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ABSTRACT

Multi-modal densities appear frequently in time series and
practical applications. However, they cannot be represented
by common state estimators, such as the Extended Kalman
Filter (EKF) and the Unscented Kalman Filter (UKF), which
additionally suffer from the fact that uncertainty is oftennot
captured sufficiently well, which can result in incoherent and
divergent tracking performance. In this paper, we address the-
se issues by devising a non-linear filtering algorithm where
densities are represented by Gaussian mixture models, whose
parameters are estimated in closed form. The resulting me-
thod exhibits a superior performance on typical benchmarks.

Index Terms— State estimation, Non-linear dynamical
systems, Non-Gaussian filtering, Gaussian sum

1. INTRODUCTION AND RELATED WORK

Time series models, which infer latent space variables from
noisy observations, have been extensively studied. For linear
estimation in stationary and non-stationary time series mo-
dels the Kalman filter [1] has been shown to be highly effi-
cient, theoretically and practically. The Kalman filter is op-
timal for linear Gaussian systems [2]. In such systems, the
Gaussianity allows us to derive the recursive filtering equati-
ons in closed-form. In contrast, for a non-linear system Gaus-
sian uncertainties may become non-Gaussian due to the non-
linear transform. Hence, we require approximations, such as
linearising the functions, e.g. in the Extended Kalman Filter
(EKF), or deterministic sampling, e.g. in the Unscented Kal-
man Filter (UKF) [3] to approximate a non-Gaussian density
by a Gaussian. Such approximations make the limiting im-
plicit assumption that the true densities are uni-modal. Filters
based on these approximations often severely under-perform
when true densities are multi-modal. Hence, multi-modal ap-
proaches are frequently needed.

For representing multi-modal, non-Gaussian densities
particle filters [4] are a standard approach. They are compu-
tationally demanding since they often require a large number
of particles for good performance, e.g. due to the curse of
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dimensionality. An insufficient number of particles may fail
to capture the tails of the density and lead to degenerate
solutions. In practice, we have to compromise between the
deterministic and fast (UKF/EKF) or the computationally
demanding and more accurate Monte Carlo methods [4].

An ideal filter for a non-linear system should allow for
multi-modal approximations, and at the same time its appro-
ximations should be consistent to avoid degenerate solutions.
In this paper, we propose a filtering method that approxi-
mates a non-Gaussian density by a Gaussian mixture model
(GMM). Such a GMM allows modeling multi-modality as
well as representing any density with arbitrary accuracy gi-
ven a sufficiently large number of Gaussians, see [2], Section
8.4, for a proof. The GMM presents an elegant deterministic
filtering solution in the form of the Gaussian Sum filter [5].

The Gaussian Sum filter (GSUM-F) was proposed as a
solution to estimation problems with non-Gaussian noise or
prior densities. The GSUM-F relies on linear dynamics and
the assumption that the parameters of the Gaussian mixture
approximation to the non-Gaussian noise or prior densities
are known a priori. This linearity assumption can be rela-
xed, e.g. by linearisation (EKF GSUM-F) [2] or deterministic
sampling (UKF GSUM-F) [6], but both solutions still requi-
re a priori knowledge of the GMM parameters. If, however,
the prior and noise densities are Gaussian, the UKF GSUM-
F and EKF GSUM-F equal the standard UKF and EKF, i.e.
they become uni-modal filters. To account for a possible uni-
modal to multi-modal transition in a non-linear system, we
need to solve two problems: the propagation of the uncertain-
ty and the parameter estimation of the GMM approximation.
Kotecha and Duric [7], proposed random sampling for un-
certainty propagation and Expectation-Maximization (EM)to
estimate the GMM parameters. In this paper, we propose to
propagate uncertainty deterministically using the Unscented
Transform, which also allows for a closed-form expression of
the GMM parameters.

The main contributions of this paper are the derivation of
the Multi-Modal-Filter (M-MF), a multi-modal approach to
filtering in non-linear dynamical systems, where all densities
are represented by Gaussian mixtures. Moreover, we present
closed-form expressions for estimating the parameters of the
Gaussian mixture model.
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2. SYSTEM MODEL

We consider nonlinear dynamical systems

xn = f(xn−1) + wn, wn ∼ N (0, Q), (1)

yn = h(xn) + vn, vn ∼ N (0, R), (2)

wheref andh are the non-linear transition and measurement
function, respectively. The noise processeswn and vn are
i.i.d. zero mean Gaussian with covariancesQ andR, respec-
tively. We denote theD dimensional state byxn, andyn is the
E dimensional observation.Yj = {y1, . . . , yj} represents all
observations up to time stepj. We define the state estimation
problem as determining the densityp(xn|Yj). Filtering and
prediction are defined forj = n andj < n, respectively. We
define a GMM representation of a state distributions as

p(xn|Yj) :=
∑M

i=0
δiϕi(xn|j) , (3)

ϕi(xn|j) := N (xn|j |µi
n|j ,Σ

i
n|j) , (4)

with weightsδi ∈ [0, 1] and requiring
∑

i δi = 1, which en-
sures thatp(xn|Yj) is a valid probability distribution.

3. MULTI-MODAL FILTERING

In the following, we devise a closed-form filtering algorithm
with multi-modal representations of the state distributions.
Our algorithm is inspired by the following observation ma-
de by Julier and Uhlmann [3]: “Given only the mean and the
variance of the underlying distribution, and, in absence ofany
a priori information, any distribution (with the same mean and
variance) used to calculate the transformed mean and varian-
ce is trivially optimal.” This observation was the basis to de-
rive the Unscented transform and the UKF. However, predic-
tions based on the Unscented Transform often under-estimate
the true predictive uncertainty, which can result in incoherent
state estimation and divergent tracking performance.

To address this issue, we use a different (optimal) repre-
sentation of the underlying distribution, which still matches
the mean and variance: We propose to represent each sigma
point in the Unscented transform by a Gaussian centred at this
sigma point. This approximation of the original distribution is
effectively a GMM with2D + 1 components.

In Section 3.1, we derive an optimal GMM representa-
tion of a state distributionp(xn−1) of which only the mean
and variance are known. In Section 3.2, we detail how to map
this GMM through a non-linear function to obtain a predic-
tive distributionp(xn), which is represented by a GMM. We
generalise both uncertainty propagation and parameter esti-
mation to the case wherep(xn−1) is given by a GMM. In
Section 3.3, we propose a method for pruning the number of
mixture components in a GMM to avoid their exponential in-
crease in number of components. In Section 3.4, we propo-
se the resulting filtering algorithm, which exploits the results
from Sections 3.1–3.3.

3.1. Estimation of the Gaussian Mixture Parameters

Let the mean and the variance of the state distribution
p(xn−1) be given byµ, Σ, respectively. Then, we can re-
presentp(xn−1) by a GMM p(xn−1) =

∑2D
i=0 δiϕi(xn−1),

such that the mean and the variance of the approximate den-
sity p(xn−1) equal the meanµ and varianceΣ of p(xn−1).
This representation is achieved by the closed-form relations

δi = 1/(2D+ 1),

µ0 = µ, µj = µ+ σj , µj+D = µ− σj ,

Σi =
(

1− 2α
D+1

)

Σ,

(5)

wherei = 0, . . . , 2D andj = 1, . . . , D, whereD is the di-
mensionality of the state variablexn−1. The variableσ deno-
tesD rows or columns from the matrix square root±

√
αΣ.

From (5), we can see that we need to calculate
√
Σ only on-

ce for all2D + 1 Gaussiansϕi(xn−1). To ensure thatΣi is
positive semi-definite, the scaling factorα should be chosen
such that2α ≤ (2D + 1), see (5). For2α = 2D + 1 in (5),
the equations above reduce to scaled sigma points. Hence, the
GMM representation in (5) can be considered a generalisati-
on of the classical sigma point representation of densitiesem-
ployed by the Unscented Transform, where each sigma point
becomes an improper probability distribution.

3.2. Propagation of Uncertainty

A key step in filtering is the uncertainty propagation step,
i.e. estimating the probability distribution of random varia-
ble, which has been transformed by means of the transition
functionf . Givenp(xn−1) and the system dynamics (1), we
determinep(xn) by evaluating

∫

p(xn|xn−1)p(xn−1)dxn−1.
For non-linear functionsf , the integral above can only rare-
ly be solved in closed form. Thus, approximate solutions are
required.

Uncertainty propagation in non-linear systems can be
achieved by approximate methods, employing linearisation
or deterministic sampling as in the EKF and UKF. In such ap-
proaches, the state distributionp(xn−1) and the approximate
predictive densityp(xn) are well represented by Gaussians. If
the state distributionp(xn−1) is a Gaussian mixture as in (5),
we can estimate the predictive distributionp(xn) similarly,
e.g. by applying such an approximate update to each mixture
component in the GMM, see (4). In this paper, we propagate
each mixture componentϕi(xn−1) of the GMM throughf
and approximatep(xn) by

p(xn) =

∫

p(xn|xn−1)
∑2D

i=0
δiϕi(xn−1)dxn−1

≈
∑2D

j=0
δjϕj(xn),

(6)

where the mean and covariance of eachϕj(xn) are computed
by means of the Unscented Transform.



If the prior density is a Gaussian mixturep(xn−1) =
∑M−1

j=0 βjϕj(xn−1), we repeat the procedure above for each
mixture component inp(xn−1), i.e. we split each mixture
componentϕj into 2D+1 componentsδiϕji, i = 0, . . . , 2D,
and propagate them forward using the Unscented Transform.
For notational convenience, we define this operation on a
Gaussian mixture asFn(f, p(xn−1)), such that

p(xn) = Fn(f, p(xn−1))=

∫

p(xn|xn−1)p(xn−1)dxn−1

=

M−1
∑

j=0

2D
∑

i=0

βjδi

∫

p(xn|xn−1)ϕij(xn−1)dxn−1

≡
M(2D+1)−1

∑

l=0

γlϕl(xn), (7)

whereγl = δiβj . We compute the moments of the mixture
componentsϕl by means of the Unscented Transform.

3.3. Mixture Reduction

Up to this point, we have considered the case where a den-
sity with known mean and variance has been represented by
a GMM, which could subsequently be used to estimate the
predicted state distribution. Incorporating these steps into an
recursive state estimator for time series, there is an exponen-
tial growth in the number of mixture components in (7). One
way to mitigate this effect is to represent the estimated densi-
ties by a mixture model with a fixed number of components
[2]. To keep the number of mixture components constant we
can reduce them at each time step [2].

A straightforward and fast approach is to drop the Gaussi-
an components with the lowest weights. Such omissions, ho-
wever, can result in poor performance of the filter [8]. Ki-
tagawa [8] suggested to repeatedly merge a pair Gaussian
components. A pair is selected with lowest distance in terms
of some distance metric. We evaluated multiple distance me-
trics, e.g. theL2 distance [9], the KL divergence [10], and
the Cauchy Schwarz divergence [11]. In this paper, we used
the symmetric KL divergence [8],D(p, q) = (KL (p|q) +
KL (q|p))/2, which outperformed aforementioned distance
measures for mixture reduction in filtering.

3.4. Filtering

In the following, subsume all derivations in our multi-modal
non-linear state estimator, whose time and measurement up-
dates are summarised in the following.

3.4.1. Time Update

Assume that the filter distributionp(xn−1|n−1) is represented
by a GMM with M components. The time update, i.e. the

one-step ahead predictive distribution is given by

p(xn|n−1) =

∫

p(xn|xn−1)p(xn−1|n−1) dxn−1. (8)

This integral can be evaluated asFn(f, p(xn−1|n−1)), such
that we obtain a GMM representation of the time update

p(xn|n−1) =

M(2D+1)−1
∑

j=0

γjϕj(xn|n−1), (9)

as detailed in (7).

3.4.2. Measurement Update

The measurement update can be approximated up to a norma-
lisation constant by

p(xn|n) ∝ p(yn|xn)p(xn|n−1), (10)

wherep(xn|n−1) is the time update (9). We now apply a si-
milar operation as in (7) withh as non-linear function and
obtain

p(yn|n−1) = Fn(h, p(xn|n−1)). (11)

Substituting (11) and (9) in (10) yields the measurement up-
date, i.e. the filtered state distribution

p(xn|n) ∝
2D
∑

i=0

δiϕi(yn|n−1)

M(2D+1)−1
∑

j=0

γjϕj(xn|n−1)

≡
M(2D+1)2−1

∑

l=0

βlϕl(xn|n). (12)

We calculate the measurement update for each pairϕi

and ϕj . Recalling thatϕl(xn|n) = N (x|µij

n|n,Σ
ij

n|n) for

i = 0, . . . , 2D andj = 0, . . . , (2D + 1)2 − 1, the measu-
rement updates [12] and weight updates (Gaussian Sum [5])
can be derived by

Kj
n = Γj

n|n−1

(

Σj

n|n−1

)−1
,

µij

n|n = µi
n|n−1 +Kj

n

(

y − µj

n|n−1

)

,

Σij

n|n = Σi
n|n−1 −Kj

n

(

Σj

n|n−1

)

Kj
n

T
,

βi,j =
δi γjN (x = y |µj

n|n−1,Σ
j

n|n−1)
∑

k,l
δl γkN (x = y | µk

n|n−1,Σ
k
n|n−1)

,

(13)

whereΓj

n|n−1 is the cross covariance matrixcov(xn−1, xn)
determined via the Unscented Transform [12].

After the measurement update, we reduce theM(2D + 1)2

mixture components in the GMM, see (12), toM according
to Section 3.3.



4. RESULTS

We evaluated our proposed filtering algorithm on data genera-
ted from standard one-dimensional non-linear dynamical sys-
tems. Both the UKF and the Multi-Modal Filter (M-MF) use
the same parameters for the Unscented Transform, i.e.α = 1,
β = 2 andκ = 2. The priorp(x0) is a standard Gaussian
p(x0) = N (x|0, 1). Densities in the M-MF are represented
by a Gaussian mixture withM = 3 components. The mean of
the filtered state is estimated by the first moment of this Gaus-
sian mixture. The employed Particle filter (PF) is a standard
particle filter with residual re-sampling scheme. The PF-UKF
[13] on the other hand uses the Unscented Transform as pro-
posal distribution and the UKF for filtering. Unlike our M-MF
the PF-UKF uses random sampling and the UKF. We use the
root mean square error (RMSE) and the predictive Negative
Log-Likelihood (NLL) per observation as metrics to compare
the performance of the different filters. Lower values indica-
te better performance. The results in Table 1 were obtained
from 100 independent simulations withT = 100 time steps
for each of the following system models.

4.1. Non-stationary Time Series

We tested the different filters on a standard system, the Uni-
form Non-stationary Growth Model (UNGM) from [4]

xn=
xn−1

2 + 25xn−1

1+x2

n−1

+ 8 cos(1.2(n− 1))+w, (14)

yn=
x2

n

20 + v,

wherew ∼ N (0, 1), v ∼ N (0, 1). The true state density
of the non-stationary model stated above alternated between
multi-modal and uni-modal distributions. The switch from
uni-modal to a bi-modal density occurred when the mean was
close to zero. The quadratic measurement function makes it
difficult to distinguish between the two modes as they are
symmetric around zero. This symmetry posed a substantial
challenge for several filtering algorithms. The PF lost track of
the state dynamics asN = 500 particles failed to capture true
density especially in its tails, which led to degeneracy [4]. The
particle filters in Table 1 are in their standard form and perfor-
mance may improve if advanced techniques are used [4], as
can be seen from Gibbs filter [?]. The proposed M-MF could
track both modes and, hence, led to more consistent estimates.
The RMSE performance of both multi-modal filter (M-MF)
and UKF are similar with M-MF performing better in terms
of a lower mean error and standard deviation. The main ad-
vantage of the M-MF is its ability to capture the uncertainty.
The NLL values of the M-MF were significantly better than
the UKF even when the same parameters are used to calculate
the Unscented Transform, see Table 1.

We tested the UNGM with an alternative measurement
functionh(x) = 5 sin(x). For this function, the performan-
ce of the EKF is best in terms of RMSE, since its estimates

Stationary Non-Stationary
h(x) = 5 sin(x) h(x) = x2/20 h(x) = 5 sin(x)

RMSE NLL RMSE NLL RMSE NLL

EKF 7.5± 0.4 340.7± 38.6 10.9± 1.3 103.6± 29.2 10.4± 0.4 662.2± 98.5
UKF 12.2± 2.3 64.2± 46.7 6.5± 1.9 15.1± 12.3 10.0± 24 42.0± 32.8

M-MF 1.4± 0.4 1.0± 0.1 6.1± 1.2 1.7± 0.6 9.4± 2.7 3.7± 1.3
PF 2.4± 0.03 N/A 8.3± 6.1 N/A 11.2± 3.6 N/A

PF-UKF 16.8± 0.1 N/A 13.1± 1.8 N/A 20.0± 2.4 N/A
Gibbs Filter 3.62± 0.4 3.06± 0.03 3.97± 0.4 2.18± 0.1 8.64± 0.4 3.57± 0.08

Table 1. Average performances of the filters are shown along
with standard deviation. Lower values are better. The M-MF
filter performs better than the standard filtering methods.

are more stable. The proposed M-MF could track multiple
modes, which resulted in significantly better performance in
terms of NLL. Moreover, the filter performance was consis-
tently stable, indicated by the small standard deviation values
for the NLL measure.

4.2. Stationary Time Series

We modified the UNGM described above to

xn = xn−1

2 + 25xn−1

1+x2

n−1

+ w , w ∼ N (0, 1) ,

by dropping the time dependant cosine term from (14) and
use a sinusoidal measurement function

yn = 5 sin(xn) + v , v ∼ N (0, 1).

We see from the results in Table 1 that the UKF was outperfor-
med by all other deterministic filters. The failures of the UKF
and the PF-UKF are attributed to their overconfident predicti-
ons for sinusoidal functions, which confirms the results in [?].
The EKF approximates these sinusoidal functions better but
both the UKF and EKF fail to capture the multi-modal nature
of system dynamics Thus, the EKF and UKF are inconsistent
for the model and settings used in this experiment. The pro-
posed M-MF on the other hand performed consistently better
in terms of RMSE and NLL values. Moreover, the small stan-
dard deviation of the NLL suggests that our proposed M-MF
is consistent and stable.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented the M-MF, a Gaussian mixture ba-
sed multi-modal filter for state estimation in non-linear dy-
namical systems. Multi-modal densities are represented by
Gaussian mixtures, whose parameters are computed in clo-
sed form. We demonstrated that the M-MF achieves superior
performance compared to state-of-the-art state estimators and
consistently captures the uncertainty in multi-modal densities.

In future work, we will evaluate the significance of the
scaling parameterα and its impact on higher moments of the
approximations. The effect of the mixture reduction techni-
ques also will be investigated to achieve better filter perfor-
mance. Moreover, we will extend the M-MF to a forward-
backward smoothing algorithm.
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