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ABSTRACT dimensionality. An insufficient number of particles mayl fai

Multi-modal densities appear frequently in time series and® capture the tails of the density and lead to degenerate

practical applications. However, they cannot be represent solutior_13_. Ip practice, we have to compromise betvv_een the
by common state estimators, such as the Extended Kalm&gterministic and fast (UKF/EKF) or the computationally
Filter (EKF) and the Unscented Kalman Filter (UKF), which démanding and more accurate Monte Carlo mettiods [4].
additionally suffer from the fact that uncertainty is ofteot An ideal filter for a non-linear system should allow for
captured sufficiently well, which can result in incoheremiia Multi-modal approximations, and at the same time its appro-
divergent tracking performance. In this paper, we address t Ximations should be consistent to avoid degenerate soBitio
se issues by devising a non-linear filtering algorithm wherdn this paper, we propose a filtering method that approxi-
densities are represented by Gaussian mixture modelsgwhd3ates a non-Gaussian density by a Gaussian mixture model
parameters are estimated in closed form. The resulting mé®MM). Such a GMM allows modeling multi-modality as

thod exhibits a superior performance on typical benchmarksVell as representing any density with arbitrary accuraey gi
ven a sufficiently large number of Gaussians, 5ée [2], Sectio

Index Terms— State estimation, Non-linear dynamical g 4 for a proof. The GMM presents an elegant deterministic

systems, Non-Gaussian filtering, Gaussian sum filtering solution in the form of the Gaussian Sum filter [5].
The Gaussian Sum filter (GSUM-F) was proposed as a
1. INTRODUCTION AND RELATED WORK solution to estimation problems with non-Gaussian noise or

prior densities. The GSUM-F relies on linear dynamics and
Time series mOdeIS, which infer latent space variables frorﬂ']e assumption that the parameters of the Gaussian mixture
noisy observations, have been extensively studied. Featin approximation to the non-Gaussian noise or prior densities
estimation in stationary and non-stationary time series mogre known a priori. This linearity assumption can be rela-
dels the Kalman filter [1] has been shown to be highly effi-xed, e.g. by linearisation (EKF GSUM-E)[2] or deterministi
cient, theoretically and practically. The Kalman filter is-o sampling (UKF GSUM-F)[[5], but both solutions still requi-
timal for linear Gaussian systenis [2]. In such systems, thge a priori knowledge of the GMM parameters. If, however,
GaUSSianity allows us to derive the recursive fllterlng e.ﬂua the prior and noise densities are Gaussian, the UKF GSUM-
ons in closed-form. In contrast, for a non-linear systemssau F gnd EKF GSUM-F equal the standard UKF and EKF, i.e.
sian uncertainties may become non-Gaussian due to the nofrey become uni-modal filters. To account for a possible uni-
linear transform. Hence, we require approximations, sich gmodal to multi-modal transition in a non-linear system, we
linearising the functions, e.g. in the Extended KalmaneFilt need to solve two problems: the propagation of the uncertain
(EKF), or deterministic sampling, e.g. in the Unscented-Kal ty and the parameter estimation of the GMM approximation.
man Filter (UKF) [3] to approximate a non-Gaussian densityotecha and Duric[7], proposed random sampling for un-
by a Gaussian. Such approximations make the limiting imcertainty propagation and Expectation-Maximization (EM)
pllClt aSSUmption that the true densities are uni-modéteis estimate the GMM parameters' In this paper, we propose to
based on these approximations often severely under-perforpropagate uncertainty deterministically using the Untebn
when true densities are multi-modal. Hence, multi-modal apTransform, which also allows for a closed-form expressibn o
proaches are frequently needed. the GMM parameters.

For representing multi-modal, non-Gaussian densities The main contributions of this paper are the derivation of
particle filters[[4] are a standard approach. They are compyhe Multi-Modal-Filter (M-MF), a multi-modal approach to
tationally demanding since they often require a large numbsijtering in non-linear dynamical systems, where all deesit
of particles for good performance, e.g. due to the curse ofre represented by Gaussian mixtures. Moreover, we present

The research leading to these results has received fundingthe EC's ~ closed-form expressions for estimating the parameteriseof t
Seventh Framework Programme under grant agreement #270327 Gaussian mixture model.
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2. SYSTEM MODEL 3.1. Estimation of the Gaussian Mixture Parameters

We consider nonlinear dynamical systems Let the mean and the variance_of the state distribution
p(z,—1) be given byu, 3, respectively. Then, we can re-
Tn = f(Tn-1) + wn, wa ~N(0,Q), (1) presentp(z, 1) by a GMM p(z_1) = 322 5ipi(wn_1),
Yn = h(zy) + vn, v, ~N(0,R), (2) such that the mean and the variance of the approximate den-

sity p(xz,,—1) equal the meam and variance: of p(z,—_1).

Wher_ef andh are_the non-llnea_r transition and measurementq representation is achieved by the closed-form redatio
function, respectively. The noise processes and v,, are

i.i.d. zero mean Gaussian with covarianégand R, respec- 8 =1/(2D +1),

tively. We denote thé dimensional state hy,,, andy,, is the 0 i j 4D _ j

E dimensional observatio®; = {y1,...,y,} represents all e N
observations up to time stgpWe define the state estimation Nt = ( — 1)2—?»1) 3,

problem as determining the densjtyz,,|Y;). Filtering and

prediction are defined fof = n andj < n, respectively. We wherei = 0,...,2D andj = 1,..., D, whereD is the di-
define a GMM representation of a state distributions as mensionality of the state variahlg, _;. The variabler deno-
o tes D rows or columns from the matrix square rabt/aX.
p(xnlY;) == ZH) bipi(@nyj) , (3)  From [), we can see that we need to calculd® only on-
o i i ce for all2D + 1 Gaussian®;(x,,—1). To ensure thak’ is

#i(@ni;) = N(@nljlingg Eny;) “) positive semi-definite, the ﬁ(oza(ling fz);\c'r@rshould be chosen
with weightsd; € [0,1] and requiringd_, §; = 1, whichen-  such thaka < (2D + 1), see((5). FoRa = 2D + 1 in (§),

sures thap(z,,|Y;) is a valid probability distribution. the equations above reduce to scaled sigma points. Herce, th
GMM representation il {5) can be considered a generalisati-
3. MULTI-MODAL FILTERING on of the classical sigma point representation of densities

ployed by the Unscented Transform, where each sigma point

In the following, we devise a closed-form filtering algorith becomes an improper probability distribution.
with multi-modal representations of the state distribogio
Our algorithm is inspired by the following observation ma-3.2. Propagation of Uncertainty
de by Julier and Uhlmani][3]: “Given only the mean and the e . .
variance of the underlying distribution, and, in absencanyf A key _step_ in filtering is t_h_e ur_lce_rtalr_ny propagat|or_1 step,
a priori information, any distribution (with the same mead a 1.€. est|_mat|ng the probability distribution of random rear
variance) used to calculate the transformed mean and varianle’ V_Vh'Ch h"_"s been transformed by means of t_he transition
ce is trivially optimal.” This observation was the basis & d functlor_1f. Givenp(zn—1) gnd the system dynamidd (1), we
rive the Unscented transform and the UKF. However, predicgeterm'n@(x") by evaluatingf p(z,|z—1)p(zn-1)dzs-1.
tions based on the Unscented Transform often under-estimat °" non—hnegr functiong, the integral aboye can only rare-
the true predictive uncertainty, which can result in inaefné y be_ solved in closed form. Thus, approximate solutions are
state estimation and divergent tracking performance. required. . L .

To address this issue, we use a different (optimal) repre- pncertalnty propagatlon in non-linear systems can .be
sentation of the underlying distribution, which still maes ~achieved by approximate methods, employing linearisation

the mean and variance: We propose to represent each Sigm%deterministic sampling as in the EKF and UKF. In such ap-

point in the Unscented transform by a Gaussian centredsat thProaches, the state distributipu-,,—, ) and the approximate

sigma point. This approximation of the original distritmstiis predictive density(z,,) are well represented by Gaussians. If
effectively a GMM with2D + 1 components the state distributiop(z,,—1) is @ Gaussian mixture as il (5),

In Section 3L, we derive an optimal GMM representa-We can estirr_1ate the predictive .distributip(wn) similarly,.
tion of a state distributiop(z,_;) of which only the mean e.g. by applying such an approximate update to each mixture

and variance are known. In Sect{onl3.2, we detail how to maﬁomhpon_ent in the GMM, segl(4). Inftr;Wis paper, vr\:e prohpagate
this GMM through a non-linear function to obtain a predic-eac mixture componen; (z,-1) of the GMM throughf

tive distributionp(z,,), which is represented by a GMM. We and approximate(z, ) by

generalise both uncertainty propagation and parameter est 2D

mation to the case wheng(z,_;) is given by a GMM. In p(en) = /P(In|$n71) Zi:o dipi(Tn—1)dTn_1
Sectior 3.8, we propose a method for pruning the number of oD (6)
mixture components in a GMM to avoid their exponential in- R ijo 0jpi(xn),

crease in number of components. In Secfion 3.4, we propo-
se the resulting filtering algorithm, which exploits theu#s  where the mean and covariance of eagl,,) are computed
from Section§ 311=3]3. by means of the Unscented Transform.



If the prior density is a Gaussian mixtuggz,,_;1) =  one-step ahead predictive distribution is given by
Z;‘igl Bje;(xzn—1), we repeat the procedure above for each
mixture component irp(x,,—1), i.e. we split each mixture P(Tppn_1) = /p(wannq)p(fcnq\nq)d:vn—l. (8)
componenip; into 2D + 1 components;y;;,i =0, ...,2D,
and propagate them forward using the Unscented Transfor
For notational convenience, we define this operation on
Gaussian mixture as,,(f, p(x,—1)), such that

rrIlhis integral can be evaluated &% (f, p(p—1jn—1)), SUCh
?hat we obtain a GMM representation of the time update

M(2D+41)—1

p(xn) = ]:n(fap(xn—l)):/p(xn|xn—l)p(xn—l)dxn—l p(In\n—l) = Z 'Yj@j('rnm—l)a (9)
M-—1 2D =0
=3 > B / P& Tn—1)pij (Tn_1)dzn 1 as detailed in{7).
j=0 i=0
M(2D+1)—1
3.4.2. Measurement Update
= 3 el ) P
1=0 The measurement update can be approximated up to a norma-

, lisation constant by
wherevy; = §;5;. We compute the moments of the mixture

components,; by means of the Unscented Transform. P(@nin) % PYnlTn)P(@njn_1), (10)

3.3. Mixture Reduction wherep(z,,,—1) is the time updatd {9). We now apply a si-
milar operation as in{7) witth as non-linear function and

Up to this point, we have considered the case where a dewbtain

sity with knqwn mean and variance has been repre_sented by PYnjn—1) = Fn(h, p(Tnjn-1))- (11)

a GMM, which could subsequently be used to estimate the

predicted state distribution. Incorporating these stepsan  Substituting[(Il1) and {9) in_(10) yields the measurement up-

recursive state estimator for time series, there is an expon date, i.e. the filtered state distribution

tial growth in the number of mixture componentsl[ih (7). One

way to mitigate this effect is to represent the estimategiden D

ties by a mixture model with a fixed number of components P(Znjn) o Zéi%(yn‘”*l) Z 755 (Tnfn—1)

[2]. To keep the number of mixture components constant we =0 7=0

M(2D+1)—1

can reduce them at each time step [2]. M(2D+1)*-1
A straightforward and fast approach is to drop the Gaussi- = Z Bipi (@) (12)
an components with the lowest weights. Such omissions, ho- 1=0

wever, can result in poor performance of the fihe_r [8]. Ki',We calculate the measurement update for each pair
tagawa [[8] suggested to repeatedly merge a pair Gaussiap q ¢;. Recalling thatg; (a,,) = J\/(:cm“ ) ) for
components. A pair is selected with lowest distance in terms nin? “nin

— — 2 _ -
of some distance metric. We evaluated multiple distance me- — O’t' - ’dﬂt) ?rﬁé N 8’ . (thD —;Ilt) é the_meilsu 5
trics, e.g. thel, distancel[9], the KL divergencé [10], and rement updates [12] and weight updates (Gaussian Sum [5])

the Cauchy Schwarz divergenc¢e|[11]. In this paper, we usec be derived by

the symmetric KL divergencel[8D(p,q) = (KL (plq) + Ki 5 -1
KL (qp))/2, which outperformed aforementioned distance n nln—l( n\n—l) ’
measures for mixture reduction in filtering. /‘:fm =l + K3, (y — /"an—l)a

o= KIS VKD 13
3.4. Filtering nln nin—1 ( nIn—ll) | (13)

. L . . di N (z =y /"an—l’ E'an—l)

In the following, subsume all derivations in our multi-mdda Bij = . . ,
non-linear state estimator, whose time and measurement up- Zk,l SN (z =y Hopn—1> Zn\n—l)

dates are summarised in the following.
wherel“flln_1 is the cross covariance matriov(z,,—1, T )
3.4.1. Time Update determined via the Unscented Transform/[12].
After the measurement update, we reduceMh@ D + 1)2
Assume that the filter distributign(x,, _1|,,—1) iS represented mixture components in the GMM, see [12), 16 according
by a GMM with M components. The time update, i.e. theto Sectiorl 3.B.



4. RESU LTS Stationary Non-Stationary

h(z) = 5sin(x) h(z) = 22 /20 h(z) = 5sin(z)
RMSE NLL RMSE NLL RMSE NLL
We evaluated our proposed fllterlng algo”thm on data genera EKF 7.5+0.4 | 340.7£38.6 || 10.9+ 1.3 | 103.64+29.2 | 10.4+ 0.4 | 662.2+ 98.5

_ ; . A UKF 122+ 23| 64.2+46.7 | 6.5+1.9 | 15.1+12.3 | 10.0+ 24 | 42.0+32.8
ted from standard one-dimensional non-linear dynamicsl Sy — WWF | 14504 | 10£01 | 6112 | 17406 | 9427 | 37+13

tems. Both the UKF and the Multi-Modal Filter (M-MF) USe — e oaaoas) WA | 58t6l | DA |20l A
the same parameters for the Unscented Transformy izel, Gibbs Filter || 3.62+ 0.4 | 3.06+0.03 || 3.97+0.4| 2.18+0.1 | 8.64+04 | 3.57+0.08
B = 2andk = 2. The priorp(zy) is a standard Gaussian
p(xo) = N(x]0,1). Densities in the M-MF are represented
by a Gaussian mixture with/ = 3 components. The mean of
the filtered state is estimated by the first moment of this Gau
sian mixture. The employed Particle filter (PF) is a standard

particle filter with residual re-sampling scheme. The PFFUK .
[13] on the other hand uses the Unscented Transform as prgfe more ;table. The prop_osgq M-MF could track muItlpI.e
posal distribution and the UKF for filtering. Unlike our M-MF modes, which resulted in S|gn_|f|cantly better performamne_ !
the PF-UKF uses random sampling and the UKF. We use thg"™ms of NLL: Mpreover, the filter performance was consis-
root mean square error (RMSE) and the predictive Negativ%ently stable, indicated by the small standard deviatidnes
Log-Likelihood (NLL) per observation as metrics to compare or the NLL measure.

the performance of the different filters. Lower values imdic _ ) )

te better performance. The results in TdBle 1 were obtaineft2: Stationary Time Series

from 100 independent simulations with = 100 time steps  \ve modified the UNGM described above to

for each of the following system models.

Table 1. Average performances of the filters are shown along
with standard deviation. Lower values are better. The M-MF
Jilter performs better than the standard filtering methods.

Ty = In271 + 250 1 + w, w ~ N(O’ 1)7

1+wi71
4.1. Non-stationary Time Series by dropping the time dependant cosine term fréni (14) and
We tested the different filters on a standard system, the unts€ 2 sinusoidal measurement function
form Non-stationary Growth Model (UNGM) from[4] Yn = Hsin(z,) +v, v~N(0,1).
Ty =Tnt g 12?,;71 +8cos(1.2(n — 1))+, (14) We see from the results ?n_Ta_\Hﬂb 1thatthe U_KF was outperfor-
Tn-1 med by all other deterministic filters. The failures of the IK
Y = z_% + 0, and the PF-UKF are attributed to their overconfident predict

ons for sinusoidal functions, which confirms the result®jn [

wherew ~ N(0,1),v ~ N(0,1). The true state density The EKF approximates these sinusoidal functions better but
of the non-stationary model stated above alternated betwedoth the UKF and EKF fail to capture the multi-modal nature
multi-modal and uni-modal distributions. The switch from of system dynamics Thus, the EKF and UKF are inconsistent
uni-modal to a bi-modal density occurred when the mean wator the model and settings used in this experiment. The pro-
close to zero. The quadratic measurement function makes@osed M-MF on the other hand performed consistently better
difficult to distinguish between the two modes as they arén terms of RMSE and NLL values. Moreover, the small stan-
symmetric around zero. This symmetry posed a substantigiard deviation of the NLL suggests that our proposed M-MF
challenge for several filtering algorithms. The PF lostkrat:  is consistent and stable.
the state dynamics & = 500 particles failed to capture true
density especially in its tails, which led to degeneracyT4le 5. CONCLUSION AND FUTURE WORK
particle filters in Tablg]l are in their standard form and perf
mance may improve if advanced techniques are used [4], ds this paper, we presented the M-MF, a Gaussian mixture ba-
can be seen from Gibbs filte?]} The proposed M-MF could sed multi-modal filter for state estimation in non-linear dy
track both modes and, hence, led to more consistent esimat@amical systems. Multi-modal densities are represented by
The RMSE performance of both multi-modal filter (M-MF) Gaussian mixtures, whose parameters are computed in clo-
and UKF are similar with M-MF performing better in terms sed form. We demonstrated that the M-MF achieves superior
of a lower mean error and standard deviation. The main aderformance compared to state-of-the-art state estisatat
vantage of the M-MF is its ability to capture the uncertainty consistently captures the uncertainty in multi-modal derss
The NLL values of the M-MF were significantly better than  In future work, we will evaluate the significance of the
the UKF even when the same parameters are used to calculatealing parameter and its impact on higher moments of the
the Unscented Transform, see Tdlle 1. approximations. The effect of the mixture reduction teehni

We tested the UNGM with an alternative measuremengues also will be investigated to achieve better filter perfo
functionh(x) = 5sin(z). For this function, the performan- mance. Moreover, we will extend the M-MF to a forward-
ce of the EKF is best in terms of RMSE, since its estimatebackward smoothing algorithm.
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