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ABSTRACT
We describe the Customer LifeTime Value (CLTV) prediction sys-
tem deployed at ASOS.com, a global online fashion retailer. CLTV
prediction is an important problem in e-commerce where an accu-
rate estimate of future value allows retailers to e�ectively allocate
marketing spend, identify and nurture high value customers and
mitigate exposure to losses. �e system at ASOS provides daily
estimates of the future value of every customer and is one of the cor-
nerstones of the personalised shopping experience. �e state of the
art in this domain uses large numbers of handcra�ed features and
ensemble regressors to forecast value, predict churn and evaluate
customer loyalty. Recently, domains including language, vision and
speech have shown dramatic advances by replacing handcra�ed
features with features that are learned automatically from data.
We detail the system deployed at ASOS and show that learning
feature representations is a promising extension to the state of
the art in CLTV modelling. We propose a novel way to generate
embeddings of customers, which addresses the issue of the ever
changing product catalogue and obtain a signi�cant improvement
over an exhaustive set of handcra�ed features.
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sion; Dimensionality reduction andmanifold learning; Clas-
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products;
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1 INTRODUCTION
ASOS is a global e-commerce company, based in the UK and spe-
cialising in fashion and beauty. �e business is entirely online,
and products are sold through eight country-speci�c websites and
mobile apps. At the time of writing, there were 12.5 million active
customers and the product catalogue contained more than 85,000
items. Products are shipped to 240 countries and territories and the
annual revenue for 2016 was £1.4B, making ASOS one of Europe’s
largest pure play online retailers.

An integral element of the business model at ASOS is free de-
livery and returns. Free shipping is vital in online clothing retail
because customers need to try on items without being charged.
Since ASOS do not recoup delivery costs for returned items, cus-
tomers can easily have negative lifetime value. For this reason the
Customer LifeTime Value (CLTV) problem is particularly important
in online clothing retail.

Our CTLV system addresses two tightly coupled problems: CLTV
and churn prediction. We de�ne a customer as churned if they have
not placed an order in the past year. We de�ne CLTV as the sales,
net of returns, of a customer over a one year period. �e objective
is to improve three key business metrics: (1) the average customer
shopping frequency, (2) the average order size, (3) the customer
churn rate. �e model supports the �rst two objectives by allowing
ASOS to rapidly identify and nurture high-value customers, who
will go on to have high frequency, high-order size, or both. �e
third objective is achieved by identifying customers at high risk of
churn and controlling the amount spent on retention activities.

State-of-the-art CLTV systems use large numbers of handcra�ed
features and ensemble classi�ers (typical random forest regressors),
which have been shown to perform well in highly stochastic prob-
lems of this kind [11, 21]. However, handcra�ed features introduce
a human bo�leneck, can be di�cult to maintain and o�en fail to
utilise the full richness of the data. We show how automatically
learned features can be combined with handcra�ed features to pro-
duce a model that is both aware of domain knowledge and can
learn rich pa�erns of customer behaviour from raw data.

�e deployed ASOS CLTV system uses the state-of-the-art ar-
chitecture, which is a Random Forest (RF) regression model with
132 handcra�ed features. To train the forest, labels and features
are taken from disjoint periods of time as shown in the top row of
Figure 1. �e labels are the net spend (sales minus returns) of each
customer over the past year. �e training labels and features are
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Figure 1: Training and prediction time-scales for CLTV.�e
model is retrained every day using customer data from the
past two years. Labels are the net customer spend over the
previous year. Model parameters are learned in the training
period and used to predict CLTV from new features in the
live system.

used to learn the parameters of the RF. �e second row of Figure 1
shows the live system where the RF parameters from the training
period are applied to new features generated from the last year’s
data to produce prediction for net customer spend over the next
year.

We provide a detailed explanation of the challenges and lessons
learned in deploying the ASOS CLTV system and describe our lat-
est e�orts to improve this system by augmenting it with learned
features. Our approach is inspired by the recent successes of repre-
sentation learning in the domains of vision, speech and language.
We experimented with learning representations directly from data
using two di�erent approaches: (1) by training a feedforward neu-
ral network on the handcra�ed features in a supervised se�ing
(see Section 4.2); (2) By augmenting the RF feature set with unsu-
pervised customer embeddings learnt from web and app browsing
data (see Section 4.1). �e novel customer embeddings are shown
to improve CLTV prediction performance signi�cantly compared
with our benchmark. Incorporating embeddings into long-term pre-
diction models is challenging because, unlike handcra�ed features,
the features are not easily identi�able. Figure 2 illustrates this point
using a four dimensional embedding. Each column in the �gure
corresponds to a di�erent dimension of the embeddings space and
also a feature of the random forest model. In the training period
we learn parameters for each feature. However, as the features are
not labelled and their order randomly permutes from training to
test time, it is not possible to map the training parameters to the
test features. We describe how this problem can be solved within
the neural embedding framework using a form of warm start for
the test period embeddings.

�erefore, our main contributions are:

(1) A detailed description of the large-scale CLTV system de-
ployed at ASOS, including a discussion of the architecture,
deployment challenges and lessons learned.

(2) Analysis of two candidate architectures for hybrid systems
that incorporate both handcra�ed and learned features

(3) Introduction of customer level embeddings and demonstra-
tion that these produce a signi�cantly be�er performance
than a benchmark classi�er

Figure 2: Illustration of the challenges of using the com-
ponents of embedded customer vectors as features for fore-
casting. Each column represents a component of the vector
representation of customers. We have labelled the columns
with the parameters that are learnt at training time. (Le�)
�e vector components randomly permute between train
and testing time and hence require di�erent learned param-
eters. (Right) Applying the learned parameters from train-
ing time directly to the embeddings in test time will not
work as they are no longer attached to the correct compo-
nent of the embedded vectors.

(4) We show how to use neural embeddings for long-term
prediction tasks

2 RELATEDWORK
Statistical models of customer purchasing behaviour have been
studied for decades. Early models were hampered by a lack of data
and were o�en restricted to ��ing simple parametric statistical
models, such as the Negative Binomial Distribution in the NBD
model [16]. It was only at the turn of the century, with the advent
of large-scale e-commerce platforms that this problem began to
a�ract the a�ention of machine learning researchers.

2.1 Distribution Fitting Approaches
�e �rst statistical models of CLTV were known as “Buy ’Til You
Die” (BTYD) models. BTYD models place separate parametric dis-
tributions on the customer lifetime and the purchase frequency and
only require customer recency and frequency as inputs. One of the
�rst models was the Pareto/NBD model [20], which assumes an
exponentially distributed active duration and a Poisson distributed
purchase frequency for each customer. �is yields a Pareto-II



customer lifetime and negative-binomial (NBD) distributed pur-
chase frequency. Fader et al. [7] replaced the Pareto-II with a Beta-
geometric distribution for easier implementation, assuming each
customer has a certain probability to become inactive a�er every
purchase. Bemmaor et al. [4] proposed the Gamma/Gompertz dis-
tribution to model the customer active duration, which is more
�exible than the Pareto-II as it can have a non-zero mode and be
skewed in both directions.

Recency-Frequency-Monetary Value (RFM) models expand on
BTYD by including an additional feature. Fader et al. [8] linked
the RFM model, which captures the time of last purchase (recency),
number of purchases (frequency) and purchase values (monetary
value) of each customer to CLTV estimation. �eir model assumes a
Pareto/NBD model for recency and frequency with purchase values
following an independent gamma/gamma distribution.

While successful for the problems that they were applied to, it
is di�cult to incorporate the vast majority of the customer data
available to modern e-commerce companies into the RFM/BYTD
framework. It is particularly di�cult to incorporate automatically
learned or highly sparse features. �is motivates the need for
machine learning approaches to the problem.

2.2 Machine Learning Methods
�e most related work to ours is that of Vanderveld et al. [21],
which is the �rst work to explicitly include customer engagement
features in a CLTV prediction model. �ey also address the chal-
lenges of learning the complex, non-linear CLTV distribution by
solving several simpler sub-problems. Firstly, a binary classi�er
is run to identify customers with predicted CLTV greater than
zero. Secondly, the customers predicted to shop again are split
into �ve groups and independent regressors are trained for each
group. To the best of our knowledge, deep neural networks have
not yet been successfully applied to the CLTV problem. However,
there is work on the related churn problem (CLTV greater than
zero) by Wangperawong et al. [24] for telecommunications. �e
authors create a two-dimensional array for each customer where
the columns are days of the year and the rows describe di�erent
kinds of communication (text, call etc.). �ey used this array to
train deep convolutional neural networks. �e model also used
auto-encoders [23] to learn low-dimensional representations of the
customer arrays.

2.3 Neural Embeddings
Neural embeddings are a technique pioneered in Natural Lan-
guage Processing (NLP) for learning distributed representations of
words [15]. �ey provide an alternative to the one-of-k (or one-
hot) representation. Unlike the one-of-k representation, which
uses large sparse orthogonal vectors (which are equally similar),
embeddings are compact, dense representations that encapsulate
similarity. Embedded representations have been shown to give
superior performance to sparse representations in several down-
stream tasks in language and graph analysis [15, 17]. All embedding
methods de�ne a context that groups objects. Typically, the data is
a sequence and the context is a �xed-length window that is passed

along the sequence. �e model learns that objects frequently oc-
curring in the same context are similar and will have embeddings
with high cosine similarity.

One of the most popular embedding models is SkipGram with
Negative Sampling (SGNS), which was developed by Mikolov et al.
[15]. It has found a broad range of applications and we describe
the most relevant to our work. Barkan and Koenigstein [3] used
SGNS for item-level embeddings in item-based collaborative �lter-
ing, which they called item2vec. As a context the authors use a
basket of items that were purchased together 1. In [10] SGNS was
used to generate a set of product embeddings, which the authors
called prod2vec, by mining receipts from email data. For each cus-
tomer a sequence of products was built (with arbitrary ordering
for those bought together) and then a context window was run
over it. �e goal was to predict products that are co-purchased by
a single customer within a given number of purchases. �e authors
also proposed a hierarchical extension called bagged-prod2vec that
groups products appearing together in a single email. [2] used a
variant of SGNS to predict the next app a mobile phone user would
open. �e key idea is to consider sequences of app usage within
mobile sessions. �e data had associated time stamps, which the
authors used to modify the original model. Instead of including
every pairwise set of apps within the context, the selection proba-
bility was controlled by a Gaussian sampling scheme based on the
inter-open duration.

3 CUSTOMER LIFETIME VALUE MODEL
�e ASOS CLTV model uses a rich set of features to predict the net
spend of customers over the next 12 months by training a random
forest regressor on historic data. One of the major challenges of
predicting CLTV is the unusual distribution of the target variable.
A large percentage of customers have a CLTV of zero. Of the
customers with greater than zero CLTV, the values di�er by several
orders of magnitude. To manage this problem we explicitly model
CLTV percentiles using a random forest regressor. Having predicted
percentiles, the outputs are then mapped back to real value ranges
for use in downstream tasks.

�e remainder of this section describes the features used by the
model, the architecture that allows the model to scale to over 10
million customers, and our training and evaluation methodology.

3.1 Features
�emodel incorporates features from the full spectrum of customer
information available at ASOS. �ere are four broad classes of data:
(1) customer demographics, (2) purchase history (3) returns history
(4) web and app session logs. By far the largest and richest of these
classes are the session logs.

We apply random forest feature importance [9] to rank the 132
handcra�ed features. Table 1 shows the feature importance break-
down by the broad classes of data and Table 2 shows the top features.
As expected, the number of orders, the number of sessions in the
last quarter and the nationality of the customer were very impor-
tant features for CLTV prediction. However, we were surprised by
the importance of the standard deviation of the order and session

1Items are synonymous with products, but the term ‘item’ is used in the recommender
systems literature.



Table 1: Feature importance by data class.

Data class Overall Importance
Customer demographics 0.078

Purchases history 0.600
Returns history 0.017

Web/app session logs 0.345

Table 2: Individual feature importance (top features).

Feature Name Importance
Number of orders 0.206

Standard deviation of the order dates 0.115
Number of session in the last quarter 0.114

Country 0.064
Number of items from new collection 0.055

Number of items kept 0.049
Net sales 0.039

Days between �rst and last session 0.039
Number of sessions 0.035

Customer tenure 0.033
Total number of items ordered 0.025

Days since last order 0.021
Days since last session 0.019

Standard deviation of the session dates 0.018
Orders in last quarter 0.016

Age 0.014
Average date of order 0.009
Total ordered value 0.008

Number of products viewed 0.007
Days since �rst order in last year 0.006

Average session date 0.006
Number of sessions in previous quarter 0.005

dates, particularly because the maximum spans of these variables
were also features. We also did not expect the number of items
purchased from the new collection to be one of the most relevant
features. �is is because newness is a major consideration for high
value fashion customers.

3.2 Architecture
�e high-level system architecture is shown in Figure 3. Raw cus-
tomer data (see Section 3.1) is pre-processed in our data warehouse
and stored in Microso� Azure blob storage2. From blob storage,
data �ows through two work streams to generate customer fea-
tures: A handcra�ed feature generator on Apache Spark and an
experimental customer embedding generator on GPU machines
running Tensor�ow[1], which uses only the web/app sessions as
input. �e model is trained in two stages using an Apache Spark
ML pipeline. �e �rst stage pre-processes the features and trains
random forests for churn classi�cation and CLTV regression on
percentiles. �e second stage performs calibration and maps per-
centiles to real values. Finally the predictions are presented to a

2a Microso� cloud solution that provides storage compatible with distributed process-
ing using Apache Spark

Figure 3: High-level overview of the CLTV system. �e solid
arrows represent the�owof data, and the dashed arrows rep-
resents interaction between stakeholders and systems/data.
Customer data is collected and pre-processed by our data
warehouse and stored on Microso� Azure blob storage. �e
processed data is used to generate handcra�ed features in
Spark clusters, with web/app sessions additionally used to
produce experimental customer embeddings in Tensor�ow.
�ehandcra�ed features and customer embeddings are then
fed through the machine learning pipeline on Spark, which
trains calibrated random forests for churn classi�cation and
CLTV regression. �e resulting prediction are piped to op-
erational systems.

range of business systems that trigger personalised engagement
strategies with ASOS customers.

3.3 Training and Evaluation Process
Our live system uses a calibrated random forest model with features
from the past twelve months that is re-trained every day. We use
twelve months because there are strong seasonality e�ects in retail
and failing to use an exact number of years would cause �uctuations



in features that are calculated by aggregating data over the training
period.

To train the model we use historic net sales over the last year as
a proxy for CLTV labels and learn the random forest parameters
using features generated from a disjoint period prior to the label
period. �is is illustrated in Figure 1. Every day we generate:

(1) A set of aggregate features and product view-based embed-
dings for each customer based on their demographics, pur-
chases, returns and web/app sessions between two years
and one year ago,

(2) Corresponding target labels, including the churn status
and net one-year spend, for each customer based on data
from the last year.

�e feature and label periods are disjoint to prevent information
leakage. As the predictive accuracy of our live system could only
be evaluated in a year’s time, we establish our expectation on the
performance of the model by forecasting for points in the past for
which we already know the actual values as illustrated in Figure 1.
We use the Area Under the receiver operating characteristic Curve
(AUC) as a performance measure.

3.4 Calibration
In this context, calibration refers to our e�orts to ensure that the
statistics of the model predictions are consistent with the statistics
of the data. Model predictions are derived from RF leaf distributions
and we perform calibration for both churn and CLTV prediction.

For customer churn prediction, choosing RF classi�er parameters
that maximise the AUC does not guarantee that the predictive
probabilities will be consistent with the realised churn rate [25].
To generate consistent probabilities, we calibrate by learning a
mapping between the estimates and the realised probabilities. �is
is done by training a one-dimensional logistic regression classi�er
to predict churn based only on the probabilities returned by the
random forest. �e logistic regression output is interpreted as a
calibrated probability. Similarly, to estimate CLTV we have no
guarantees that the regression estimates achieved by minimizing
the Root Mean Squared Error (RMSE) loss function will match the
realised CLTV distribution. To address this problem, analogously to
churn probability calibration, we �rst forecast the CLTV percentile
and thenmap the predicted percentiles intomonetary values. In this
case, the mapping is learnt using a decision tree. We observe two
advantages in performing calibration: (1) the model becomes more
robust to the existence of outliers and (2) we obtain predictions,
which when aggregated over a set of customers, match the true
values more accurately.

3.5 Results
To �nd the optimal meta-parameters for the RFs we use 10-fold
cross validation on a sample of the data. For CLTV predictions (see
Figure 4) we obtain Spearman rank-order correlation coe�cients
of 0.56 (for all customers) and 0.46 (excluding customers with a
CLTV of 0). We can see in Figure 4 that the range and density of
the predicted CLTV matches the actual CLTV (excluding customers
with an LTV of 0). For the churn predictions (see Figure 5) we
obtain an AUC of 0.798 and calibrated probabilities.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Predicted LTV (log)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ac
tu

al
 L

TV
 (l

og
)

Figure 4: Predicted CLTV against actual CLTV (excluding
customers with an actual CLTV of 0). Units (horizontal and
vertical axis) are the average CLTV value in GBP. �e distri-
bution of the prediction and the actual CLTV are similar in
log scale (top and right density plots). �e central plot shows
the �t between the predictions and the actual values, which
have a Spearman rank-order correlation coe�cient of 0.46.Churn prediction

Calibrated probabilities 
reflect actual 
probabilities

e.g. if we take a large 
group of customers 

whose forecasted churn 
risk is 75% this means 

that 75 out of every 100 
will churn.

Sure the 
customer 
is staying

Sure the 
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is leavingNot sure 

either 
way

Figure 5: Churn prediction density (horizontal axis) and
match between predicted probabilities and actual probabili-
ties (black line) versus the optimal calibration (dashed grey
line). �e predicted probabilities match closely with the ac-
tual probabilities

.



4 IMPROVING THE CLTV MODEL WITH
FEATURE LEARNING

In the remainder of the paper we describe our ongoing e�orts to
supplement the handcra�ed features in our deployed system with
automatic feature learning. Feature learning is the process of learn-
ing features directly from data, so as to maximise the objective
function of the classi�cation or regression task. �is technique
is frequently used within the realms of deep learning [12] and di-
mensionality reduction [19] to overcome some of the limitations
of engineered features. Despite being more di�cult to interpret,
learnt features avoid the resource intensive task of constructing
features manually from raw data and have been shown to outper-
form the best handcra�ed features in the domains of speech, vision
and natural language.

We experiment with two distinct approaches. Firstly, we learn
unsupervised neural embeddings using customer product views.
Once learnt the embeddings are added to the feature set of the RF
model. Secondly, we train a hybrid model that combines logistic
regression with a Deep Neural Network (DNN). �e DNN uses the
handcra�ed features to learn higher order feature representations.

4.1 Embedding Customers using Browsing
Sessions

We learn embeddings of ASOS customers using neural embedding
models borrowed from NLP. To re-purpose them we replace se-
quences of words with sequences of customers viewing a product
(see Figure 7). Previous work has looked at embedding products
based on sequences of customer interactions [3, 10, 22]. It is possible
to aggregate product embeddings to produce a customer embedding.
However, this approach fails at the task of producing long-term
forecasts when products are relatively short live (as is the case in
the fashion industry). For this reason we learn embeddings of cus-
tomers directly. Intuitively, high-value customers tend to browse
products of higher value, less popular products and products that
may not be at the lowest price on the market. By contrast, lower-
value customers will tend to appear together in product sequences
during sales periods or for products that are priced below the mar-
ket. �is information is di�cult to incorporate into the model using
hand-cra�ed features as the number of sequences of product views
grows combinatorially.

Figure 6 shows the neural architecture of our customer embed-
ding model. �e model has two large weight matrices, Win and
Wout that learn distributed representations of customers. �e out-
put of the model isWin and a�er training, each row ofWin is the
vector representation of a customer in the embedding space. �e
inputs to the model are pairs of customers (Cin,Cout) and the loss
function is the probability of observing the output customer Cout
given Cin:

E = − log P(Cout |Cin) =
exp

(
v′out

T vin
)

∑ |C |
j=1 exp

(
v′j
T vin

) , (1)

where v′j represents the j
th row of Wout, v ′out represents the row

ofWout that corresponds to the customer Cout and vin represents
the row ofWin that corresponds to the customer Cin and |C | is the
total number of customers.

Figure 6: Neural network architecture and matrix represen-
tation of the network’s input/output weights (embedding
representation) in the Skipgrammodel on customer embed-
dings. �e Skipgram model uses a neural network with one
hidden layer. Customers are represented by one-hot vectors
in the input and output layers, and the weights between the
input (output) and hidden layers are represented by a ran-
domly initialised customer input (output) embedding ma-
trix Win (Wout). Each row of the matrix represents a cus-
tomer embedding in Rn , with lighter cells representing a
more negative value and darker cells representing a more
positive value.

�e output so�max layer in Figure 6 has a unit for every cus-
tomer, which must be evaluated for each training pair. �is would
be prohibitively expensive to do for approximately ten million cus-
tomers. However, it can be approximated using SkipGram with
Negative Sampling (SGNS) by only evaluating a small random se-
lection of the total customers at each training step [15].

Applying SGNS requires three key design decisions:

(1) How to de�ne a context.
(2) How to generate pairs of customers (Cin,Cout) from within

the context.
(3) How to generate negative samples.

In NLP, the context is usually a sliding window over word se-
quences within a document. �e word at the centre of the window
is the input word and (wordin,wordout) pairs are formed with every
other word in the context. �e negative samples are drawn from a



Figure 7: Customer pair generation in the skip-gram model
based on product views. Each row represents a product sold
on ASOS and the sequence of customer views of that prod-
uct. In this example the context window is of length two and
considers only adjacent view events (each pair in this exam-
ple) of the same product. Hence, the exact time a product is
viewed is ignored. Customers who o�en appear in the same
context windowwill be close to each other in the embedding
representation.

modi�ed unigram distribution of the training corpus3. We adopt
this approach here.

Figure 7 shows how we de�ne a context and generate customer
pairs. Each product in the catalogue is associated with a sequence of
customer views. A sliding context window is then passed over the
sequence of customers. For every position of the context window,
the central customer is used as Cin and all other customers in the
window are used to form (Cin,Cout) pairs. In this way, a window
of length three containing (C1,C2,C3) would generate customer
pairs (C2,C1) and (C2,C3). We empirically found that a window of
length 11 worked well.

�e embedding algorithm begins by randomly initialisingWin
and Wout. �en, for each customer pair (Cin,Cout) with embedded
representations (vin, v′out), k negative customer samples Cneg are
drawn. A�er the forward pass, k + 1 rows of Wout are updated via
gradient descent, using backpropagation:

v′j
new
=

{
v′j

old − η (σ (v′j
T vin) − tj ) vin ∀j : Cj ∈ Cout ∪Cneg

v′j
old otherwise ,

(2)

where η is the update rate, σ is the logistic sigmoid and tj = 1 if
Cin = Cout and 0 otherwise.

Finally, only one row of Win, corresponding to vin is updated
according to:

vnewin = voldin − η
∑

j :Cj ∈Cout∪Cneg

(σ (v′j
T vin) − tj ) v′j . (3)

3‘Modi�ed’ means that word frequencies are raised to a power before normalisation
(usually 0.75).
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Figure 8: Upli� in the area under the receiver operating char-
acteristics curve achieved on random test sets of 20,000 cus-
tomers with product view-based embeddings against num-
ber of neurons in the hidden layer of the Skipgram model.
�e error bars represent the 95% con�dence interval of the
sample mean.

Figure 8 shows that we obtained a signi�cant upli� in AUC
using embeddings of customers. We experimented with a range of
embedding dimensions and found the best performance to be in
the range 32-128 dimensions. �is result shows that this approach
is highly relevant and we are working to incorporate the technique
into our live system at the point of writing this paper.

4.1.1 Embeddings for the Live System. To use embeddings in
the deployed system it is necessary to make a correspondence
between the embedding dimensions in the training period and the
live system’s feature generation period. Figure 1 shows that the
features for training the CLTV model and features used for the
live system come from disjoint time periods. As the embedding
dimensions are unlabelled, randomly initialised and exchangeable
in the SGNS loss function (see Equation (1)), the parameters learned
in the training period can not be assumed to match the embeddings
used in the live system. To solve this problem, instead of randomly
initialisingWin andWout we perform the following initialisation:

• Customers that were present in the training period: ini-
tialise with training embeddings.

• New customers: initialise to uniform random values with
absolute values that are small compared to the training
embeddings.

In the live system there are four types of (Cin,Cout) customer pairs:
(Cnew,Cnew), (Cnew,Cold), (Cold,Cnew) and (Cold,Cold). Equation (3)
shows that the update to vin is a linear combination of vout and the
negative vectors. �erefore a single update of a (Cnew,Cold) pair is
guaranteed to be a linear combination of embedding vectors from
the training period. To generate embeddings that are consistent
across the two time periods we order the data in each training
epoch as (1) (Cold,Cold) to update the representation of the old cus-
tomers, (2) (Cnew,Cold) to initialise the new customers with linear
combinations of embeddings from old customers, (3) (Cold,Cnew),
(4) (Cnew,Cnew). For this scheme to work there must be a large



proportion of customers that are present in both the training and
test periods. �is is true for customer embeddings but it is not
true for product embeddings. �is requirement explains why
we chose to learn customer embeddings directly instead of using
aggregations of product embeddings.

4.2 Embeddings of Handcra�ed Features
We also investigate to what extent our deployed system could be
improved by replacing the RF with a Deep Neural Network (DNN).
�is is motivated by the recent successes of DNNs in vision, speech
recognition, and recommendation systems [6, 13]. Our results
indicate that while incorporating DNNs in our system may improve
the performance, themonetary cost of training themodel outweighs
the performance bene�ts.

We limit our experiments with DNNs to the churn problem
(predicting a CLTV of zero for the next 12 months). �is reduces
the CLTV regression problem to a binary classi�cation problem
with more interpretable predictions and metrics on performance.

We experiment with (1) deep feed-forward neural networks and
(2) hybrid models combining logistic regression and a deep feed-
forward neural network similar to that used in [5]. �e deep feed-
forward neural networks accept all continuous-valued features and
dense embeddings of categorical features, which are described in
Section 3.1, as inputs. We use Recti�ed Linear Units (ReLU) activa-
tions in the hidden units and sigmoid activation in the output unit.
�e hybrid models are logistic regression models incorporating a
deep feed-forward neural network. �e output of the neural net-
work’s �nal hidden layer is used alongside all continuous-valued
features and sparse categorical features, as input. �is is akin to
skip connections in neural networks described in [18], with the
inputs connected directly to the output instead of the next hidden
layer. Training on the neural network part of the models is done
via mini-batch stochastic gradient descent with Adagrad optimiser,
with change of weights backpropagated to all layers of the network.
Regularisation is applied on the logistic regression part of the hy-
brid models via the use of FTRL-Proximal algorithm as described
by McMahan et al. [14].

We evaluate the performance and scalability of the two models
with di�erent architectures, and compare them with other machine
learning techniques. We experimented with neural networks with
two, three and four hidden layers, each with di�erent combinations
of number of neurons. For each neuron architecture, we train the
models using a subset of customer data (the training set), and record
(1) the maximum AUC achieved when evaluating on a separate
subset of customer data (the test set), (2) the (wall clock) time taken
to complete a pre-speci�ed number of training steps. We repeat the
training/testing multiple times for each architecture to obtain an
estimate on the maximum AUC achieved and the training time. All
training/testing is implemented using the TensorFlow library [1]
on a Tesla K80 GPU machine.

Introducing bypass connections in the hybrid models improves
the predictive performance compared to a deep feed-forward neural
network with the same architecture. Figure 9 shows a comparison
of the maximum AUC achieved by DNNs to the hybrid logistic and
DNN models on a test set of 50,000 customers. Our experiments
show a statistically signi�cant upli� at least 1.4 × 10−3 in every
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Figure 9: Maximum area under the receiver operating char-
acteristics curve achieved on a test set of 50,000 customers in
deep feed-forward neural networks and hybridmodels with
di�erent numbers of hidden layer neurons. �e error bars
represent the 95% con�dence interval of the sample mean.
�e number of hidden-layer neurons are recorded in the fol-
lowing format: [x ,y] denotes a neural network with x and
y neurons in the �rst and second hidden layer respectively,
[x ,y, z] denotes a neural network with x , y, z neurons in the
�rst, second, and third hidden layers.

con�guration of neurons that we experimented with. We believe
the upli� is due to the hybrid models’ ability to memorize the
relationship between a set of customer a�ributes and their churn
status in the logistic regression part. �is is complementary to
a deep neural network’s ability to generalise customers based on
other customerswho have similar aggregation features, as described
by Cheng et al. [5].

We tried to estimate the size (in number of neurons) of hybrid
model required to outperform the AUC of the RF model. Figure 10
shows that there is a linear relationship between the maximum
AUC achieved on the same test set of customers and the number
of neurons in each hidden layer in logarithmic scale. We notice a
hybrid model with a small number of neurons in each hidden layer
already gives statistically signi�cant improvement in maximum
AUC achieved compared with a vanilla logistic regression 4 (LR),
but within the range of our experiments we could not exceed the
performance of the RF model. �e shaded regions and dashed lines
in Figure 10 provide three estimates of the number of neurons that
would be required to outperform the RF model.

While the experiments suggest it is possible for our hybrid model,
which incorporates a deep neural network, to outperform the cali-
brated RF model in churn classi�cation, we believe the monetary
cost required to perform such training outweighs the bene�t of gain
in performance. Figure 11 shows the relationship between mone-
tary cost to train the hybrid models and the number of neurons in

4A vanilla LR is essentially a hybrid model minus the deep network part, with the
same input and optimisation wherever relevant.
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Figure 10: Maximum Area Under the receiver operating
characterics Curve (AUC) achieved on a test set of 50,000 cus-
tomers in hybrid models against number of neurons in the
hidden layers (in log scale). We only consider hybrid mod-
els with two hidden layers, each having the same number
of neurons. �e error bars represent the 95% con�dence in-
terval of the sample mean. �e bottom (green) and top (red)
horizontal line represent the maximum AUC achieved by a
vanilla logistic regressionmodel (LR) and our random forest
model (RF) on the same set of customers. �e dashed lines
in the shaded region represent di�erent forecast scenarios
for larger architectures.

each hidden layer. �e cost of training a vanilla LR model and our
calibrated RF model are indicated by horizontal lines. �e cost rises
exponentially with increasing number of neurons, indicating that a
hybrid model that outperformed our calibrated RF model is not be
practical on cost grounds.

We believe the case is similar for CLTV prediction, in which a
hybrid model on handcra�ed features (whether in numerical values
or categorical feature embeddings) can achieve be�er performance
than our current deployed random forest model, though with a
much higher cost that is not commercially viable. �is is supported
in principle by our preliminary experiments, which measures the
root mean squared error (RMSE) between the hybrid models’ pre-
dicted percentile and actual percentile of each customer’s spend.
We observe increasing the number of neurons in hybrid models
decreases the RMSE, but are unable to train hybrid models with
tens of thousands of neurons due to prohibitive runtimes.

5 DISCUSSION AND CONCLUSIONS
We have described the CLTV system deployed at ASOS and the
main issues we faced while building it. In the �rst half of the paper
we describe our baseline architecture, which achieves state of the
art performance for this problem and discuss an important issue
that is o�en overlooked in the literature: model calibration. Given
the recent success of representation learning across a wide range of
domains, in the second half of the paper we focus on our ongoing
e�orts to further improve the model by learning two additional
types of representations: Training feedforward neural network
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Figure 11: Mean monetary cost to train hybrid models on a
training set of 100,000 customers against the number of neu-
rons in the hidden layers (both in log scale). �e training
cost shown is relative to the cost of training our random for-
est (RF) model. Here we only consider hybrid models with
two hidden layers, each having the same number of neurons.
�e bottom (green) and top (red) horizontal line represents
the mean cost to train a vanilla logistic regression model
(LR) and our RF model on the same set of customers. �e
cost shown is based on the time required to train each of the
models, and the cost of using the computational resources
- Spark clusters to train RF models, and GPU VMs to train
LR and hybrid models in Microso� Azure. �e vertical dash-
dotted (grey) line represents the estimated number of neu-
rons in each layer required for a two-hidden layer hybrid
model to out-perform our random forest model.

on the handcra�ed features in a supervised se�ing (Section 4.2);
by learning an embedding of customers using session data in an
unsupervised se�ing to augment our set of RF features (Section
4.1). We showed that learning an embedding of a rich source of
data (products viewed by a customer) in an unsupervised se�ing
can improve the performance over using only handcra�ed features
and plan to incorporate this embedding in the live system as well
as apply this same approach to other types of events (e.g. products
bought by a customer). �e main alternative approach to the two
described ways of learning representations would be to use a deep
network to learn end-to-end from raw data sources as opposed to
using handcra�ed features as inputs. We are starting to explore this
approach, which while extremely challenging, we believe might
also provide large improvement versus the state of the art.
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