the two subsystems; without loss
of generality we assume this to be the first subsystem, the one
corresponding to the local covariance matrix α. Differently
from the previous case we cannot put the state in normal
form, since local symplectic transformations on both modes
would be needed. We can however apply symplectic transfor-
mations on one system to make the local covariance matrix
α proportional to the identity, and then further act on such a
subsystem with a local rotation (which will leave α unaffected
but can act on the correlation sub-block γ ). In this case, the
free parameters are eight, and it is convenient to parametrize
the whole covariance matrix in terms of the coefficients of the
normal form as follows:

σ = Sα,βσ nfS
T
α,β, Sα,β = 12 ⊕ Sβ. (28)

Sβ is a generic symplectic transform on the second subsystem.
We can readily see that the ten free real parameters of a
generic two-mode covariance matrix are reduced to eight,
since Sβ will depend on two angles and a (unbounded) squeez-
ing parameter.

We can then reproduce all the previous steps; in particular,
we now have to evaluate Eqs. (21) and (22) considering only
the local symplectic control S1 = Z1R1; i.e., setting S2 =
12. The minimization proceeds in the same way, with the
minimum always attained for R1 = 12 and for a diagonal
squeezing operation Z1 with squeezing parameter z̄1 given by
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Eq. (11) in terms of the coefficients of the normal form. Even
if the state cannot be put in normal form, the only parameters
that come into play are the normal form coefficients, since
the local symplectic Sβ on the initial state does not affect the
result. This is due to the fact that, despite the presence of
entanglement, the contributions of the individual modes to the
derivative in Eqs. (21) and (22) are positive and independent.
Note that the symplectic transformation S1 is the control
operation, whilst Sβ above was only used to parametrize the
initial state.

C. Initial-state preparation versus repeated control operations

A few preliminary considerations concerning the optimal
control strategy emerge directly from Eqs. (11)–(15). If the
magnitudes of the x and p correlations in the normal form
c+ and c− are the same, i.e., if c+ = −c− (note that c+ and
c− of different signs are a prerequisite for entanglement [18]),
then vj = wj and z̄j = 1 for j = 1, 2. The optimal control
strategy consists therefore just in putting the initial state in
normal form through local symplectic transformations, and
then in letting the state evolve freely, since the evolution we
are considering will keep the covariance matrix in normal
form. In the following we refer to this condition |c+| = |c−|
by saying that the state has “symmetric correlations.”

However, if |c+| �= |c−|, then the optimal control strategy
includes some local squeezing after the normal form reduc-
tion; the form of such a locally squeezed state is not preserved
by the dynamics. Nonetheless, when the two modes undergo
the same dynamics, i.e., γ1 = γ2 and χ1 = χ2, it turns out that
a single iteration of the initial control operation leads to time-
local optimal control over the whole dynamics. To write this
in formulas we consider a given optimal covariance matrix σ ′,
i.e., σ ′ = Slocσ 0S

ᵀ
loc, such that Sloc minimizes ˙̃ν(Slocσ 0S

T
loc)

and σ 0 is a completely generic initial physical covariance
matrix. The statement above is then equivalent to

inf
Sloc

˙̃ν
(
Sloc[pσ ′ + (1 − p)χ14]ST

loc

) = ˙̃ν[pσ ′ + (1−p)χ14],

(29)

∀ p ∈ [0, 1], with Sloc optimized over the set Sp2,R ⊕ Sp2,R.
The convex combination appearing in the previous equation is
the diffusive time evolution obtained by solving Eq. (9) with
the choice γi = γ , χi = χ , a rescaling of time t → γ t , and
upon the substitution p = e−t [see Eqs. (C2)–(C4) for the gen-
eral case]. The statement above is proven by showing that the
local squeezing of the matrix pσ ′ + (1 − p)χ14 matches, for
all p, the optimal squeezing condition (11), where the quan-
tities (12)–(15) must be reevaluated for pσ ′ + (1 − p)χ14.
This yields an equality in terms of the quantities a, b, c+,
and c− of the initial state, whose explicit algebraic expression
is utterly unwieldy, but which can be verified exactly with
Mathematica.

In general, when χ1 �= χ2 and γ1 �= γ2 the previous state-
ment does not hold. Therefore, we can quantitatively evaluate
the effectiveness of repeated control operations applied during
the considered dynamics. Numerical evidence (presented in
Sec. IV) shows that subsequent control operations after the
initial one improve the conservation of entanglement, but by a
very small amount. The intuitive reason behind this behavior

is that the repeated scheme gets more useful the greater the
unbalance between the values |c+| and |c−|. However, an
unbalance between those correlation terms is achieved only
for mixed states and, due to the uncertainty principle that
restricts physical covariance matrices, there is only a narrow
region in parameter space where such unbalanced states con-
tain substantial entanglement [31].

IV. APPLICATIONS

Here, we shall present some quantitative applications of
the results we have derived. We do not concentrate on a
specific physical platform in great detail, but the choice of
the parameters γi and N̄i in the following are apt to describe
quantum states of the electromagnetic field in the optical
(Sec. IV A) and microwave domain (Sec. IV B).

A. Optimal state preparation

As previously stated, in cases with enough symmetry the
only control operation needed is an appropriate state prepa-
ration. Let us first consider the paradigmatic example of
an initial two-mode squeezed state, with a = b = cosh(2r )
and c+ = −c− = sinh(2r ), r being the so-called two-mode
squeezing parameter. Such states are the output of nonde-
generate parametric down conversion processes, and possibly
the most iconic among entangled Gaussian states. For a state
with symmetric correlations the optimal control operation is
to bring it in normal form; therefore, a two-mode squeezed
state is already optimal. We study the dynamics of the loga-
rithmic negativity for initial states that differ from a two-mode
squeezed state by a local squeezing operation diag(2, 1/2),
applied on only one mode or applied on both modes. The first
case can also be thought of as a single-mode control scenario,
as described in Sec. III B 2.

The advantage granted by the initial adjustment is illus-
trated in Fig. 1, where equal loss rates and equal thermal
noises are assumed for both modes. In the case of high thermal
noise χ/γ = 2 (left panel of Fig. 1) it is apparent that the
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FIG. 1. Logarithmic negativity of states which are initially lo-
cally equivalent to a pure two-mode squeezed state with squeezing
parameter r = ln[

√
2 + 1]/2, evolving in a thermal environment

with χ/γ = 2 (left panel) and χ/γ = 1.000013, i.e., room temper-
ature at 450 THz (right panel); the two modes have the same loss
rate γ = 100 kHz. The blue (solid) curve refers to an initial state in
standard form and the orange (dashed) curve refers to an initial state
where one mode is locally squeezed by the squeezing transformation
Z̄ = diag(2, 1/2), while the green (dotted) curve refers to a state
where both modes have been squeezed by Z̄.
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FIG. 2. Logarithmic negativity of states which are initially lo-
cally equivalent to a pure two-mode squeezed state with squeezing
parameter r = ln[

√
2 + 1]/2. Left panel: the two modes are evolving

in two thermal environments with χ1/γ = 1 and χ2/γ = 2, while the
loss rate γ = 100 kHz is the same for both modes. Right panel: the
two modes have different loss rates γ1 = 100 kHz and γ2 = 10 kHz,
but the same parameter χ = γ11.000013. The blue (solid) curve
refers to an initial state in standard form, the orange (dashed) curve
refers to an initial state where the first mode is locally squeezed
by the squeezing transformation Z̄ = diag(2, 1/2), and the green
(dotted) curve refers to a state where the second mode is squeezed
by Z̄, while the red (dot-dashed) curve refers to a state where both
modes have been squeezed by Z̄.

initial control may prolong the life of quantum entangle-
ment by around 2 μs (this will of course depend on the
strength of the single-mode squeezing operation considered).
Reducing χ/γ to 1.000013, which corresponds to the room-
temperature thermal noise affecting a mode of visible radia-
tion at 450 THz, results in the comparison in the right panel
of Fig. 1: as is well known, at such low noise the complete
demise of entanglement is less sharp, but adjusting the state in
normal form still allows one to gain about 0.22 ebits of loga-
rithmic negativity after 10 μs: a very significant improvement.

Figure 2 shows the effect of different decoherence channels
on the same initial two-mode squeezed vacuum. In the left
panel we keep the same loss rate γ = 100 kHz but we change
the thermal noise affecting the two modes (χ1/γ = 2 and
χ2/γ = 1), while in the right panel we consider two different
loss rates γ1 = 100 kHz and γ2 = 10 kHz, but we keep the
same parameter χ = γ11.000013. In this case it becomes
evident how the symmetry between the two modes is lost and
depending on which one of the two modes is controlled we
have different behaviors.

Figure 3 illustrates the effect of a single control step
in instances relevant to optical systems, and highlights the
influence local operations might have on the dynamics of
entanglement under decoherence. In the case depicted, which
adopts as above a loss rate of 100 kHz and χ = 1.000013
(room temperature at 450 THz), the so-called “sudden death”
of quantum entanglement is delayed from 7 μs to a stunning
90 μs though the optimal control squeezing operation identi-
fied above. It is worth stressing again that the optimal local
squeezing transformation does not depend on the parameters
of the noise, but only on the state in hand.

B. Repeated controls

As explained previously, repeatedly applying the control
during the dynamics is only relevant for initial states with un-
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FIG. 3. Logarithmic negativity for initial states locally equivalent
to a state with normal form parameters a = 4.5, b = 3.5, c+ = 2.2,
and c− = −3.5, evolving in a thermal environment with χ/γ =
1.000013 and loss rate γ = 100 kHz. The blue (solid) curve pertains
to a state that was optimally adjusted on both modes, the orange
(short dashed) curve pertains to a state that was optimally adjusted
on one mode, the green (dotted) curve pertains to an initial state in
normal form, and the red (dot-dashed) curve pertains to an initial
state whose normal form was altered by the squeezing transformation
Z̄ = diag(2, 1/2) on one mode, while the purple (large dashed) curve
pertains to a state further altered locally by a phase plate R π

4
(besides

the local squeezing Z̄).

balanced correlations |c+| �= |c−| and if the reduced dynamics
of the two modes is not the same. For this quantitative study,
we therefore choose thermal environments corresponding to
different microwave frequencies of ω1 = 35.0476 GHz and
ω2 = 55.3674 GHz, taken from [26], at room temperature,
with equal loss rates γ = 100 kHz.

In Fig. 4 we plot the difference between the logarithmic
negativity obtained with repeated control operations and the
one obtained with a single initial control. We show that
applying more control operations after the initial one delays
the quantitative decay of entanglement of a small but not
altogether negligible amount; interestingly, the sudden death
of entanglement is only very slightly delayed by applying
further control operations. These results are only a particular
example of the same general behavior we found from similar
numerical analyses. However, we also found that the effect of
repeated control operation is more marked when it is acting
on only one mode.

To illustrate that interspersed, time-local optimal control
actions might fail to optimize globally, let us report on a
peculiar case, with normal form parameters a = 5, b = 6,
c+ = 5.2, and c− = −4.8, in Fig. 5, where we plot the
difference between the logarithmic negativity obtained with
repeated control operations and the one where no controls
are applied and the initial state in normal form remains in
normal form throughout the evolution. We see that applying
the control on both modes always provides one with an
increased logarithmic negativity and that, as shown before,
controlling more than once gives little improvements. On the
other hand, optimized control operations on a single mode
show that, whilst initially offering a certain advantage in terms
of logarithmic negativity, can actually make it decrease sooner
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FIG. 4. Difference between the logarithmic negativity with re-
peated controls and the one with a single initial control, for an initial
state in normal form with parameters a = 4.5, b = 3.5, c+ = 2.2,
and c− = −3.5, evolving in thermal environments with χ1/γ =
1.14769, χ2/γ = 1.02956, and same loss rate γ = 100 kHz. The
blue (solid) curve represents one additional control operation after
the first one, the orange (short dashed) curve three additional control
operations, the green (dotted) curve represents a total of ten control
operations, and the red (dot-dashed) curve represents a total of 100
control operations, while the purple (large dashed) curve is obtained
when the control is applied at every time step. Inset: the slight delay
of entanglement “sudden death” due to repeated controls. The time
step used in the plots is 2×10−3 μs and 3×10−4 μs for the main plot
and the inset, respectively.

than without any control operations. It is also apparent that
in this case repeated control operations have a more marked
effect.

V. ALTERNATIVE LOCAL OPTIMIZATION

As previously said, the control procedures we identified in
the previous sections do not necessarily achieve a global opti-
mization of logarithmic negativity. It is therefore interesting to
explore alternative locally optimal controls and compare them
to what we achieved above. As one such alternative, we shall
consider the time-local minimization of the quantity �̃ =
Detσ − �̃2

1 + 1 whose negativity is a necessary and sufficient
signature of entanglement; see Eq. (B1) in Appendix B.

One simply has ˙̃� = ˙Det σ − ˙̃�2
1, where the two

terms are the ones found previously in Eqs. (21)
and (22). This leads to a quantity depending on
the control parameters z1 and z2, which will be
termed ξ ′ = χ1(Det β Tr[S1(σ/β )ST

1 ] − Tr[S1αST
1 ]) +

χ2(Det α Tr[S2(σ/α)ST
2 ] − Tr[S2βST

2 ]). Explicitly, we are
interested in the minimization of

ξ ′ = χ1

(
v′

1z
2
1 + w′

1

z2
1

)
+ χ2

(
v′

2z
2
2 + w′

2

z2
2

)
, (30)

with

v′
1 = b(ab − c2

+) − a, (31)

w′
1 = b(ab − c2

−) − a, (32)
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FIG. 5. Difference between the logarithmic negativity with re-
peated controls and the one without control, for an initial state
with normal form parameters a = 5, b = 6, c+ = 5.2, and c− =
−4.8, evolving in two thermal environments with χ1/γ = 1.14769,
χ2/γ = 1.02956, and the same loss rate γ = 100 kHz. For each
color, the solid lines always represent the application of an initial
control operation, while the dashed curves represent controls applied
at each time of the evolution (the time step chosen for the plot is
10−2 μs). The green curves above all the others represent control
operations on both modes and they are practically superimposed at
this scale, the dashed one attaining slightly higher values of �EN .
The blue curves in the middle (in the region t ≈ 2 μs) represent a
control operation on subsystem 1, while the orange curves at the
bottom (again, in the region t ≈ 2 μs) pertain to control operations
on subsystem 2 only.

v′
2 = a(ab − c2

+) − b, (33)

w′
2 = a(ab − c2

−) − b, (34)

which is achieved for the choice

zj = 4

√
w′

j

v′
j

. (35)

This optimization, at variance with the one detailed in Sec. III,
requires a nontrivial control on the fly to be enforced at every
instant in time, for every choice of initial states and dynamics
(even symmetric ones).

However, rather interestingly, a direct numerical compari-
son reveals that this control criterion is not globally optimal
in order to minimize �̃, as shown in a specific case in Fig. 6.
In general, the control minimizing ν̃− is always superior in
delaying the disappearance of entanglement in a thermal en-
vironment, although the difference between the two methods
is marginal in the region around disentanglement [32]. In the
case depicted in Fig. 6 of an initial state in normal form
with a = 4.5, b = 3.5, c+ = 2.2, and c− = −3.5 evolving in
an environment with thermal noise χ/γ = 2 and loss rate
γ = 1 MHz, the disappearance of entanglement is delayed
by the optimal control method by only 4 ns with respect to
the method minimizing �̃ (9486 ns against 9482 ns). Note
that the difference involved is well detected by our numerical
precision.
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FIG. 6. Difference in the separability parameter �̃ between opti-
mal local control minimizing ν̃− and optimal local control minimiz-
ing �̃ for an initial state in normal form with a = 4.5, b = 3.5, c+ =
2.2, and c− = −3.5 evolving in an environment with equal thermal
noises with χ/γ = 2 and loss rates γ = 1 MHz. As apparent, after
about 30 ns, the local minimization of ν̃− offers an advantage also in
minimizing �̃, whose time-local minimization is thus shown to be
globally suboptimal. The evolving state is entangled up to a time of
around 90 ns.

We have thus encountered an instance where the time-local
control of a parameter is not globally optimal. The time-
local minimization of ν̃−, offering the additional advantage
of requiring a single initial manipulation, is certainly to be
preferred to a control minimizing �̃. Indeed, a broad nu-
merical exploration could identify no procedure that would
surpass the time-local minimization of ν̃ in maximizing the
final entanglement, although we do not possess an analytical
proof of such optimality.

VI. SUMMARY AND OUTLOOK

Summarizing, we have identified a local manipulation
through unitary operations, comprised of the local trans-
formations that put the state in standard form followed by
local squeezing transformations with specific parameters, that
guarantee that a two-mode Gaussian state evolving in two
generic, and generally different, thermal environments (one
for each mode) will experience the minimal possible loss
of logarithmic negativity at each moment in time. Very re-
markably, for states with symmetric correlations and for the
same dynamics on both modes, the optimal scheme only
involves an initial local unitary adjustment of the state, with
no subsequent action. Interestingly, even when the initial
preparation alone is not optimal, we find that the results are
quantitatively very close to those obtained with continuous,
on-the-fly control. Such a strategy has been also compared
with alternative control methods (optimizing different figures
of merit) and found to be superior. It is worth mentioning that
the optimal transformation to be applied does not depend at all
on the parameters of the noisy evolution. This advance in the
understanding of the manipulation and control of continuous-
variable entanglement, besides its inherent theoretical rele-
vance, would be applicable to systems of direct and imme-

diate experimental interest [11,12]. Let us also remark that
the analysis we carried out straightforwardly extends to all
bipartite multimode Gaussian states which are invariant under
permutation of the modes within any one partition, since such
states are locally equivalent to two-mode states [33]; notably,
this includes all 1 vs n-mode systems.

It is also worth mentioning that the ability to perform
instantaneous operations on the system would in principle
allow one to employ dynamical decoupling techniques [34],
whereby the system could be entirely decoupled from its en-
vironment, thus preserving its entanglement. Such a method,
while mostly studied for finite-dimensional systems, can also
be implemented in the continuous-variable regime [35], as
recently shown in full generality for quadratic Hamiltonians
in [36]. It does, however, require one to perform control
operations at a rate which is much faster than the environment
cutoff frequency, which is conceivable in certain scenarios
but impractical in optical setups. Quite on the contrary, our
strategies turn out to rely in general on very few control pulses
(often on a single initial one).

In the future, this study could be extended to consider a
different set of instantaneous operations, consisting of passive
unitaries but without the restriction to being local, i.e., to the
optimization of entanglement through repeated beam splitters
[one can already see from Eqs. (21) and (22) that phase
shifters would be useless to the task]. The interest of such a
problem lies in the fact that in quantum optics passive optical
elements are generally considered to be freely available re-
sources [37,38], while squeezing operations are the expensive
ingredient needed to create entanglement.

Yet another worthwhile extension of the present work
would consist in adding an interaction Hamiltonian between
the two modes during the dynamics. Since the interaction has
the potential to create entanglement, it would be interesting
to study its interplay with local controls, possibly on only
one of the modes. This setting will be particularly relevant to
optomechanical systems, where the interaction Hamiltonian
is key to, e.g., sideband driving, and the thermal noise on the
mechanical mode tends to suppress nonclassical features.

ACKNOWLEDGMENT

We thank D. Burgarth for bringing analogous studies based
on dynamical decoupling to our attention.

APPENDIX A: SYMPLECTIC INVARIANTS

All the spectral properties of Gaussian states are clearly in-
variant under unitary, and hence symplectic, transformations,
and must thus be determined by the symplectic invariants of
the covariance matrix [30,39]. The normal mode decompo-
sition, that allows one to turn any covariance matrix σ into
normal form through some symplectic transformation S, as
per SσST = ⊕n

j=1 νj1, shows that n such independent invari-
ants can be constructed from an n-mode covariance matrix.
A possible choice of symplectic invariants is represented by
the n quantities νj , known as the symplectic eigenvalues, that
may be determined as the moduli of the eigenvalues of the
matrix �σ which, due to the symmetry of σ and antisymmetry
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of �, come in degenerate pairs. In terms of the symplectic
eigenvalues, the uncertainty relation reads νj � 1.

The information contained in the symplectic eigenvalues
may be expressed in terms of other sets of invariants, such
as the sums of the 2k × 2k principal minors of the matrix �σ ,
which we shall denote with �n

k . Up to a sign, these correspond
to the coefficients of the characteristic polynomial of �σ . It
turns out that the uncertainty relation implies [30]

� =
n∑

k=0

(−1)n+k�n
k � 0, (A1)

to be read with the additional stipulation �n
0 = 1. For two-

mode states, the independent invariants are the determinant
Detσ = �2

2 and the quantity �2
1 = Detα + Detβ + 2 Detγ

[40], for the 2×2 submatrices α, β, and γ of Eq. (4).

APPENDIX B: ENTANGLEMENT OF GAUSSIAN STATES

The properties related to the entanglement of Gaussian
states are instead determined by quantities that are invariant
under local symplectic transformations. Since the positivity
of the partial transposition is necessary and sufficient for the
separability of 1 vs n and locally symmetric Gaussian states,
it turns out that a satisfactory characterization of the entan-
glement of such states, which encompass all two-mode states,
is achieved in terms of partially transposed symplectic eigen-
values and invariants. At the level of covariance matrices, the
partial transposition σ̃ of the first nA modes is described by the
congruence transformation σ̃ = T σT for T = (

⊕nA

j=1 σz) ⊕
12(n−nA ), where σz is the Pauli matrix diag(1,−1) and 12(n−nA )

is the identity matrix on the remaining (n − nA) modes. For
this set of Gaussian states, the violation of the inequality
σ̃ + i� is necessary and sufficient for entanglement. In terms
of the sums of principal minors of �σ̃ , denoted with �̃n

k , one
has the corresponding necessary and sufficient separability
condition

�̃ =
n∑

k=0

(−1)n+k�̃n
k � 0. (B1)

An equivalent necessary and sufficient condition for separa-
bility may be written down in terms of the smallest partially
transposed symplectic eigenvalue of σ , denoted with ν̃−:

ν̃− � 1. (B2)

For the class of states in hand, at most one partially transposed
symplectic eigenvalue may be smaller than 1 [30]. In turn, ν̃−
determines the state’s logarithmic negativity EN , as

EN = max{0,− log2(ν̃−)}. (B3)

The quantity EN sets an upper bound, expressed in entangled
bits (ebits), to the distillable entanglement, i.e., the rate of
maximally entangled pairs of qubits that can be distilled
through local operations and classical communication in the
asymptotic limit of an infinite number of available copies
[29,41,42]. This is the entanglement quantifier that we shall
adopt as a figure of merit for our control scheme.

For two-mode states, the partially transposed invariants are
the determinant Detσ which, by virtue of Binet’s theorem, is
not affected by the partial transposition T , and �̃2

1 = Detα +

Detβ − 2 Detγ ; notice the minus sign that distinguishes this
quantity from �2

1. This yields the separability criterion

�̃ = Detσ − �̃2
1 + 1 � 0, (B4)

and the smallest partially transposed symplectic eigenvalue ν̃−
determined by the relationship

2ν̃2
− = �̃2

1 −
√(

�̃2
1

)2 − 4 Detσ . (B5)

APPENDIX C: EQUATIONS OF MOTION FOR THE
SYMPLECTIC INVARIANTS OF TWO-MODE STATES

Given the block form (4), we explicitly write the equation
of motion for the covariance matrix (9) of a two-mode state

σ̇ =
(

α̇ γ̇

γ̇ T β̇

)
=

(−γ1α + χ11 − γ1+γ2

2 γ

− γ1+γ2

2 γ T −γ2β2 + χ21

)
, (C1)

as well as the solution σ (t ) in terms of its submatrices:

α(t ) = χ1

γ1
1 +

(
α(0) − χ1

γ1
1

)
e−γ1t , (C2)

γ (t ) = γ (0)e− γ1+γ2
2 t , (C3)

β(t ) = χ2

γ2
1 +

(
β2(0) − χ2

γ2
1

)
e−γ2t . (C4)

A key step in our analysis is to determine the equations
that govern the evolution of the symplectic invariants under
this dynamics. which may be obtained through Jacobi’s for-
mula: d

dt
Det A(t ) = Tr[Adj(A(t )) d

dt
A(t )], where Adj(A(t ))

represents the adjugate matrix of A(t ); for invertible matrices
we have Adj(A(t )) = (DetA(t ))A(t )−1. For two modes the
equations for the two invariants of the partially transposed
state �̃2

2 = Detσ and �̃2
1 can be explicitly written as

˙Detσ = (Det σ ) Tr[σ−1σ̇ ]

= −2(γ1 + γ2)Det σ

+χ1Det β Tr[σ/β] + χ2Det α Tr[σ/α], (C5)

˙̃�2
1 = d

dt
(Det α + Det β − 2 Det γ )

= −2γ1Det α − 2γ2Det β + 2(γ1 + γ2)Det γ

+χ1Tr α + χ2Tr β, (C6)

where we used the time derivative of the submatrices (C1),
formulas for the inverse of a block matrix, and the fact that
Tr[Adj(A)] = Tr A for 2 × 2 matrices [to obtain Eq. (C5), we
also assumed Det γ �= 0, because a multiplication by γ −1 is
needed: this is always possible since Det γ < 0 is a necessary
condition to have a nonseparable state]. The two matrices
σ/β = α − γβ−1γ T and σ/α = β − γ Tα−1γ are the Schur
complements of σ with respect to the submatrices β and α.

The relationships (C5) and (C6) form the basis of our
analysis for the control of entanglement. Notice that, on
the right-hand side, whilst all the determinants are local
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symplectic invariants and are thus unaffected by local sym-
plectic transformations, all the traces that multiply the coef-

ficients χ1 and χ2 are not. These terms identify the handle
through which local symplectic control may act.
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